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Abstract

Social scientists have long been interested in marital homogamy and its relationship with
inequality. Yet, measuring homogamy is not straightforward, particularly when we are inter-
ested in studying sorting on multiple traits. In this paper, we compare different statistical
methods that have been used in the demographic, sociological and economic literature: we
show that Separate Extreme Value (SEV) models not only generate a matching function with
several desirable theoretical properties, but they are also particularly suited for the study of
multidimensional sorting. We use small-scale survey data to study sorting among parents of
children attending schools in Naples. Our findings show that homogamy is pervasive: not
only men and women sort on age, education, height and physical characteristics, but they
also look for partners that share similar health-related behavioral traits and risk attitude. We
also show that marital patterns are well explained by a low number of dimensions, the most
important being human capital: children of parents with a high human capital endowment
perform better at school, but report lower levels of subjective well-being and perceived quality
of relationship with their parents.
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1 Introduction

Since the pioneering work of Becker (1973), a large number of studies have analyzed matching

patterns in the marriage market. From a social sciences perspective, there are several reasons

to study the choice of a partner, with a major motivation being the relationship between marital

patterns and inequality. Assortative matching has a direct impact on inequality within generations:

if individuals have a large propensity to marry their own likes, initial inequalities in individual

endowments tend to be amplified at the household level (Fernández and Rogerson, 2001; Greenwood

et al., 2003, 2014). More importantly, recent studies have emphasized the potential impact of

assortative matching on social reproduction and intergenerational inequality. Individuals with

a high level of human capital tend to match assortatively, and these households tend to invest

heavily in their children’s human capital (HC). Given the complementarities involved in the HC

production function, such trends amplify initial inequalities for the next generation, generating

what has sometimes be called an “inequality spiral”.1

Numerous studies in sociology and demography have investigated marital patterns.2 Although

the economic and sociological literatures are addressing similar questions, they tend to use very dis-

tinct empirical approaches. Sociological and demographic analyses often rely on a direct, reduced-

form estimation of the prevailing “matching function”; for this purpose, these contributions typi-

cally utilize either a “harmonic mean” or a log-linear approach. Economists tend to prefer more

structural models: the recent development of the so-called Separable Extreme Value (from now

on, SEV) models provides an interesting illustration.

When choosing appropriate tools to study marital patterns, an important issue is the dimen-

sionality of the matching process. While social scientists are often interested in a small number

of specific traits (e.g., income, education or HC), the real-life process of marital matching is obvi-

ously much more complex, and involves a host of other aspects: age, race, religion, but also tastes

and preferences, cultural background, physical attractiveness, etc. From a methodological view-

point, whether the empirical strategy adopted can account for this diversity, and more importantly

whether it can disentangle the respective impacts of multiple traits - especially when the latter

appear to be correlated - is an important aspect.

Another issue is related to the type of data that can be used for this type of analysis. Several

1See for instance Del Boca et al. (2014), Chiappori et al. (2017), Chiappori et al. (2017) and Chiappori et al.
(2020).

2A non-exhaustive list includes Schoen (1981); Qian and Preston (1993); Blackwell and Lichter (2004); Schwartz
and Mare (2005); Schwartz and Han (2014); Gonalons-Pons and Schwartz (2017).
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studies consider one “marriage market”; i.e., they analyze marital patterns within a given popu-

lation, under the assumption that any two individuals of opposite gender could possibly match.

Empirical estimation, in this context, faces difficult identification problems.3 Alternatively, some

contributions consider several “marriage markets”. For instance, one can study the evolution

of matching patterns over a long time period, and consider only marriages between individuals

belonging to the same cohort.

The goal of the present paper is twofold. We first present the SEV approach, putting particular

emphasis on its empirical implementation in a multidimensional context. We describe how a

simple extension of the basic SEV model, borrowed from Dupuy and Galichon (2014), allows one

to estimate the interactions between the various traits characterizing the spouses. However, one

can also consider more restricted models in which these numerous traits only matter through a

small number of unknown “factors” (or “indices”). Such an assumption can be tested, and the

corresponding factors can be empirically estimated.

We then apply our methodology to a rich Italian dataset, a survey of parents of children aged

6 to 19 attending schools in the Campania region around Naples. The dataset includes socio-

demographic variables (age, education) and anthropometric characteristics (height and weight). It

also collects information on health-related behavior such as smoking and sports activity, plus an

incentivized question to investigate the relative healthiness of eating habits. Finally, the survey

collects psychometric information on risk behavior, with a focus on health and recreational risk.

We show that marital patterns are characterized by homogamy not only with respect to age,

education and anthropometric measures, but also with respect to a large number of behavioral

traits related to health and risk attitude. We also show that sorting is based on a low number of

dimensions; in other words, a model with one or few “indices of attractiveness” would constitute a

good approximation of the marriage market. When we look into the different sorting dimensions, we

show that the first mainly captures the market segmentation in different age (and possibly school)

cohorts. However, the second dimension describes sorting on HC: not only educated women tend

to marry educated men, but sorting also brings together individuals that are health-conscious (e.g.,

that smoke less and have a preference for healthy food). Finally, we show that parents with a high

level of HC have children that perform better at school, although these same children report lower

levels of subjective well-being and a worse relationship with their mothers.

3If only one “market” is observed, SEV models are exactly identified under parametric assumptions. On the
contrary, multi-markets models are typically overidentified, which may potentially lead to specification tests.
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2 Analyzing Marital Patterns: Theory

2.1 The Basic Framework

We start by introducing some notations. We consider two populations, men and women, each

defined by a set of characteristics X,Y ; in practice, we shall assume that each woman (resp. man)

is fully described by a vector x (resp. y), in the sense that two individuals with the same vector

of characteristics are considered as perfect substitutes on the marriage market. In line with the

previous discussion, these sets are typically multidimensional ; moreover, some characteristics may

be unobservable to the econometrician, thus reflecting unobserved heterogeneity among individuals.

The distributions of characteristics (including their correlation patterns) within each population

are described by two measures µX and µY on each space.

The matching can be described in either of two ways. One can, on the one hand, define a

mapping from X to Y , indicating for each woman x the man y to whom she is matched (or no one

if she is single). An alternative, and paradoxically more convenient method is to define a measure

µ on the product space X ×Y , where µ (x, y) denotes the probability that Mrs. x is matched with

Mr. y; obviously, µ is constrained by the fact that its marginal must coincide with µX and µY

respectively. Note, in particular, that the second method allows for Mrs. x to be matched with

positive probability to several mates - reflecting the fact that, in a typical data set, women with

identical characteristics may well have observationally different partners (and conversely).

2.2 The matching function approach

Several approaches have been used in sociological and demographic studies of marital patterns.

Schoen (1981) introduced the harmonic mean approach; more recently, Schwartz and Mare (2005)

refer to a log-linear approach. The basic principles of these frameworks can be described as

follows. Assume that individuals belong to a small number of “classes”; for instance, we are

analyzing matching by education, the latter being categorized in S levels. Let µIJ,t denote the

number of couples of cohort t in which she (he) belongs to class I (J); let µ̄X
I,t (µ̄Y

J,t) denote the

total number of women (men) with education I (J) in cohort t, and µX
I,t (µY

J,t) the total number of

wives (husbands) with education I (J) in cohort t (where t ∈ {1, ..., T}); therefore the difference

µX
I∅,t = µ̄X

I,t − µX
I,t (resp. µY

∅J,t = µ̄Y
J,t − µY

J,t) is the total number of single women (men) with

education I (J) in cohort t.
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In the harmonic mean approach4 one studies the relationship

1

µIJ,t
= αIJ,t

(
1

µX
I,t

+
1

µY
J,t

)
(1)

where the αIJ,t are parameters to be empirically estimated; intuitively, αIJ,t can be interpreted as

the “force of attraction’, in cohort t, between females in category I and males in category J .

The log-linear approach, alternatively, starts from the remark that, under the benchmark of

random matching, one would get:

µIJ,t = µX
I,t × µY

J,t ⇒ lnµIJ,t = lnµX
I,t + lnµY

J,t

Assortative matching implies that the actual number of couples with both spouses belonging to

the same class be larger than what would be expected under random matching. For that reason,

a homogamy log-linear model adds homogamy dummy variables ηt, t = 1, ..., T that take the value

1 if I = J and 0 otherwise. One can then regress lnµIJ,t over the marginals
(
lnµX

I,t, lnµ
Y
J,t

)
and

the ηt:

lnµIJ,t = a lnµX
I,t + b lnµY

J,t +
∑
t

ctηt (2)

Under the null of random matching, the ct coefficients would all be nil; positive, significant co-

efficients therefore indicate the presence of (positive) assortative matching. One can moreover

consider the evolution of the coefficients across cohorts; if they get larger, one can conclude that

homogamy increases over time.

A crossings log-linear model introduces latent variables ηI,t that represent the difficulty of

“crossing” educational level I for cohort t. In practice, one can then define the variables θIJ,t by

θIJ,t =


∑I−1

q=J ηq,t if I > J∑J−1
q=I ηq,t if I < J

0 if I = J

∣∣∣∣∣∣∣
and regress the lnµIJ,t over the marginals

(
lnµX

I,t, lnµ
Y
J,t

)
and the θIJ,t to get an estimate of the

(log) odds ηI,t for I = 1, ..., S and t = 1, ..., T . In other words, homogamy models summarize the

evolution of homogamy over two cohorts by a single number (the difference in the corresponding

ηs), whereas crossing models consider the various education levels independently; as such, they

can account for more complex evolutions (e.g., homogamy increasing at the top of the education

distribution but not at the bottom).

4See Qian and Preston (1993) for an application
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Both harmonic mean and log-linear models are tractable and easy to estimate. However, they

raise several problems. They are particularly adequate to study matching on one specific trait

(e.g., education), but become much less convenient in a multidimensional context. Another issue

relates to the adding-up constraints that are implicit in the underlying model. For any cohort t,

it should be the case that

µX
I,t =

∑
J

µIJ,t and µY
J,t =

∑
I

µIJ,t (3)

reflecting the fact that the sum, over all male education classes J , of the number µIJ,t of couples

with a I-educated wife and a J-educated husband must equal the total number of I-educated

wives (and conversely). However, such restrictions are difficult to impose on log-regressions like

(1) or (2), and are typically ignored.5 Finally, matching functions like (1) or (2) implicitly assume

that the number of couples with a I-educated wife and a J-educated husband only depends on

the total number of I-educated wives and J-educated husbands, not on the number of individuals

in other education classes. Yet, basically all theoretical models of matching strongly suggest the

existence of “spillovers”, by which a change in the size of one class (say, more K-educated women,

K 6= I) affects all marital patterns, including those involving women within education class I.6

In particular, the use of such models to generate counterfactual simulations (“what would marital

patterns be at t = T if the tendency to homogamy was the same as at t = 0”) is highly problematic.

2.3 The SEV approach

2.3.1 Principle: logistic regressions

From an empirical perspective, the SEV approach can primarily be described as a series of discrete

choice models. With the same notations as before, the probability that, in cohort t, a woman i,

belonging to class I, marries a husband j in J can be approximated by the empirical frequency

ptIJ = µIJ,t/µ̄
X
I,t, whereas the probability that she remains single is proxied by ptI∅ = µX

I∅,t/µ̄
X
I,t.

These probabilities can be analyzed as stemming from a discrete choice model. Specifically, assume

that there exists a set of additively separable, latent random variables
(
αJ
i , J = ∅, 1, ..., S

)
such that

5One possible solution, for the log-linear model, is to use, as right-hand side regressor, µ̄XI,t, the total number of

I-educated women; instead of µXI,t. Then the number of I-educated single women, µX
I∅,t, would be such that

lnµXI∅,t = ln

(
µ X
I,t −

∑
J

µIJ,t

)
= ln

(
µ̄XI,t −

∑
J

(
µXI,t

)α (
µYJ,t

)β
exp (γηt)

)

However, why the dynamics of singlehood by education should take this intricate form (while the dynamics of
marriage has the simple, log-additive form (2)) is not clear.

6Technically, the “matching function’, which describes the relationship between the marginal distributions of
male and female education and the resulting marital patterns, is typically such that the size of each cell depends
on all marginals and not only on the size of the corresponding row and column, See for instance Chiappori et al.
(2017, Chapter 4).
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the utility for Mrs. i of choosing a husband with education J (resp. of remaining single) is U IJ+

αJ
i (resp. U I∅+ α∅i ) for some parameters U IJ . Intuitively, U IJ is the systematic utility generated,

for a woman i in I, by marrying a husband in J , and the vector αi describes i’s idiosyncratic

preferences for her husband’s education. Then she marries a husband in J if and only if:

U IJ + αJ
i = max

K

(
U IK + αK

i

)
, K = (∅, 1, ..., S)

implying that:

ptIJ = Pr
(
αJ
i − αK

i ≥ U IK − U IJ , ∀K = (∅, 1, ..., S)
)

One can normalize U I∅ to be zero for all I; then the thresholds U IJ , J = 1, ...,K can be recovered by

standard discrete regressions. For instance, assuming, as in Choo and Siow (2006) and Chiappori

et al. (2017), that the αs are type I extreme value distributed (so that the differences αJ
i −αK

i are

logistic), then the model is a standard multilogit one. Such a regression can be performed for each

category of education. A similar analysis on the husband’s side gives that Mr. j marries a wife

with education J if and only if:

V IJ + βI
j = max

K

(
V KJ + βK

j

)
, K = (∅, 1, ..., S)

where the vector βj describes j’s idiosyncratic preferences for his wife’s education. Again, assuming

that the βs are extreme value distributed and under the normalization V ∅J = 0 ∀J , the V s can

be recovered from standard mutilogistic regressions.

2.3.2 Structural interpretation

The set of (multi)logistic regressions is a natural empirical tool in this context. In addition,

however, the SEV model offers a more structural interpretation. Specifically, assume that people

match according to a frictionless matching game under transferable utility. That is (and omitting

for the time being the cohort index t), any two individuals i and j generate, if they match, a

surplus Sij that can be shared between them; the TU assumption implies that individual excess7

utilities add up to Sij . The equilibrium concept is stability. A matching is stable when (i) no

matched individual would rather be single, and (ii) no two individuals would both prefer being

matched together rather than their current situation.

7Excess, here, refers to the additional gain received from marriage over and above the utility level the same
person would reach as a single.
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Assume, now, that the surplus takes the form:

Sij = ZIJ + αJ
i + βI

j

where the deterministic component ZIJ only depends on the spouses’ education classes, and the

random shocks α and β have the same interpretation as before. The basic result, due to Choo and

Siow (2006), states that the unique stable equilibrium of this game generates matching probabilities

exactly equal to those generated by the series of logistic regressions just described if and only if

ZIJ = U IJ + V IJ , ∀I, J ∈ {1, ..., S} . (4)

Conversely, the structural model can readily be identified by (i) running the series of regressions,

and (ii) computing the structural components of the surplus using (4). Note that, unlike the

harmonic mean or the log-linear frameworks, the SEV model mechanically satisfies the adding-up

constraints discussed above; and spillover effects are paramount, since changing the size of any one

class modifies all thresholds. Moreover, the model clearly distinguishes the respective impacts of

the marginal distributions and of the structural tendencies towards assortative matching (as fully

summarized by the ZIJs). This property is crucial for counterfactual simulations, as discussed

below.

Finally, a useful property of logistic regressions, that extends to the SEV approach, is Indepen-

dence from Irrelevant Alternatives (IIA), i.e., the fact that the relative probabilities of any set of

possible choices do not depend on the presence of other (‘irrelevant’) alternatives. This implies,

in particular, that estimating the probability of choosing a partner in education class I instead of

K, conditional on marriage, will give the same conclusions as analyzing the unconditional choices

(i.e., also taking singlehood as a possible choice).

2.3.3 Assortative matching

In the one-dimensional case, assortative matching is directly related to a specific property of the

Z matrix, namely supermodularity. Take the case of matching on a (small) number of education

classes. Positive assortative matching (from now on PAM) has the following, technical definition.

Take four education levels I, I ′, J and J ′ such that I > I ′ and J > J ′, and consider all couples

where the wife belongs to either I or I ′ and the husband belongs to either J or J ′. Then PAM

requires that there are more (I, J) and (I ′, J ′) couples (therefore less (I, J ′) and (I ′, J) ones) than

would be expected under random matching. In particular, if I = J and I ′ = J ′, then PAM implies
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more homogamous couples ((I, I) and (I ′, I ′)) and less heterogamous ((I, I ′) and (I ′, I)) ones than

one would expect under random matching, which is a standard aspect of assortative matching.

It can be shown that matching patterns display positive assortativeness in that sense if and

only if the matrix Z is supermodular, i.e. if and only if:

ZIJ + ZI′J′
− ZIJ′

− ZI′J ≥ 0 for all I < I ′ and J < J ′ (5)

This result is interesting since it provides a structural characterization for the important but

sometimes vague notion of (positive) assortativeness. Note also that, in principle, assortativeness

is a local property. For instance, it may be the case that matching is positive assortative at the

top of the distribution but not at the bottom - in which case (5) is satisfied for upper education

categories but not elsewhere.

2.3.4 Counterfactual simulations

Finally, a major advantage of the SEV approach is that it allows counterfactual simulations to be

performed in a natural way. Consider two different periods - say, t = 0 and t = T . Between 0

and T , matching patterns have evolved, and these evolutions may have different causes. For one

thing, the marginal distributions may have changed; for instance, the number of highly educated

individuals has increased, and the variation may moreover be gender-specific (e.g., the number

of educated women increased at a much faster pace). In itself, these changes would affect all

matching patterns, as summarized by the µIJ . In addition, it may be the case that structural

preferences for assortativeness have also evolved; for instance, marrying an educated spouse may

be more important now than in the past, particularly for educated individuals. Indeed, several

theoretical contributions have suggested that the huge increase in college premium that took place

in the US over the last decades should result in higher benefits generated by endogamy, particularly

at the top of the (education) distribution (Fernández et al., 2005; Chiappori et al., 2017). It is

important, if only for policy purposes, to disentangle between the two effects. In particular, a

natural, counterfactual question would be the following: “What would matching pattern at date

T look like if preferences for endogamy were identical to those at date 0?”.

In a SEV framework, the answer is straightforward. Indeed, under the assumptions made, struc-

tural preferences are fully described by the Z matrix at each date. The counterfactual simulation,

therefore, simply require deriving the stable matching patterns that would emerge in a population

where the distributions of characteristics by gender are those of date T (i.e., fully described by the
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µ̄X
I,T and µ̄Y

J,T ), whereas the surplus are defined by the matrix Z0 =
(
ZIJ

0

)
. As it turns out, this

derivation is quite simple, and exploits a standard property of matching model under transferable

utility - namely, that stable matching maximize aggregate surplus (defined as the sum of pairwise

surpluses Sij for all matched pairs) over all possible matchings. Hence the stable matching can

readily be derived as the solution to a linear maximization problem.8

2.4 Multidimensional SEV models: the quadratic case

The basic SEV model is non parametric, in the sense that it imposes no ex ante restriction on

the Z coefficients, which are freely estimated from observed choices. As such, it can readily be

extended to a multidimensional setting, where agents are defined by several characteristics: one

can simply define classes as combinations of the various characteristics, and use the discrete choice

approach described above. For instance, a class can be defined by an age range and an education

level and a race, etc. However, such an approach often faces a dimensionality curse. Assuming

that agents are defined by k characteristics, each of which may take l values, the total number of

possible classes is kl; even for relatively small values of k and l, this total may well exceed what

can reasonably be estimated from a typical sample.9

In such a case, one may choose to introduce parametric restrictions on the structure of the

model. A popular and simple one is to posit that the surplus is quadratic (Dupuy and Galichon,

2014). Thus, if the number of characteristics is m for women and n for men, so that a woman (a

man) is fully described by a m-dimensional vector x (a n-dimensional vector y), the deterministic

part of the surplus would be defined by a m × n matrix Z = ((zIJ)), called the affinity matrix,

such that:

S (x, y) = x′Zy =
∑
I,J

xIyJzIJ

Note, in addition, that this formulation can accommodate discrete or continuous variables, and

does not require the latter to be discretized, which can be useful for some applications.10 The price

to pay for that parametrization is that the estimation process can no longer rely on a series of

independent logistic regressions; indeed, the quadratic structure would impose restrictions across

the various multilogits. In practice, therefore, one can use a Maximum Likelihood Estimator that

much resembles the one commonly used in the multinomial logit case, but that takes into account

the multi-regression structure. The contribution of a couple to the likelihood function is given by

8See for instance Chiappori et al. (2020) for an example of such calculations.
9For instance, with k = 5 characteristics taking l = 5 possible values each, the number of classes is 55 = 3125.

10Ordered discrete variables can be easily included in the framework detailed in this paper. Ciscato et al. (2020)
discuss how to treat unordered discrete variables, such as race and ethnicity.
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µIJ , the unconditional probability of observing a couple of type IJ in the data:

Ẑ = arg max
Z

1

N

∑
i

µI(i)J(i)(Z)

where I(i) and J(i) respectively denote the classes of a woman i and her partner j, while N is the

number of couples in our sample. In order to obtain the Maximum Likelihood Estimator Ẑ, we need

to calculate the predicted probability p for any Z considered when solving the optimization problem,

but the calculation of p relies on fast and tractable numerical methods outlined in Appendix.

2.5 Factor analysis in the SEV model

The quadratic specification offers another important advantage: we can rewrite the surplus S as the

linear combination of independent “factors”, each capturing a different dimension of assortative-

ness. This exercise is insightful for multiple reasons. First, it helps infer the number of dimensions

of assortativeness: for instance, we can test the hypothesis that attractiveness is well summarized

by a single index (or a small number of indices) subsuming numerous observable traits. Second,

when we find that several dimensions of assortativeness matter, it helps quantify their relative

importance. Third, it helps describe the role played by the observed variables x and y in each

dimension of assortativeness. For instance, we may find that although men and women are each de-

fined by a large number of characteristics, three (say) main indices are sufficient to capture a large

fraction of the variance. These indices typically involve many (usually all) characteristics, each

weighted by a specific coefficient; the analysis recovers these coefficients (therefore the “profiles”

described by each index), and their respective contributions to total variance.

In practice, we need to perform a Singular Value Decomposition (SVD) of the affinity matrix

Z.11 We obtain

Z = U ′ΛV,

where Λ is a diagonal matrix whose nonincreasing elements (λ1, . . . , λK), with K = min{m,n},

tell us about the relative importance of each sorting dimension, while the columns of U and V are

loading vectors that tell us about the nature of each dimension. In other words, we can define the

indices of attractiveness x̃ = Ux and ỹ = V y and rewrite the surplus as

x′Zy = x̃′Λỹ =

K∑
k=1

λkx̃kỹk

11Importantly, it is convenient to work with demeaned and rescaled data. More precisely, each observable char-
acteristic xk must be demeaned so that the sample mean µ̂k is zero; and all characteristics x must be rescaled so
that the diagonal elements of the sample covariance Σ̂ are one (i.e., σ̂k = 1 for every k). A similar transformation
must be applied to y. We use this normalization in what follows.
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where each k term λkx̃kỹk represents the surplus contribution of an independent dimension of

assortativeness.

In our empirical analysis, we can perform SVD on Ẑ to obtain estimates of U , V and the

λs. In this way, we can discuss the relative importance and nature of the different dimensions of

assortativeness. In this paper, we obtain confidence intervals for U , V and the λs by bootstrapping.

A natural question is how many relevant dimensions of assortativeness we observe, or how

many λs are (significantly) positive. Dupuy and Galichon (2014) outline a method to answer this

question and develop a test of joint significance of the estimated λs. In summary, the method

consists in testing the rank of the estimated affinity matrix Ẑ: the null hypothesis is a restriction

on the rank of Z, i.e., rank(Z) = k; if it is rejected, then the number of positive λs will be higher

than k, which will lead us to conclude that the number of relevant dimensions of assortativeness

is higher than k.12

3 Data

This study is part of a large research project, CHILDROLE, exploring the role of children as

decision makers within the family. Data were collected from February to April 2019 in five schools

located within the province of Naples. Naples is Italy’s third-largest city and its province is one

of the most densely populated in Europe. Naples and the surrounding towns are marked by wide

income and cultural differences and offer a good setting for collecting representative sample data

on Italian households. Families were recruited through schools that agreed to participate, classes

being selected randomly to take part in the study. Five schools (three elementary, one middle school

and one high school) agreed to take part. The schools, all public, are located in different districts

of the city and nearby towns, with a good socioeconomic mix. The parent survey was by means

of face-to-face interviews and pencil-and-paper questionnaires (booklets with numbered pages and

large font text). To avoid reciprocal influence, fathers and mothers were asked to complete the

questionnaire in separate rooms. The data contain detailed information about the household and

its individual members.

3.1 Variables

Respondents were asked to report their date of birth (missing answers supplied from school registry

of date and place of birth of both parents). Educational attainment corresponds to the self-reported

12Another way of proceeding is to impose a restriction on the rank of Z beforehand, as suggested by Dupuy et al.
(2019). The interest of this methodology is to allow for Z to be sparse and limit the number of parameters to
estimate when the sample size is relatively small.
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respondent’s highest level of education achieved: 1) Primary; 2) Intermediate, 3) High School, or

4) University. Self-reported height and weight are used to measure Body Mass Index (BMI).

Respondents were also asked about their health-related risk behaviors, measured by three vari-

ables: smoking, physical exercise, and propensity for healthy diet. Smoking and physical exercise

are measured through multiple choice questions with three possible answers: “never” (coded as 0),

“seldom” (1) and “often” (2). Propensity for healthy diet was assessed through an incentivized

question: each parent had to choose a snack to consume after completing the questionnaire.13 At

the end of the interview a generic question investigated respondents’ concern for their own health:

“Do you worry about your own health?”

Next, information was collected on respondents’ measures of domain-specific risk-taking behav-

ior. Weber et al. (2002) originally developed and tested an individual measure of risk taking in

judgment and decision-making in different conventional domains: financial, ethical, health/safety,

social, and recreational (Weber et al., 2002; Blais and Weber, 2006). We used only the questions

related to the health and safety and the recreational domains. The questions were modified with

the help of a child psychologist, in order to explore how risk measures vary among all the household

members (including children and youths). After extensive piloting, additional questions applicable

to both parents and children were included in the final questionnaire (see Appendix); for further

details on the questions, see Guerriero et al. (2018).

3.2 Summary Statistics

Table 1: Frequency of children by parents’ survey participation

Father participates

Mother participates 0 1 Total

0 326 8 334

1 48 276 324

Total 374 284 658

Notes: participation is coded as the parent reporting at least some basic information.

Table 1 reports the number of households participating in the study: 632 children were con-

tacted; for 332 of them, at least one parent participated to the survey; for 276 of them both parents

participated to the survey. The latter constitute the core of our sample, since information on both

parents are necessary for our empirical analysis. Table 2 reports summary statistics on parents’

13Respondents were shown three different types of snack before the interview and were asked to pick one of them
to collect immediately after the interview. The choices were: a banana, a Parmesan bar, and a chocolate muffin.
According to the Center for Disease Control, the three correspond to different degrees of healthiness: respectively,
very healthy, healthy and unhealthy.
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education and age. We have complete information on age, educational attainment, height and

BMI for 259 out of 276 participant couples. Table 3 reports summary statistics on parents’ health

and recreational risk behavior: for 196 out of 276 participant couples, both parents completed the

behavioral questionnaire. In table 2, we see that men are on average 43 year old and women 40

year old. Women are also slightly better educated, a result is in line with Italian national statistics

(Eurostat, 2016). The average man in our sample is overweight according to WHO standards (BMI

greater than 25.0), while women are on average in the healthy range (BMI between 18.5 and 24.9).

Table 3 shows summary statistics on risk behavior. Women smoke less, but are also more inactive;

preferences for healthy snacks are on average similar across genders, and so are concerns about own

health. Gender differences are more pronounced for specific health and recreational risk behaviors:

women are more likely to use sunscreen at the beach and dislike fast driving and extreme sports.

On the other hand, women are less likely to wear a motorbike helmet than men.

Table 2: Summary statistics - parents

count mean sd p10 p90

Mother’s education 323 2.9 0.8 2.0 4.0

Mother’s age 322 39.7 6.8 31.0 49.0

Mother’s height (cm) 314 163.6 5.6 158.0 170.0

Mother’s BMI 308 24.3 3.9 20.4 29.3

Father’s education 281 2.7 0.8 2.0 4.0

Father’s age 283 43.1 7.3 35.0 53.0

Father’s height (cm) 279 175.3 6.6 168.0 183.0

Father’s BMI 274 26.8 3.4 23.0 31.1

Notes: education is coded as a four-category variable. Height and BMI trimmed.

4 Results

4.1 Reduced affinity matrix

We start with a small-size version of our model, in which we only consider matching patterns on

four socio-demographic characteristics: age, education, height and BMI. The corresponding matrix

is given in Table 4. A striking property of the matrix is the high level of assortative matching it

reveals: all diagonal coefficients are positive and significant, implying that for all characteristics,

homogamy increases the surplus generated by the match. Not surprisingly, the largest and most

significant association relates to age - a feature that essentially reflects the presence of several

cohorts among parents. Very significant as well is homogamy on education (which was expected),

but also on BMI and height. Additional patterns emerge; for instance, more educated men tend

to have older and thinner wives (while the opposite is not significant); and more educated wives
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Table 3: Summary statistics - parents

mean sd count

Mother smokes 0.6 0.8 310

Mother does sports 0.8 0.8 310

Mother likes healthy snacks 0.8 0.8 320

Mother puts sunscreen 1.4 0.7 309

Mother washes hands 1.8 0.4 310

Mother worries about her own health 1.5 0.6 311

Mother wears helmet 1.6 0.7 285

Mother would do a safari 0.8 0.8 308

Mother hates speed 1.3 0.7 295

Mother likes usual vacation 1.1 0.7 307

Mother likes extreme sports 0.2 0.5 311

Mother crosses carefully 1.9 0.3 311

Father smokes 0.8 0.9 269

Father does sports 0.9 0.7 267

Father likes healthy snacks 0.8 0.8 277

Father puts sunscreen 1.0 0.8 270

Father washes hands 1.8 0.5 266

Father worries about his own health 1.5 0.6 269

Father wears helmet 1.7 0.6 257

Father would do a safari 0.8 0.8 267

Father hates speed 0.7 0.7 260

Father likes usual vacation 1.1 0.7 265

Father likes extreme sports 0.4 0.6 269

Father crosses carefully 1.8 0.5 268

Notes: possible answers are (0) never, (1) sometimes, (2) often. The only exception is the question about healthy snacks,
for which possible answers are (0) chocolate muffin, (1) Parmesan bar, (2) banana.

Table 4: Estimated affinity matrix (sample 1)

XXXXXXXXXXHusband
Wife

Educ. Age Height BMI

Educ. 0.74 0.62 0.14 -0.24

(0.11) (0.17) (0.09) (0.10)

Age 0.24 3.30 0.25 0.07

(0.16) (0.33) (0.13) (0.13)

Height 0.25 0.37 0.16 -0.07

(0.09) (0.14) (0.07) (0.07)

BMI 0.10 0.20 0.01 0.28

(0.08) (0.13) (0.07) (0.07)

Notes: 259 couples. Standard errors in parentheses: the estimator Â is asymptotically normally. Bold-faced values are
significant at the 5% level.
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tend to have taller husbands.

Table 5: Saliency analysis: men’s loading matrix (sample 1)

Index 1 Index 2 Index 3 Index 4

Educ. 0.21 0.92 0.03 -0.32

Age 0.97 -0.23 -0.07 -0.05

Height 0.12 0.30 0.01 0.95

BMI 0.06 -0.05 1.00 -0.01

Index share 0.75 0.17 0.06 0.02

Notes: the table reports men’s singular vectors U and singular values diag(Λ) from the singular value decomposition

of Â = UΛV ′. Bold-faced values are significant at the 5% level; confidence intervals are obtained with 500 bootstrap
replications (Milan and Whittaker, 1995). In the last line, each value of diag(Λ) can be interpreted as the relative importance
of each sorting dimension.

Table 6: Saliency analysis: women’s loading matrix (sample 1)

Index 1 Index 2 Index 3 Index 4

Educ. 0.12 0.91 0.36 -0.14

Age 0.99 -0.12 -0.05 -0.07

Height 0.08 0.15 -0.01 0.99

BMI 0.01 -0.36 0.93 0.07

Index share 0.75 0.17 0.06 0.02

Notes: the table reports women’s singular vectors V and singular values diag(Λ) from the singular value decomposition

of Â = UΛV ′. Bold-faced values are significant at the 5% level; confidence intervals are obtained with 500 bootstrap
replications (Milan and Whittaker, 1995). In the last line, each value of diag(Λ) can be interpreted as the relative importance
of each sorting dimension.

The factor decomposition is also interesting; it is given in Tables 5 and 6. The first factor

explains three quarters of the total explained variance for both men and women, and mostly reflects

age differences. In other words, parents in our sample belong to different “cohorts” (defined by

year of birth), and people tend to marry a spouse from a cohort that is close to their own. The

second factor (representing 17% of total variance for both genders) is more interesting. It singles

out individuals who are more educated, as well as taller and (at least for women) thinner. In

other words, matching patterns, while primarily driven by age, also capture a mix of education

and physical appearance, possibly reflecting various dimensions of social status. Figures 1 and

2 provide a graphical visualization of the first two matching dimensions and help us with the

interpretation: we will get back to them in the next sections.
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Figure 1: Correlation between index 1, matching variables and outcomes (sample 1)

Notes: we plot correlation rates of both matching variables and outcome variables with the husband’s first matching index
(x-axis) and the wife’s (y-axis). The matching variables include all the parents’ background variables used in the main
estimation. The outcomes include additional variables that are excluded from the main estimation: e.g., the number of
children, the child’s grades, the wife’s labor supply. In order to improve the readability of the graph, we only plot those
variables whose correlation rate is significantly different from zero at the 2% level.
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Figure 2: Correlation between index 2, matching variables and outcomes (sample 1)

Notes: we plot correlation rates of both matching variables and outcome variables with the husband’s second matching
index (x-axis) and the wife’s (y-axis). See notes to figure 1.

4.2 Global affinity matrix

We now consider the global (16× 16) affinity matrix. A first and very striking feature is the high

level of homogamy that prevails within the population. Each of the 16 diagonal coefficients in Table

7 is positive, indicating positive assortativeness along that specific dimension; the probability of

getting such a pattern under random matching would be less than .01%. Moreover, each but one

is statistically significant at 5%, and most are actually significant at 1%. This is all the more

remarkable given the relatively small sample size (less than 200 couples).

Several aspects revealed in the reduced matrix are still visible here - for instance, a positive

(and significant) interaction between his education and her age, or between her education and his

height. Other are less expected. Wives of older and more educated men are less likely to favor

vacations at an unusual place. Husbands of more educated women are less likely to do a lot of

sport unless they are extreme; they are also more likely to eat healthy food.
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Table 7: Estimated affinity matrix (sample 2)

XXXXXXXXXXHusband
Wife

Educ. Age Height BMI Smokes Likes
sports

Likes
healthy
snacks

Wears
sunscreen

Wash
hands

Worries
about
health

Wears
helmet

Likes
safari

Fear
speed

Likes
usual

holidays

Extreme
sports

Careful
when

crossing

Educ. 0.99 0.87 0.15 -0.30 -0.04 0.11 0.26 -0.10 0.07 0.12 -0.19 -0.05 0.28 -0.40 0.19 -0.32

(0.19) (0.27) (0.14) (0.15) (0.16) (0.14) (0.16) (0.18) (0.16) (0.15) (0.18) (0.15) (0.16) (0.15) (0.14) (0.17)

Age 0.21 4.37 0.37 0.31 0.17 0.04 0.05 0.57 0.02 0.02 0.31 -0.10 -0.13 -0.43 0.28 -0.16

(0.24) (0.49) (0.20) (0.21) (0.22) (0.20) (0.22) (0.26) (0.21) (0.20) (0.24) (0.22) (0.22) (0.21) (0.20) (0.23)

Height 0.31 0.24 0.30 -0.08 0.11 0.01 0.00 0.06 -0.04 -0.16 -0.12 0.13 0.03 0.13 0.01 0.07

(0.13) (0.20) (0.11) (0.12) (0.12) (0.11) (0.12) (0.13) (0.13) (0.11) (0.13) (0.11) (0.12) (0.11) (0.10) (0.13)

BMI 0.03 0.06 0.05 0.57 -0.19 -0.08 -0.07 0.25 0.18 -0.00 0.15 -0.07 -0.04 -0.10 -0.08 -0.24

(0.13) (0.21) (0.11) (0.12) (0.12) (0.11) (0.12) (0.13) (0.15) (0.11) (0.13) (0.12) (0.12) (0.11) (0.11) (0.14)

Smokes -0.13 0.05 -0.03 0.05 0.51 -0.03 -0.16 0.08 -0.05 0.03 -0.01 0.13 -0.16 -0.02 0.01 0.05

(0.14) (0.21) (0.11) (0.11) (0.12) (0.11) (0.12) (0.13) (0.13) (0.11) (0.13) (0.11) (0.12) (0.11) (0.11) (0.14)

Likes sports -0.35 0.24 0.16 -0.02 -0.18 0.29 -0.33 -0.38 -0.24 0.08 0.22 0.17 -0.06 0.19 0.03 0.38

(0.15) (0.22) (0.12) (0.12) (0.13) (0.12) (0.13) (0.14) (0.14) (0.12) (0.15) (0.13) (0.13) (0.12) (0.12) (0.16)

Likes healthy snacks 0.35 -0.09 -0.03 0.03 0.13 -0.00 0.71 0.27 0.07 -0.10 -0.02 0.02 0.05 0.18 -0.22 -0.08

(0.15) (0.22) (0.12) (0.13) (0.13) (0.12) (0.13) (0.15) (0.13) (0.12) (0.14) (0.13) (0.13) (0.12) (0.13) (0.15)

Wears sunscreen 0.26 -0.30 -0.02 0.15 0.05 -0.17 0.45 0.51 -0.07 -0.04 0.07 -0.17 -0.24 0.12 0.14 -0.35

(0.15) (0.22) (0.12) (0.12) (0.12) (0.12) (0.14) (0.14) (0.14) (0.12) (0.14) (0.13) (0.13) (0.12) (0.12) (0.16)

Wash hands -0.51 0.19 -0.04 0.07 -0.24 -0.09 -0.08 -0.14 0.60 0.01 0.11 -0.03 -0.15 0.03 -0.08 0.16

(0.18) (0.23) (0.12) (0.14) (0.15) (0.13) (0.14) (0.16) (0.14) (0.13) (0.14) (0.13) (0.14) (0.13) (0.11) (0.13)

Worries about health -0.18 0.08 0.04 -0.04 -0.20 0.08 -0.11 -0.15 -0.32 0.35 0.19 -0.07 -0.06 -0.14 -0.15 0.11

(0.15) (0.23) (0.12) (0.13) (0.13) (0.12) (0.13) (0.14) (0.17) (0.12) (0.14) (0.13) (0.13) (0.12) (0.12) (0.16)

Wears helmet 0.20 -0.04 -0.00 -0.15 -0.20 0.07 -0.11 -0.13 0.34 -0.18 0.68 0.13 -0.44 0.18 -0.13 -0.22

(0.18) (0.26) (0.15) (0.13) (0.15) (0.15) (0.15) (0.16) (0.14) (0.14) (0.15) (0.15) (0.16) (0.15) (0.14) (0.16)

Likes safari -0.09 -0.02 -0.05 -0.17 -0.14 0.08 -0.11 -0.33 0.12 0.09 -0.06 0.58 0.11 -0.05 0.06 0.05

(0.14) (0.22) (0.11) (0.13) (0.13) (0.11) (0.12) (0.14) (0.13) (0.11) (0.14) (0.12) (0.12) (0.11) (0.11) (0.15)

Fear speed -0.00 0.11 0.03 0.10 0.34 0.09 0.14 0.17 -0.15 0.03 -0.40 -0.03 0.53 0.01 0.06 -0.13

(0.14) (0.21) (0.11) (0.11) (0.12) (0.11) (0.12) (0.13) (0.12) (0.11) (0.13) (0.11) (0.13) (0.11) (0.11) (0.14)

Likes usual holidays 0.11 0.10 -0.19 0.11 -0.24 -0.02 0.17 -0.22 -0.17 0.02 0.05 0.21 0.20 0.53 0.07 -0.39

(0.14) (0.21) (0.11) (0.11) (0.12) (0.11) (0.13) (0.13) (0.13) (0.11) (0.13) (0.12) (0.12) (0.11) (0.11) (0.16)

Extreme sports 0.28 0.19 0.08 -0.01 0.16 0.01 0.19 0.16 0.22 -0.01 -0.14 -0.11 0.19 0.00 0.02 -0.20

(0.13) (0.20) (0.11) (0.12) (0.12) (0.11) (0.12) (0.13) (0.14) (0.11) (0.13) (0.11) (0.12) (0.11) (0.10) (0.14)

Careful when crossing -0.33 -0.10 0.07 -0.04 0.26 -0.06 0.07 0.14 -0.05 0.14 -0.42 -0.17 0.24 -0.12 0.01 0.47

(0.17) (0.24) (0.14) (0.13) (0.16) (0.14) (0.15) (0.16) (0.14) (0.13) (0.16) (0.14) (0.14) (0.14) (0.12) (0.13)

Notes: 196 couples. Standard errors in parentheses: the estimator Â is asymptotically normally. Bold-faced values are significant at the 5% level.
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More importantly, the factor decomposition enriches the conclusions drawn from the reduced

matrix. In Figures 3, 4 and 5, we plot the correlation between men’s and women’s first three

matching factors and their observable traits; factor loadings are reported in Tables 14 and 15 in

Appendix. The first factor - which, by itself, explains about a third of total explained variance -

essentially recaptures the cohort pattern observed on the reduced matrix: in the first columns of

Tables 14 and 15, we can see that age plays a dominant role in the first sorting dimension.

The second factor singles out differences in education: individuals with a high Index 2 appear

to be more educated (as before), but also more health-conscious (they tend to eat healthy food and

use sunscreen) and less likely to smoke or experience health problems. Along the second dimension

of matching, some characteristics are gender-specific: women with a high Index 2 are thinner but

also older; men with a high Index 2, are less likely to do sports and wash their hands before eating.

Finally, the third factor emphasizes traits that may relate to risk aversion. According to this

third dimension, spouses tend to share a common attitude toward smoking, use of sunscreen and

motorcycle helmet and hand washing; they also have a similar attraction (or dislike) for high speed

and tend to pay more (or less) attention when crossing the street. Together, these three factors

explain more than half the total (explained) variance - i.e., more than the remaining 13 factors

combined.
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Figure 3: Correlation between index 1, matching variables and outcomes (sample 2)

Notes: we plot correlation rates of both matching variables and outcome variables with the husband’s first matching index
(x-axis) and the wife’s (y-axis). See notes to figure 1.
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Figure 4: Correlation between index 2, matching variables and outcomes (sample 2)

Notes: we plot correlation rates of both matching variables and outcome variables with the husband’s second matching
index (x-axis) and the wife’s (y-axis). See notes to figure 1.
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Figure 5: Correlation between index 3, matching variables and outcomes (sample 2)

Notes: we plot correlation rates of both matching variables and outcome variables with the husband’s third matching index
(x-axis) and the wife’s (y-axis). See notes to figure 1.

4.3 Impact on children

An interesting aspect of our data is that they include what could be considered as “outcome”

variables - i.e., indicators reflecting choices made within the household and their consequences.

A standard example is labor supply behavior: while most married men are active on the labor

market, women may or may not participate, and these decisions appear to be related to matching

patterns. Of particular interest is the impact of matching on children: here we measure both

objective outcomes, such as grades and academic performance, and other subjective indicators,

such as the child’s subjective well-being and the perceived quality of the relationship with their

parents. Note that the latter variables exhibit a clear age pattern, older children typically exhibiting

less satisfaction and more difficult parental connections. For that reason, we often “clean up”

these variable from their age-related component.14 A list of all outcome variables is available in

14In practice, we regress the variable under consideration on the child’s age, and we use the residual of this
regression as our new indicator.
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Appendix.

Figure 1 is based on the reduced affinity matrix; it plots the composition of the wife’s and

husband’s first index together with some output variables. In order to improve the readability of

the graph, we only keep variables whose correlation with the corresponding factor is significant

at the 2% level. Parents with high index 1 are older, which correlates with children reporting

lower levels of subjective well being. This correlation, however, appears to be spurious, and mostly

reflecting the child’s age; once controlling for age (in the way explained just above), the correlation

disappears. In other words, the cohort component of the matching patterns does not seem to be

strongly correlated with any output, with the notable exception of women being more likely to

work outside home - although even this correlation is likely to partly reflect the (older) age of the

children.

Things are however quite different with the second factor, which is mostly driven by parents’

education. In figure 2, we see that high levels of index 2 are strongly correlated with better educa-

tional outcomes, as measured by children’s grades: the latter include both nationally standardized

INVALSI test results (math and Italian) and class grades (always math and Italian, standardized

at class level). Women with a high index 2 are also more likely to work outside home and less

likely to be overweight, while both parents appear to be taller: children of parents with a high

index 2 are also less likely to be overweight and taller than their peers. Finally, the third index

mainly captures variations in parents’ BMI; our results suggest that parents with a high index 3,

as well as their children, are more likely to be overweight (see Figure 6 in Appendix).

These conclusions are enriched when considering the global affinity matrix (Figures 3, 4 and

5). As before, the first index is only correlated with women’s participation to the labor market,

with the same caveats as before. In this case, we also notice that couples with a high index 1

are also more educated, likely because educated individuals have children at an older age; their

children have perform better in nationally standardized math tests. Regarding index 2, more

educated wives are also likely to work and spend time outside home, and the children have higher

grades. However, the index is also strongly correlated with children reporting to be less happy

and less likely to get along with their mothers. In other words, educated parents’ investment in

their children’s human capital, while fruitful in terms of academic performance, comes at a price,

since children appears to resent the corresponding pressure.15 What is remarkable here is that

the factors are recovered exclusively from matching patterns; neither parental investment nor any

15This notion had already been mentioned in the literature (see for instance Heinrich (2014) or Dinisman and
Ben-Arieh (2016).
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output variable are used for their estimation. Yet, the most important factor (beyond age) driving

assortativeness appears to be strongly correlated with both children’s achievements (positively)

and well-being (negatively). This indicates not only that future investments in children’s HC are

an explicit part of individuals’ marital strategies, but also that these aspects are actually crucially

important, since the corresponding factor dominates all other patterns (beyond pure age/cohort

effects).

As discussed in the previous section, index 3 mainly captures differences in multiple dimensions

of health and risk attitude. However, we did not find that children-related outcomes differ in couples

with high vs low levels of index 3. On the other hand, we cannot exclude that index 3 is somehow

related to other family outcomes that we do not observe and that depend on parents’ risk aversion,

such as financial decisions on homeownership and portfolio choices.

5 Conclusion

A large literature in both economics, sociology and demography has studied homogamy and mea-

sured it using data on marital patterns. In this paper, we present Separable Extreme Value (SEV)

models and explain how they compare to other statistical models used to measure homogamy. SEV

models are advantageous because i) they are identified with cross-sectional data on one marriage

market; ii) they can be used to study multidimensional sorting and can easily handle numerous dis-

crete classes and continuous variables; iii) in the matching function implied by the model, spillovers

play a large role, in that an increase in the number of individuals in one class (say, female college

graduates) can potentially affect all match probabilities.

We show that the SEV approach can generate rich empirical findings by estimating a multi-

dimensional and parametric model borrowed from Dupuy and Galichon (2014) with data from a

survey of parents of children attending schools in Campania, a region of Southern Italy. We show

that marital patterns are characterized by a high level of homogamy: not only men and women

sort on demographic and socioeconomic traits such as age, BMI, height and education, but they

also look for partners that share similar health-related behavioral traits and risk attitude. Our

estimates are also insightful about the number and nature of the sorting dimensions that can ra-

tionalize the marital patterns observed in the data: we find that only a relatively low number of

sorting dimensions matter; in other words, one or few indices could well summarize an individual’s

attractiveness on marriage markets. While the first dimension of sorting mainly captures market

segmentation across age cohorts, the second dimension describes sorting on human capital (HC):
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educated and health-conscious women tend to marry men with similar traits. Finally, when we

look at family outcomes, we find that children of parents with a high level of HC perform better

at school, but this comes at a cost, as they are also more likely to report lower levels of subjective

well-being and a worse relationship with their mother.
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A Computational details

In a sample withN couples, we aim to calculate the unconditional probability of a marriage between

a woman of type I and a man of type J - named µIJ according to our notation - generated by a

given surplus function ZIJ and given marginal distributions µX
I and µY

J . The logit choice models

of the wife and the husband respectively yield:

pIJ =
expU IJ∑
K expU IK

=
µIJ

µX
I

pJI =
expV IJ∑
K expV KJ

=
µIJ

µY
J

where the last equality on both lines establishes a relationship between the conditional and un-

conditional probabilities, µX
I and µY

J being the marginal distributions of women’s and men’s types

respectively. If every individual belongs to a different class (as is often the case with many dis-

crete categories, or when continuous variables are included in the analysis), then µX
I = 1/N and

µY
J = 1/N for any I and J ; if sample weights are available, then µX

I is equal to the sample weight

of an individual of class I (and so is µY
J ).

We proceed from equation (4), which establishes a link between U IJ and V IJ , and write

µIJ = exp

(
ZIJ

2

)
aXI b

Y
J

where aXI and bYJ are type-specific terms defined as

aXI =

√
µX
I∑

K expU IK

bYJ =

√
µY
J∑

K expV KJ
.

For a given function ZIJ , we can obtain µIJ if we can compute aXI and bYJ for all types. We

use the adding-up constraints (3) to set up the following system

µX
I =

∑
J

µIJ = aI
∑
J

exp

(
ZIJ

2

)
bJ

µY
J =

∑
I

µIJ = bJ
∑
I

exp

(
ZIJ

2

)
aI

whose solution can be obtained through the well-known iterative proportional fitting procedure

(IPFP). The properties of the latter ensures that we always (and rapidly) converge to a solution aI

and bJ that is unique up to a scalar; for any ZIJ , there exists a unique µIJ . Dupuy and Galichon
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(2014) provide additional details on this methodology.
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B Variable description

In Table 8 we report the survey questions that were used to measure different behavioral traits.

In Table 9 we report a complete list of all variables that were used in section 4.3 as “outcome”

variables. Note that some outcome variables may never show up in our plots because they are

found to be uncorrelated with the estimated indices of attractiveness.

Table 8: Matching variables

Matching variables

Likes healthy snacks At the end of the experiment, we will give you a snack: which one do your prefer? 1=Nutella sandiwch, 2=Parmesan bar, 3=apple

Smokes I smoke 0=Never, 1=Sometimes, 2=Often

Likes sports I do sports 0=Never, 1=Sometimes, 2=Often

Wears sunscreen I wear sunscreen to avoid sunburns 0=Never, 1=Sometimes, 2=Often

Washes hands I wash my hands before eating 0=Never, 1=Sometimes, 2=Often

Worries about health I worry about my health 0=Never, 1=Sometimes, 2=Often

Wears helmet I wear a helmet when riding a moped 0=Never, 1=Sometimes, 2=Often

Likes safari I would go on a safari in the jungle 0=Never, 1=Sometimes, 2=Often

Fears speed I am scared of mopeds riding fast 0=Never, 1=Sometimes, 2=Often

Likes usual holidays I like going on holidays in places I know because it is safer 0=Never, 1=Sometimes, 2=Often

Likes extreme sports I would do extreme sports 0=Never, 1=Sometimes, 2=Often

Careful when crossing I am very careful when crossing the street 0=Never, 1=Sometimes, 2=Often

Table 9: Outcome variables

Outcome variables

Number of children Children report family composition, including number and sex of siblings.

Stays at home (wife) Inputted: 0=Otherwise, 1=Answers “housewife” when asked about profession.

Hours outside (wife) Mothers are asked: If you work, how many hours do you usually spend outside the home? Possible answers: 0=does not work, 1=3 to 5 hours, 2=6 to 8 hours, 3=more than 8 hours.

Height (child) Measured by interviewers. We use residuals from regression on child’s age.

BMI (child) Measured by interviewers. We use residuals from regression on child’s age.

Year failed From class register.

Italian grade From class register; we use deviation from class mean.

Math grade From class register; we use deviation from class mean.

Italian Invalsi grade From class register; standardized national test.

Math Invalsi grade From class register; standardized national test.

Sub. well-being (child) Children are asked: How happy are you about your life? Possible answers are: 1=Very sad, ... 5=Very happy. We use residuals from regression on child’s age.

Happy (child) Children are asked: Are you happy? Possible answers are: 0=Never, 1=Sometimes, 2=Often. We use residuals from regression on child’s age.

Gets along with mum Children are asked: Do you get along with your mum? Possible answers are: 0=Never, 1=Sometimes, 2=Often

Gets along with dad Children are asked: Do you get along with your dad? Possible answers are: 0=Never, 1=Sometimes, 2=Often
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C Additional tables

Table 10: Frequency of children by parents’ presence at home

Father is present

Mother is present 0 1 Total

0 0 3 3

1 16 613 629

Total 16 616 632

Notes: a parent is present if he/she participates to the survey and/or is reported as living at home by the child.

Table 11: Summary statistics - family outcomes

mean sd count

Number of children 2.1 0.8 632

Wife’s hours outside 0.5 0.9 658

Wife stays at home 0.5 0.5 300

Child’s age -0.0 8.9 634

Child’s BMI 19.6 3.7 620

Year failed 0.0 0.2 659

Italian grade -0.0 1.0 617

Math grade -0.0 1.0 619

INVALSI test grade, Italian 202.3 40.9 184

INVALSI test grade, math 194.3 38.3 179

z patience -0.0 0.5 646

Child’s subjective well-being -0.0 0.7 620

Child is happy -0.0 0.5 632

Child gets along with mum 1.6 0.5 634

Child gets along with dad 1.7 0.6 637

Child likes healthy snacks 1.7 0.9 642

Notes: .
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Table 12: Rank test for Â (sample 1)

H0: rk(A) = k k = 1 k = 2 k = 3

χ2 70.34 17.34 1.91

df 9 4 1

Rejected? Yes Yes No
Notes: each column reports the statistic resulting from testing the null hypothesis that the rank of Â is equal to k. We
report whether the null hypothesis was rejected at the 5% level. These tests lead us to conclude that sorting occurs on at
least 3 orthogonal dimensions.

Table 13: Rank test for Â (sample 2)

H0: rk(A) = k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15

χ2 280.46 242.59 215.12 179.15 144.42 118.19 93.22 63.73 48.23 31.05 19.50 9.06 4.38 0.71 0.10

df 225 196 169 144 121 100 81 64 49 36 25 16 9 4 1

Rejected? Yes Yes Yes Yes No No No No No No No No No No No

Notes: each column reports the statistic resulting from testing the null hypothesis that the rank of Â is equal to k. We
report whether the null hypothesis was rejected at the 5% level. These tests lead us to conclude that sorting occurs on at
least 5 orthogonal dimensions.
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Table 14: Saliency analysis: men’s loading matrix (sample 2)

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9 Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16

Educ. 0.21 0.45 0.05 0.59 -0.36 -0.01 0.25 0.04 -0.03 -0.02 -0.02 0.15 0.21 0.28 0.00 -0.25

Age 0.97 -0.09 -0.01 -0.14 0.07 -0.02 -0.06 0.02 -0.07 -0.00 0.04 -0.06 -0.08 -0.04 0.04 0.03

Height 0.06 0.11 -0.02 0.14 -0.01 -0.07 -0.37 -0.07 0.58 0.10 0.31 0.08 0.29 -0.48 -0.17 -0.14

BMI 0.03 0.04 0.19 -0.32 0.06 0.11 0.50 -0.32 0.37 0.52 -0.02 0.02 0.16 0.14 0.19 -0.04

Smokes 0.01 -0.06 -0.14 -0.15 -0.03 -0.16 -0.41 -0.46 -0.34 0.14 -0.25 0.16 0.52 0.21 -0.09 -0.09

Likes sports 0.03 -0.43 -0.03 0.24 0.25 -0.20 -0.12 0.17 0.38 0.07 -0.01 0.40 -0.10 0.53 -0.08 0.06

Likes healthy snacks -0.01 0.38 0.10 -0.14 0.12 0.14 -0.36 0.55 0.01 0.47 -0.23 -0.21 0.03 0.18 -0.11 0.02

Wears sunscreen -0.04 0.37 0.20 -0.38 0.12 -0.24 0.01 0.08 -0.23 -0.05 0.46 0.54 -0.14 0.06 -0.07 -0.11

Wash hands 0.02 -0.32 0.12 -0.21 -0.23 0.64 0.07 0.24 -0.03 -0.14 -0.01 0.27 0.22 -0.01 -0.34 -0.25

Worries about health 0.01 -0.21 -0.03 0.10 0.07 -0.39 0.35 0.34 -0.22 0.29 -0.28 0.24 0.21 -0.47 -0.11 0.00

Wears helmet -0.01 -0.11 0.64 0.03 -0.19 -0.07 -0.28 -0.04 0.05 -0.04 -0.34 0.16 -0.20 -0.16 0.43 -0.24

Likes safari -0.02 -0.16 0.01 0.39 0.04 0.36 -0.14 -0.17 -0.36 0.54 0.34 0.15 -0.23 -0.13 0.09 0.11

Fear speed 0.03 0.23 -0.39 0.01 0.28 0.18 0.02 -0.22 0.09 0.01 -0.41 0.23 -0.44 -0.14 -0.15 -0.42

Likes usual holidays 0.01 0.08 0.22 0.20 0.75 0.24 0.07 0.03 -0.10 -0.26 0.00 -0.01 0.38 -0.04 0.22 -0.05

Extreme sports 0.05 0.26 -0.02 -0.00 -0.10 0.22 -0.03 -0.07 0.14 -0.12 -0.28 0.42 0.04 -0.12 0.05 0.75

Careful when crossing -0.03 -0.03 -0.53 -0.14 -0.13 0.09 -0.07 0.28 0.03 0.00 0.10 0.17 0.16 -0.01 0.71 -0.14

Index share 0.32 0.13 0.10 0.09 0.06 0.06 0.05 0.05 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.00

Notes: the table reports men’s singular vectors U and singular values diag(Λ) from the singular value decomposition of Â = UΛV ′. Bold-faced values are significant at the 5% level; confidence intervals
are obtained with 500 bootstrap replications (Milan and Whittaker, 1995). In the last line, each value of diag(Λ) can be interpreted as the relative importance of each sorting dimension.
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Table 15: Saliency analysis: women’s loading matrix (sample 2)

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9 Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16

Educ. 0.09 0.62 0.29 0.39 -0.21 -0.23 -0.01 -0.09 0.24 0.09 0.04 -0.13 0.28 0.16 0.25 0.16

Age 0.97 -0.12 -0.03 0.06 0.08 0.08 -0.05 0.07 -0.03 -0.07 -0.02 -0.08 0.06 -0.02 -0.02 0.04

Height 0.09 0.01 -0.07 0.05 -0.14 -0.15 -0.08 0.02 0.56 0.18 0.14 0.50 0.04 -0.32 -0.29 -0.36

BMI 0.06 -0.01 0.03 -0.43 0.32 0.09 0.34 -0.27 0.30 0.38 -0.00 -0.07 0.25 0.44 -0.04 -0.09

Smokes 0.03 0.19 -0.37 -0.18 -0.09 -0.14 -0.55 -0.38 -0.19 -0.02 -0.43 0.11 0.18 0.15 -0.00 -0.18

Likes sports 0.02 -0.07 -0.01 0.23 0.05 -0.10 -0.06 0.05 0.19 0.14 -0.34 0.25 -0.48 0.41 -0.27 0.46

Likes healthy snacks 0.02 0.47 0.04 -0.13 0.15 0.18 -0.15 0.64 -0.24 0.20 0.05 0.07 -0.09 0.21 -0.18 -0.29

Wears sunscreen 0.11 0.31 -0.08 -0.56 -0.03 -0.14 -0.05 -0.05 0.04 0.14 0.19 0.11 -0.36 -0.31 0.31 0.40

Wash hands 0.01 -0.02 0.26 -0.15 -0.51 0.73 -0.08 -0.06 0.08 -0.04 -0.11 0.24 0.06 0.08 0.08 0.10

Worries about health 0.01 -0.07 -0.15 0.11 0.03 -0.10 0.34 0.17 -0.37 0.22 -0.14 0.57 0.42 -0.07 0.20 0.23

Wears helmet 0.06 -0.24 0.57 -0.11 0.00 -0.29 -0.06 0.07 -0.04 0.10 -0.33 0.11 -0.22 0.04 0.44 -0.37

Likes safari -0.02 -0.13 0.11 0.32 0.23 0.22 -0.37 -0.29 -0.22 0.62 0.31 0.00 -0.08 -0.12 0.07 0.03

Fear speed -0.01 0.20 -0.40 0.28 0.24 0.36 0.24 -0.03 0.21 0.01 -0.32 -0.03 -0.27 -0.16 0.43 -0.23

Likes usual holidays -0.11 -0.02 0.20 -0.04 0.60 0.13 -0.39 0.14 0.28 -0.36 -0.03 0.19 0.28 -0.08 0.13 0.24

Extreme sports 0.07 0.05 -0.07 0.09 0.05 -0.02 0.05 -0.23 -0.13 -0.37 0.52 0.41 -0.22 0.45 0.21 -0.20

Careful when crossing -0.05 -0.35 -0.38 -0.01 -0.24 -0.08 -0.27 0.41 0.27 0.16 0.20 -0.16 0.13 0.28 0.41 0.05

Index share 0.32 0.13 0.10 0.09 0.06 0.06 0.05 0.05 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.00

Notes: the table reports women’s singular vectors V and singular values diag(Λ) from the singular value decomposition of Â = UΛV ′. Bold-faced values are significant at the 5% level; confidence
intervals are obtained with 500 bootstrap replications (Milan and Whittaker, 1995). In the last line, each value of diag(Λ) can be interpreted as the relative importance of each sorting dimension.
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D Additional figures

Figure 6: Correlation between index 3, matching variables and outcomes (sample 1)

Notes: we plot correlation rates of both matching variables and outcome variables with the husband’s third matching index
(x-axis) and the wife’s (y-axis). See notes to figure 1.
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