Multi-Unit Auctions with Resale: An Experimental Analysis

Marco Pagnozzi Krista Jabs Saral

July 2013

 Auctions are often followed by a resale market, where winners can resell the objects acquired

- Auctions are often followed by a resale market, where winners can resell the objects acquired
 - Spectrum licenses

- Auctions are often followed by a resale market, where winners can resell the objects acquired
 - Spectrum licenses
 - Treasury bills

- Auctions are often followed by a resale market, where winners can resell the objects acquired
 - Spectrum licenses
 - Treasury bills
 - Emission permits ...

- Auctions are often followed by a resale market, where winners can resell the objects acquired
 - Spectrum licenses
 - Treasury bills
 - Emission permits ...
- How does resale affect bidders' strategies, efficiency and the seller's revenue?

- Auctions are often followed by a resale market, where winners can resell the objects acquired
 - Spectrum licenses
 - Treasury bills
 - Emission permits ...
- How does resale affect bidders' strategies, efficiency and the seller's revenue?
- Should resale be allowed?

- Auctions are often followed by a resale market, where winners can resell the objects acquired
 - Spectrum licenses
 - Treasury bills
 - Emission permits ...
- How does resale affect bidders' strategies, efficiency and the seller's revenue?
- Should resale be allowed?
- How should the resale market be structured?

Why does resale happen?

- Bidders do not participate in the auction (Milgrom, 1987; Bikhchandani & Huang, 1989)
- Bidders' valuations change after the auction (Haile, 2000, 2003)
- Value uncertainty (in 1st-price auctions)
 (Gupta & Lebrun, 1999; Hafalir & Krishna, 2007)
- Auction price affects bargaining in resale market (Pagnozzi, 2007)
- Strategic behavior: demand reduction and speculation (Garratt & Tröger 2006; Pagnozzi, 2009, 2010)

 In multi-object auctions, bidders often bid less than value for marginal units to keep the auction price low (Demand Reduction - Wilson, 1979; Ausubel & Cramton, 98) (e.g., FCC auctions, German GSM auction, electricity)

- In multi-object auctions, bidders often bid less than value for marginal units to keep the auction price low (Demand Reduction – Wilson, 1979; Ausubel & Cramton, 98) (e.g., FCC auctions, German GSM auction, electricity)
- Demand reduction reduces the seller's revenue and yields an inefficient allocation, making bidders willing to trade

- In multi-object auctions, bidders often bid less than value for marginal units to keep the auction price low (Demand Reduction – Wilson, 1979; Ausubel & Cramton, 98) (e.g., FCC auctions, German GSM auction, electricity)
- Demand reduction reduces the seller's revenue and yields an inefficient allocation, making bidders willing to trade
- Resale induces weak (low-value) bidders to speculate:
 bid aggressively to win and sell to strong (high-value) bidders

- In multi-object auctions, bidders often bid less than value for marginal units to keep the auction price low (Demand Reduction – Wilson, 1979; Ausubel & Cramton, 98) (e.g., FCC auctions, German GSM auction, electricity)
- Demand reduction reduces the seller's revenue and yields an inefficient allocation, making bidders willing to trade
- Resale induces weak (low-value) bidders to speculate:
 bid aggressively to win and sell to strong (high-value) bidders
- Resale increases strong bidders' incentive to reduce demand, because they can purchase after the auction the units lost

Overview

In multi-object uniform-price auctions with asymmetric bidders and resale through bargaining:

Without resale, asymmetry between bidders affects demand reduction

<u>Overview</u>

In **multi-object** uniform-price auctions with **asymmetric** bidders and resale through **bargaining**:

- Without resale, asymmetry between bidders affects demand reduction
- Openand reduction and speculation emerge when the auction winner can resell

<u>Overview</u>

In **multi-object** uniform-price auctions with **asymmetric** bidders and resale through **bargaining**:

- Without resale, asymmetry between bidders affects demand reduction
- ② Demand reduction and speculation emerge when the auction winner can resell
- Effect of resale on efficiency and seller's revenue

<u>Overview</u>

In **multi-object** uniform-price auctions with **asymmetric** bidders and resale through **bargaining**:

- Without resale, asymmetry between bidders affects demand reduction
- Openand reduction and speculation emerge when the auction winner can resell
- Effect of resale on efficiency and seller's revenue
- Effects of changing the resale market structure

THEORETICAL BACKGROUND

<u>Model</u>

- 2 units of an identical good for sale
- Uniform-price auction: the 2 highest bids win, and winner(s) pay the 3rd-highest bid for each unit
- 2 asymmetric bidders:
- S (strong) demands 2 units and has high value $v_{s} \sim U$ [30; 50]
- W (weak) demands 1 unit and has low value $v_{w} \sim U$ [10; 30]
- \rightarrow Either S wins both units or S and W win one unit each

• It is a dominant strategy for W to bid v_W (as in a single-object 2^{nd} -price auction)

• Since W bids v_W , S can

- Since W bids v_W , S can
 - win 2 units at price $\mathbb{E}\left[v_W\right]$ and obtain $2\left(v_S \mathbb{E}\left[v_W\right]\right)$, or

- Since W bids v_W , S can
 - win 2 units at price $\mathbb{E}[v_W]$ and obtain $2(v_S \mathbb{E}[v_W])$, or
 - bid 0 for the 2^{nd} unit (reduce demand), win 1 unit letting W win 1 unit, and obtain $v_S 0$

- Since W bids v_W , S can
 - win 2 units at price $\mathbb{E}[v_W]$ and obtain $2(v_S \mathbb{E}[v_W])$, or
 - bid 0 for the 2^{nd} unit (reduce demand), win 1 unit letting W win 1 unit, and obtain $v_S 0$
- \Rightarrow S reduces demand if and only if

$$v_S - 0 > 2 (v_S - \mathbb{E}[v_W]) \Leftrightarrow v_S < 2\mathbb{E}[v_W] = 40$$

- Since W bids v_W , S can
 - win 2 units at price $\mathbb{E}[v_W]$ and obtain $2(v_S \mathbb{E}[v_W])$, or
 - bid 0 for the 2^{nd} unit (reduce demand), win 1 unit letting W win 1 unit, and obtain $v_S = 0$
- \Rightarrow S reduces demand if and only if

$$v_S - 0 > 2 (v_S - \mathbb{E}[v_W]) \Leftrightarrow v_S < 2\mathbb{E}[v_W] = 40$$

• S's incentive to reduce demand giving up 1 unit is lower when he has a higher value

Resale Market

- ullet After the auction, if W wins a unit, he can resell it to S
- Resale takes place through bargaining
- Gains from trade are v_S − v_W
- $oldsymbol{\circ}$ S obtains a share lpha of the gains from trade W obtains a share (1-lpha) of the gains from trade (results are robust to many alternative models of resale market)

• W bids up to the expected resale price

$$\alpha v_W + (1 - \alpha) \mathbb{E} [v_S] \equiv \mathbb{E} [r]$$

• W bids up to the expected resale price

$$\alpha v_W + (1 - \alpha) \mathbb{E} [v_S] \equiv \mathbb{E} [r]$$

 W speculates because of the option to resell and bids higher than v_W

ullet Since W bids $\mathbb{E}\left[r
ight]$, in the auction S can

- Since W bids $\mathbb{E}[r]$, in the auction S can
 - ullet Outbid W and win 2 units, obtaining $2\left(v_S-\mathbb{E}\left[r
 ight]
 ight)$

- Since W bids $\mathbb{E}[r]$, in the auction S can
 - Outbid W and win 2 units, obtaining $2(v_S \mathbb{E}[r])$
 - Bid 0 (reduce demand), win 1 unit and then buy 1 unit in resale market at price r, obtaining

$$v_s - 0 + v_S - r = 2v_S - r$$
auction profit resale profit

- Since W bids $\mathbb{E}[r]$, in the auction S can
 - ullet Outbid W and win 2 units, obtaining $2\left(v_{\mathcal{S}}-\mathbb{E}\left[r
 ight]
 ight)$
 - Bid 0 (reduce demand), win 1 unit and then buy 1 unit in resale market at price r, obtaining

$$v_s = 0$$
 + $v_s = 2v_s - r$ auction profit resale profit

 \Rightarrow S always reduces demand (for every α and v_S)

- ullet Since W bids $\mathbb{E}\left[r
 ight]$, in the auction S can
 - ullet Outbid W and win 2 units, obtaining $2\left(v_{\mathcal{S}}-\mathbb{E}\left[r
 ight]
 ight)$
 - Bid 0 (reduce demand), win 1 unit and then buy 1 unit in resale market at price r, obtaining

$$v_s = 0$$
 + $v_s = 2v_s - r$ auction profit resale profit

- \Rightarrow S always reduces demand (for every α and v_S)
 - Demand reduction allows S to win 1 unit at price 0 and then purchase the other unit from W in resale (rather than pay $\mathbb{E}[r]$ for both units)

Summing up:

• Without resale, W bids v_w and S reduces demand if and only if $v_s < 40$

Summing up:

- Without resale, W bids v_w and S reduces demand if and only if $v_s < 40$
- ② With resale, W bids above v_w and S always reduces demand

EXPERIMENTAL DESIGN

Uniform-Price Ascending Clock Auction

- Bidders choose when to drop out of the auction as the price increases
- When one bidder drops out, the auction is over (# of units on sale = # of units demanded)
- Winner(s) pay the dropout price for each unit

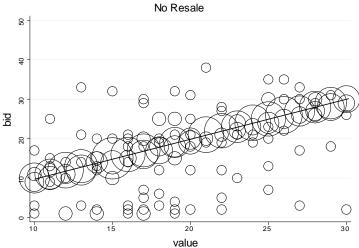
Treatments - between subjects design

- 1. No Resale
- _____
- Complete Information Resale: after the auction, if W won, bidders learn values and participate in resale
- 3. **Incomplete Information Resale:** same as complete info, but bidders do not learn values before resale

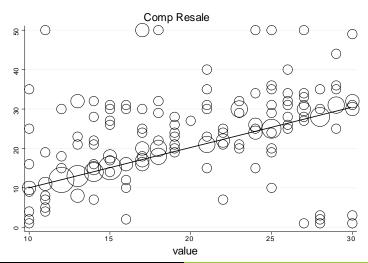
Resale market: one bidder, chosen with probability $\frac{1}{2}$, makes take-it-or-leave-it offer to the other (Calzolari & Pavan '06) \Rightarrow in expectation, bidders obtain $\frac{1}{2}$ of gains from trade

4. **Bargain** (unstructured): as Incomp Resale + bidders can make multiple offers and communicate in computerized chat

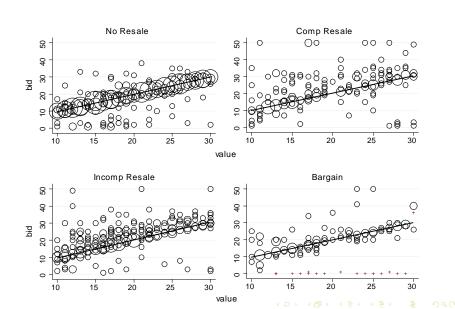
Sessions Information


- 3 sessions of 16 subjects per treatment (48 subjects per treatment)
- All sessions had 30 auction periods, except Bargain (20 periods due to 2 hour limit)
- All 12 sessions were run in the xs/fs laboratory at FSU in March and June 2011, and October 2012
- Mostly undergraduate subjects

/eak Bidding trong Bidding fficiency and Revenue esale Market


RESULTS

No Resale: W bids value with high frequency

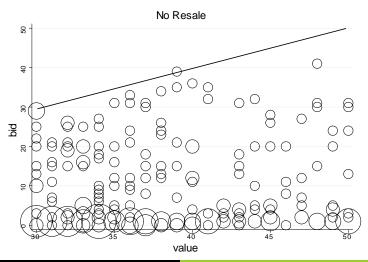

(Weighted scatterplot of observed bids vs. value)

Complete Information Resale: W bids above value with high frequency

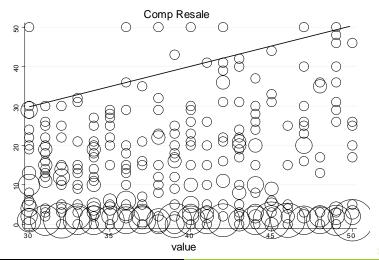
- Without resale, W tends to bid value
- With resale, W bids above value much more often

Bidding by W - Random Effects Tobit (unobserved bids censored at the auction price)

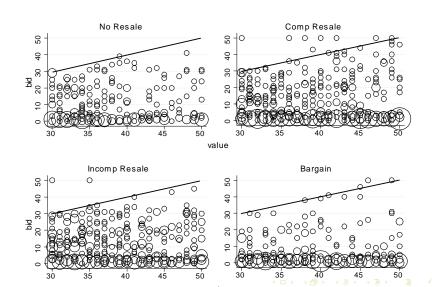
W's Bid	Coefficient	
Constant	0.870	-
V_W	0.993***	
Comp Resale	13.248***	- Bids are higher with resale,
Incomp Resale	6.951***	especially in Complete Resale
Bargain	6.747*** (2.545)	
$v_w \times Comp$	-0.316*** (0.092)	
$v_w \times Incomp$	-0.117 (0.084)	
v _w ×Bargain	-0.236** (0.108)	_


^{***} and ** indicate statistical significance at 1% and 5%

Demand Reduction by S:


	C' - I-:-	L- / 0	14/ 1	۸/:
	S 's bids ≤ 2		W Wins	
	$v_s < 40 v_s > 40$		$v_{s} < 40$	$v_s > 40$
No Resale	30%	12%	52%	25%
Comp Resale	37%	43%	77%	72%
Incomp Resale	29%	22%	72%	53%
Bargain	48%	50%	74%	71%

There is evidence of more demand reduction in later periods (learning)


No Resale: S reduces demand more frequently when $v_S < 40$, less frequently when $v_S > 40$

Complete Information Resale: *S reduces demand with high frequency for all values*

- Without resale, S reduces demand more when v_s < 40
- ullet With resale, S reduces demand more frequently, for all values
- ullet Uncertainty in resale reduces demand reduction by S

Bidding by S – Random Effects Tobit (unobserved bids censored at the auction price)

Strong Bid	Coefficient
Constant	0.078 (3.705)
V_S	0.560***
v _s >40	4.721*** (1.497)
Comp Resale	-5.894**
Incomp Resale	-2.635 (3.034)
Bargain	-8.615*** (3.065)
$Comp \times v_s {>} 40$	-8.621*** (1.505)
Incomp $\times v_s > 40$	-6.410*** (1.538)
Bargain×v _s >40	-9.257*** (1.682)

^{***} and ** indicate statistical significance at 1% and 5%

Bidding by S – Random Effects Tobit (unobserved bids censored at the auction price)

Strong Bid	Coefficient	
Constant	0.078 (3.705)	
V_S	0.560***	
$v_s{>}40$	4.721***	- Without resale S bids higher when $v_s{>}40$
Comp Resale	-5.894** (3.031)	
Incomp Resale	-2.635 (3.034)	
Bargain	-8.615*** (3.065)	
$Comp \times v_s > 40$	-8.621*** (1.505)	
Incomp $\times v_s > 40$	-6.410*** (1.538)	
Bargain \times v _s $>$ 40	-9.257*** (1.682)	

^{***} and ** indicate statistical significance at 1% and 5%

Bidding by S – Random Effects Tobit (unobserved bids censored at the auction price)

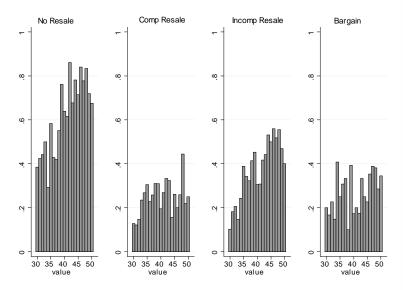
Strong Bid	Coefficient	
Constant	0.078 (3.705)	-
V_S	0.560***	
v _s >40	4.721***	
Comp Resale	-5.894** (3.031)	
Incomp Resale	-2.635 (3.034)	
Bargain	-8.615*** (3.065)	
Comp x $v_s>40$	-8.621*** (1.505)	- When $v_s{>}40$ in all resale treatments
Incomp x $v_s>40$	-6.410*** (1.538)	S bids lower than without resale
Bargain x $v_s>40$	-9.257***	

^{***} and ** indicate statistical significance at 1% and 5%

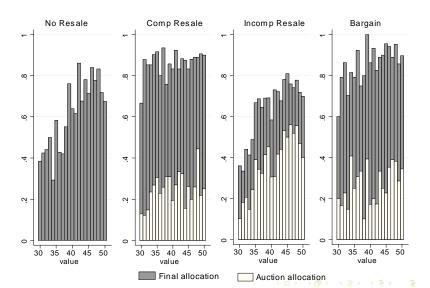
Bidding by S – Random Effects Tobit (unobserved bids censored at the auction price)

Strong Bid	Coefficient	
Constant	0.078 (3.705)	-
V_S	0.560***	
v _s >40	4.721*** (1.497)	
Comp Resale	-5.894**	- When $v_s{<}40$ in Comp Resale and Bargain
Incomp Resale	-2.635 (3.034)	${\cal S}$ bids lower than without resale
Bargain	-8.615***	
$Comp \times v_s {>} 40$	-8.621*** (1.505)	
Incomp $\times v_s > 40$	-6.410*** (1.538)	

-9.257***


Bargain $\times v_s > 40$

^{***} and ** indicate statistical significance at 1% and 5%


Auction Efficiency: with demand reduction, the auction allocation is inefficient \Rightarrow symmetry and resale reduce auction efficiency

- Average efficiency (winner's value/S's value): No Resale 0.82, Comp 0.64, Incomp 0.71, Bargain 0.65

Final Efficiency: Resale increases efficiency after the auction, but also demand reduction \Rightarrow ambiguous effect on final efficiency

- Average efficiency not significantly different between No Resale (= 0.82) and Incomp Resale (= 0.85)

Seller's Revenue:

- Resale reduces revenue because it induces S to reduce demand
- Resale increases revenue (when S does not reduce demand)
 because it induces W to bid aggressively

	No Resale	Comp Resale	Incomp Resale	Bargain
Average Revenue	14.61	11.94	14.05	8.47
Revenue - W wins	8.01	8.64	9.98	5.25
Revenue - S wins	18.81	21.85	21.06	17.22

⁻ No significant difference between revenue with No Resale and Incomp Resale (p = 0.319)

⁻ Significant difference between revenue with No Resale and either Comp Resale or Bargain (WMW, p < 0.001)

What are the effects of changing the resale market structure?

- Comp Resale: t-o-l offers with complete information
- **Incomp Resale**: t-o-l offers with incomplete information
- Bargain: multiple offers and communication

	Resale Possible (W won the auction)	Successful Resale
Comp Resale	75%	81.1%
Incomp Resale	63.2%	42.2%
Bargain	73.1%	79.5%
Daigaili	13.170	19.5/0

Average Resale Price, Earnings, Offer

	Resale Price (Auction Price)	Earnings Weak / Strong	Resale Offer Weak / Strong
Comp Resale	29.56 (11.94)	9.45/10.20	32.47/25.45
Incomp Resale	27.38 (14.05)	8.74/12.59	32.45/17.93
Bargain	27.44 (8.47)	8.35/12.43	-

- Prices are higher in resale than in auction, and highest in Comp
- S earns more than W in resale
- S makes more aggressive offers in Incomp (WMW, p<0.001)

Total Earnings: Auction + Resale Profits

Average Total Earnings	No Resale	Comp Resale	Incomp Resale	Bargain
Weak Bidder	4.61 (8.823)	12.45 (14.273)	7.55 (10.795)	15.83 (12.620)
Strong Bidder (std. dev)	38.33 (17.061)	37.43 (18.348)	34.93 _(17.905)	44 .62 (17.147)

cumulative earnings restricted to 20 periods for comparison to bargain treatment

- W obtains higher profits with resale (WMW, p<0.001)
- S obtains higher profits with resale only in Bargain

Conclusions

- Experiments of multi-object auction with resale and
 - asymmetric bidders
 - resale through bargaining
- Without resale, strong bidders with low values reduce demand more
- With resale, weak bidders speculate and strong bidders reduce demand more frequently
- Resale does not necessarily increase efficiency and reduce the seller's revenue
- More efficient resale market reduces auction efficiency and revenue