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Abstract

We propose a new VAR identification strategy to study the impact of noise shocks
on aggregate activity. We do so exploiting the informational advantage the econo-
metrician has, relative to the economic agent. The latter, who is uncertain about the
underlying state of the economy, responds to the noisy early data releases. The former,
with the benefit of hindsight, has access to data revisions as well, which can be used
to identify noise shocks.
By using a VAR we can avoid making very specific assumptions on the process driving
data revisions. We rather remain agnostic about it but make our identification strategy
robust to whether data revisions are driven by noise or news.
Our analysis shows that a surprising report of output growth numbers delivers a persis-
tent and hump-shaped response of real output and unemployment. The responses are
qualitatively similar but an order of magnitude smaller than those to a demand shock.
Finally, our counterfactual analysis supports the view that it would not be possible to
identify noise shocks unless different vintages of data are used.
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1 Introduction

Contrary to what is assumed in most macroeconomic models (e.g. Christiano, Eichenbaum,

Evans 2005 and Smets and Wouters 2003) the state of the economy in not known for certain

when economic decisions are made.

The constant stream of revisions in many macroeconomic series confirms this view1 and a

small but growing number of DSGE models try to account for the effects implied by imper-

fect knowledge of the state of the economy, e.g. Lorenzoni (2009), Mendes (2007), Masolo

(2011).

These models are typically characterized by imperfect and heterogeneous information re-

garding the state of the economy. As a result, agents attach weight even to noisy indicators

of aggregate economic activity, which would be completely disregarded in a full-information

environment.

The precision of aggregate economic indicators plays a key role for at least two reasons.

Firstly, it can reduce the overall uncertainty about the state of the economy. Secondly, it

correlates the information available to different agents thus reducing the need for them to

guess what the other agents’ assessment of the state of the economy might be.

In such a setting, even noisy signals about the past are useful to economic agents, which

makes the mapping to the data much more straightforward, because early data releases are

the real-world counterpart of noise-ridden signals of past output growth in dispersed infor-

mation models. As a result, a noise shock will have an impact on future decision-making, as

is the case in Barsky and Sims (2012) and Blanchard, L’Huillier and Lorenzoni (2013), but

not because it reveals something about the future but rather because it is genuinely informa-

tive about the current state of the economy.

1Which has been explored in the context of policy analysis by Orphanides (2003) and Altavilla and
Ciccarelli (2011).
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Dispersed-information models tend to be cumbersome to solve, hence Bayesian estimation is

impractical. Melosi (2013) represents an attempt in this direction but restricts information

dispersion to firms.

The difficulty to bring dispersed information models to the data induced a dychotomy in the

literature. On the one hand is a long series of works, dating back to Mankiw and Shapiro

(1986) and including Arouba (2008)2, which try to analyze the statistical properties of data

revisions, thus assessing the quality of early data vintages.

On the other hand, modelers (e.g. Mendes (2007)) have produced impulse-responses of ag-

gregate variables to noise shocks based on calibrated models.

In our opinion, the best attempt to quantify the impact of noise shocks in a VAR for the

sake of comparison to a dispersed information model is in Lorenzoni (2009) who estimates

a VAR in the tradition of Gaĺı (1999) and Blanchard and Quah (1989). This class of VARs

identifies a demand shock and a supply or productivity shock by assuming that only the

latter has a permanent effect on the level of output. Lorenzoni (2009) attributes all the

effects of the demand shocks he identifies in his VAR to noise. As he himself acknowledges,

this is an extreme assumption because it attributes the effects of all shocks which do not

have a permanent effect on the level of output, e.g. monetary and fiscal shocks, to noise.

This strong assumption serves him well in his exercise because it works against his model

but leaves open the possibility of finding a more accurate quantification of the effects of noise

shocks on the macro aggregates, which is what we set out to do.

Clearly related to our work is the work by Blanchard, L’Huillier and Lorenzoni (2013)3 which

estimates responses to noise shocks and shows that a VAR cannot separate out the impact

of noise shocks in the context of a model in which information is imperfect. It is impor-

tant to note that Blanchard, L’Huillier and Lorenzoni (2013) impossibility result4, i.e. their

2See Croushore and Stark (2001) for a summary.
3Although their definition of noise is somewhat different, as described above.
4Blanchard, L’Huillier and Lorenzoni (2013) section 2.2
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statement that a noise shock cannot be identified in the context of a VAR, crucially relies

on the assumption that the econometrician has access to the same information as the agents

or less. In our analysis, however, the econometrician has more information (at least along

this dimension) than the agents because of the benefit of hindsight, i.e. the econometrician

knows the state of the economy which was not known to the agent at the time the decision

was made5. While one might argue that the true underlying state is never fully revealed, it

seems reasonable to work under the assumption that successive revisions are more accurate

than those available when decisions are made. As a consequence, the information set of

the econometrician who carries out an ex-post analysis is richer6 than that of the economic

agents.

Note that information dispersion (not only information imperfection) is critical here. If all

agents shared the same information, no matter how imprecise, then they would get to know

aggregate endogenous variables (such as output) by a simple symmetry argument, which

would negate the econometrician’s informational advantage or, at best, reduce it to one pe-

riod7. When information is not the same across agents, though, agents will correctly not

presume that other agents’ decisions will be the same as theirs, hence they will remain un-

certain about the aggregate level of the endogenous variables. As a result, they will find a

noisy signal, such as the early data release, useful.

Related and complementary to the work by Blanchard, L’Huillier and Lorenzoni is a recent

work by Forni, Gambetti, Lippi and Sala (2013). The latter proposes a way to identify the

effect of noise shocks in the context of a model similar to that in Blanchard L’Huillier and

5And this is not limited to having a longer sample as Blanchard, L’Hullier and Lorenzoni (2013) consider
in Section 2.5. By observing the early and the latest vintages of data the econometrician observes what
in Blanchard, L’Hullier and Lorenzoni (2013) is the signal and what would correspond to true underlying
permanent productivity in their setup.

6When we say richer we mean that the information set of the econometrician is not a subset of that
of the agent. We do not necessarily imply that the agent’s information set is contained in that of the
econometrician.

7Knowledge of exogenous process can be imperfect for a long time but when all agents are the same, they
get to know endogenous variables simply by setting them.
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Lorenzoni but both papers assume the noise shock to affect a signal concerning some future

exogenous process (i.e. technology) while we maintain the assumption that the noise shock

”corrupts” early releases of past output growth, which is clearly endogenous. As a result we

allow the noise shock to affect future (but not present) realizations of the variable it affects

while this is not the case in Forni, Gambetti, Lippi and Sala (2013). In Forni, Gambetti,

Lippi and Sala (2013) it is the agents’ learning that allows to uncover the impact of what they

call ”noisy news”, while we take advantage of the econometrician’s richer information set

(which we refer to as benefit of hindsight) to identify noise shocks to the early data releases.

In a way, the two approaches are complementary because they focus on two different but

non-exclusive definitions of noise. Also note that our procedure does not run into the issue

of non-fundamentalness because, from the econometrician’s perspective, the noise shock can

be recovered by the difference between two observables8.

Our approach is also related to Enders, Kleeman and Müller (2015)

So far we have described, why using data revisions might help overcome Blanchard, L’Huillier

and Lorenzoni (2013) impossibility result. That comes at a cost, however. Data revisions

are not nearly as well behaved as noise shocks are assumed to be in the context of theoretical

models, as a vast literature shows (e.g. Arouba (2008)). To assume that the revision corre-

sponds to the noise shock would not only imply that the model correctly captures the private

sector agents’ behavior but also that the specific functional form of the noisy signal is an

accurate representation of early data releases. In most theoretical models (e.g. Mendes 2007

and Masolo 2011) the noise shock and the model-implied data revision correspond exactly.

In reality we know things are more complicated, Clements and Galvão (2010) try to model

the statistical properties of data revisions.

8Section 3.2 discusses how our procedure is robust to the case in which the noise shock does not correspond
exactly to the revision in the data.
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Our VAR is much more flexible in this respect, in the original spirit of Sims (1980), in that

it captures the essential transmission mechanism of a noise shock while not getting specific

about the details of the data revision process. Indeed, we take advantage of the timing

restriction arising from the noise shock impacting the early data release directly and true

fundamentals only with a lag, through the decision-making process of the agents, while re-

maining agnostic on the process for data revisions. We know from empirical studies, e.g.

Arouba (2008), that characterizing the revision process as purely news-driven or noise-driven

is problematic. The benefit of using a VAR is that we can try to make our identification

robust to this.

As the discussion in Section 3 clarifies, the use of a VAR is critical in this respect because

it ensures the orthogonality of the noise shock to the final release of data even when the

revision would not be (the news case).

In sum, our analysis shows how a simple timing identification assumption can deliver sensi-

ble results. For one thing, the qualitative responses of output and unemployment to a noise

shock are in line with those of a demand shock, i.e. the responses of output and unemploy-

ment are inversely related in response to a noise shock. In this sense, our analysis confirms

the maintained assumption in Lorenzoni (2009). However, from a quantitative standpoint,

the responses to noise shocks, while statistically significant, are much smaller than responses

to demand shocks. This confirms the impression that considering the identified demand

shocks as being exclusively driven by noise greatly over estimates their impact, which we

quantify to be around 5-8 percent of the business cycle (as measured by the shares of the

variances of output growth and unemployment explained by the noise shock).

Following the suggestion in Rodriguez-Mora and Schulstadt (2007), we also introduce a mea-

sure of investment in our VAR and find that the responses of output and unemplyment to

noise shocks are still signficant and that, consistent with accepted business cycle evidence
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(e.g. see King and Rebelo (1999)) investment seems to be more volatile than output.

We complete our analysis with a simple counterfactual exercise, aimed at illustrating how

our identification crucially depends on what we deemed above the benefit of hindsight. If the

econometrician did not have more information than the economic agent then our evidence

confirms that the noise shock could not be recovered.

In this sense we see our analysis as making better use of all the available information to

assess the impact the uncertainty about the state of the economy might have on agents’

decisions.

The rest of paper comprises and overview of noise shocks in models with dispsersed in-

formation in Section 2, followed by the description of our general setup in Section 3. A

discussion of our estiamted VAR is in Section 4 while Section 5 illustrates our counterfactual

experiment and Section 6 concludes the paper.

2 Noise Shocks in Dispersed Information Models

A recent series of dispersed information general equilibrium models, e.g. Lorenzoni (2009),

Mendes (2007) and Masolo (2011), provide the ideal theoretical foundation to study noise

shocks.

In standard full information economic models (e.g. Christiano, Eichenbaum and Evans 2005

or Smets and Wouters 2003), information about the past is irrelevant: the agents know the

current state of the economy, hence they will not respond to any noisy information about

the past.

In reality, however, people are uncertain the state of the economy so they take advantage of

published data about, say, GDP growth in recent quarters to increase the accuracy of their

expectations of the current state of the economy. The very fact that such series get revised

7



shows that those numbers are not fully accurate (especially for the most recent periods), yet

they contain useful information for the economic agents.

Dispersed information models capture exactly this. Because agents are uncertain about the

state of the economy, they will respond to an informative, albeit noisy, signal about the state

of the economy as it improves the accuracy of their predictions.

Note that heterogeneous information is important in this process. If the state was imper-

fectly known but information was the same across agents, once each of them made a decision,

because of symmetry, he or she would know for certain that everyone else will have made the

same decision, while when information differs across agents, the noisy early release increases

the agents’ knowledge and also affects the correlation of the agents’ information set.

Moreover, the precision of the signal will impact the quantitative response but will not pre-

vent agents from responding to noise. The impact of the noise embedded in the signal will

only die out as agents learn about the true fundamentals, i.e. they become able to separate

the genuine movement in economic variables from the noise embedded in the preliminary

release9.

Models such as those mentioned above can typically be readily cast in a state-space10 form in

which at least the observation equation is household specific (as denoted by the h subscript):

Zt = Ψ1Zt−1 + Ψ0ut (1)

sht = Γ1Zt + Γ0ζht (2)

Equation (??) is the transition equation, which controls the evolution of the state of the

economy Zt while, sht characterizes the information set of the economic agents which com-

9The speed of learning is obviously a matter of one’s preferred calibration in a model. One of the benefits
of our analysis is to cast light on the time span over which these effects are statistically significant.

10It is usually the case that more lags of the state variables are needed to solve a dispersed information
model. Typically they are stacked to form a first-order system.
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prises a sequence of signals defined as linear combinations of (aggregate) state variables plus

idiosyncratic components (ζht). We allow for each agent to observe different bits of informa-

tion but, in a linear setting, all the idiosyincratic components integrate out in the aggregate.

On the contrary, the noise shock does not net out in the aggregate because it is observed by

all agents, hence usually the noise shock will be a component of the vector ut
11.

Typically the noise shock corrupts information regarding output growth or productivity

in a way that is meant to mimic early releases of output growth figures which are available

to everyone and yet are never fully precise.

Because all the agents have access to this type of signal, aggregate variables will respond

to some degree to the unexpected inaccuracies in the reports of, say, output growth. As a

result we can investigate the impact of noise shocks with no need for individual-level data

or survey expectations.

2.1 Timeline

While forecasts of macroeconomic variables are certainly available, it is realistic to assume

that agents will only receive signals about aggregate variables (which we can consider im-

perfect measures rather than pure forecasts) not before the end of period of interest12, i.e.

once the aggregate variable of interest has materialized.

As a result the following timing pattern (depicted in Figure 1) arises naturally:

1. The noise shock, which we will denote by vt, hits the economy.

2. At the end of the period the economy-wide signal, denoted by (x0t , e.g. early release of

11In principle the noise component might be itself autocorrelated, in which case it will enter the state vector
Zt, while ut will include the innovation to that same process. Moreover, because the variable impacted by
the noise shocks (e.g. an early release of output growht) is observed symmetrically by all agents in the
economy the row of Γ0 corresponding to the noisy variable will comprise all zeros.

12Or equivalently at the beginning of the following period
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output growth), which is affected by the noise shock, is released

3. At the beginning of the following period the noise will be reflected in the agents’

information sets and, as a consequence, in their economic decisions (xft+1).

When one thinks of xft , x0t and vt as elements of the state-space system illustrated in

equations (??) and (1), the timeline above translates in a set of zero-restrictions in the

matrix Ψ0. In particular if the economy-wide signal we are concerned with (early data

release, x0t ) is the j − th entry in Zt and the noise shock is the m− th entry in ut, then the

m− th column of Ψ0 will comprise all zeros except on row j.

-

t... t-1 t t+1 ...

?

xft is set

?

xft+1 is set

6

x0t is released

?

Noise shock vt is realized

Figure 1: Timeline of decision making and data releases

3 Setup

We have illustrated the timing assumption underlying our identification strategy. Now we

turn to showing how it applies in our VAR setting. Before doing so it is important to note a

key benefit of estimating a VAR. In the context of theoretical models (no matter if estimated

or not13) the process for the noise shock has to be specifically defined, which usually implies

that the model-implied revision, coincides with the noise shock and, as a result, is orthogonal

13See Melosi (2013) for an estimated dispersed information model, albeit with a representative household.
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to the true underlying fundamental (xft ), a condition not always verified in the data (see

Arouba 2008). On the other hand, the flexibility implicit in a VAR specification allows us

to make our identification robust to situations in which revisions in the data turn out not to

be orthogonal to the underlying fundamentals, as we will show below.

3.1 Classical Noise

We start by considering how our identification applies in the case in which the revision is

orthogonal to the fundamentals, a case we will refer to as classical noise.

Under this assumption, the early vintage of data (x0t ) equals the true or fundamental (xft )

plus the noise shock:

x0t = xft + vt vt ⊥ xft (3)

Appendix A shows that, given the state-space representation in equations (??) and (1), the

process governing xft can be expressed as:

xft = A(L)xft−1 +B(L)vt−1 + εt (4)

Where all the elements of equation (4) can be vectors, A(L) and B(L) are finite-order poly-

nomials in the lag operator and εt are the other shocks hitting the economy (e.g., in our

empirical exercise we will identify demand and supply shocks).

Equation (4) shows how past noise shocks affect the decision-making process of the agents in

the economy to the extent that they cannot separate them out from fundamentals. Agents in

the models will only observe a combination of noise and fundamentals, otherwise B(L) = 0,

i.e. they would not respond to noise.

Equations (3) and (4) define the evolution of the two set of variables we are interested

in, namely the early and the latest vintages of data.
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Combining the two delivers the law of motion for the early relase of economic data (x0t ):

x0t = A(L)xft−1 +B(L)vt−1 + εt + vt (5)

Equation (5) clearly shows how the revision component (consistent with the timeline laid

down in Figure 1) affects contemporaneously the early vintage of data and with a lag,

i.e. through the decision-making process of the economic agents, the values of fundamental

variables.

3.1.1 Identification

As shown above, our identification strategy hinges on the fact that the information set of

the econometrician is richer than that of the economic agent who made the decision, because

the econometric analysis is carried out at a later time.

Rearranging equation (3) and substituting it into equation (5) yields:

x0t = (A(L)−B(L))xft−1 +B(L)x0t−1 + εt + vt (6)

Using equation (6) to substitute for x0t in equation (3) allows us to re-write the law of motion

for the final release as follows:

xft = (A(L)−B(L))xft−1 +B(L)x0t−1 + εt (7)

Finally, stacking up equations (7) and (6) produces the following VAR representation:

 xft

x0t

 =

 A(L)−B(L) B(L)

A(L)−B(L) B(L)


 xft−1

x0t−1

+

 1 0

1 1


 εt

vt

 (8)
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The matrix pre-multiplying [ εt vt ]′ simply highlights the timing pattern that emerges

in our setup and which is true irrespective of the particular specification of the VAR. We

postpone the complete identification of εt to our empirical exercise (see Section 4.2.2) because

the identification of the other structural shocks inevitably depends on the variables included

in the estimated VAR. In particular, we will explicitly identify demand and supply shocks

using accepted identification restrictions (Blanchard and Quah, 1989).

3.2 Prediction Error

A vast empirical literature shows that revisions for some series are better characterized as

resulting from forecasting errors made by the agency which publishes early releases, e.g.

Mankiw and Shapiro (1986). We will sometimes refer to this situation as news.

The key difference with respect to the case illustrated above is that the revision is not or-

thogonal to fundamental xft , which makes it not a suitable candidate for a noise shock.

In this paragraph we illustrate how our VAR procedure actually mitigates this problem as

what we call noise shock is not (necessarily) the revision of data vintages, because it is or-

thogonal to the variables included in the VAR.

An exhaustive discussion of this issue would require the knowledge of the prediction models

used by the agencies which publish early vintages of data. Since that is not the case, we

will proceed with an example and discuss how our procedure is robust to a simple statistical

model.

Let us assume that a statistical agency receives a noisy signal on the true underlying eco-

nomic variable which takes on the following form:

x00t = xft + vt (9)
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The key difference with respect to the case above is that now the agency correctly anticipates

that the data they collect are noise ridden (e.g. because they only collect a sample of the data

of interest) and so perform a filtering procedure before making them public. In particular, it

is reasonable to assume that they will consider the linear projection of the true underlying

variable onto the known signal so that the early release would take on the following form:

x0t = P[xft |x00t ] = φx00t = φxft + φvt (10)

Where the projection coefficient φ depends on the relative variance of noise in the signal x00t .

The key difference, relative to the case above is that now the data revision is not orthogonal

to the final release, in fact:

xft − x0t = (1− φ)xft + φvt (11)

As a consequence, it would be incorrect to take the revision as an indicator of the noise

shock. However, our VAR strategy provides a simple fix to this potential problem.

Under the maintained assumption that economic agents in the model know the data-generating

process (i.e. the state-space representation of the economy), the newly defined early release

would simply result in a different set of coefficients in the state-space representation in eu-

qations (??) and (1) but would otherwise not change the model which could be summed up

as:

xft = Ã(L)xft−1 + B̃(L)vt−1 + εt (12)

Where different filters Ã(L) and B̃(L) reflect the different coefficients in the state-space

representation.

Following the same steps as above, and using equation (10) as an alternative definition of the
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early data release, one gets the following formulas for the early release and the fundamental:

x0t = φ(Ã(L)− B̃(L))xft−1 + B̃(L)x0t−1 + φεt + φvt (13)

xft = (Ã(L)− B̃(L))xft−1 +
1

φ
B̃(L)x0t−1 + εt (14)

Despite the scaling factor φ showing up in the equations and different lag-operator polyno-

mials, reflecting the fact that equilibrium responses will in general be different under this

alternative scheme, it is still the case that the noisy component vt contemporaneously affects

only the early release and not the final, thus being consistent with the identification strategy

laid down above. Not only that, but this analysis suggests that the resulting noise shock is

the share of noise φ which is not filtered out by the statistical agency. In other words, it is

the portion of noise that impacts the decision makers.

The example above illustrates a situation in which taking the data revision naively would

lead to an incorrect assessment of the noise shock because the revision incorporates a com-

ponent which is not orthogonal to the true value xft . The VAR however cleanses the revision

of the component that depends on xft .

While the example assumes a very simple information set of the statistical agency it casts

light on the benefits of our strategy, because what we identify as noise shock is orthogonal

to the variables included in the VAR.

In fact, the only possible problem with this strategy appears to be in the number of vari-

ables and lags included in the VAR. In abstract, since the agents in the model know the data

generating process, any variable, or lag thereof, used by the agency would be included in the

state equation. In practice, since we do not know the information set and the procedures

of the statistical agency, we rely on the standard lag-selection tests to gauge whether our

statistical model appears to be correctly specified.
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So, while the limited number of data points curtails the number of series and lags we can

realistically include in our estimation, we find that using a VAR is more accurate than using

data revisions directly (this is somewhat related to Rodriguez-Mora and Schulstad (2007)).

4 VAR

4.1 Baseline

Our baseline VAR specification includes two vintages of quarterly (annualized) output growth

and unemployment. Obviusly we need two vintages of output growth if we want to apply

the identification scheme we laid down in the previous section, output being the key series

subject to revisions. We only have one vintage of unemployment because the unemployment

series is essentially never revised. Unemployment serves two key purposes in our context:

I. Precisely because it is not revised it represents a good proxy for the data-publishing

agency information set as it is readily available and clearly useful to assess economic

conditions in real time. As such, we think it might help us making our identification

robust to data revisions being driven by news, in the sense described in the previous

section.

II. Moreover, it allows us to identify demand and supply shocks with a long run restriction

as in Blanchard and Quah (1989) as one of our goal is to show that using demand

shocks as a proxy for noise shocks overestimates the impact of noise.

We will later consider a larger set of variables (which includes a measure of investment),

but we aim at keeping this exercise parsimonious for at least two reasons:

1. We want to contribute to identification of noise shocks proposed by Lorenzoni (2009)

who used a 2-variable VAR
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2. Including other variables subject to revisions would, potentially, increase the number

of series (and of estimated parameters) much faster than in a traditional exercise using

only the latest data release.

We use de-meaned series so our estimation equation reads:


∆yft

uft

∆y0t

 = β1


∆yft−1

uft−1

∆y0t−1

+ C


ν1t

ν2t

ν3t

 (15)

Where C is the matrix identifying our structural shock which will be described below.

4.1.1 Data Description

For our empirical analysis, we consider the real GDP and the unemployment rate from the

Historical Data Files for the Real-Time Data Set provided by the Federal Reserve Bank

of Philadelphia (Croushore and Stark, 2001). The different vintages of data are available

only from November 1965 to present. The quarterly vintages and quarterly observations

of the Real GNP/GDP (ROUTPUT) is in Billions of real dollars, and seasonally adjusted.

We take the first difference logarithmic transformation, so we consider it as a quarterly

(annualized) growth rate14. Instead, the quarterly vintages and monthly observations of the

Unemployment Rate (RUC) is in percentage points, seasonally adjusted. We transform our

data from monthly to quarterly frequency considering the first observation of the quarter.

We take levels of unemployment rate, without detrending15 it as discussed in Blanchard and

Quah (1989). The investment, used in the robustness analysis, is given by the logarithmic

14Using growth rates is motivated not simply by non-stationarity consideration but also by the fact that,
as Rodriguez-Mora and Schulstad (2007) point out, it is easy to account for big long-term data revisions in
growth rates (because typically affect one value which we substitute with the average of the previous and
the following quarter) than in level, because in this case the effect of the revision is essentially permanent.

15We do not detrend unemployment since our sample data does not show any deterministic or stochastic
trends. Our longer sample from 1966 to 2006 considers different periods, from the Great Inflation to Great
Moderation, with an evidence of no trend.
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transformation of the ratio between the sum of Gross Private Domestic Investment (GPDI)

and Personal Consumption Expenditures: Durable Goods (PCDG) and the Gross Domestic

Product, 1 Decimal (GDP) as in Christiano et al. (2010). All these quarterly observations

variables used to build the investment are provided by FRED Database of the Federal Reserve

Bank of St. Louis.

The VAR analysis, using one lag as suggested by the Schwartz Criterion, considers the

quarterly sample from 1966:1 to 2006:4. We limit our sample until 2006, to leave a sufficiently

long period after the end of the selected sample to be reasonably confident that the bulk of

the revisions has ended by the time we carry out are analysis with a sufficiently long window

for the end-of-sample observations. In fact, our final releases of output are those published

in the third quarter of 201116 so we allow for about five years worth of revisions even for the

data at the end of the sample. For the first release, on the other hand, we considered that

derived from output level numbers published one quarter after the period of interest17, using

a diagonal difference. That way it seems safe to consider that the agency had some time to

collect data, reducing the forecasting component in the release and it also guarantees that

such a number cannot affect the decisions of agents in the current period.

4.2 Results

4.2.1 Qualitative Similarities between Noise and Demand Shocks

The discussion in Sections 2 and 3 delivers an identification assumption for the noise shock

which is the shock that contemporaneously affects the early relase of data only. This, in turn,

16Clements and Galvão (2010) entertain both the definition of final release as the latest available or that
occurring a fixed number of quarters after the end of the period of interest (in their case 14 quarters, seeming
to favor the latter because it is less affected by long-term revisions. On the other hand, Rodriguez-Mora
and Schulstad (2007) seem to favor our approach. In any event, we find our approach a sensible benchmark
because the standard counterpart of our VAR would be one in which the latest releases available are used,
not those published a certain fixed number of quarters after the end of the period of interest.

17The computer code we used to elaborate raw data can be requested to the authors.
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pins down the third column of matrix C:

[C]3 =


0

0

c33

 (16)

where [.]j refers to the j − th column of the matrix in brackets.

The structure of the third column of matrix C implies that the our estimated noise shock ν3t

will be orthogonal to all the variables included in the VAR except the current value of the

first release (see the Appendix B for details).

Figures 2 and 3 report the responses of final output (in log-levels) and unemployment to

a positve noise shock, i.e. a situation in which the early data release is higher than the

surprisingly higher than the fundamentals would imply.

First, both of them are significant. Output appears to be statistically higher than it would

otherwise be for about ten quarters, while unemployment is significantly below its long-run

level for around three years.

This means that an incorrect and unexpected early release of output figures tends to drive

real underlying output in the same direction.

However, it should be noticed that, not only the growth-rate of output converges back to

zero but its log-level does as well, which is consistent with the idea that while noise shocks

can be expected to produce variability at business cycle frequencies, no long-run effects

on output seem likely, consistent with identification scheme in Lorenzoni (2009) who uses

demand shocks as a proxy for noise shocks.

Here we find, without imposing it, that, just like demand shocks in the Blanchard and Quah

(1989) identification tradition, noise shocks do not affect the level of output in the long run.

So, we find a qualitative similarity between noise shocks and demand shocks.

Consistent with the idea of a demand shock is also the fact that the responses of output and
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unemployment have opposite signs, which one would expect when no productivity shocks

are at play.

Having listed the qualitative similarities of noise shocks with demand shocks we now turn

to highlighting the important quantitative differences.

4.2.2 Quantitative Differences between Noise and Demand Shocks

To assess the quantitative differences between demand and noise shocks we need to identify

both. Because of our variable selection, we can readily do so following Blanchard and Quah

(1989). In particular, so far we have imposed two zero restrictions on the C matrix. A third

restriction will identify all the shocks. While we leave a detailed derivation for appendix C,

to build some intuition we report matric C here as well:

C =


c11 c12 0

c21 c22 0

c31 c32 c33

 (17)

The identification of the third column is discussed in the previous section (see equation 15).

The third identifying restriction is imposed on the upper-left block of matrix C. Namely a

long-run restriction is imposed, which restricts the demand shock not to have any long-run

effect on the level of output (see Appndix C for details).

The combination of the zero-restrictions to pin down the noise shock and the the long-run

restriction to separate out demand and supply shocks also identifies the lower-left block of

matrix C (the one that governs the response of the early data release to demand and supply

shocks). In particular, given our restrictions, for C to satisfy CC ′ = Σ, i.e. for the covariance

matrix of the structural shocks to equal the covariance of the estimation residuals, it has to
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be that:

[
c31 c32

]
=


 c11 c12

c21 c22


−1

Σ1:2,3


′

(18)

Having identified demand shocks we can now compare them with noise shocks. Figures

4 and 5 report the same one-standard-deviation impulse responses to a noise shock, together

with responses to a one-standard-deviation demand shock. In order to make the comparison

more robust we report demand-shock responses identified as described in equation (16) and

also demand shocks from a two-variable VAR (i.e. our baseline specification without the

early output growth release, to be more consistent with Blanchard and Quah (1989) original

setup). Interestingly, they deliver very similar results, suggesting that the inclusion of the

early vintage of output growth does not materially affect the identification of demand shocks.

On the one hand, these figures confirm the qualitative conclusions with drew above: demand

and noise shocks both induce negatively correlated responses of output and unemployment

(which suggests a sign restriction would not be enough to separately identify both).

However, they also immediately reveal how the latter produce much larger effects on both

output and unemployment, the demand shock being well outside the 95 percent confidence

bands surrounding the responses to a noise shock. At their peak, responses to a demand

shock are about three times as large as those to a noise shock, which gives us an indication

of the magnitude of the overestimation of the effects of noise one would run into were they

to apply a long-run identification scheme.

This is what we were expecting as, by definition, long-run identification schemes are meant

to capture any economic distrubances which do not have a long run effect on the level of

output, e.g. most fiscal and monetary policy shocks.
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Looking at the variance decomposition for output growth and unemployment stenghtens

our point further. Figure 6 illustrates how noise shocks can explain around 5 percent of the

output growth dynamics and 7 to 8 percent of the movements in unemployment.

Contrasting those numbers with the variance decompositions shown in Table 1 shows that

the variance share of output growth and unemployment explained by the noise shock is about

one order of magnitude smaller than that explained by demand shocks18. Which, once more,

confirms the idea that using demand shocks as a proxy for the effects of noisy data releases,

while qualitatively similar, greatly overestimates the impact of data revisions.

This finding is consistent with Lorenzoni (2009) claim that his procedure overestimates the

impact of noise shocks and provides a quantification of the overestimation, which appears to

be large.

4.2.3 Comparing the responses of different vintages

So far, we have discussed, the differences and similarities in the responses of the final output

growth release to demand and noise shocks.

Now we turn to looking at the differences in the responses of the two vintages of output

growth we consider in our analysis.

Figure 7 reports, side-by-side, the responses of the final (solid line) and early release (dashed

line) of output growthto the Supply, Demand and Noise shocks respectively. Our identifica-

tion restrictions explain why the final release of output growth does not respond contempo-

raneously to a noise shock, but they do not directly restrict the response patterns to demand

and supply shocks.

Hence it is interesting to consider the striking difference in the two. When it comes to

18This is in line with the finding that the impulse response is smaller by a factor of about three. If the
MA representations of the responses to two different shocks (i.e. their impulse responses) are scaled by a
factor of 3 the variance share of the shock with the bigger impluse response should be 9 times larger than
than the other.
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demand shocks the response of the early announcement and of the final release essentially

overlap, while the early data release seems to underestimate the impact of a supply shock.

While this is not conclusive evidence, it is consistent with the idea that because unemploy-

ment is known in real time and is very closely linked to demand shocks, demand shocks are

correctly reflected in the early data release already. The same is not true for supply shocks,

which cannot be recovered by simply looking at unemployment (and even unemployment

and the early data release) or, in other words, seem to take longer to be revealed.

More generally, this pattern is consistent with the idea that demand shocks, such as some

fiscal intervention, seem easier to spot right away than improvements in technology which

are bound to take place at the individual firm level and require some time to become widely

known.

4.3 Alternative VAR Setup

Rodriguez-Mora and Schulstad (2007) suggest that investment is a crucial variable when

considering the impact of data revisions, which is reasonable given the forward-looking na-

ture of investment decisions.

Long-term projects, such as investment plans tend to be, are more susceptible to data im-

perfections as they necessarily have to rely on forecasts of future conditions. On top of that,

investment decisions are costly to reverse, once undertaken.

Adding a measure of investment in our VAR we want to address two main points. First,

we are interested in verifying if investment exhibits a significant response, somewhat along

the lines of Rodriguez-Mora and Schulstad (2007). Secondly, introducing investment we can

verify if the response of output to a noise shock is significant even when a measure of invest-

ment is included in the VAR.

Finally, adding an extra regressor further ”cleanses” our definition of noise shock for poten-

tial correlations with variables which could enter the data-publishing agency’s information
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set. In particular, we make our noise shock orthogonal to our measure of lagged and current

investment as well.

Our definition of investment is similar to that in Altig, Christiano, Eichenbaum, Linde

(2004), namely it is the log of the ratio of investment to GDP (in this case the final value of

GDP). In other words, it is a measure of the investment-rate as a share of output.

In particular, the investment is given by the logarithmic transformation of the ratio between

the sum of Gross Private Domestic Investment (GPDI) and Personal Consumption Expen-

ditures in Durable Goods (PCDG) and the Gross Domestic Product, 1 Decimal (GDP). All

the quarterly-observation variables used to build the series for investment were taken from

the FRED Database of the Federal Reserve Bank of St. Louis.

4.3.1 Results

Results if Figure 8, 9 and 10 show that, once more, responses to revision shocks appear to

be significant at business cycle frequencies.

Interestingly, the size of the responses of output and unemployment is similar to that in

the baseline setup we considered above, which appears to rule out the possibility that the

response of output had to do with the omission of investment from the setup.

At the same time, the investment rate is higher than average for about two years following

an ”overly optimistic” early release of output growth numbers.

In this respect, it should be noticed that it is not simply investment per se that increases,

but investment as a share of output. Because output itself grows after a positive noise shock,

this suggests that the level of investment increases in response to a noise shock more than

output, consistent with basic business cycle facts that show how investment is positively

correlated but more volatile than output (see King and Rebelo (2000)).

Finally, the sheer size of the responses appears to support the idea that noise shocks produce
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real effects even when cleansed from any linear correlation of the revision with lagged and

current investment rates. Turning to the analysis of the variance decomposition, Figure 10

displays the variance-decomposition exercise for the specification which includes investment.

As in the case above, the charts show the share of the forecast-error variance explained by

revision shocks at different points into the future.

Again the share of output growth variance explained levels off just below 5, the corresponding

share being around 7 percent for unemployment and 6 percent for investment.

In sum, adding investment does not change the big picture conclusions we drew for the case

in which only output growth and unemployment enter the VAR specification. Moreover,

broadly consistent with Rodriguez-Mora and Schulstadt (2007), we find that the response of

investment is significant and, consistent with business cycle wisdom, we find it is actually

larger than that of overall output.

5 Counterfactual Analysis

So far we have taken advantage of the fact that the information set of the econometrician is

larger than that of economic agents who do not have the benefit of hindsight, i.e. they cannot

observe the revision of the data series (at least by the time they make their decisions).

Now we carry a different experiment which tries to highlight the benefits implicit in the

extra information the econometrician has access to. Also, these experiments will allow us

to discuss the key conclusion in Blanchard, L’Huillier and Lorenzoni (2013) because, given

our estimated setup we can verify to which extent the noise shock can be recovered when

revisions are not observed.

Our counterfactual experiment relies on a state-space representation in which the state equa-

tion is given by our estimated VAR, while, to keep things simple, the observation equation
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simply selects a subset of the variables. That means that we study a situation in which

some, but potentially not all, of the state variables are observed. To keep things reasonably

simple we assume that variables are either unobserved or fully known. The information

imperfection aspect of the model comes in play only insofar as it is reflected by the early

release being a noisy signal for true output growth.

We will focus on our baseline specification so our state equation reads:


∆yft

uft

∆y0t

 = β1


∆yft−1

uft−1

∆y0t−1

+


c11 c12 0

c21 c22 0

c31 c32 c33



ν1t

ν2t

ν3t

 (19)

Whereas the observation equation will change across the different scenarios but can be rep-

resented as:

ωt = Λ


∆yft

uft

∆y0t

 (20)

Where the hypothetical agent/econometrician information set will consist of the timeless

history of ωt observables and Λ is a q × 3 matrix of zeros and ones which selects 1 ≤ q ≤ 3

of the 3 state variables. We refer to the different scenarios we define this way as observable

combinations and, as already mentioned, for the sake of simplicity, we do not consider any

additional type of shock/measurement error for this exercise.

Given this setup, the remainder of this paragraph will try to assess whether it is possible to

identify noise shocks with data available in real time.

Table 1 reports the output of a simple set of hypothesis tests that try to assess how easy
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it is to correctly identify each of the three shocks given different sets of observables.

The experiment works as follows:

• We consider a one-standard-deviation shock for each type which produces three dif-

ferent scenarios (hence three blocks in the table), while all the other shocks are zet to

zero.

• For each of the scenarios we test the null hypothesis that each of the shocks is zero,

in turn, from the perspective of someone who has received signals ωt about that shock

for four quarters19.

• We repeat the tests for all the 7 possible combinations of observables.

• We report p-values for all the possible combinations.

To help the intution it is useful to start by considering column (7), i.e. the full infor-

mation case20. Looking at the top section (νS0 = 1), the p-values take on value 0 when

H0 : νS0 = 0, which is clearly not to be accepted, and one when the other two shocks are

tested as being equal to zero. This is just a sanity check that compares our testing strategy

against our identification strategy, in the sense that it shows that given the three series we

observe the three shocks can be perfectly recovered.

The p-value for the other six observable-combinations, on the other hand, can be taken as

indications of how easy it is to recover a shock given incomplete information. Obviously

some combinations (e.g. (1) and (4)) are less sensible than others (e.g. (3) and (6)) because

they imply the final release of output is known while the first is not, but we report them all

19The p-values are not independent of the number of observations agents receive prior to the test being
carried out. We decide to consider the test being carried out 4 quarters after the shock but results seem
robust to increasing this number (because after a while there is quite little left to learn). Also, the p-values
are not independed of the scale of the shock: we think of one-standard-deviation as a reasonable benchmark
to illustrate our point.

20In terms of the state space representation in equations (18) and (19), this corresponds to Λ = I3×3
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for completeness.

Highlighted in yellow are the cells in which the p-value comes out below the customary

5 percent mark. Leaving aside the full information case which, as we said above, represents

just a check of our procedure, a few interesting facts can be learnt.

Unemployment reveals demand shocks. Indeed, all the observable-cobinations including un-

employment allow to correctly reject the null that there was no demand shock when in fact

there was one. Because demand shocks explain a massive share of the variance of unemploy-

ment, observing it, even in isolation (observable-combination (3)), reveals what happened

to demand. At a more general level, this reinforces our case to introduce unemployment

because it shows how it can help identify at least one of the shocks, even when agents do

not get to observe all the variables included in the VAR.

Combination (4) is particularly relevant - we could call it the Blanchard-Quah observable

combination - because it includes the two variables used in Blanchard and Quah (1989) and

is indeed very similar to the pair used in Lorenzoni (2009) which features hours instead of

unemployment. On the one hand it shows that the long-run identification scheme they first

proposed is robust to a situation in which their VAR specification does not correctly capture

the state of the economy, which, in our definition, includes the first release of output growth

as well21.

On the other hand, the bottom entry in the observable-combination (4) column reveals that

this pair of observables does not help ”recovering” the noise shock. Hence, it reveals the

shortcomings of identification strategies based on one vintage of data.

In particular, the fact that the demand shock can be recovered while the noise shock (which

in our controlled experiment is, by definition, contributing to the data-generation process)

21This is also consistent with the fact that the demand shock identified in our baseline VAR and in the
two-variable Blanchard and Quah specification are very close to each other (see Figure 5).
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cannot highlights the dangers of considering demand shocks as a proxy for noise shocks.

If combination (4) is the prototypical econometrician’s ex-post observable pair, combina-

tion (6) can be thought to best represent real-time information. It turns out that knowing

the early release and the unemployment figures allows to recover the demand shock only

(because, as mentioned just above, unemployment ”reveals” the demand shock) but is no

help in recovering a noise shock.

In other words, the noise shock cannot be recovered by observing either real-time or ex-post

data but requires both.

Indeed, short of observing the entire three-variable state, the noise shock can only be re-

covered observing two different vintages of output growth (combination (5)). Once more,

this supports the general finding of Blanchard, L’Huillier and Lorenzoni (2013) that it is not

possible to identify noise shocks observing just one vintage of data but also shows how the

econometrician can take full advantage of a richer information set to uncover the effects of

imprecise early data releases.

6 Conclusion

In a world in which there is uncertainty about the underlying state of the economy, early

indicators of economic conditions can affect the decision-making process of the economic

agents even if they are noise-ridden.

We set out to try and quantify the impact of noise shocks, i.e. the component of early

data releases that is unrelated to the contemporaneous true fundamental value. We did so

exploiting the econometrician’s benefit of hindsight, i.e. the fact that she can observe both

what in model would be considered the signal and the underlying fundamental on which

the noise shock applies. This way we can overcome the impossibility result presented in
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Blanchard, L’Huillier and Lorenzoni (2013).

Our identification strategy uses a timing assumption which restricts true economic funda-

mentals to respond to noise shocks only with a lag, while the early data release is affected

contemporaneously. This restriction arises naturally if one considers that early data releases

(unless they are forecasts) can only be produced when the period at hand is over or, for our

purposes, when the economic decisions have been made already.

By carrying out our analysis in a VAR, we can afford to remain agnostic about the underly-

ing drivers of data revisions, restricting only the timing of the responses as described above.

Indeed, we show how our identification strategy can, under certain conditions, uncover the

noise shock even when data revisions are driven by news, i.e. the revision is not orthogonal

to the fundamentals.

Our empirical exercise shows qualitative similarities between the responses to a noise shock

and a demand shock, primarily the negative correlation of output and unemployment re-

ponses, which was the proxy to a noise shock used in Lorenzoni (2009). However, the

responses to noise shocks are much smaller (about a third in size at the peak) than those

to demand shock, showing that using demand shocks as a proxy for identified noise shocks

would over estimate the impact of imprecise data releaes on the business cycle. Our analysis

quantifies the contribution of noise shocks to around 4-8 percent of the variance of output

growth and unemployment.

Following the analysis of Rodriguez-Mora and Schulstadt (2007), we also study the impact

of the noise shock on investment and find that when we introduce a measure of investment

in our VAR specification the responses of output and unemployment are roughly unaffected

and investment as a positive and significant response.

Finally, we consider a counterfactual experiment based on our estimated VAR, which sup-

ports the view that noise shocks cannot be recovered unless different vintages of data are

used.
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A Derivation of the VAR from the state-space repre-

sentation

We now show how the VAR specification we employ relates to the state-space representation

in which dispersed-information models are usually cast in.

We will try to keep it general, although obviously there tend to be multiple ways to write

the state-space representation of a model which might change the algebra, although the

substance of the model would be the same.

Throughout the derivation we will maintain the assumption that Zt is defined by stacking

up multiple lags of the state variables, which are assumed to comprise xft and x0t .

A.1 Derivation of the VAR Representation

First define ΞF and Ξu such that:

xft = ΞFZt (21)

ut =

 Ξuut

vt

 (22)

Where ΞF selects the current final release of the state vector and Ξu a (m− 1)×m matrix

of zeros and ones which picks out the (m − 1) non-noise shocks from the vector ut. For

simplicity, we will maintain the assumption that the noise shock we are interested in is the

m− th and last entry of the vector of shocks.
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Given the state-space representation in equations (??) and (1) we have:

xft = ΞFΨ1Zt−1 + ΞFΨ0ut (23)

= ΞF

(
s∑

l=1

[Ψ1]f,lx
f
t−l + [Ψ1]0,lx

0
t−l

)
+ ΞFΨ0ut (24)

= ΞF

(
s∑

l=1

[Ψ1]f,lx
f
t−l + [Ψ1]0,lx

0
t−l

)
+ [ΞFΨ0]∀i<mΞuut + [ΞFΨ0]mvt (25)

Where s is the number of lags stacked in the state vector, and [.]h refers to the h− th column

of the matrix in brackets with the understanding that [.]0,l refers to the column multipying

the l − th lag of the early release and [.]f,l the l − th lag of the final release.

Given our zero-restriction assumption on Ψ0:

[ΞFΨ0]m = ΞF [Ψ0]m (26)

= 0 (27)

Where the first equality follows from folding out the matrix product and the second because

the columns of matrix ΞF corresponding to early releases are all zero by construction, while

the only non-zero entries in the m− th column of matrix Ψ0 correspond to early releases by

our identification assumption described in the main body of the paper.

Using that and defining εt ≡ [ΞFΨ0]∀i<mΞuut, i.e. the rotation of all the other shocks,

delivers:

xft = ΞF

(
s∑

l=1

[Ψ1]f,lx
f
t−l + [Ψ1]0,lx

0
t−l

)
+ εt (28)

= ΞF

(
s∑

l=0

[Ψ1]f,lx
f
t−1−l + [Ψ1]0,lx

0
t−1−l

)
+ εt (29)

= R(L)xft−1 + S(L)x0t−1 + εt (30)
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Which corresponds to equation (7) given the appropriate matrix definitions.

Now, using the definition of early release22 we get:

xft = ΞF

(
s∑

l=0

[Ψ1]f,lx
f
t−1−l + [Ψ1]0,l(x

f
t−1−l + vt−1−l)

)
+ εt (31)

= ΞF

(
s∑

l=0

([Ψ1]f,l + [Ψ1]0,l)x
f
t−1−l + [Ψ1]0,lvt−1−l

)
+ εt (32)

= (R(L) + S(L))xft−1 + S(L)vt−1 + εt (33)

Which is the same as equation (4) when A(L) and B(L) are defined accordingly.

B Orthogonality of the revision shock

The following paragraph illustrates the benefits of using a VAR procedure to study revision

shocks. In particular it will show that the revision shock resulting from our analysis is a

reasonably close proxy to the classical noise shock employed in models.

We will illustrate the point for our baseline specification, but obviously it generalizes. If we

refer to the VAR residuals as wt then, given our identification assumption:


ν1t

ν2t

ν3t

 = C−1wt (34)

22At the modeling stage it does not qualitatively matter whether x0t = xft + vt or φxft + φvt as it would
just rescale the matrices so the derivation would be the same.
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Basic projection theory implies that:

Cov

wt,


∆yft−1

uft−1

∆y0t−1


 = 0 (35)

So:

Cov



ν1t

ν2t

ν3t

 ,


∆yft−1

uft−1

∆y0t−1


 = Cov

C−1wt,


∆yft−1

uft−1

∆y0t−1




= C−1Cov

wt,


∆yft−1

uft−1

∆y0t−1


 = 0 (36)

Besides being orthogonal to past values of both the early and the final data releases, the

zero restrictions in the third column of C ensure that ν3t , our noise shock, is also orthogonal

to the current realization of the final data releases, while it affects the early output growth

release because c33 6= 0.

As a result, as opposed to the plain data revision, our definition of noise shock ensures

orthogonality with all the lagged/variables included in our estimation as well as orthogonality

to the final releases of period t.
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C Identifying Noise, Demand and Supply Shocks

We will now go into the details of our identification23 strategy. We will focus on our baseline

specification and identify all the shocks.

Our complete identification scheme aims at imposing enough restrictions to uniquely pin

down the structural-shock matrix C, such that:

Cνt = wt (37)

CC ′ = Σ (38)

E [νtν
′
t] = I3 (39)

Where Σ ≡ Cov(wt), the covariance matrix of the estimation residuals wt and νt are the

structural shocks.

To uniquely pin down C , three restrictions are required.

Our discussion in Section 2, provides with two because it restrics the contemporaneous

responses to final output growth and unemployment to zero. Hence c13 = c23 = 0 and

c33 =
√

Σ33 so that equations (37) and (38) are satisfied (for what concerns the variance of

the third residual)24 .

In terms of identifying the noise shock this would be enough, which is convenient, because

it could extend to alternative VAR specifications (e.g. the one we tried which includes a

measure of investment).

Our exercise, however, was concerned with comparing the noise shock with a long-run iden-

tified demand shock, for which our baseline specification is very convenient because it allows

us to use the Blanchard and Quah (1989) well known identification strategy, the caveat being

23We thank Amborgio Cesa-Bianchi for sharing his version of the implementation of a Blanchard-Quah
long run restriction

24Obviously c33 = −
√

Σ33 would also do so tha is the sense in which our identification is up to a sign.
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that we only use it to identify a block of C25

Given our zero restriction, our matrix C looks as follows:

C =


c11 c12 0

c21 c22 0

c31 c32 c33

 (40)

The long-run identification applies to the upper-left block so it is convenient to define:

C̃ ≡

 c11 c12

c21 c22

 (41)

Σ̃ ≡

 σ11 σ12

σ21 σ22

 (42)

β̃ ≡

 β11 β12

β21 β22

 (43)

The long-run restriction is then implemented as follows:

C̃ = (I2 − β̃)F (44)

F ≡ Chol
(

(I2 − β̃)−1Σ̃(I2 − β̃)−1
)

(45)

Which implies that:

C̃C̃ ′ = (I2 − β̃)FF ′(I2 − β̃)′ (46)

= (I2 − β̃)(I2 − β̃)−1Σ̃(I2 − β̃)−1(I2 − β̃)′ (47)

= Σ̃ (48)

25As a robustness check we have also estimated a two-variable VAR (dropping the early release of output
growth) and it turns out that the identified demand shocks look remarkably similar as Figure 5 illustrates.
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and also that the demand shock will not have any long-run effect on the level of output,

which follows from the zero restriction in F, which, in turn, implies the sum of the impulse

response coefficients of output growth to a demand shock (infinite MA representation) is

zero.

The long-run restriction is the last of the three restrictions we could impose on the matrix

C. The elements of C we have described so far match up (with reference to equation (37))

four of the six unique elements of Σ (in gray below):

Σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (49)

The remaning two elements of C (in the lower-left block) are then pinned down by the

restriction implied by the covariances between the first and third residual and that between

the second and third.

In particular:

[
c31 c32

]
=

((I2 − β̃)F
)−1  Σ13

Σ23



′

(50)

Which is the same as equation (17), just more explicitly highlighting the link to the estimated

cofficients and covariances.

Hence the responses of the final releases of output and unemployment to a noise shock are

pinned down as a consequence of the the three restrictions we imposed above, as it should

given that three restrictions are required to uniquely pin down (up to sign) the matrix C.
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Figure 2: Response of output (in logs) to a one-standard-deviation noise shock.
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Figure 3: Response of unemployment to a one-standard-deviation noise shock.
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Figure 4: Response of output (in logs) to a one-standard-deviation noise shock (red), to a
demand shock identified in our three-variable VAR (blue with diamonds) and to a demand
shock identified in a two-variable VAR which excludes the early output growth release (green
with squares)
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Figure 5: Response of unemployment to a one-standard-deviation noise shock (red), to a
demand shock identified in our three-variable VAR (blue with diamonds) and to a demand
shock identified in a two-variable VAR which excludes the early output growth release (green
with squares)
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Figure 6: Forecast variance share of output growth (top) and unemployment (bottom) ex-
plained by noise shocks.
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Figure 7: Reponses of the final (solid) and early (dashed) releases of output growth to a
supply (left), demand (center) and noise (right) shocks.

46



0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Response of Output to a Noise Shock

Figure 8: Reponse of final output growth to a one-standard-deviation noise shock when a
measure of investment is included in our VAR specification.

47



0 5 10 15 20
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
Response of Unemployment to a Noise Shock

Figure 9: Reponse of unemployment to a one-standard-deviation noise shock when a measure
of investment is included in our VAR specification..
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Figure 10: Reponse of our measure of investment to a one-standard-deviation noise shock.
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Shock H0 Set of Observables

One Observable Two Observables All

∆yf u ∆y0 ∆yf , u ∆yf , ∆y0 u, ∆y0

(1) (2) (3) (4) (5) (6) (7)

νS0 = 0 .45 .93 .84 0 .33 .54 0
νS0 = 1 νD0 = 0 .54 .81 .68 .96 .54 .50 1

νN0 = 0 .99 .94 .77 1 .53 .46 1

νS0 = 0 .51 .92 .74 .79 .50 .93 1

νD0 = 1 νD0 = 0 .58 .03 .50 0 .45 0 0
νN0 = 0 .99 1 .63 1 .49 .93 1

νS0 = 0 .99 .94 .79 1 .71 .51 1
νN0 = 1 νD0 = 0 .99 .99 .58 1 .71 .56 1

νN0 = 0 .96 .95 .69 .94 .03 .40 0

Table 1: The first column indictes the shock hitting the economy in period 0, the second, the
null hypothesis (tested after four observations), the other columns report the corresponding
p-values. Values below the canonical 5 percent significance level are highlighted.
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Output Growth Unemployment
2-variable VAR 2-variable VAR 2-variable VAR 3-variable VAR

Supply 43.48 41.23 2.08 1.11
Demand 56.52 54.04 97.92 91.16
Noise n.a. 4.73 n.a. 7.73

Table 2: Variance Decomposition (at infinite horizon) for output growth and unemployment
in both our 3-variable baseline VAR specification and in the 2-variable VAR specification
which does not include the early realease of output growth (in which the identification of
the noise shock is not possible)
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