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Abstract

We introduce a new solution concept for models of coalition formation, called the

myopic stable set (MSS). The MSS is defined for a general class of social environments

and allows for an infinite state space. An MSS exists and, under minor continuity

assumptions, it is also unique.

The MSS generalizes and unifies various results from more specific applications.

It coincides with the coalition structure core in coalition function form games when

this set is non-empty; with the set of stable matchings in the Gale-Shapley matching

model; with the set of Pareto optimal allocations in the Shapley-Scarf housing matching

model; with the set of pairwise stable networks and closed cycles in models of network

formation; with the set of pure strategy Nash equilibria in pseudo-potential games

and finite supermodular games; and with the set of mixed strategy Nash equilibria in

several classes of two-player games.
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1 Introduction

Models of coalition formation study a widespread and important pattern of human interac-

tion: agents tend to form groups of equally interested individuals, but these groups behave

in a non-cooperative way towards outsiders. For example, individuals in a community join

forces to provide a local public good, voters create parties to attain their political goals, and

firms set up lobby groups to influence policy-makers.

The literature studies coalition formation in many distinct settings, like networks, coali-

tion function form games, and matching models. In this paper, we focus on a general class

of social environments that covers all of these settings and many more. More precisely, we

define a social environment on the basis of four components (Chwe, 1994): a finite collection

of agents, a set of social states, for every agent preferences over the set of states, and an

effectivity correspondence that models the feasible transitions from one state to another. We

only require that the set of social states is a non-empty, compact metric space. As such, in

contrast to most settings in the literature, we allow the state space to be infinite.

For such social environments, we define a new solution concept called the myopic stable

set, abbreviated as MSS. The MSS extends the idea of level-1 farsighted stability by Herings,

Mauleon, and Vannetelbosch (2009, 2014) from finite networks to the general class of social

environments. The MSS is defined by three conditions, deterrence of external deviations,

asymptotic external stability, and minimality. Deterrence of external deviations requires

that no coalition benefits by deviating from a state inside the MSS to a state outside the

MSS. Asymptotic external stability makes sure that from any state outside the MSS it is

possible to get arbitrarily close to a state inside by a sequence of coalitional deviations. The

final condition, minimality, requires that the MSS is minimal with respect to set inclusion.

Our notion of dominance is myopic as agents or coalitions do not predict how their

decision to change the current state will lead to further changes by other agents or coalitions.

Such a notion is natural in complex social environments where the number of possible states

is large and agents have little information about the possible actions other agents may take

or the incentives of other agents. The myopic stable set thereby distinguishes our approach

from the ones in the literature that focus on farsightedness (see among others, Chwe, 1994;

Xue, 1998; Herings, Mauleon, and Vannetelbosch, 2004, 2009, 2014; Dutta, Ghosal, and Ray,

2005; Page, Wooders, and Kamat, 2005; Page and Wooders, 2009; Ray and Vohra, 2015).

Our approach is more in line with myopic concepts like the core and the von Neumann-

Morgenstern stable set. As we will see in the application to normal-form games, it is also

intimately connected to the notion of Nash equilibrium.

Our first main result (Theorem 3.1) shows that every social environment contains at least

one non-empty MSS. Moreover, under minor continuity assumptions, we establish uniqueness

of the MSS (Theorem 3.6). The existence and uniqueness results differ from many other
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popular solution concepts in the literature. For instance, the core and the coalition structure

core for coalition function form games can be empty (Bondareva, 1963; Scarf, 1967; Shapley,

1967); the von Neumann-Morgenstern stable set may fail to exist or to be unique (Lucas,

1968, 1992), and the set of pure strategy Nash equilibria may be empty.

We provide several additional results that provide more insights about the structure of

an MSS. For finite state spaces, we fully characterize the MSS as the union of all closed

cycles (Theorem 3.13), i.e., subsets which are closed under coalitional better replies. This

result also provides a connection to stochastic processes of coalition and network formation

as in Jackson and Watts (2002) and Sawa (2014) and suggests possibilities for refinements

in the spirit of Kandori, Mailath and Rob (1993) and Young (1993). For infinite spaces,

the union of all closed cycles is found to be a subset of the MSS. This result is helpful in

applications and in the comparison to other solution concepts. For instance, any state in the

core is a closed cycle and is therefore included in the MSS. As a special case of this result,

it follows that the MSS contains the set of pure strategy Nash equilibria in a normal-form

game. Next we define a generalization of the weak improvement property (Friedman and

Mezzetti, 2001) to social environments and we show that, under weak continuity conditions,

the weak improvement property characterizes the collection of social environments for which

the MSS coincides with the core. We also show that if the von Neumann-Morgenstern stable

set exists, then it has a non-empty intersection with any MSS.

We demonstrate the versatility of our results by analyzing the relationship between the

MSS and other solution concepts in specific social environments. In particular, we show that

the MSS coincides with the coalition structure core for coalition function form games (Kóczy

and Lauwers, 2004) whenever the coalition structure core is non-empty; with the set of stable

matchings in the one-to-one matching model by Gale and Shapley (1962); with the set of

Pareto efficient house allocations in the housing matching model of Shapley and Scarf (1974);

with the set of pairwise stable networks and closed cycles in models of network formation

(Jackson and Watts, 2002); and with the set of pure strategy Nash equilibria in pseudo-

potential games (Dubey, Haimanko, and Zapechelnyuk, 2006) and finite supermodular games

(Topkis, 1979 and Milgrom and Roberts, 1990). For the mixed extension of the game, the

MSS coincides with the set of mixed strategy Nash equilibria in two-player zero-sum games

and in two-player games in which one player has two actions.

The structure of the paper is as follows. Section 2 provides the primitives of our gen-

eral framework of social environments and introduces and motivates the MSS. Section 3

establishes existence, non-emptiness, and uniqueness results. Section 4 analyzes our solution

concept for various settings and relates it to other stability concepts from the literature.

Section 5 is a conclusion. All proofs can be found in the appendix.
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2 The Myopic Stable Set

In this section, we first introduce the concept of a social environment. Next, we introduce

the notions of dominance and asymptotic dominance which are used to define our solution

concept, the myopic stable set.

Let N be a non-empty finite set of individuals. A coalition S is a subset of N . The set

of non-empty subsets of N is denoted by N . Let (X, d) be a metric space, where X denotes

our non-empty state space and d is a metric on X.1 Let some state x ∈ X be given and let

ε ∈ R++. We define

Bε(x) = {y ∈ X|d(x, y) < ε}

as the open ball around x with radius ε. The set Bε(x) contains all states in X that are in

an ε-neighborhood of x. For a sequence (xk)k∈N in X, we write xk → x if for all ε > 0, there

is a number N ∈ N such that for all k ≥ N , xk ∈ Bε(x), i.e. the sequence (xk)k∈N converges

to x.

An effectivity correspondence E associates with each pair of states (x, y) ∈ X × X a,

possibly empty, collection of coalitions E(x, y) ⊆ N . If S ∈ E(x, y), we say that coalition S

can move from state x to state y. If E(x, y) = ∅, then no coalition can move from x to y.

Each individual i ∈ N has a complete and transitive preference relation �i over the state

space X. The profile (�i)i∈N then lists the preferences of all individuals in N . We denote

the asymmetric part of �i by �i, i.e., x �i y if and only if x �i y and not y �i x.

A social environment is now defined as follows.

Definition 2.1 (Social Environment). A social environment is a tuple

Γ = (N, (X, d), E, (�i)i∈N)

consisting of a non-empty, finite set of agents N , a non-empty, compact metric space (X, d)

of states, an effectivity correspondence E on X, and a profile of preference relations (�i)i∈N
over X.

In Section 4, we specify different social environments which correspond to applications

such as coalition function form games, one-to-one matching, housing matching, network

formation, and non-cooperative normal-form games.

For a given social environment Γ = (N, (X, d), E, (�i)i∈N), we say that a state y ∈ X

dominates another state x ∈ X if there is a coalition such that (i) it can move from x to y

and (ii) each of its members strictly prefers y over x.

1A metric is a function d : X ×X → R+ such that (i) for every x, y ∈ X: d(x, y) = 0 if and only if x = y,

(ii) for every x, y ∈ X: d(x, y) = d(y, x), and (iii) for every x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).
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Definition 2.2 (Dominance). A state y ∈ X dominates the state x ∈ X under E if there

exists a coalition S ∈ E(x, y) such that for every i ∈ S it holds that y �i x.

An alternative notion is the one of weak dominance. A state y weakly dominates x if

there exists a coalition S ∈ E(x, y) such that for all i ∈ S, y �i x and there is at least

one j ∈ S such that y �j x. The notion of weak dominance only requires that no member

of S loses while at least one strictly gains. Definition 2.2 on the other hand requires that

everybody in the coalition S strictly gains. As it turns out, when we restrict ourselves to

settings with a finite state space X, all theoretical results from this section remain valid when

we replace dominance by weak dominance. For settings where X is infinite, most results

remain valid with the exception of Theorem 3.9 and Corollary 3.10 below which provide

sufficient conditions for uniqueness of the MSS. We will come back to this issue when we

present these two results.

Let some state x ∈ X be given. The subset of X consisting of all states that dominate x

together with the state x itself is denoted by f(x), so

f(x) = {x} ∪ {y ∈ X|y dominates x under E}.

We refer to f as the dominance correspondence. We define the two-fold composition of f by

f 2(x) = {z ∈ X|∃y ∈ X : y ∈ f(x) and z ∈ f(y)}.

By induction, we can define the k-fold iteration fk(x) as the subset of X that contains

all states obtained by a composition of dominance correspondences of length k ∈ N, i.e.,

y ∈ fk(x) if there is a z ∈ X such that y ∈ f(z) and z ∈ fk−1(x). Since by definition

x ∈ f(x), it holds that, for all k, ` ∈ N, if k ≤ `, then fk(x) ⊆ f `(x). We define the set of all

states that can be reached from x by a finite number of dominations by fN(x), so

fN(x) =
⋃
k∈Nf

k(x).

A state y is said to asymptotically dominate the state x if starting from x, it is possible to

get arbitrarily close to y in a finite number of dominations.

Definition 2.3 (Asymptotic Dominance). A state y ∈ X asymptotically dominates the state

x ∈ X under E if for all ε > 0 there exists k ∈ N and a state z ∈ fk(x) such that z ∈ Bε(y).

We denote by f∞(x) the set of all states in X that asymptotically dominate x. Formally,

we have

f∞(x) = {y ∈ X|∀ε > 0, ∃k ∈ N, ∃z ∈ fk(x) such that z ∈ Bε(y)}.

It is easy to see that the set f∞(x) coincides with the closure of the set fN(x).

We are now ready to define our solution concept, the myopic stable set, abbreviated as

MSS.
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Definition 2.4 (Myopic Stable Set). Let Γ = (N, (X, d), E, (�i)i∈N) be a social environ-

ment. The set M ⊆ X is a myopic stable set if it is closed and satisfies the following three

conditions:

1. Deterrence of external deviations: For all x ∈M , f(x) ⊆M .

2. Asymptotic external stability: For all x /∈M, f∞(x) ∩M 6= ∅.

3. Minimality: There is no closed set M ′ (M that satisfies Conditions 1 and 2.

Let M be an MSS. Deterrence of external deviations requires that no coalition can prof-

itably deviate to a state outside M . Next, asymptotic external stability requires that any

state outside M is asymptotically dominated by a state in M . Hence, from any state outside

M it is possible to get arbitrary close to a state in M by a finite number of myopic deviations.

Observe that the empty set would necessarily violate asymptotic external stability, so any

MSS is non-empty.

Although the property of asymptotic external stability resembles a notion of farsighted-

ness, there is an important distinction. In models with farsighted behavior, coalitions deviate

from the current state because they expect to profit from a move in some future period, i.e.,

after possible subsequent moves by other coalitions. Our definition of asymptotic external

stability, however, is myopic in the sense that coalitions deviate only because they see an

immediate gain, without anticipating potential future deviations.

Finally, minimality imposes that there is no smaller closed set of states that satisfies

deterrence of external deviations and asymptotic external stability.

For finite state spaces, the restriction imposed by asymptotic external stability remains

unchanged if f∞ is replaced by fN. We refer to the property that for all states x /∈ M,

fN ∩M 6= ∅ as iterated external stability. For infinite state spaces, the two concepts differ.

In particular, if one uses iterated external stability instead of asymptotic external stability,

an MSS might fail to exist. This is illustrated in the following example.

Example 2.5. Consider the social environment Γ = ({1}, (X, d), E,�1), where the state

space is given by X = {1/k|k ∈ N} ∪ {0} and d(x, y) = |x − y|. Note that X is compact.

Preferences �1 are defined by x �1 y if and only if x = y or x < y. The effectivity

correspondence E is such that {1} ∈ E(1/k, 1/(k + 1)) for every k ∈ N and E(x, y) = ∅
otherwise. It follows that

f( 1
k
) =

{
1
k
, 1
k+1

}
.

Observe that 0 ∈ f∞(x) for every x ∈ X and that f(0) = {0}. It now follows easily that {0}
is an MSS.
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Suppose we replace the requirement of asymptotic external stability by the stronger

requirement of iterated external stability. We show that there is no closed set satisfying

iterated external stability together with deterrence of external deviations and minimality.

Towards a contradiction, suppose that the closed set M ⊆ X satisfies these properties. Since,

for every k ∈ N, 0 /∈ fN (1/k), the set {0} does not satisfy iterated external stability. Given

that M 6= {0} and M is non-empty, there is k ∈ N such that 1/k ∈M . Let k be the smallest

such number. From deterrence of external deviations, we have that also 1/(k + 1) ∈ M .

Based on the corresponding properties of M , it is easy to verify that the closed, non-empty

set M ′ = M \{1/k} satisfies deterrence of external deviations and iterated external stability.

Since M ′ is a proper subset of M , M violates the minimality property.

An MSS is defined as a minimal set satisfying deterrence of external deviations and

asymptotic external stability. Dropping the minimality requirement, we can define the con-

cept of a quasi myopic stable set (QMSS) which is useful in the proofs.

Definition 2.6 (Quasi Myopic Stable Set). Let Γ = (N, (X, d), E, (�i)i∈N) be a social

environment. The set M ⊆ X is a quasi myopic stable set if it is closed and satisfies

deterrence of external deviations and asymptotic external stability.

3 General Properties

This section establishes existence of the myopic stable set in general and, under weak addi-

tional assumptions, its uniqueness. We also derive some additional structural properties of

myopic stable sets that are used in the next section. We provide a brief discussion of the

relationship between the MSS and the von Neumann-Morgenstern stable set. Finally, we

relate our approach to dynamic models that rely on stochastic processes.

3.1 Existence and Uniqueness

The following main result shows existence of the myopic stable set.

Theorem 3.1 (Existence). Let Γ be a social environment. Then an MSS exists.

The proof of Theorem 3.1 starts from the observation that the set of all states is a QMSS.

The collection of all sets of states that are a QMSS is partially ordered by inclusion. We

verify that the partially ordered set satisfies the conditions for Zorn’s lemma and apply it to

conclude that there is a minimal QMSS, i.e., an MSS.

Having established existence of an MSS, we now turn to the cardinality of such sets. The

next theorem derives a property that is very useful in the proofs and applications to come.
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Theorem 3.2. Let Γ be a social environment and let M be an MSS of Γ. If x ∈ M and

y ∈ f∞(x), then y ∈M .

Theorem 3.2 states that if a state belongs to an MSS, then every state that asymptotically

dominates it belongs to the same MSS.

The following theorem shows that two myopic stable sets cannot be disjoint.

Theorem 3.3. Let Γ be a social environment and let M1 and M2 be two myopic stable sets

of Γ. Then M1 ∩M2 6= ∅.

The intuition behind the proof of Theorem 3.3 is as follows. If a state in M1 does

not belong to M2, then it is asymptotically dominated by a state in M2 since M2 satisfies

asymptotic external stability. By Theorem 3.2, the asymptotically dominating state belongs

to M1 as well, so we have found a state in the intersection of M1 and M2.

The following example shows that uniqueness of an MSS cannot be demonstrated without

any additional assumptions.

Example 3.4. Consider the social environment Γ = ({1}, (X, d), E,�1), where

X = {0, 1
2
, 1} ∪

{
1
k
| k ∈ N \ {1, 2}

}
∪
{

1− 1
k
| k ∈ N \ {1, 2}

}
and the metric is given by d(x, y) = |x− y|.

The effectivity correspondence is such that the individual can move from both states 0

and 1 to state 1/2 and, for every k ∈ N\{1, 2}, from state 1−1/k to state 1/k and from state

1/k to state 1− 1/(k+ 1). The individual cannot make any other moves. The preferences of

the individual are such that

2
3
≺1

1
3
≺1

3
4
≺1

1
4
≺1

4
5
≺1

1
5
≺1 · · · ≺1 1 ≺1 0 ≺1

1
2
.

We claim that both {0, 1/2} and {1/2, 1} are myopic stable sets. Since the effectivity cor-

respondence admits no move outside the respective sets, both {0, 1/2} and {1/2, 1} satisfy

deterrence of external deviations. For asymptotic external stability, observe that for every

k ∈ N \ {1, 2} it holds that {0, 1} ⊂ f∞(1/k) and {0, 1} ⊂ f∞(1− 1/k). Moreover, we have

1/2 ∈ f(0) = f∞(0) and 1/2 ∈ f(1) = f∞(1). For minimality, the sets {0} and {1} violate

deterrence of external deviations since 1/2 ∈ f(0) and 1/2 ∈ f(1). The set {1/2} violates

asymptotic external stability as 1/2 /∈ f∞(x) for any x ∈ X different from 0, 1/2 and 1.

We can restore uniqueness by imposing the following mild continuity assumption on the

dominance correspondence f .

Definition 3.5 (Lower Hemi-continuity of f). The dominance correspondence f : X → X

is lower hemi-continuous if for every sequence (xk)k∈N in X such that xk → x and for every

y ∈ f(x) there is a sequence (yk)k∈N in X such that for all k, yk ∈ f(xk) and yk → y.

8



This continuity assumption allows us to state the following uniqueness result.

Theorem 3.6. Let Γ be a social environment such that the corresponding dominance cor-

respondence f is lower hemi-continuous. Then Γ has a unique MSS.

The continuity condition of Theorem 3.6 is trivially satisfied when the state space X is

finite. As such, for all applications with a finite state space, we have uniqueness of the MSS.

The dominance correspondence f is defined in terms of the individual preference rela-

tions (�i)i∈N and the effectivity correspondence E. To ease the verification of lower hemi-

continuity of f , we provide sufficient conditions on the primitives of a social environment.

As a first condition, we impose lower hemi-continuity of the effectivity correspondence

E. Towards this end, consider, for every S ∈ N , the correspondence GS : X → X defined

by

GS(x) = {x} ∪ {y ∈ X | S ∈ E(x, y)}, x ∈ X,

which associates to every state x ∈ X the union of {x} and the set of states coalition S can

move to from x.

Definition 3.7 (Lower Hemi-continuity of E). The effectivity correspondence E is lower

hemi-continuous if for every coalition S ∈ N the correspondence GS : X → X is lower hemi-

continuous, i.e., for every sequence (xk)k∈N in X such that xk → x and for every y ∈ GS(x)

there is a sequence (yk)k∈N such that yk ∈ GS(xk) and yk → y.

Our second condition is continuity of the preferences.

Definition 3.8 (Continuity of Preferences). The preference relation �i of individual i ∈ N
is continuous if for any two sequences (xk)k∈N and (yk)k∈N in X with xk → x and yk → y

and, for every k ∈ N, xk �i yk, it holds that x �i y.

Theorem 3.9 shows that lower hemi-continuity of E and continuity of preferences is

sufficient for the dominance correspondence f to be lower hemi-continuous.

Theorem 3.9. Let Γ = (N, (X, d), E, (�i)i∈N) be a social environment such that the effec-

tivity correspondence E is lower hemi-continuous and the preferences (�i)i∈N are continuous.

Then the dominance correspondence f is lower hemi-continuous.

Combining Theorems 3.6 and 3.9 directly yields the following corollary which gives a

sufficient condition on the primitives of the model to obtain a unique MSS.

Corollary 3.10. Let Γ = (N, (X, d), E, (�i)i∈N) be a social environment such that the effec-

tivity correspondence E is lower hemi-continuous and the preferences (�i)i∈N are continuous.

Then Γ has a unique MSS.
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Recall the alternative notion of weak dominance, where a state y weakly dominates a

state x when there is a coalition S ∈ E(x, y) such that for all i ∈ S, y �i x and there is

at least one j ∈ S such that y �j x. When we replace dominance in the definition of the

MSS by weak dominance, all results in this section remain valid except for Theorem 3.9 and

Corollary 3.10. The following example presents a social environment in which the effectivity

correspondence is lower hemi-continuous and the preferences are continuous, but using weak

dominance in the definition of the MSS does not yield a unique MSS.

Example 3.11. Consider the social environment Γ = ({1, 2}, (X, d), E, (�1,�2)), where

X = {(0, 0), (1, 0), (2, 0)} ∪ {(0, 2
k
), (1, 1

k
), (2, 1

k
)|k ∈ N}

and d is the Euclidean metric on X, so d(x, y) = ‖x−y‖2. It clearly holds that X is compact.

Individual 1 only cares about the first component of the state while individual 2 only

cares about the second component. Both individuals prefer states where the component they

care about is lower over states where it is higher. Note that these preferences are continuous.

The effectivity correspondence is as follows. For every k ∈ N, the singleton {1} can move

from state (2, 1/k) to state (1, 1/k) and the singleton {2} can move from state (1, 1/k) to

state (2, 1/(k+1)). Moreover, for every k ∈ N, the singleton {2} can move from state (0, 2/k)

to state (1, 1/k). Coalition {1, 2} can move from states (1, 0) and (2, 0) to state (0, 0) and, for

every k ∈ N, from states (1, 1/k) and (2, 1/k) to state (0, 2/k). No other moves are possible.

To see that the effectivity correspondence is lower hemi-continuous, let the sequence

(xk)k∈N in X be such that xk → x. There are only three relevant sequences of states in X:

the sequence ((0, 2/k))k∈N, the sequence ((1, 1/k))k∈N , and the sequence ((2, 1/k))k∈N. The

first converges to (0, 0), the second to (1, 0), and the third to (2, 0).

Let some x ∈ {(0, 0), (1, 0), (2, 0)} be given. Since G{1}(x) = {x} and G{2}(x) = {x}, it

is immediate that G{1} and G{2} are lower hemi-continuous.

For G{1,2}, the only non-trivial cases are x = (1, 0) and x = (2, 0). We give the argument

for state x = (1, 0) explicitly. The argument for state (2, 0) follows by symmetry. For

every y ∈ G{1,2}(1, 0) we have to find a sequence (yk)k∈N such that yk ∈ G{1,2}(1, 1/k) and

yk → y. If y = (0, 0), we take the sequence ((0, 2/k))k∈N. If y = (1, 0), we take the sequence

((1, 1/k))k∈N.

Since f∞(0, 0) = {(0, 0)}, f∞(1, 0) = {(1, 0)}, and f∞(2, 0) = {(2, 0)}, it follows from

asymptotic external stability that {(0, 0), (1, 0), (2, 0)} is a subset of any MSS. Since this set

satisfies deterrence of external deviations and asymptotic external stability, it follows from

minimality that the unique MSS is equal to {(0, 0), (1, 0), (2, 0)}.
On the other hand, when we replace dominance in the definition of the MSS by weak

dominance, we obtain both the sets {(0, 0), (1, 0)} and {(0, 0), (2, 0)} as solutions. Indeed,

from both (1, 0) and (2, 0), the coalition {1, 2} can deviate to (0, 0) if only weak dominance
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is imposed. To satisfy asymptotic external stability, it is sufficient that on top of the state

(0, 0), either the state (1, 0) or the state (2, 0) should be present. By minimality, it follows

that only one of these states is included.

3.2 Closed Cycles and the Core

In this subsection, we give two general results about the structure of an MSS. The first result

relates the MSS to the union of all closed cycles. The second result characterizes the social

environments for which the MSS is equal to the core.

Definition 3.12 (Closed Cycle). A closed cycle of a social environment Γ is a set C ⊆ X

such that for every x ∈ C it holds that f∞(x) = C.

Thus, a closed cycle is a subset of X which is closed under the asymptotic dominance

correspondence f∞. We denote the union of all closed cycles by CC, so CC contains all

states that are part of some closed cycle. The following result characterizes the MSS for

social environments with a finite state space as the union of all closed cycles and shows that

this union is a subset of the MSS for social environments with an infinite state space.

Theorem 3.13. Let Γ = (N, (X, d), E, (�i)i∈N) be a social environment and let M be an

MSS of Γ. It holds that CC ⊆M . If the state space X is finite, we have CC = M .

A sink is a closed cycle which consists of only one state, i.e., f(x) = {x}. The union of

all sinks is called the core.

Definition 3.14 (Core). Let Γ = (N, (X, d), E, (�i)i∈N) be a social environment. The core

CO of Γ is given by

CO = {x ∈ X | f(x) = {x}}.

It is well-known that the core may be empty for some social environments. However, if it

is not empty, then it is always contained in the myopic stable set by virtue of Theorem 3.13

and the observation that a sink is a closed cycle which consists of one state.

Corollary 3.15. Let Γ be a social environment and let M be an MSS of Γ. Then we have

CO ⊆M .

The next definition is inspired by the finite analogue for normal-form games as presented

in Friedman and Mezzetti (2001).

Definition 3.16 (Weak (Finite) Improvement Property). A social environment Γ satisfies

the weak finite improvement property if for each state x ∈ X, fN(x) contains a sink and the

weak improvement property if for each state x ∈ X, f∞(x) contains a sink.
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The following theorem provides a characterization for the MSS in social environments

with the weak improvement property.

Theorem 3.17. Let Γ be a social environment with a lower hemi-continuous dominance

correspondence f. An MSS of Γ is equal to the core if and only if Γ satisfies the weak

improvement property.

It follows easily from the proof of Theorem 3.17 that the requirement of lower hemi-

continuity of f in Theorem 3.17 can be weakened to the requirement that CO is closed.

3.3 The von Neumann-Morgenstern Stable Set

The von Neumann-Morgenstern (vNM) stable set provides a solution concept for an environ-

ment consisting of a set of states X and a dominance relation on this set X (von Neumann

and Morgenstern, 1944).

Definition 3.18 (vNM Stable Set). Let Γ = (N, (X, d), E, (�i)i∈N) be a social environment.

The set V ⊆ X is a vNM stable set if it satisfies the following two conditions:

1. Internal stability: For all x, y ∈ V such that x 6= y it holds that y /∈ f(x).

2. External stability: For all x /∈ V, f(x) ∩ V 6= ∅.

Internal stability requires that no state in the set is dominated by another state in the

set. External stability requires that every state outside the set should be dominated by a

state in the set.

Our notion of asymptotic external stability has a similar flavor as the vNM notion of

external stability. However, the vNM stable set looks at one-step dominations while our

notion of asymptotic external stability uses asymptotic dominance, which can be seen as

an infinite iteration of one-step dominations. In fact, extending the definition of the vNM

stable set by allowing for a finite iteration of one-step dominations, i.e., replacing f by fN in

Definition 3.18, has also been advocated by several authors, see Harsanyi (1974), van Deemen

(1991), Page and Wooders (2009), and Herings, Mauleon, and Vannetelbosch (2017).

On the other hand, our notion of deterrence of external deviations is quite different from

the vNM notion of internal stability. While we allow that a state in the MSS is dominated

by another state in the MSS, this is prohibited in the vNM stable set. Moreover, unlike our

concept, in the vNM stable set it is allowed that a state in the set is dominated by a state

outside the set.

In terms of predictions, first note that an MSS always exists and is unique under weak

continuity assumptions, whereas the vNM stable set may not exist and if it exists may fail

to be unique. If the vNM stable set exists, there are a few connections between the MSS
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and the vNM stable set. First of all, both sets contain the core. Second, the intersection

between the vNM stable set and the MSS is non-empty as is stated in the next result.

Theorem 3.19. Let Γ = (N, (X, d), E, (�i)i∈N) be a social environment for which a vNM

stable set V exists. If M is an MSS of Γ, then M ∩ V 6= ∅.

By Theorem 3.13, the MSS contains the union of all closed cycles. If the vNM stable set

exists, one can show that it contains at least one state from every closed cycle.

It is easily verified that Theorem 3.19 remains true if the dominance correspondences fN

or f∞ are used in Definition 3.18.

3.4 Dynamic Stochastic Processes

Stochastic approaches have been frequently used in non-cooperative settings like normal-

form games. Sawa (2014) presents a general framework which extends such a stochastic

analysis to cooperative settings. In each period, one of the coalitions that can make a move

is randomly selected and chooses one of its moves at random. The move is carried out with

probability 1 if all members of the coalition would be strictly better off. If no member is

worse off, but at least one agent is indifferent, the move is carried out with a probability

strictly between 0 and 1. Otherwise, the move is not carried out. The resulting dynamic

process can be thought of as a better-response dynamic. To establish a connection to the

MSS, we consider a variation of the process in Sawa (2014) in which a coalition only moves

with positive probability if all coalition members are strictly better off.

Consider a social environment Γ = (N, (X, d), E, (�i)i∈N) such that X is finite. For

states x, y ∈ X, let Q(x, y) denote the transition probability from state x to state y and let

Q be the matrix of transition probabilities. We say that Q is consistent with f if for every

y ∈ f(x) \ {x} it holds that Q(x, y) > 0 and for every y /∈ f(x) it holds that Q(x, y) = 0. In

particular, the state x need not change even if the set f(x)\{x} is non-empty. An interesting

special case is the one of uniform transition probabilities, which is obtained by setting, for

every x ∈ X and y ∈ f(x), Q(x, y) = 1/|f(x)|, where |f(x)| denotes the cardinality of the

set f(x).

The next result presents an equivalence between the MSS and the set of recurrent states

of the Markov chain (X,Q).

Theorem 3.20. Let Γ = (N, (X, d), E, (�i)i∈N) be a social environment with finite state

space X, let f be the corresponding dominance correspondence, and let (X,Q) be a Markov

chain such that Q is consistent with f . Then the MSS of Γ is equal to the set of recurrent

states of (X,Q).
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For social environments with a finite number of states, Theorem 3.20 gives an equivalence

between the set of recurrent states of a dynamic process that selects all better responses

with positive probability and the MSS. This suggests the possibility of refinements based

on notions of stochastic stability that have been used in non-cooperative game theory by

Kandori, Mailath, and Rob (1993) and Young (1993), in network formation by Jackson and

Watts (2002), and in more general coalitional settings by Sawa (2014).

The above results do not readily extend to settings where X is infinite. The next example

illustrates some of the complications that arise with an infinite state space.

Example 3.21. Consider the social environment Γ = (N, (X, d), E, (�i)i∈N), where N =

{1, 2}, X = [0, 1] × [0, 1], and the metric is d(x, y) = ‖x − y‖1 = |x1 − y1| + |x2 − y2|. The

effectivity correspondence is such that individual 1 can change the first component of the

state and individual 2 the second component, so {1} ∈ E(x, y) if and only if x2 = y2 and

{2} ∈ E(x, y) if and only if x1 = y1. The coalition {1, 2} is never effective. The preferences

of the individuals are such that

x �1 y if and only if 2x1x2 − x1 − x2 ≥ 2y1y2 − y1 − y2,

x �2 y if and only if 2x1x2 − x1 − x2 ≤ 2y1y2 − y1 − y2.

It is not hard to see that this social environment corresponds to the normal-form game of

matching pennies, where x1 is the probability of the row player choosing “up” and x2 is the

probability of the column player choosing “left”. The unique Nash equilibrium of this game

is equal to x∗ = (1/2, 1/2).

For every x ∈ X, we define

f1(x) =


{y ∈ X | y1 ≤ x1 and y2 = x2} if x2 <

1
2
,

{x} if x2 = 1
2
,

{y ∈ X | y1 ≥ x1 and y2 = x2} if x2 >
1
2
,

f2(x) =


{y ∈ X | y1 = x1 and y2 ≥ x2} if x1 <

1
2
,

{x} if x1 = 1
2
,

{y ∈ X | y1 = x1 and y2 ≤ x2} if x1 >
1
2
,

so we can express the dominance correspondence as

f(x) = f1(x) ∪ f2(x).

We consider the better-response dynamics where each element of f(x) is selected with

equal probability. To do so, we define ρ1 : X → [0, 1] and ρ2 : X → [0, 1] as the functions

that project x on its first and second coordinate, respectively. We use λ to denote the

Lebesgue measure. Let B(X) denote the Borel σ-algebra on X. The transition probability
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kernel resulting from better-response dynamics is obtained by defining, for every x ∈ X, and

for every A ∈ B(X),

Q(x,A) =



0 if x = (1
2
, 1

2
) /∈ A,

1 if x = (1
2
, 1

2
) ∈ A,

2λ(ρ1(A ∩ f1(x))), if x1 = 1
2
, x2 6= 1

2
,

2λ(ρ2(A ∩ f2(x))), if x1 6= 1
2
, x2 = 1

2
,

λ(ρ1(A∩f1(x)))+λ(ρ2(A∩f2(x)))
λ(ρ1(f1(x)))+λ(ρ2(f2(x)))

, if x1 6= 1
2
, x2 6= 1

2
.

The first and second equality above show that the better-response dynamics never leaves the

Nash equilibrium once reached. The third equality concerns the case where only player 1

likes to move. Observe that if x1 = 1/2 and x2 6= 1/2, then λ(ρ1(f1(x))) = 1/2, which

explains the multiplication by 2. A similar remark applies to the fourth equality above.

For the last equality, notice that x1 6= 1/2 and x2 6= 1/2 implies that λ(ρ1(f1(x))) > 0 or

λ(ρ2(f2(x))) > 0, so there is no division by zero.
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Figure 1: Better-response dynamics for the game of matching pennies.

The Markov process is illustrated in Figure 1. The arrows indicate the direction in which

a state changes. A typical state can change in two directions, either west or east and either

north or south, thereby generating two line segments on which the next state lies.

For every A ∈ B(X), Q(·, A) is a measurable function on X, but it is in general not

continuous. For instance, if A = {x∗}, then Q(x,A) = 1 if x = x∗ and Q(x,A) = 0,
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otherwise. Indeed, the state x∗ does not belong to f(x) unless x = x∗ and in that case

f(x∗) = {x∗}.

In this setting and other settings with an infinite state space, the Markov chain returns

to a given state with probability zero, so the concept of a recurrent state is of less use and

importance. Instead, for infinite settings, the property of irreducibility is often studied, which

expresses that all parts of the state space can be reached by the Markov chain, no matter

what the starting point is. Given a state x ∈ X and a set A in the Borel σ-algebra B(X) on

X, let L(x,A) denote the probability that the Markov chain has a realization belonging to A

at some point in the future when starting from x. Let ϕ be the measure on X that assigns

to each set in B(X) its Lebesgue measure. A Markov process (X,Q) is called ϕ-irreducible

if for every A ∈ B(X) such that ϕ(A) > 0 it holds that L(x,A) > 0 for every x ∈ X.
The Markov process (X,Q) in Example 3.21 is such that X can be decomposed in two

parts, namely {x∗} and X \ {x∗}. There is no transition between these two sets of states

and the restriction of the Markov process to each set is irreducible. This is obvious for {x∗}.
The next result shows this for X \ {x∗}.

Theorem 3.22. The restriction of the Markov process (X,Q) in Example 3.21 to X \ {x∗}
is ϕ-irreducible.

Example 3.21 shows that for the social environment corresponding to the normal-form

game of matching pennies, none of the strategy profiles is singled out by the stochastic

better-response dynamics. In contrast, we will show in Subsection 4.4 that the unique MSS

consists of the Nash equilibrium x∗.

4 Applications

In this section, we illustrate the generality of our setting and the useful common structure

of our results by means of four specific models that have been studied extensively in the

literature: coalition function form games, one-to-one matching models, models of network

formation, and normal-form games. For each of these settings, we first specify the social

environment, i.e., the set of individuals N , the state space (X, d), the effectivity correspon-

dence E, and the preferences (�i)i∈N . Subsequently, we discuss how the results from the

previous section can be applied.

4.1 Coalition Function Form Games

A coalition function form game is defined by a tuple (N, v), where N is the set of players

and v : 2N → R is a characteristic function that assigns to each coalition S ⊆ N a number
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v(S) ∈ R, called the coalitional value of S, with the usual convention that v(∅) = 0. A

coalition structure is a partition π of N . It describes how the grand coalition is divided

into various sub-coalitions. The collection of all coalition structures, i.e., the collection of

partitions of N , is denoted by Π.

For coalition function form games, we define X as the set of coalition structures Π

together with all individually rational payoff vectors that can be obtained by allocating the

coalitional values among the members of the respective coalitions:

X =

{
(π, u) ∈ Π× RN

∣∣∣∣∣∀i ∈ N : ui ≥ v({i}) and ∀S ∈ π :
∑
i∈S

ui = v(S)

}
.

Given a state x ∈ X, we denote by π(x) the projection to its first component, i.e., the

coalition structure, and by u(x) the projection to its second component, i.e., the payoff

vector, so we can write x = (π(x), u(x)). The restriction of the payoff vector u(x) to the

members in coalition S is denoted by uS(x). The set X is non-empty since it always contains

the state where N is partitioned into singletons and each player i ∈ N receives the payoff

v({i}).
We define the metric d on X by setting for all x, y ∈ X,

d(x, y) = 1{π(x)6=π(y)} + ‖u(x)− u(y)‖∞,

where 1 is the indicator function and ‖.‖∞ is the infinity norm. It is easily seen that (X, d)

is compact.

We define preferences �i over the state space X by setting x �i y if and only if ui(x) ≥
ui(y), i.e., individual i’s payoff in state x is at least as high as in state y.

For each ordered pair of states x, y, the effectivity correspondence E(x, y) specifies which

coalitions can change state x into state y. As an example that imposes some reasonable

structure on the effectivity correspondence, we provide a brief outline of the notion of coali-

tional sovereignty (Konishi and Ray, 2003; Kóczy and Lauwers, 2004; Ray and Vohra, 2014,

2015; Herings, Mauleon, and Vannetelbosch, 2017).

When a coalition of players S—called the leaving players—decides to leave their old

coalitions to create a new group, the state changes to a new state y characterized by a new

coalition structure π(y) and a new payoff vector u(y). The collection of coalitions of π(x)

that are unaffected by this change is denoted by U(x, S) and the set of all players in this

group by U(x, S). Formally, we have

U(x, S) = {T ∈ π(x)|S ∩ T = ∅},
U(x, S) = ∪T∈U(x,S)T.

This notation helps us in defining coalitional sovereignty.
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Definition 4.1 (Coalitional sovereignty). An effectivity correspondence E satisfies coali-

tional sovereignty if the following two conditions hold:

(1) Non-interference: For every x, y ∈ X, if S ∈ E(x, y) and T ∈ U(x, S), then S ∈ π(y),

T ∈ π(y), and uT (x) = uT (y).

(2) Full support: For every x ∈ X, for every S ∈ N , and for every u ∈ RS such that for all

i ∈ S : ui ≥ v({i}) and
∑

i∈S ui = v(S), there is a state y ∈ X such that S ∈ E(x, y)

and uS(y) = u.

Intuitively, non-interference requires that if a coalition S induces a change from a state

x to a state y, then the unaffected coalitions in U(x, S) are still part of the new coalition

structure π(y) and every unaffected player i ∈ U(x, S) keeps his old payoff, i.e., ui(x) = ui(y).

Full support requires that every coalition S has the opportunity to move to a new state where

it has the freedom to redistribute its worth v(S) at will.

Coalitional sovereignty does not fully specify the effectivity correspondence E. In partic-

ular, it leaves unspecified the payoffs and coalition structure of players that are neither part

of the leaving coalition S nor part of the unaffected players U(x, S), i.e., players in the set

N \ (S ∪ U(x, S)). We call these players residual players. Indeed, one of the more contro-

versial issues is to what extent the leaving players have the power to influence the coalition

structure and payoffs of these residual players; see Shubik (1962), Hart and Kurz (1983),

Konishi and Ray (2003), and Ray and Vohra (2014) for related discussions and alternative

viewpoints. One frequently used specification is the γ-model (Hart and Kurz, 1983). The

γ-model prescribes that the residual players are divided into singletons. This assumption is

justified by the viewpoint that a coalition is only maintained if there is unanimous agree-

ment among its members. As such, the departure of one individual implies the collapse of

the entire coalition. In our setting, the γ-model imposes the following restriction on the

effectivity correspondence.

Definition 4.2 (γ-model). The effectivity correspondence E is induced by the γ-model if it

satisfies coalitional sovereignty and

(3) For every x, y ∈ X, for every S ∈ E(x, y), if i ∈ N \ (S ∪ U(x, S)), then {i} ∈ π(y).

The γ-model associates a unique social environment to each coalition function form game.

We know, by Theorem 3.1, that there exists at least one non-empty MSS. Let us first show

that for coalition function form games, the MSS is also unique. Towards this end, we first

show that the effectivity correspondence E is lower hemi-continuous and that the preference

relations �i are continuous.
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Theorem 4.3. Let (N, v) be a coalition function form game and Γ = (N, (X, d), E, (�i)i∈N)

be the social environment induced by the γ-model. Then the effectivity correspondence E

is lower hemi-continuous and the preferences (�i)i∈N are continuous.

Theorem 4.3 together with Corollary 3.10 shows uniqueness of the MSS.

Corollary 4.4. Let (N, v) be a coalition function form game and Γ be the social environment

induced by the γ-model. Then Γ has a unique MSS.

In fact, most alternatives of the γ-model will also lead to lower hemi-continuity of E, so

will also have a unique MSS. However, establishing the lower hemi-continuity of E must be

done case by case.

One of the most prominent set-valued solution concepts for coalition function form games

is the coalition structure core.

Definition 4.5 (Coalition Structure Core). Let (N, v) be a coalition function form game

and Γ be the social environment induced by the γ-model. The coalition structure core of

(N, v) is the set of states x ∈ X such that for every coalition S ∈ N∑
i∈S

ui(x) ≥ v(S).

In words, the coalition structure core gives to the members of each coalition at least the

payoff they can obtain by forming that coalition.

Theorem 4.6. Let (N, v) be a coalition function form game and Γ = (N, (X, d), E, (�i)i∈N)

be the social environment induced by the γ-model. The coalition structure core of (N, v) is

equal to the core of Γ.

Kóczy and Lauwers (2004) define the coalition structure core to be accessible if from any

initial state there is a finite sequence of states ending with an element of the coalition struc-

ture core and each element in that sequence outsider independently dominates the previous

element. Accessibility of the coalition structure core thus corresponds to iterated external

stability of the coalition structure core with respect to outsider independent domination. The

notion of outsider independent domination differs from our notion of a myopic improvement

in the γ-model in two ways. First, residual players are not required to become singletons

after a move has taken place. Second, improvements for the members of the coalition that

moves are not necessarily strict improvements. The following example illustrates that un-

der the requirement of strict improvements of all members involved in a move, as in our

dominance correspondence f , the coalition structure core does not satisfy iterated external

stability, i.e., it is not the case that for all states x ∈ X, there is a state y in the coalitional

structure core such that y ∈ fN(x).
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Example 4.7. Let (N, v) be a coalition function form game such that N = {1, 2, 3},
v({1, 2}) = 1, and v({2, 3}) = 1. All other coalitions have a coalitional value of 0. Thus,

player 2 can choose to form a coalition with either player 1 or player 3 to form a two-person

coalition generating a surplus equal to one. The coalition structure core therefore consists

of only two states, y and y′, with equal payoffs, u(y) = u(y′) = (0, 1, 0), and coalitional

structures π(y) = {{1, 2}, {3}} and π(y′) = {{1}, {2, 3}}.
Consider an initial state x0 ∈ X such that π(x0) = {{1}, {2}, {3}} and u(x0) = (0, 0, 0).

Under our notion of a myopic improvement, where all players involved in a move have to

gain strictly, a state x1 6= x0 belongs to f(x0) if and only if either π(x1) = {{1, 2}, {3}} and

u(x1) = (ε, 1 − ε, 0) for some ε ∈ (0, 1) or π(x1) = {{1}, {2, 3}} and u(x1) = (0, 1 − ε, ε)

for some ε ∈ (0, 1). It follows that x1 is a state where either player 1 or player 3 receives a

payoff of zero and the other two players receive a strictly positive payoff summing up to 1.

Now consider any state xk such that either player 1 or player 3 receives 0 and the other

two players receive a strictly positive payoff summing up to 1. We claim that any state

xk+1 ∈ f(xk) has the same properties. Without loss of generality, assume that u3(xk) = 0.

Let xk+1 be an element of f(xk) different from xk. Since u1(xk) + u2(xk) = 1, the moving

coalition is {2, 3} and it holds that π(xk+1) = {{1}, {2, 3}}. Moreover, it must also hold that

u2(xk+1) > u2(xk) > 0 and u3(xk+1) > u3(xk) = 0, which proves the claim. Thus, for every

k ∈ N, if xk ∈ fk(x0)\{x0}, then xk is such that there are two players with a strictly positive

payoff. It follows that there is no k ∈ N such that xk belongs to the coalition structure core.

The definition of an MSS uses asymptotic external stability rather than iterated exter-

nal stability. Theorem 4.8 shows that the MSS coincides with the coalition structure core

whenever the coalition structure core is non-empty.

Theorem 4.8. Let (N, v) be a coalition function form game, Γ the social environment

induced by the γ-model, and Y the coalition structure core of (N, v). If Y is non-empty,

then the unique MSS of Γ is equal to Y .

4.2 Matching

As a second application, we study a number of matching models. In particular, we consider

the one-to-one matching model of Gale and Shapley (1962), a different one-to-one matching

model of Knuth (1976), and the housing matching model of Shapley and Scarf (1974).

Gale and Shapley (1962) introduced a one-to-one matching model for a finite set N of

individuals, partitioned in the two exhaustive subgroups, men M and women W . The model

can be described by a tuple (M,W, (Pm)m∈M , (Pw)w∈W ) of individuals and their preference

relations. A matching is a function µ : M ∪W →M ∪W satisfying the following properties:

1. For every man m ∈M , µ(m) ∈ W ∪ {m}.
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2. For every women w ∈ W , µ(w) ∈M ∪ {w}.

3. For all men m ∈M and women w ∈ W , µ(m) = w if and only if µ(w) = m.

In this setting, our state space X consists of all possible matchings µ. Since X is finite, we

can endow it with the discrete metric

d(µ, µ′) = 1{µ 6=µ′}.

Each man m ∈ M has a complete and transitive strict preference relation Pm over the set

W ∪ {m} and each woman w ∈ W has a complete and transitive strict preference relation

Pw over the set M ∪ {w}. The preferences of the individuals (�i)i∈M∪W over the set X are

induced by their preferences over their match, i.e., for all m ∈M it holds that µ �m µ′ if and

only if µ(m)Pmµ
′(m) and for all w ∈ W it holds that µ �w µ′ if and only if µ(w)Pwµ

′(w).

The formulation of the effectivity correspondence allows us to study the consequences of

different hypothesis on the matching process. We introduce two common assumptions from

the literature on matching. First, every man or woman is allowed to break the link with the

current partner, in which case this man or woman and the former partner become single.

(1) For all i ∈ N and µ ∈ X with µ(i) 6= i, we have {i} ∈ E(µ, µ′) where µ′ ∈ X is such

that

(i) µ′(i) = i,

(ii) µ′(µ(i)) = µ(i),

(iii) for every j ∈ N \ {i, µ(i)}, µ′(j) = µ(j).

The second assumption is that any man and woman that are currently not matched to each

other can deviate by creating a link and thereby leaving their former partners single.

(2) For all m′ ∈M , w′ ∈ W , and µ ∈ X with µ(m′) 6= w′, we have that {m′, w′} ∈ E(µ, µ′),

where µ′ ∈ X is such that

(i) µ′(m′) = w′,

(ii) µ(m′) ∈ W implies µ′(µ(m′)) = µ(m′),

(iii) µ(w′) ∈M implies µ′(µ(w′)) = µ(w′),

(iv) for every j ∈ N \ {m′, w′, µ(m′), µ(w′)}, µ′(j) = µ(j).

Observe that these two conditions are in line with the γ-model of coalitional sovereignty.

This completes the description of the effectivity correspondence and thereby of the social

environment of the model by Gale and Shapley (1962).
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A matching µ is said to be stable in the matching problem (M,W, (Pm)m∈M , (Pw)w∈W )

if for every i ∈ M ∪W it does not hold that iPiµ(i) and if for every pair (m,w) ∈ M ×W
it does not hold that wPmµ(m) and mPwµ(w). It can easily be shown that a matching is

stable if and only if it is in the core of the social environment Γ.

In a seminal contribution to the literature, Gale and Shapley (1962) showed the existence

of a stable matching. The following result of Roth and Vande Vate (1990) will be helpful in

determining the relation between the set of stable matchings and the MSS.

Theorem 4.9. (Roth and Vande Vate, 1990) For every matching µ ∈ X there is a stable

matching µ′ such that µ′ ∈ fN(µ).

Since the set of states is finite in this application, it holds that fN(µ) = f∞(µ). Recalling

Definition 3.16, the result of Roth and Vande Vate (1990) means that Γ satisfies the weak

improvement property. For finite settings, f is always lower hemi-continuous. Thus, by

Theorem 3.17, the MSS of the social environment induced by the one-to-one matching model

coincides with the set of stable matchings, which is the statement of the following corollary.

Corollary 4.10. Let (M,W, (Pm)m∈M , (Pw)w∈W ) be a matching problem and let Γ be the

induced social environment. The unique MSS of Γ is equal to the set of stable matchings.

An alternative one-to-one matching model is due to Knuth (1976). This model differs

from the model of Gale and Shapley (1962) in that no individual is allowed to be single.

Therefore, it requires the number of men to be equal to the number of women. If a blocking

pair forms, the deserted partners are matched together. The primitives of the matching

model are given by a tuple (M,W, (Pm)m∈M , (Pw)w∈W ) with |M | = |W |. A matching is a

function µ : M ∪W →M ∪W satisfying the following properties:

1. For every man m ∈M , µ(m) ∈ W .

2. For every women w ∈ W , µ(w) ∈M .

3. For all men m ∈M and women w ∈ W , µ(m) = w if and only if µ(w) = m.

The state space X consists of all matchings µ satisfying the above three properties and

is endowed with the discrete metric d(µ, µ′) = 1{µ6=µ′}. The preferences of the individuals

(�i)i∈M∪W over the set X are induced by their preferences over their match, i.e., for all

m ∈ M it holds that µ �m µ′ if and only if µ(m)Pmµ
′(m) and for all w ∈ W it holds that

µ �w µ′ if and only if µ(w)Pwµ
′(w). If a man and woman create a new link, the effectivity

correspondence also requires a link between their deserted partners. Formally,

1. For all m′ ∈M , w′ ∈ W , and µ ∈ X with µ(m′) 6= w′, we have that {m′, w′} ∈ E(µ, µ′),

where µ′ ∈ X is such that
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(i) µ′(m′) = w′,

(ii) µ′(µ(w′)) = µ(m′),

(iii) for every j ∈ N \ {m′, w′, µ(m′), µ(w′)}, µ′(j) = µ(j).

This completes the definition of the effectivity correspondence and thereby of the social

environment.

For this social environment, the core is non-empty. Moreover, as demonstrated by Tamura

(1993), when there are at least four women, there are preferences and a matching µ ∈ X such

that fN(µ) = f∞(µ) does not contain a stable matching. In these cases, the MSS contains

matchings outside the core and can thus be rather large.

To obtain an intuition which states outside the core are part of an MSS, recall that,

by Theorem 3.13, the MSS coincides with the union of all closed cycles. Thus, if the MSS

contains states outside the core, these states are part of a closed cycle with more than one

element. In such a cycle, agents myopically form new matches and eventually come back to

the initial match. These additional states are included in the MSS due to two restrictions

on the agents. First, agents are myopic and thus only consider deviations which result in an

immediate gain. Second, agents are additionally restricted by the effectivity correspondence

which only allows for pairwise deviations.

Another prominent matching model is the housing matching model of Shapley and Scarf

(1974). This model can be represented by a tuple (N,H, (Pi)i∈N), where N is a finite set of

individuals, H is a finite set of houses with the same cardinality as the set of individuals,

and each individual i ∈ N has a strict preference relation Pi over H. The aim is to allocate

the set of houses such that each house is owned by exactly one individual and no coalition

can benefit by exchanging houses among themselves. An allocation is represented by a

permutation matrix A with rows indexed by elements of N and columns indexed by elements

of H. All entries of A are 0 or 1 and both rows and columns of A sum up to 1. If for some

h ∈ H, for some i ∈ N , entry Aih = 1, then house h has been assigned to individual i. Row

i ∈ N of the matrix A is denoted by Ai.

In this setting, it is convenient to define the state space X as the set of all permutation

matrices A. Since X is finite, we can endow it with the discrete metric

d(A,A′) = 1{A 6=A′}.

The preferences of the individuals (�i)i∈N over the set X are induced by their preferences

over houses. Let some individual i ∈ N be given as well as A,A′ ∈ X. Let h, h′ ∈ H be such

that Aih = A′ih′ = 1. Notice that h and h′ are uniquely determined. It holds that A �i A′ if

and only if hPih
′.
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A coalition S ∈ N can redistribute its houses within the coalition, but it cannot interfere

with the allocation of houses outside the coalition. More formally, the effectivity correspon-

dence satisfies the following condition: For every S ∈ N , for every A,A′ ∈ X, it holds that

S ∈ E(A,A′) if and only if for every i ∈ N \ S, Ai = A′i. This completes the description of

the social environment.

We define the subset Y of X as the Pareto efficient house allocations, so

Y = {A∗ ∈ X | ∀A ∈ X \ {A∗}, ∃i ∈ N such that A∗ �i A}.

Theorem 4.11. Let (N,H, (Pi)i∈N) be a housing matching problem and let Γ be the induced

social environment. The unique MSS of Γ is equal to the set of Pareto efficient house

allocations.

The proof of Theorem 4.11 consists of two steps. The first step is to show that the core

of the social environment Γ is equal to the set of Pareto efficient house allocations. The

second step consists of applying the top trading cycle algorithm of Shapley and Scarf (1974)

to show that, starting from any initial allocation, it is possible to reach an allocation in the

core of Γ in a finite number of steps. By Theorem 3.17, the MSS is then equal to the set of

Pareto efficient house allocations.

4.3 Network Formation

As a third application, we look at the model of network formation by Jackson and Wolinsky

(1996). A network is given by a tuple g = (N, E), where the nodes N are the players of

the network and E is the set of undirected edges of the network. An undirected edge is

represented as a set of two distinct players. Two players i, j ∈ N are linked in g if and only

if {i, j} ∈ E . We abuse notation and write ij ∈ g if i and j are linked in the network g.

The set of all networks with node set N is denoted by G. A value function for player i is a

function vi : G → R that associates payoffs for player i for each network in G. A network

problem is thus given by (N,G, (vi)i∈N).

We identify X with the set G of all possible networks on N and endow it with the discrete

metric

d(g, g′) = 1{g 6=g′}.

Every player i ∈ N has a preference relation �i over the set X of all possible networks

defined by g �i g′ if and only if vi(g) ≥ vi(g
′). Let g + ij be the network obtained from

network g by adding the link ij to g and let g − ij be the network obtained by deleting the

link ij from g.
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We follow Jackson and Wolinsky (1996) by considering deviations by coalitions of size

one or two and by assuming link-deletion to be one-sided and link addition to be two-sided.

One-sided link deletion allows every player to delete one of his links.

(1) For all players i ∈ N , all networks g ∈ X, and all links ij ∈ g, {i} ∈ E(g, g − ij).

Two-sided link addition allows any two players that are currently not linked to change the

network by forming a link between themselves.

(2) For all players i, j ∈ N , all networks g ∈ X with ij /∈ g, we have {i, j} ∈ E(g, g + ij).

This completes the description of our social environment for the network formation model. It

is straightforward to adjust the effectivity correspondence to incorporate models of network

formation where more than one link at a time can be changed by coalitions of arbitrary

size (Dutta and Mutuswami, 1997; Jackson and van den Nouweland, 2005) or where link

formation is one-sided (Bala and Goyal, 2000) into our framework. We refer to Page and

Wooders (2009) for a more extensive discussion of alternative rules of network formation.

A network g is said to be pairwise stable (Jackson and Wolinsky, 1996) if for every ij ∈ g
it holds that vi(g − ij) ≤ vi(g) and vj(g − ij) ≤ vj(g) and for every ij /∈ g it holds that

vi(g+ij) > vi(g) implies vj(g+ij) ≤ vj(g).2 It is not hard to show that a network is pairwise

stable if and only if it is in the core of the social environment Γ as defined in Definition 3.14.

Corollary 3.15 shows that any pairwise stable network is in the myopic stable set. How-

ever, it is not necessarily the case that the MSS only contains the pairwise stable networks.

Consider the binary relation R on X defined by gRg′ if g ∈ fN(g′), i.e., g can be reached

from g′ by a finite number of dominations. Let I be the symmetric part of R, i.e., gIg′ if

and only if gRg′ and g′Rg. Consider the set of equivalence classes E induced by I. Let us

denote the equivalence class of network g by [g], i.e., g′ ∈ [g] if and only if g′Ig. For two

distinct equivalence classes [g] and [g′] write [g]P [g′] if gRg′. It is easy to see that [g]P [g′] if

and only if gRg′ and not gRg′.

Let V be the collection of maximal elements of (E, P ), i.e., [g] ∈ V if there is no [g′] ∈ E
such that [g′]P [g]. Since an element of V simply represents a closed cycle as defined in

Definition 3.12, the following result follows from Theorem 3.13.

Corollary 4.12. Let (N,G, (vi)i∈N) be a network problem and let Γ be the induced social

environment. A network g belongs to the unique MSS M if and only if the equivalence class

[g] belongs to V , i.e., M = {g ∈ X|[g] ∈ V }.
2Pairwise stability as defined in Jackson and Wolinsky (1996) is somewhat stronger and also requires that

there is no ij /∈ g such that vi(g+ij) > vi(g) and vj(g+ij) = vj(g). The weaker notion used here is discussed

as an alternative in Section 5 of Jackson and Wolinsky (1996) and is also widely used in the literature. For

generic network problems, there are no indifferences, so the two definitions are equivalent.
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Herings, Mauleon, and Vannetelbosch (2009) define the pairwise myopically stable sets

for network problems using the weaker notion of dominance corresponding to pairwise sta-

bility as defined in Jackson and Wolinsky (1996). It is not hard to see that the MSS for

social environments Γ coincides with the pairwise myopically stable set for generic network

problems. For such network problems, Corollary 4.12 is therefore equivalent to Theorem 1

of Herings, Mauleon, and Vannetelbosch (2009) that characterizes the pairwise myopically

stable set as the union of closed cycles. In their paper, a closed cycle is defined in the sense of

Jackson and Watts (2002) for network problems. The notion of closed cycle of Definition 3.12

is the appropriate generalization to social environments.

4.4 Normal-Form Games

As a final application, we consider normal-form games. We split our analysis into pure and

mixed environments. They differ in whether players are allowed to use mixed strategies in

the underlying game.

Pure Environments A normal-form game G = (N, ((Σi, di), ui)i∈N) consists of a set of

players, N , and for each player a non-empty and compact metric space (Σi, di) of pure

strategies and a utility function ui : Σ→ R over the set of strategy profiles Σ =
∏

i∈N Σi. A

typical element of Σ is denoted by s.

For the corresponding social environment Γ = (N, (X, d), E, (�i)i∈N), we equate the state

space X with the set of strategy profiles Σ and endow it with the product metric

d(s, s′) =
∑
i∈N

di(si, s
′
i).

The preferences (�i)i∈N are such that s �i s′ if and only if ui(s) ≥ ui(s
′).

We write (sS, s−S) for the strategy profile where sS is the list of strategies of players in

coalition S ∈ N and s−S is the list of strategies of all other players, i.e., s−S = (sj)j∈N\S.

With a slight abuse of notation, we write si and s−i = (sj)j∈N\{i} for single-player coalitions

S = {i}.
It remains to specify the effectivity correspondence E of the social environment Γ. By

allowing for all coalitional deviations, we describe coalitional normal-form games. Formally,

for a coalition S ∈ N , the effectivity correspondence is such that S ∈ E(s, s′) if and only

if s−S = s′−S. For this effectivity correspondence, a strategy profile s ∈ Σ is a strong

Nash equilibrium (Aumann, 1959) if and only if it is in the core of the social environment

Γ = (N, (X, d), E, (�i)i∈N). It follows that any strong Nash equilibrium must also be in the

MSS of the associated social environment.

26



Instead of the coalitional approach, we will henceforth restrict attention to the more

frequently analyzed case of a non-cooperative game. In this case, the effectivity correspon-

dence E only allows singletons to move. Formally, we have that S ∈ E(s, s′) if and only if

s−S = s′−S and |S| = 1. A non-cooperative normal-form game G = (N, ((Σi, di), ui)i∈N) then

induces a social environment Γ = (N, (X, d), E, (�i)i∈N) that is identical to the social envi-

ronment defined for normal-form games with coalitional moves, except that the effectivity

correspondence E only allows coalitions of size one.

A strategy profile s ∈ Σ is said to be a pure strategy Nash equilibrium of the game

G if for every i ∈ N and for every s′i ∈ Σi it holds that ui(s) ≥ ui(s
′
i, s−i). Note that a

strategy profile is a pure strategy Nash equilibrium if and only if it is in the core of the

social environment Γ. Corollary 3.15 then shows that every pure strategy Nash equilibrium

belongs to every MSS.

It is easy to see that the effectivity correspondence E is lower hemi-continuous. Moreover,

continuity of (�i)i∈N is identical to continuity of the utility functions (ui)i∈N . As such,

Theorems 3.9 and 3.17 imply the following result.

Corollary 4.13. Let G = (N, ((Σi, di), ui)i∈N) be a normal-form game and let Γ be the

induced social environment. If the utility functions (ui)i∈N are continuous, then the MSS of

Γ is equal to the set of pure strategy Nash equilibria of G if and only if Γ satisfies the weak

improvement property.

In the next step, we define pseudo-potential games (Dubey, Haimanko, and Zapechelnyuk,

2006) and prove that the weak improvement property holds for this class of games.

Definition 4.14 (Pseudo-Potential Game). The game G = (N, ((Σi, di), ui)i∈N) is a pseudo-

potential game if there exists a continuous function P : Σ → R such that for all i ∈ N and

all s ∈ Σ,

arg max
si∈Σi

ui(si, s−i) ⊇ arg max
si∈Σi

P (si, s−i).

Pseudo-potential games generalize ordinal potential games (Monderer and Shapley, 1996)

and best-response potential games (Voorneveld, 2000). Moreover, Dubey, Haimanko, and

Zapechelnyuk (2006) show that the class of pseudo-potential games contains games of strate-

gic complements or substitutes with aggregation such as Cournot oligopoly games. Jensen

(2010) extends this result to generalized quasi-aggregative games.3

Theorem 4.15. Let G = (N, ((Σi, di), ui)i∈N) be a pseudo-potential game and let Γ be the

induced social environment. If the utility functions (ui)i∈N are continuous, then the MSS of

Γ coincides with the set of pure strategy Nash equilibria of G.

3Generalized quasi-aggregative games include aggregative games (Selten, 1970). For a subclass of aggrega-

tive games, the equivalence result in Theorem 4.15 could be obtained from Dindoš and Mezzetti (2006).
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For finite supermodular games, Friedman and Mezzetti (2001) establish the weak finite

improvement property which implies the weak improvement property. Thus, the equivalence

between the set of pure strategy Nash equilibria and the MSS also extends to this class of

games.

Mixed Environments Let G = (N, ((Σi, di), ui)i∈N) be a finite normal-form game, so for

each player i ∈ N it holds that Σi is finite and di(si, s
′
i) = 1{si 6=s′i}.

Let us now introduce the mixed extension G̃ = (N, ((∆i, δi), vi)i∈N) of G, where ∆i is the

set of probability distributions on Σi. For σi ∈ ∆i, σi,si denotes the probability that player i

uses pure strategy si. The metric δi on ∆i is defined by

δi(σi, σ
′
i) = max

si∈Σi

|σi,si − σ′i,si |.

We denote ∆ =
∏

i∈N ∆i and endow ∆ with the product metric δ(σ, σ′) =
∑

i∈Nδi(σi, σ
′
i).

For a given strategy profile σ ∈ ∆, we denote the probability that pure strategy profile s ∈ Σ

is played by σs =
∏

i∈N σi,si . Let vi : ∆ → R be the expected utility associated to strategy

profiles σ ∈ ∆,

vi(σ) =
∑
s∈Σ

σsui(s).

Preferences (�i)i∈N are such that σ �i σ′ if and only if vi(σ) ≥ vi(σ
′). The social environment

Γ̃ = (N, (∆, δ), E, (�i)i∈N) corresponds to the game G̃ where E only allows singletons to

deviate and {i} ∈ E(σ, σ′) if and only if σ−i = σ′−i.

A strategy profile σ ∈ ∆ is said to be a mixed strategy Nash equilibrium of G if it

is a pure strategy Nash equilibrium of G̃. The core of Γ̃ coincides with the set of mixed

strategy Nash equilibria of G. Additionally, note that the expected utility functions (vi)i∈N

are continuous on ∆ and that E is lower hemi-continuous. As such, Theorems 3.9 and 3.17

give the following result.

Corollary 4.16. Let G̃ be the mixed extension of the finite normal-form game G and let Γ̃

be the social environment corresponding to G̃. The MSS of Γ̃ coincides with the set of mixed

strategy Nash equilibria of G if and only if Γ̃ satisfies the weak improvement property.

Clearly, the pure strategy Nash equilibria of G are also mixed strategy Nash equilibria

of G, so belong to the MSS of Γ̃. On the other hand, it is easy to find examples such that

some profiles in the MSS of Γ are not in the MSS of Γ̃.

A finite two-player game G = (N, ((Σi, di), ui)i∈{1,2}) is zero-sum if for all strategy profiles

s ∈ Σ, u1(s) + u2(s) = 0. The following result shows that for such games the MSS of Γ̃

coincides with the set of mixed strategy Nash equilibria of G.
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Theorem 4.17. Let G̃ be the mixed extension of a finite two-player zero-sum game G and

let Γ̃ be the social environment corresponding to G̃. Then the MSS of Γ̃ coincides with the

set of mixed strategy Nash equilibria of G.

As a final result, we show the equivalence between the set of mixed strategy Nash equi-

libria of G and the MSS of the social environment Γ̃ for finite two-player games where one

of the two players has two pure strategies.

Theorem 4.18. Let G̃ be the mixed-extension of a finite two-player game G and let Γ̃ be

the social environment corresponding to G̃. Assume that one player has two pure strategies

in G. Then the MSS of Γ̃ coincides with the set of mixed strategy Nash equilibria of G.

We analyzed the game of matching pennies in Example 3.21 and concluded that better-

response dynamics did not single out any strategy profile. The game of matching pennies

satisfies the assumptions of both Theorems 4.17 and 4.18. The MSS of this game therefore

consists of the unique mixed strategy Nash equilibrium where each pure strategy is played

with probability 1/2.

5 Conclusion

The myopic stable set provides a solution concept for a wide variety of social environments.

As we have shown, the setting encompasses coalition function form games, models of network

formation, matching models, and non-cooperative games. These environments have been

chosen based on their prominence in the literature but are by no means exhaustive. In

particular, promising environments for future research on the myopic stable set include

exchange processes in general equilibrium models and many-to-many matching models with

transfers.

The following three features boost the appeal of the myopic stable set as a solution

concept. First, the myopic stable set unifies standard solution concepts in many social en-

vironments. For instance, it coincides with the coalition structure core in coalition function

form games (Kóczy and Lauwers, 2004) if the coalition structure core is non-empty, the set of

stable matchings in the one-to-one matching model of Gale and Shapley (1962), the set con-

sisting of pairwise stable networks and closed cycles of networks (Jackson and Watts, 2002),

the set of pure strategy Nash equilibria in finite supermodular games (Topkis, 1979 and

Milgrom and Roberts, 1990) and pseudo-potential games (Dubey, Haimanko, and Zapechel-

nyuk, 2006), and the set of mixed strategy Nash equilibria in two-player zero-sum-games

and two-player games where one player has two actions.

Second, our solution concept exists for any social environment and—under weak conti-

nuity assumptions—provides a unique set-valued prediction. This differs from well-known
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concepts in the literature which fail to satisfy these properties even in social environments

with more structure. In important classes of problems, the MSS gives sharp predictions. For

instance, for matching markets empirical findings starting with Roth and Peranson (1999)

suggest that the core is small and Ashlagi, Kanoria, and Leshno (2017) provide theoretical

arguments for why this is the case. The equivalence between the core of matching problems

and the MSS then implies that MSS has significant predictive power. Other examples are

the equivalence between MSS and the set of pure Nash equilibria pseudo-potential games

and finite supermodular games and between the MSS and the set of mixed Nash equilibria

in two-player zero-sum games and in two-player normal-form games with one player having

two actions.

At the same time, there are cases where the MSS may be large. For example, when the

MSS contains states that do not belong to the core as in the matching model by Knuth

(1976) as discussed in Section 4.2. Intuitively, the combination of myopic behavior and a

restrictive effectivity correspondence may result in cycling and hence, a large MSS. This re-

flects the trade-off between a general solution concept for which existence and non-emptiness

is guaranteed, like the MSS, and a clear prediction for every class of social environments.

The investigation of refinements of the MSS in such cases is a natural direction for future

research.

Appendix

Proof of Theorem 3.1: First observe that the set of states X is a QMSS. Indeed, since

it is compact, it is closed and it trivially satisfies deterrence of external deviations and

asymptotic external stability.

Let Z be the collection of all sets of states that are a QMSS. Notice that Z is non-empty

as X ∈ Z. A set Z ′ ∈ Z is a maximal element in the partially ordered set (Z,⊇) if for all

Z ∈ Z with Z ′ ⊇ Z, we have Z = Z ′. We will use Zorn’s lemma to show the existence of a

maximal element in the partially ordered set (Z,⊇).

Let S be a chain in Z, i.e., (S,⊇) is a totally ordered subset of (Z,⊇). Let I be an index

set for the sets in S, i.e., S = {Zα|α ∈ I}. Let . be the order on I that is induced by the

order on S, i.e., β . α if and only if Zα ⊇ Zβ. In order to apply Zorn’s Lemma, we have to

show that S has an upper bound in Z. Let M =
⋂
α∈I Z

α. Clearly, M is an upper bound of

S. We proceed by showing that M ∈ Z, i.e., M is a QMSS. First of all, observe that M is

closed as it is defined as the intersection of a collection of closed sets. We need to show that

it satisfies deterrence of external deviations and asymptotic external stability.

Deterrence of external deviations: Let x ∈M and y /∈M be given. Then there is α ∈ I
such that y /∈ Zα, since otherwise y ∈ Zα for all α ∈ I, which means that y ∈ M . Since
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x ∈ Zα and Zα satisfies deterrence of external deviations, we obtain y /∈ f(x) as was to be

shown.

Asymptotic external stability: Consider some y /∈ M . Then there is α ∈ I such that

y /∈ Zα. As S is a chain, it follows that for all β . α we have y /∈ Zβ.

For every β . α, there is xβ ∈ Zβ such that xβ ∈ f∞(y), since Zβ satisfies asymptotic

external stability. This defines a net (xβ)β.α. Given that X is compact, it follows by

Theorem 2.31 of Aliprantis and Border (2006) that this net has a convergent subnet, say

(xβ
′
)β′∈I′ , where I ′ ⊆ I is such that for all β ∈ I there is a β′ ∈ I ′ such that β′ . β. Let x be

the limit of this convergent subnet. We split the remaining part of the proof in two steps.

First, we show that x ∈M . Second, we show that x ∈ f∞(y).

Step 1: x ∈ M : Towards a contradiction, suppose that x /∈ M . Then, there exists γ ∈ I
such that x /∈ Zγ. In particular, given that Zγ is a closed set, there is ε > 0 such that

Bε(x) ∩ Zγ = ∅. Since S is a chain, we have that Bε(x) ∩ Zδ = ∅ for all δ . γ. Since x is the

limit of the subnet (xβ
′
)β′∈I′ , there is γ′ ∈ I ′ such that γ′ . γ and xγ

′ ∈ Bε(x). Then we have

xγ
′ ∈ Zγ′ , xγ

′ ∈ Bε(x), and Bε(x) ∩ Zγ′ = ∅, a contradiction. We conclude that x ∈M .

Step 2: x ∈ f∞(y): We need to show that for every ε > 0 there is k ∈ N and x ∈ fk(y)

such that x ∈ Bε(x).

Let some ε > 0 be given. The subnet (xβ
′
)β′∈I′ converges to x. As such, there exists

γ′ ∈ I ′ such that xγ
′ ∈ Bε/2(x). In addition, xγ

′ ∈ f∞(y), so there is k ∈ N and x ∈ fk(y)

such that x ∈ Bε/2(xγ
′
). Then, by the triangle inequality, it holds that x ∈ Bε(x). Together

with x ∈ fk(y), this concludes the proof, i.e., x ∈ f∞(y). 2

Proof of Theorem 3.2: Let x ∈ M and y ∈ f∞(x) and suppose, towards a contra-

diction, that y /∈M . Given that M is closed, there is ε > 0 such that Bε(y) ∩M = ∅. Also,

by definition, there is k ∈ N and z ∈ fk(x) such that z ∈ Bε(y), i.e. z /∈M . Since z ∈ fk(x),

there is a sequence z0, z1, . . . , zk of length k such that

z0 = x, z1 ∈ f(z0), . . . , zk = z ∈ f(zk−1).

Let k′ ∈ {1, . . . , k} be such that zk
′

is the first element in this sequence with the property

that zk
′
/∈M . Given that z0 = x ∈M and zk = z /∈M , such an element exists. It holds that

zk
′−1 ∈ M , zk

′ ∈ f(zk
′−1), and zk

′
/∈ M . This contradicts deterrence of external deviations

for M . 2

Proof of Theorem 3.3: Consider a state x1 ∈ M1. If x1 ∈ M2, then we are done.

Otherwise, by asymptotic external stability of M2, we know that there is x2 ∈M2 such that

x2 ∈ f∞(x1). Theorem 3.2 tells us that x2 ∈M1, so x2 ∈M1 ∩M2. 2
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The following technical lemma is helpful in proving uniqueness of an MSS, i.e. Theo-

rem 3.6.

Lemma A.1. If the dominance correspondence f : X → X is lower hemi-continuous, then

the asymptotic dominance correspondence f∞ : X → X is transitive.

Proof. Let x, y, z ∈ X be such that y ∈ f∞(x) and z ∈ f∞(y). We have to show that

z ∈ f∞(x), so we need to show that for every ε > 0, there is k′ ∈ N and z′ ∈ fk′(x) such

that z′ ∈ Bε(z).

By assumption, z ∈ f∞(y), so there is k ∈ N and z1 ∈ fk(y) such that z1 ∈ Bε/2(z). In

addition, as y ∈ f∞(x), we know that for every ` ∈ N there is k` ∈ N and y` ∈ fk`(x) such

that y` ∈ B1/`(y). This generates a sequence (y`)`∈N that converges to y, i.e., y` → y.

Note that fk is lower hemi-continuous, since it is a composition of k lower hemi-continuous

correspondences. Given lower hemi-continuity of fk and the fact that z1 ∈ fk(y), we know

that there is a sequence (z`2)`∈N such that z`2 → z1 and z`2 ∈ fk(y`). Now, we have that

y` ∈ fk`(x) and z`2 ∈ fk(y`), which gives z`2 ∈ fk+k`(x).

We take ` large enough such that z`2 ∈ Bε/2(z1). Since z1 ∈ Bε/2(z), the triangular

inequality gives z`2 ∈ Bε(z). This completes the proof.

Proof of Theorem 3.6: Suppose not, then, by Theorems 3.1 and 3.3, there exists an

MSS M1 and an MSS M2 such that M1 6= M2 and their intersection M3 = M1 ∩M2 is non-

empty. Let us show that M3 is a QMSS, contradicting the minimality of M1 and M2, and

establishing the uniqueness of the MSS. First of all, notice that M3, being the intersection

of two closed sets, is also closed.

For deterrence of external deviations, let x ∈ M3 and y ∈ f(x). Then given that x ∈ M1

and M1 satisfies deterrence of external deviations, it must be that y ∈ M1. Also given that

x ∈ M2 and M2 satisfies deterrence of external deviations, it must be that y ∈ M2. This

implies that y ∈M1 ∩M2 = M3 as was to be shown.

For asymptotic external stability, take any y /∈M3. There are three cases to consider.

Case 1: y ∈ M1 \ M3: Then, by asymptotic external stability of M2, there is x ∈M2 such

that x ∈ f∞(y). By Theorem 3.2, we have that x ∈M1. This means that x ∈M1∩M2 = M3,

which is what we needed to show.

Case 2: y ∈ M2 \ M3: The proof is symmetric to Case 1 with M1 and M2 interchanged.

Case 3: y ∈ X \ (M1 ∪ M2): We know, by asymptotic external stability of M1, that

there is x ∈ M1 such that x ∈ f∞(y). If x ∈ M3, we are done. If not, we know from Case 1

above that there is z ∈ M3 such that z ∈ f∞(x). It follows from x ∈ f∞(y) and z ∈ f∞(x)

that z ∈ f∞(y) by Lemma A.1. 2
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Proof of Theorem 3.9: Let x, y ∈ X and sequences (xk)k∈N and (yk)k∈N in X such

that xk → x and yk → y be given. Let us first show that if individual i ∈ N strictly prefers

y to x, so y �i x, then there is ` ∈ N such that for all k ≥ `, yk �i xk. Suppose not, then for

every ` ∈ N we can find k` ≥ ` such that xk` �i yk` . This creates sequences (xk`)`∈N, (yk`)`∈N

in X with xk` → x and yk` → y such that, for every ` ∈ N, xk` �i yk` . By continuity of �i,
it holds that x �i y, a contradiction.

Let (xk)k∈N be a sequence in X such that xk → x and consider some y ∈ f(x). Then

either y = x or y 6= x and there is a coalition S ∈ E(x, y) such that, for every i ∈ S, y �i x.
If y = x, take the sequence (yk)k∈N in X defined by yk = xk. We immediately have that,

for every k ∈ N, yk ∈ f(xk), and yk → y.

We now consider the case where y 6= x and there is a coalition S ∈ E(x, y) such that,

for every i ∈ S, y �i x. By lower hemi-continuity of the correspondence GS, we know that

there is a sequence (yk)k∈N such that yk ∈ GS(xk) and yk → y. By the first paragraph of the

proof, we know that for every i ∈ S there is `i ∈ N such that, for every k ≥ `i, y
k �i xk. Let

` = maxi∈S `i. Then, for every k ≥ `, for every i ∈ S, yk �i xk, and S ∈ E(xk, yk), which

shows that yk ∈ f(xk). The sequence (zk)k∈N defined by zk = xk if k < ` and zk = yk if

k ≥ ` therefore has all the desired properties: for every k ∈ N, zk ∈ f(xk), and zk → y. 2

Proof of Theorem 3.13: Towards a contradiction, suppose there is a closed cycle C

which is not a subset of M . Let x ∈ C and x /∈ M . By asymptotic external stability there

is y ∈ M such that y ∈ f∞(x). By definition of a closed cycle, it follows that y ∈ C. As

x ∈ C, again by definition of a closed cycle, we also have that x ∈ f∞(y). By Theorem 3.2,

it follows that x ∈ M , a contradiction. Since the choice of C was arbitrary, we have shown

that CC ⊆M .

We show next that if X is finite, then CC = M . Since CC ⊆ M , we only need to show

that CC is a QMSS. The set CC satisfies deterrence of external deviations, since for all

x ∈ CC, f(x) ⊆ f∞(x) ⊆ CC. It remains to verify asymptotic external stability of CC, i.e.,

for every state x /∈ CC, f∞(x) ∩ CC 6= ∅.
Let x /∈ CC and define Y = f∞(x). Note that Y is non-empty since x ∈ f(x). It also

holds that Y is finite and f∞(y) ⊆ Y for every y ∈ Y . Let us represent the set Y and

the dominance correspondence f on Y by a finite directed graph D, i.e., (i) Y is the set of

vertices of D and (ii) D has an arc from y to z if and only if z ∈ f(y). By contracting each

strongly connected component of D to a single vertex, we obtain a directed acyclic graph,

which is called the condensation of D. As the condensation is finite and acyclic, it has a

maximal element, say c. Observe that c represents a closed cycle C, so Y ∩ CC 6= ∅. 2

Proof of Theorem 3.17: Assume that Γ satisfies the weak improvement property.
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Let M be an MSS of Γ. By Corollary 3.15, we have CO ⊆ M . We will show that CO is a

QMSS. By minimality, it then follows that CO = M .

In order to see that CO is closed, let (xk)k∈N be a sequence in CO, so for all k ∈ N it holds

that f(xk) = {xk}. Now assume that xk → x and x /∈ CO. This means that there is y 6= x

such that y ∈ f(x). By lower hemi-continuity of f , there is a sequence (yk)k∈N such that

yk ∈ f(xk) and yk → y. As for all k ∈ N, xk ∈ CO, we have that yk = xk, which means that

yk → x, so y = x, a contradiction. Deterrence of external deviations is immediate for the

core as it is the union of the sinks. If the social environment satisfies the weak improvement

property, we have that for all x /∈ CO, f∞(x) ∩ CO 6= ∅, thus the core satisfies asymptotic

external stability.

For the reverse, let M be an MSS equal to CO. Now, if x ∈ M , it is a sink, so

f∞(x) = {x} ⊆ CO. If x /∈ CO we have by asymptotic external stability of M that

f∞(x) ∩M 6= ∅, so f∞(x) contains a sink, i.e., Γ satisfies the weak improvement property.

2

Proof of Theorem 3.19: Suppose, towards a contradiction, that M is an MSS such

that M ∩ V = ∅. Recall that M is non-empty. Let x ∈ M and x /∈ V. Since V satisfies

external stability, there is y ∈ f(x) such that y ∈ V. Since M satisfies deterrence of external

deviations, we have that y ∈M, so M ∩ V 6= ∅, a contradiction. 2

Proof of Theorem 3.20: By Theorem 3.13, the MSS is unique and equal to the union

of all closed cycles CC. Since Q is consistent with f, a state is recurrent if and only if it

belongs to a closed cycle. 2

Proof of Theorem 3.22: According to Proposition 4.2.1 of Meyn and Tweedie (1993),

we have to show that for every x ∈ X \ {x∗}, for every A ∈ B(X \ {x∗}) such that ϕ(A) > 0,

there exists k ∈ N such that Qk(x,A) > 0, where Qk(x,A) denotes the probability of reaching

A from x in k transitions.

It is convenient to partition the set X \ {x∗} in four subsets,

X1 = {x ∈ X | x1 ≤ 1
2
, x2 >

1
2
},

X2 = {x ∈ X | x1 >
1
2
, x2 ≥ 1

2
},

X3 = {x ∈ X | x1 ≥ 1
2
, x2 <

1
2
},

X4 = {x ∈ X | x1 <
1
2
, x2 ≤ 1

2
}.

Let some x ∈ X4 and some A ∈ B(X \ {x∗}) such that ϕ(A) > 0 be given. We partition

A in the four subsets A1 ⊆ X1, A2 ⊆ X2, A3 ⊆ X3, and A4 ⊆ X4. At least one of these

four sets has positive Lebesgue measure. From x, the probability to reach a point in the set

Y 1 = {y1 ∈ X1 | y1
1 = x1} is at least 1/3 and the probability distribution over Y 1 is uniform.
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From y1 ∈ Y 1, the probability to reach a point in the set Y 2(y1) = {y2 ∈ X2 | y2
2 = y1

2} is

at least 1/3 and the probability distribution over Y 2(y1) is uniform. Thus, the probability

to reach a point in X2 after 2 transitions is at least 1/9 and, conditional on reaching X2,

the distribution of this point is uniform on X2. It now follows that Q2(x,A) ≥ ϕ(A2)/9.

Repeating this argument, we find that Q3(x,A) ≥ ϕ(A3)/27, Q4(x,A) ≥ ϕ(A4)/81, and

Q5(x,A) ≥ ϕ(A1)/243. Since at least one of A1, A2, A3, and A4 has strictly positive Lebesgue

measure, we have shown that the restriction of the Markov process toX\{x∗} is ϕ-irreducible.

An analogous argument holds for x ∈ X i, where i 6= 4. 2

Proof of Theorem 4.3: To show lower hemi-continuity of E, let some S ∈ N , a

sequence (xk)k∈N in X such that xk → x, and some y ∈ GS(x) be given. We show that there

is a sequence (yk)k∈N such that yk ∈ GS(xk) and yk → y. If y = x, then the choice yk = xk

would do, so consider the case y 6= x.

First of all, there is k′ ∈ N such that for all k ≥ k′, π(xk) = π(x), so in particular

U(xk, S) = U(x, S). For every k < k′, we define yk = xk. For every k ≥ k′, we define yk ∈ X
by π(yk) = π(y) and

ui(y
k) =

{
ui(y), i ∈ N \ U(x, S),

ui(x
k), i ∈ U(x, S).

This completely specifies the state yk. Consider some k ≥ k′. Since y 6= x and y ∈ GS(x), it

holds that S ∈ π(y) and, for every i ∈ N \ (S ∪U(x, S)), we have that i is a residual player.

The properties of the γ-model imply that {i} ∈ π(y). The same properties hold for π(yk).

For every i ∈ S, it holds that ui(y
k) = ui(y), so ui(y

k) ≥ v({i}) and
∑

i∈S ui(y
k) = v(S).

For every i ∈ N \ (S ∪U(x, S)), we have that ui(y
k) = v({i}) = ui(y). For every i ∈ U(x, S)

it holds that ui(y) = ui(x) and ui(y
k) = ui(x

k). By coalitional sovereignty, we have that

yk ∈ GS(xk). Using that xk → x, it follows easily that yk → y.

Let some i ∈ N be given. To show continuity of �i, let (xk)k∈N and (yk)k∈N be se-

quences in X such that xk → x and yk → y. Then, by continuity of the projection, we

have that ui(x
k)→ ui(x) and ui(y

k)→ ui(y). So if ui(x
k) ≥ ui(y

k) for all k ∈ N, we obtain

ui(x) ≥ ui(y), which shows that x �i y. 2

Proof of Theorem 4.6: Let Y be the coalition structure core of (N, v). Let y ∈ CO

and suppose y /∈ Y . Then there is a coalition S ∈ N such that
∑

i∈S ui(y) < v(S). Since

y ∈ X, it holds for all i ∈ S that ui(y) ≥ v({i}). Now, let uS be a vector of payoffs for

the members in S such that
∑

i∈S ui = v(S) and for all i ∈ S, ui > ui(y). Then, by full

support, there exists a state y′ ∈ X such that S ∈ E(y, y′) and uS = uS(y′). We conclude

that y′ ∈ f(y). This contradicts the fact that y ∈ CO.
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For the reverse, let y ∈ Y and suppose there is z ∈ f(y) such that z 6= y, i.e., y /∈ CO.

Then there is S ∈ E(y, z) such that for all i ∈ S it holds that ui(z) > ui(y). Also,

v(S) =
∑
i∈S

ui(z) >
∑
i∈S

ui(y) ≥ v(S),

where the first equality follows from the definition of the state space and the last inequality

from the definition of Y . We have obtained a contradiction. 2

Proof of Theorem 4.8: From Theorem 4.3 we know that f is lower hemi-continuous.

Theorem 4.6 shows that Y is equal to the core of Γ. If we can show that Γ satisfies the

weak improvement property whenever Y 6= ∅, then we can use Theorem 3.17 to establish our

result. Since the proof is trivial when the number of individuals n is equal to 1, we assume

n ≥ 2 throughout.

Assume that Y 6= ∅. We need to show that for all x0 ∈ X, f∞(x0) ∩ Y 6= ∅. If x0 in

Y , then nothing needs to be shown, so assume that x0 ∈ X \ Y . We need to show that for

every ε > 0 there is a number k′ ∈ N, a state xk
′ ∈ fk′(x0), and a state y ∈ Y such that

d(xk
′
, y) < ε.

Let some ε > 0 be given. Béal, Rémila, and Solal (2013) show that there exists a sequence

of states (x0, . . . , xk
′
) such that xk

′ ∈ Y , k′ is less than or equal to (n2 + 4n)/4, and, for

every k ∈ {1, . . . , k′},

1. there is Sk ∈ N such that Sk ∈ E(xk−1, xk),

2. uSk(xk−1) < uSk(xk).

Notice that the inequality in 2. only means that at least one of the players in Sk gets a

strictly higher payoff, though not necessarily all of them. Let P k be the set of partners of

the players in Sk at state xk−1, more formally defined as

P k = ∪{S∈π(xk−1)|S∩Sk 6=∅}S,

so P k is equal to the moving coalition Sk together with the residual players. Since Sk ∈
E(xk−1, xk), it follows that

ui(x
k) = v({i}), i ∈ P k \ Sk,

ui(x
k) = ui(x

k−1), i ∈ N \ P k.

We define W k ⊂ Sk to be the, possibly empty, proper subset of Sk consisting of players that

only weakly improve when moving from state xk−1 to state xk, so for every i ∈ W k it holds

that ui(x
k−1) = ui(x

k). We define

δ = mink∈{1,...,k′}mini∈Sk\Wk ui(x
k)− ui(xk−1),

ε′ = min{δ, ε},
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so δ is the smallest improvement of any of the strictly improving players involved in any

move along the sequence. It holds that δ > 0 and therefore that ε′ > 0. For k ∈ {0, . . . , k′},
define

νk =
n2k

n2k′+1
.

We define e(W k) = 0 ifW k = ∅ and e(W k) = 1 otherwise. We use the sequence (x0, x1, . . . , xk
′
)

of states as constructed by Béal, Rémila, and Solal (2013) to define a new sequence (x̃0, x̃1, . . . , x̃k
′
)

of states by setting x̃0 = x0 and, for every k ∈ {1, . . . , k′},

π(x̃k) = π(xk),

ui(x̃
k) = ui(x

k) + ε′νk
|Sk\Wk|
|Wk| , i ∈ W k,

ui(x̃
k) = ui(x

k)− ε′νke(W k), i ∈ Sk \W k,

ui(x̃
k) = ui(x

k) = v({i}), i ∈ P k \ Sk,
ui(x̃

k) = ui(x̃
k−1), i ∈ N \ P k.

Notice that the first line does not entail a division by zero, since if i ∈ W k, then W k 6= ∅.
Compared to the sequence (x0, x1, . . . , xk

′
), the sequence (x̃0, x̃1, . . . , x̃k

′
) is such that each

strictly improving player in Sk \W k donates an amount ε′νk/|W k| to each of the players in

W k whenever the latter set is non-empty. It is also important to observe that the fraction

νk is an n2 multiple of νk−1 and that νk′ = 1/n.

We show first by induction that, for every k ∈ {0, . . . , k′}, x̃k ∈ X. Obviously, it holds

that x̃0 = x0 ∈ X. Assume that, for some k ∈ {1, . . . , k′}, x̃k−1 ∈ X. We show that x̃k ∈ X.

It holds that

ui(x̃
k) > ui(x

k) ≥ v({i}), i ∈ W k,

ui(x̃
k) ≥ ui(x

k−1) + δ − ε′νk > ui(x
k−1) + δ − ε′ ≥ ui(x

k−1) ≥ v({i}), i ∈ Sk \W k,

ui(x̃
k) = v({i}), i ∈ P k \ Sk,

ui(x̃
k) = ui(x̃

k−1) ≥ v({i}), i ∈ N \ P k,

where the very last inequality follows from the induction hypothesis. Moreover, for every

S ∈ π(xk), it holds that either S = Sk and W k = ∅, so∑
i∈S

ui(x̃
k) =

∑
i∈Sk

ui(x
k) = v(S),

or S = Sk and W k 6= ∅, so∑
i∈S

ui(x̃
k) =

∑
i∈Wk

(
ui(x

k) + ε′νk
|Sk \W k|
|W k|

)
+

∑
i∈Sk\Wk

(
ui(x

k)− ε′νk
)

=
∑
i∈Sk

ui(x
k) = v(S),
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or S = {i′} with i′ ∈ P k \ Sk and∑
i∈S

ui(x̃
k) = ui′(x̃

k) = ui′(x
k) = v({i′}) = v(S),

or S ⊆ N \ P k, so S ∈ π(x̃k−1), and∑
i∈S

ui(x̃
k) =

∑
i∈S

ui(x̃
k−1) = v(S),

where the last equality makes use of the induction hypothesis. We have now completed the

proof of the fact that for every k ∈ {0, . . . , k′}, x̃k ∈ X.
We show next by induction that, for every k ∈ {0, . . . , k′}, and for every i ∈ N ,

|ui(x̃k)− ui(xk)| ≤ ε′νk(n− 1).

Obviously, for every i ∈ N , it holds that |ui(x̃0) − ui(x0)| = 0 ≤ ε′ν0(n − 1). Assume that,

for some k ∈ {1, . . . , k′}, for every i ∈ N , |ui(x̃k−1) − ui(xk−1)| ≤ ε′νk−1(n − 1). We show

that, for every i ∈ N , |ui(x̃k) − ui(xk)| ≤ ε′νk(n − 1). If i ∈ W k, then W k 6= ∅, and the

statement follows from the observation that

0 ≤ ui(x̃
k)− ui(xk) = ε′νk

|Sk\Wk|
|Wk| ≤ ε′νk(n− 1).

If i ∈ Sk \W k, then we have that

0 ≥ ui(x̃
k)− ui(xk) ≥ −ε′νk ≥ −ε′νk(n− 1).

If i ∈ P k \ Sk, then we have |ui(x̃k)− ui(xk)| = 0. If i ∈ N \ P k, then it holds that

|ui(x̃k)− ui(xk)| = |ui(x̃k−1)− ui(xk−1)| ≤ ε′νk−1(n− 1) < ε′νk(n− 1),

where the first inequality makes use of the induction hypothesis and the last inequality of

the fact that νk−1 < νk.

Let some k ∈ {1, . . . , k′} and some i ∈ Sk be given. We show that ui(x̃
k) > ui(x̃

k−1). If

i ∈ W k, then it holds that

ui(x̃
k) = ui(x

k) + ε′νk
|Sk \W k|
|W k|

= ui(x
k−1) + ε′νk

|Sk \W k|
|W k|

≥ ui(x̃
k−1)− ε′νk−1(n− 1) + ε′νk

1

n− 1

> ui(x̃
k−1),
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where the strict inequality uses that νk = n2νk−1. If i ∈ Sk \W k, then it holds that

ui(x̃
k) ≥ ui(x

k)− ε′νk
≥ ui(x

k−1) + δ − ε′νk
≥ ui(x̃

k−1)− ε′νk−1(n− 1) + δ − ε′n2νk−1

> ui(x̃
k−1),

where the strict inequality uses the facts that δ ≥ ε′ and

(n2 + (n− 1))νk−1 < 2n2νk−1 ≤ 2νk ≤ 1.

Combining the statements proven so far, it follows that x̃k
′ ∈ fk′(x0). We complete the proof

of the weak improvement property by noting that xk
′ ∈ Y by the result of Béal, Rémila, and

Solal (2013) and by observing that d(x̃k
′
, xk

′
) < ε since π(x̃k

′
) = π(xk

′
) and, for every i ∈ N ,

|ui(x̃k
′
)− ui(xk

′
)| ≤ ε′νk′(n− 1) < ε′ ≤ ε.

2

Proof of Theorem 4.11: To apply Theorem 3.17, we show first that the core of Γ is

equal to the set of Pareto efficient house allocations Y , i.e. for every A ∈ X it holds that

f(A) = {A} if and only if A ∈ Y.
“⇒” Suppose A /∈ Y. Then there is A′ ∈ X such that, for every i ∈ N, A′ �i A and for

some j ∈ N, A′ �j A. Let S = {i ∈ N | A′ �i A} be the set of agents that strictly prefer A′

to A. Since preferences are strict, for every i ∈ N \ S, we have Ai = A′i. It therefore holds

that S ∈ E(A,A′), so A′ ∈ f(A), a contradiction.

“⇐” Suppose A′ ∈ X \{A} belongs to f(A). Then there is S ∈ N such that S ∈ E(A,A′)

and, for every i ∈ S, A′ �i A. Since for every i ∈ N \ S, Ai = A′i, it is immediate that A′

Pareto dominates A, so A /∈ Y, a contradiction.

Since the state space X is finite, the correspondence f is lower hemi-continuous.

We complete the proof by showing that Γ satisfies the weak improvement property, so

for every A ∈ X, f∞(A) ∩ Y 6= ∅. If A ∈ Y, then evidently f∞(A) ∩ Y 6= ∅. Consider the

case A /∈ Y. We apply the top trading cycle algorithm of Shapley and Scarf (1974) and, since

preferences are assumed to be strict, we find a Pareto optimal allocation A′ ∈ Y. It follows

that A′ ∈ fN(A) ∩ Y = f∞(A) ∩ Y. 2

Proof of Theorem 4.15: Given Corollary 4.13 it suffices to show that Γ satisfies the

weak improvement property.

Consider a function b : Σ→ Σ such that, for every s ∈ Σ,

b(s) ∈ arg max{τ∈Σ|∃i∈N, τ−i=s−i}P (τ),
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and b(s) = s if P (b(s)) = P (s). For each strategy profile s ∈ Σ, there is j ∈ N and τ ∗j ∈ Σj

such that b(s) = (τ ∗j , s−j) and b(s) maximizes the value of P (τ) over all strategies τ such

that there is i ∈ N with τ−i = s−i. If the maximal value of P (τ) is equal to P (s), then b(s) is

taken equal to s. As P is continuous and, for every i ∈ N , Σi is compact, the maximization

problem has a solution.

Observe that s ∈ Σ is a pure strategy Nash equilibrium of G if and only if

P (s) ≥ P (τi, s−i), i ∈ N, τi ∈ Σi.

It follows that s is a pure strategy Nash equilibrium of G if and only if b(s) = s. Let NE be

the set of all pure strategy Nash equilibria of G. The set NE is non-empty as it contains all

the strategy profiles that maximize P over Σ, a non-empty set since P is continuous and Σ

is compact.

Let us show that Γ satisfies the weak improvement property, i.e. for all states s ∈ Σ,

f∞(s) ∩ NE 6= ∅.
Let s1 ∈ Σ \ NE be given. Consider the sequence of states (sk)k∈N in Σ defined by

s2 = b(s1), s3 = b(s2), . . .

For every k ∈ N, it holds that sk+1 ∈ f(sk), so any accumulation point of the sequence

(sk)k∈N belongs to f∞(s1).

Observe that, by definition, P (s1) ≤ P (s2) ≤ P (s3) ≤ · · · , so the sequence
(
P (sk)

)
k∈N

is non-decreasing. Further, as (sk)k∈N takes values in the compact set Σ, it has a convergent

subsequence. Let us denote such a subsequence by (x`)`∈N and let x` → x. It holds that

x ∈ f∞(s1). By continuity of P it holds that P (x`) → P (x). It also holds that, for every

k ∈ N, P (sk) ≤ P (x).

Since x ∈ f∞(s1), we finish the proof by showing that x ∈ NE. Suppose not, then there is

j ∈ N and a best response τ ′j ∈ Σj such that uj(τ
′
j, x−j) > uj(x). As G is a pseudo-potential

game, there is a best response τ ∗j ∈ Σj such that

P (τ ∗j , x−j) > P (x).

Since P is continuous, there is ε > 0 such that for every τ ∈ Bε((τ
∗
j , x−j)) it holds that

P (τ) > P (x).

Since x` → x, there is `′ ∈ N such that x`
′ ∈ Bε(x), so (τ ∗j , x

`′
−j) ∈ Bε((τ

∗
j , x−j)) and

P (τ ∗j , x
`′

−j) > P (x).

We have that

P (x) < P ((τ ∗j , x
`′

−j)) ≤ P (b(s`
′
)) ≤ P (x),
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a contradiction. Consequently, it holds that x ∈ NE. 2

Proof of Theorem 4.17: Using Corollary 4.16, it remains to show that Γ̃ satisfies the

weak improvement property, i.e., for every strategy profile σ ∈ ∆, f∞(σ) contains a mixed

strategy Nash equilibrium of G. Let v denote the value of the game.

Let some σ ∈ ∆ be given which is not a mixed strategy Nash equilibrium of G, i.e., there

is a player i such that σi is not a minmax strategy. We distinguish between two cases.

Case 1: σ1 and σ2 are not minmax strategies.

1.1 If v1(σ) 6= v, then there exists a player i who is below his minmax payoff. Without

loss of generality, let this be player 1, so v1(σ) < v. Let (σ∗1, σ
∗
2) be a profile of minmax

strategies. Note that v1(σ∗1, σ2) ≥ v. Since σ2 is not a minmax strategy, there exists a

pure strategy s1 ∈ ∆1 such that v1(s1, σ2) > v. Thus, for every ε ∈ (0, 2], it holds that

v1( ε
2
s1 + (1− ε

2
)σ∗1, σ2) > v.

It holds that

v2( ε
2
s1 + (1− ε

2
)σ∗1, σ

∗
2) ≥ −v,

so for every ε > 0, f 2(σ) contains a state which is in an ε-neighborhood of a mixed

strategy Nash equilibrium of G, and therefore f∞(σ) contains a mixed strategy Nash

equilibrium of G.

1.2 Suppose v1(σ) = v. Then, there exists a pure strategy s1 ∈ ∆1 such that

v1(s1, σ2) > v,

since otherwise σ2 would be a minmax strategy. If s1 is a minmax strategy, then

player 2 can deviate to a minmax strategy σ∗2 to obtain v2(s1, σ
∗
2) = −v, i.e., f 2(σ)

contains a mixed strategy Nash equilibrium of G. If s1 is not a minmax strategy, then

(s1, σ2) ∈ f1(σ) is a state as in Case 1.1, so for every ε > 0, f 3(σ) contains a state

which is in a ε-neighborhood of a mixed strategy Nash equilibrium of G, and therefore

f∞(σ) contains a mixed strategy Nash equilibrium of G.

Case 2: σ1 is a minmax strategy and σ2 is not, or σ1 is not a minmax strategy and σ2 is.

Without loss of generality, assume σ1 is a minmax strategy.

2.1 If v1(σ) > v, then player 2 can profitably switch to a minmax strategy σ∗2 and we are

done.
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2.2 If v1(σ) = v, then since σ2 is not a minmax strategy, there exists a deviation to a

pure strategy s1 ∈ ∆1 such that v1(s1, σ2) > v. If s1 is a minmax strategy, then

(s1, σ2) ∈ f1(σ) is a state as in Case 2.1, so f2(σ) contains a mixed strategy Nash

equilibrium of G. If s1 is not a minmax strategy, then (s1, σ2) ∈ f1(σ) is a state as

in Case 1.1, and for every ε > 0 it holds that f 3(σ) contains a state which is in an

ε-neighborhood of a mixed strategy Nash equilibrium of G, so f∞(σ) contains a mixed

strategy Nash equilibrium of G.

2

Proof of Theorem 4.18: Assume without loss of generality that player 1 has two

pure strategies. Let the set of pure strategies of player 1 be {U,D} with generic element

A ∈ {U,D} and let the set of pure strategies of player 2 be given by {s1, . . . , s`} with generic

element sj. We also use the notation U and D for the mixed strategy that puts probability 1

on pure strategy U and D, respectively, and similarly for sj.

Let some σ ∈ ∆ be given. By Corollary 4.16, it suffices to show the weak improvement

property of Γ̃, i.e., f∞(σ) contains a mixed strategy Nash equilibrium of G. We distinguish

between two cases.

Case 1: G has a pure strategy Nash equilibrium, without loss of generality, (U, s∗).

If σ is a mixed strategy Nash equilibrium of G, we are done, so assume σ is not a mixed

strategy Nash equilibrium of G. If player 2 has a profitable deviation from σ, then there is a

pure strategy best response sj ∈ ∆2 such that (σ1, s
j) ∈ f(σ). If (σ1, s

j) is a mixed strategy

Nash equilibrium of G, we are done. If not, then player 1 must have a pure strategy best

response to (σ1, s
j), say A. Thus, f 2(σ) contains a mixed strategy Nash equilibrium of G

or a pure strategy profile (A, sj). The same conclusion holds if player 1 has a profitable

deviation from σ. If the pure strategy profile (A, sj) is a Nash equilibrium of G, we are done.

If not, at least one player has a profitable deviation from it. We distinguish between two

cases.

1.1 A = D.

1.1.a Assume player 1 can profitably deviate from (D, sj). Then it holds that (U, sj) ∈
f(D, sj). If (U, sj) is a Nash equilibrium of G, we are done. If not, then player 2

can profitably deviate to the Nash equilibrium (U, s∗) of G and we are done.

1.1.b Assume player 2 can profitably deviate from (D, sj). Let sh be a best response

for player 2, so (D, sh) ∈ f(D, sj). If this is a Nash equilibrium of G, we are

done. Otherwise, player 1 can profitably deviate to (D, sh), which brings us back

to Case 1.1.a.
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1.2 A = U.

1.2.a Assume player 2 can profitably deviate form (U, sj). It holds that the Nash equi-

librium (U, s∗) of G belongs to f(U, sj), so we are done.

1.2.b Assume player 1 can profitably deviate from (U, sj). Then it holds that (D, sj) ∈
f(U, sj). If (D, sj) is a Nash equilibrium of G, then we are done. Else, player 2

must have a profitable deviation from (D, sj), which brings us back to Case 1.1.b.

Case 2: G has no pure strategy Nash equilibrium.

We first show that in every mixed strategy Nash equilibrium of G, player 1 plays both U

and D with strictly positive probability. Towards a contradiction, suppose there is a mixed

strategy Nash equilibrium (A, σ∗2) of G such that player 1 plays a pure strategy, without loss

of generality, strategy A = U . It holds that any pure strategy of player 2 in the support of

σ∗2 is a best response against U. Since G has no pure strategy Nash equilibrium, it must hold

that playing D against any pure strategy in the support of σ∗2 gives player 1 a strictly higher

payoff than playing U. It follows that D is a profitable deviation for player 1 from (U, σ∗2).

This contradicts (U, σ∗2) being a mixed strategy Nash equilibrium of G.

To finish the proof, we show that f∞(σ) contains a mixed strategy Nash equilibrium of

G. As in the first part of Case 1, we can show that f 2(σ) contains a mixed strategy Nash

equilibrium of G and we are done, or a pure strategy profile which is not a Nash equilibrium

of G. Player 1 or player 2 has a profitable deviation from this pure strategy profile. In the

latter case, player 2 can choose a pure strategy best response and in the next step, player 1

can profitably deviate to a pure strategy. In both cases it holds that there is k ∈ N such that

fk(σ) contains a pure strategy profile (A, sj) from which player 1 has a profitable deviation.

Without loss of generality, let A = U .

Observe that for player 1 any completely mixed strategy is a profitable deviation from

(U, sj). Let σ∗ be a mixed strategy Nash equilibrium of G and let p ∈ (0, 1) denote the

probability that σ∗1 puts on U. We distinguish 3 cases.

2.1 v2(D, σ∗2)− v2(U, σ∗2) > v2(D, sj)− v2(U, sj).

For ε ∈ (0, p), let σ′1 be the strategy where player 1 plays U with probability p− ε/2.
Since any completely mixed strategy of player 1 is a profitable deviation from (U, sj),

it holds that (σ′1, s
j) ∈ f(U, sj). We have that

v2(σ′1, s
j) = v2(σ∗1, s

j) + ε
2
(v2(D, sj)− v2(U, sj))

< v2(σ∗) + ε
2
(v2(D, σ∗2)− v2(U, σ∗2))

= v2(σ′1, σ
∗
2),

where the strict inequality uses that σ∗2 is a best response against σ∗1 and the assumption
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of Case 2.1. It follows that (σ′1, σ
∗
2) ∈ f(σ′1, s

j). Since ε > 0 can be chosen arbitrarily

small, this shows that σ∗ ∈ f∞(σ).

2.2 v2(D, σ∗2)− v2(U, σ∗2) < v2(D, sj)− v2(U, sj).

For ε ∈ (0, 1−p), let σ′1 be the strategy where player 1 plays U with probability p+ε/2.

The proof now follows as in Case 2.1.

2.3 v2(D, σ∗2)− v2(U, σ∗2) = v2(D, sj)− v2(U, sj).

It holds that (D, sj) ∈ f(U, sj).

Let sh be a best response of player 2 against D and, for ε ∈ (0, 1), let σ′2 be the strategy

that puts weight (1− ε) on σ∗2 and weight ε on sh. We have that

v2(D, σ∗2) = v2(σ∗) + pv2(D, σ∗2)− pv2(U, σ∗2)

≥ v2(σ∗1, s
j) + pv2(D, sj)− pv2(U, sj)

= v2(D, sj), (A.1)

where the inequality uses that σ∗ is a mixed strategy Nash equilibrium of G and

the assumption of Case 2.3. Since (D, sj) is not a Nash equilibrium of G, it holds

that v2(D, sh) > v2(D, sj). By (A.1) and the definition of σ′2, it now follows that

v2(D, σ′2) > v2(D, sj), so (D, σ′2) ∈ f(D, sj). Since (D, sh) is not a Nash equilibrium of

G and sh is a best response against D, we have that v1(σ∗1, s
h) > v1(D, sh). It follows

that

v1(σ∗1, σ
′
2) = (1− ε)v1(σ∗) + εv1(σ∗1, s

h) > (1− ε)v1(D, σ∗2) + εv1(D, sh) = v1(D, σ′2),

so (σ∗1, σ
′
2) ∈ f(D, σ′2). Since ε > 0 can be chosen arbitrarily small, we have that

σ∗ ∈ f∞(σ), which concludes the proof.

2
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