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Abstract

Insurers choose plan characteristics to sort for profitable consumers. In a model
with multidimensional types, this sorting incentive is proportional to the covariance,
among marginal consumers, between marginal willingness-to-pay and cost to the in-
surer. Standard forms of cost-sharing successfully repel costly consumers, but reducing
plan comprehensiveness instead alienates the risk-averse. In a perfectly competitive
equilibrium, the sorting incentive must vanish. Market power increases insurance qual-
ity and welfare. Nonetheless, a competitive equilibrium with positive insurance is pos-
sible when insurance value is sufficiently negatively correlated with cost. However, in
a calibration to Handel, Hendel and Whinston (2013)’s data, equilibrium still fails to

exist.
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1 Introduction

Insurers choose non-price characteristics of their products, such as co-insurance rates and
deductibles, to selectively attract the most valuable customers. For instance, in Rothschild
and Stiglitz (1976) (henceforth RS), lowering insurance quality disproportionately hurts high
risk consumers, so insurers “skim the cream” from rivals by raising cost-sharing and lowering
price, which causes a “death spiral” towards zero insurance. However, such a strategy can be
ineffective if the risk-averse are also repelled, and if these consumers are also typically less
costly, as found by Finkelstein and McGarry (2006) and Fang, Keane and Silverman (2008).
Despite this, existing analyses of product design in selection markets assume individuals are
only heterogeneous along a single dimension, usually risk-type. This assumption rules out
sorting incentives in monopoly models (Stiglitz, 1977; Veiga and Weyl, 2013) and eliminates
competitive equilibria (RS, Riley, 1979). In this paper we propose a simple characterization
of sorting incentives in the presence of continuous multidimensional types that implies the
possibility of a competitive positive insurance pooling equilibrium, quantifies how market
power affects equilibrium product design, and can be calibrated based on simple reduced-
form statistics.

We allow for flexible forms of consumer heterogeneity and preferences and gain tractabil-
ity by assuming that the set of contracts offered can be described by a vector, as it is in
RS, rather than a menu rich enough to match the richness of heterogeneity. Thus we do not
allow for non-linear pricing of a continuum of products, described by a function as in Stiglitz
(1977) and Rochet and Choné (1998). Our analysis is based on the characterization of the
marginal incentive of an insurer to use a non-price product characteristic, such as an actuar-
ial rate, to sort in favor of low-cost consumers. This is the product of two components. The
first component is the density of marginal consumers and captures how many buyers change
their purchase decision when a product characteristic changes. The second component cap-
tures which buyers adopt the product. This second term equals the covariance, within the
set of marginal buyers, between the marginal willingness-to-pay (WTP) for the non-price
product characteristic and the cost of consumers to the firm. This covariance vanishes in
one-dimensional models because the set of marginal types is a singleton.

Although this covariance is endogenous, it can be characterized to yield economically
important results. We begin by showing that the covariance is signed when marginal WTP
and cost can be written as monotonic functions of an (endogenous) common index. This
occurs naturally in environments with non-linear pricing or when types are bidimensional.
We illustrate this result in a simple model where individuals differ in expected loss and risk

aversion. Increasing the generosity of a linear actuarial rate disproportionately attracts the



worse risks, which we refer to “adverse sorting.” We also show (computationally) that more
generous deductibles and indemnity caps also sort adversely, but increasing the probability
that a shock is covered ex-post (a measure of plan comprehensiveness) sorts advantageously.
These results help explain why contracts typically share costs along dimensions such as
deductibles and coinsurance rates, but usually offer plans covering all catastrophic outcomes.

We then extend the model to a simple competitive setting a la Hotelling (1929). We
assume firms are symmetrically differentiated, that the market is covered and that Hotelling
preferences over insurers are independent of risk and risk aversion. Moreover, we focus
on marginal incentives at symmetric (pooling) contracts, which we call a “local deviations
pooling equilibrium” or LDPE. In a simple bidimensional context, the LDPE is unique
whenever it exists. However, full insurance is never an LDPE even thought it is social optimal
in the absence of moral hazard. The incentive to increase cost-sharing near full insurance is
always positive because marginal insurance value vanishes near perfect insurance. Therefore,
insurance at a competitive LDPE is always insufficient. By contrast, a monopolist has a
socially optimal incentive to provide insurance quality (albeit at an excessive price) because
it internalizes the socially harmful effects of cream-skimming. Therefore, as market power
increases and reduces the first element of the sorting incentive, insurance quality rises. In
the absence of moral hazard, this implies that market power increases welfare.

We then consider the case of perfect competition. When consumers differ only in their
risk type (RS; Riley, 1979) the incentive to cream-skim undermines any positive level of
insurance under perfect competition. Multidimensional types re-introduce the possibilty of
a pooling equilibrium by mitigating the second component of the sorting incentive if and only
if value for insurance is sufficiently negatively correlated with mean risk, as found empirically
by Finkelstein and McGarry (2006). In the limit of undifferentiated Bertrand competition,
LDPE insurance has a simple structure: the covariance term must vanish because the density
of switching consumers becomes arbitrarily large. If 5 is the OLS regression coefficient of
insurance value on mean risk in the entire population, a competitive LDPE with positive
coverage requires < —1. When this is the case, sorting is sufficiently advantageous that
insurers gain from raising cost-sharing above zero. When £ is sufficiently positive, the unique
LDPE features zero insurance. For an intermediate range of 3, no LDPE exists for the same
reasons as in RS: there are first order losses from raising risk-sharing above zero, but there
are also second order gains from doing so.

We calibrate our analysis with summary statistics from Handel, Hendel and Whinston
(2013) (henceforth HHW), who adopt a CARA-Normal framework to measure the joint

distribution of types.! In their data, 8 ~ 13, implying that only zero insurance is a candidate

"'We thank these authors for generously sharing with us these statistics.



LDPE. However, second-order conditions show that zero insurance is not an LDPE either
and thus the RS non-existence result holds in this setting. Our approach thus uses a simple
empirical summary statistic to explain the extreme adverse selection and market collapse
found in HHW’s more detailed structural analysis. While market power restores positive
insurance in LDPE and approaches the first-best as it grows large, a relative-to-cost mark-
up of almost 170% is necessary for an LDPE to even exist, and a markup of twice cost is
necessary to achieve an actuarial rate of 80%.

We then perform three additional calibration exercises as robustness checks to our anal-
ysis of competition. First, we allow for moral hazard. This implies that full insurance is not
socially optimal, but it is still the case that LDPE insurance (zero) is dramatically below
the socially optimal level (86%). Second, we discuss why the welfare enhancing effect of
market power appears to contradict existing results (Armstrong and Vickers, 2001; Rochet
and Stole, 2002), where competition drives out distortions from second-degree price discrim-
ination, leading to efficiency. The reason is that these models consider ex-post contracting
where only moral hazard (ex-post efficient consumption) is relevant while we consider an
ex-ante situation where only insurance is relevant. We give an example of a model where
consumers first incur health shocks and then purchase healthcare ex-post. Ex-post welfare is
maximized when consumers internalize their costs, which occurs under perfect competition.
A calibrated version of this model is (positively) quantiatively similar to our benchmark
model while yielding opposite welfare conclusions. Third, we consider market expansion.
When the market is not covered, market power redcued the quantity of individuals covered
while increasing the quality of insurance, so the effect on welfare is ambiguous. However, at
the interior optimal degree of market power (a relative mark-up of around 100%), welfare
is remarkably 98% of its level at the social optimum, thus reinforcing the conclusion that
market power is may be beneficial to solve the cream-skimming problem.

The remainder of the paper is organized as follows. Section 2 presents our results in a
simple CARA-normal setting where users differ in mean risk and risk aversion. The emphasis
is on the discussion of our substantive assumptions, the economic content of the model and
sketches of the proofs. Section 3 contains the empirical calibration to the HHW data. Section
4 contains proofs and generalizations. Section 5 contains robustness checks. We conclude in
Section 6, where we discuss the applicability of our approach beyond insurance markets and
policy implications of our analysis. Less instructive proofs, detailed calcuations and details

of our calibration exercises are collected into the appendices following the main text.



2 A Simple Model of Sorting

This section develops the main results of the paper in a simple CARA-Normal setting where
insurance is characterized by a linear actuarial rate and consumers differ in risk and risk
aversion. We describe the ingredients of the model, consider a monopoly insurer, then

extend the model to a competitive setting.

2.1 Setup

A unit mass of individuals face an uncertain verifiable wealth shock. A monopoly commits to
absorbing a share = € [0, 1] of the shock for a price p € R,. The actuarial rate x captures the
quality of insurance, or 1— the amount of cost sharing. Consumers have constant absolute
risk aversion (CARA) preferences, so maximize the expected value (over realizations of the
shock) of —e™*"| where w is final wealth and a > 0 is absolute risk aversion. Wealth shocks
are normally distributed with mean p > 0 and variance o2 > 0. The expected cost to the
risk-neutral insurer of providing quality x to a type p is ¢ (x, ) = zp.

7}, while
with insurance it is —exp { (1 —x)u+ap+ m} Willingness-to-pay (WTP) for x is

the price at a given individual has these two expected utilities be equal. This WTP is

1—(1—x)?

u(x, p,v) = xp+ — v

where v = ac?

> 0 is an individuals value for insurance, the amount by which she val-
ues insurance beyond the off-loading of mean risk to the insurer (zu). The vector (u,v)
summarizes the relevant bidimensional individual heterogeneity and it is not contractible.

Buyers are those for whom WTP exceeds price: u (z, u, v) > p. For x > 0, we equivalently
define the set of buyers by p > p* (p, z,v) = % (p — #v) The set of marginal buyers
are those for whom p = p* (p, z,v). The set of of buyers is a two-dimensional surface, but
the set of marginal consumers is a one-dimensional curve in R?, as in Figure 1.

The insurer knows (u, ) is distributed according to the atomless and full support proba-
bility density function f (u, v L ] x[v,7] = Ry Defining u (p, z,v) allows us to express
the quantity of buyers as a standard iterated integral: @ (p,x f f " (p) ) dudv.

8Q(p’ ) < 0, so there exists a price P (z,q) which solves QP (x,q), x) = q for

Intuitively
any ¢. This allows us to follow Spence (1975) in defining the firm’s profits as a function of

quantity ¢ and quality x. As we explain below, it is useful to consider changes in x holding
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Figure 1: Set of buyers for u € [0,10%], a € [107°,107%], 0% = 10* and p = 40000. Quality is
x = 0.8 (blue) and = =1 (red).

fixed the total number of buyers, which is straightforward in this setup. Total cost is

T E
C =/ / c(, p) f (v, 1) dudv.
v Jpr(P(gz)z,v)

and profit is I1 = ¢P (¢, z) — C.
AS Is typiC&L Eu [C (l’, Ky U) | K > M*] = %f; f;fi(P(q,at),z,v) C (37, Ky U) f (Ua M) d,udv for an

integrable function ¢ (z, y,v). The density of marginal users is M = —%ﬁ’“). Let p* =
w* (p,z,v). Then E, [¢ (z,p,v) | p=p*] = Ly Cf;ﬂ :fv(/;vv) " is the expectation conditional

on the margin, and similarly for the covariance along the margin Cov, [ | u = p*].?

2.2 Monopoly

Given this setup, a profit-maximizing monopoly’s First Order Condition (FOC) is captured

by the following result, where functional arguments are omitted for simplicity. We denote

dulepu) _ delep) _

!
e = U and =

Proposition 1. A necessary FOC for a monopoly’s profit mazimizing choice of  is

—qB[ | p> ]+ qB, [ | p = p*] = MCov, [u',c| p = p], (1)
C:)gt SpenZerteTm So;;ng

Proof. By Leibniz’s rule, M = — anx) 1 f f(p*,v)

2Typically, defining E,, [- | 4 = p*] requires some care to define an economically useful measure on this
set. However, in this simple example, such complications do not arise and therefore we delay discussing them
until Section 4.



By the Implicit Function Theorem (IFT), u (z,v, u* (x,v,p)) =p = %: = —1u/. By the
IFT, Q (P (x,q),7) = ¢ = % = —92% By Leibniz’s rule 22 = —J2/0¢ — _ MEulvli=p'] _

T 9Q/dp s ~9Q/op — -M
E, [v | o= p*]. Similarly by Leibniz’s rule, = = —ME, [v'c | p= p*] + qE[¢ | p = p].
Moreover, % = ME, [c | p = p*]. The FOCis 4" = q%—%—g - %% = 0. Replacing
each of these elements of the FOC yields the result. For details, see Theorem 1. m

This characterization decomposes the insurer’s marginal incentive to raise quality (z)
into three components. The first two are familiar. First, the monopolist loses the average
increase in the cost of buyers (E[¢ | p > p*]) multiplied by the number of buyers (¢), which
follows mechanically from the additional share of the shock absorbed by the insurer. Sec-
ond, increasing x causes the number of buyers to increase. In order to keep ¢ fixed, price
implicitly increases to all buyers (¢) by the average marginal WTP of marginal consumers
(E, [« | u = p*]), as in Spence (1975).

The third effect is the focus of our analysis. Increasing x not only changes the number
of buyers, but also their composition since x attracts some individuals (those with large u')
more than others. This alters the composition of buyers, sorting in favor of marginal buyers
with high «’. All buyers pay the same price p, so the impact that buyer composition has on
profit depends on whether the marginal consumers most strongly attracted by = tend to be
also those with particularly high cost (c¢). If this is the case, sorting increases the insurer’s
costs. It is therefore natural that the effect of sorting on profit is captured by the covariance,
among marginal consumers, between the cost of providing them with the product and their
WTP for an increase in x: Cov, [/, ¢ | u = p*]. If Cov, [/, c | p = p*] > 0, additional quality
(x) increases average cost, so there is “adverse sorting.” If Cov, [/, c| p = p*] < 0, there is
“advantageous sorting.”

It is useful to distinguish sorting from what is commonly referred to as selection, which
captures the response of average cost to a change in the quantity of buyers. “Adverse se-
lection” occurs when, among all buyers, those with higher level of WTP are most costly.
Then, as the number of buyers increases (price falls), average cost falls as in Akerlof (1970)
and Einav, Finkelstein and Cullen (2010). “Adverse sorting” occurs when, among marginal
buyers, those with higher marginal WTP are most costly. Then, holding fixed the number of
buyers, as quality = increases, the effect this has on the composition of buyers causes average
cost to increase.

Importantly, the sorting term vanishes when consumers are homogeneous in their marginal
WTP for x or in their cost. It also vanishes when there is a unique type of marginal con-

sumer, as in all unidimensional type models we are aware of. Finally, notice that this effect

3The effect was independently and nearly simultaneously identified by Sheshinski (1976), although we
follow the convention of associating it with Spence.



is scaled by M = ——p which captures the responsiveness of demand. Loosely speaking, in
Figure 1, M captures translations of the line that defines the marginal set (changes in the
number of buyers), while Cov, [v/, ¢ | u = p*] captures rotations of that line (changes in the

composition of buyers).

2.3 Signing the sorting incentive

The sorting term may seem an unlikely object to focus on since it is endogenously determined
by q and x. However, its sign can be ascertained directly and exogenously in a variety of
contexts to yield results of economic importance. We use these results to determine the sign
of sorting for canonical insurance design dimensions such as a deductible or an indemnity
cap. In this section, we do not use the notation v = ac?.*

An advantage of the simple two-dimensional setting described above is that, in this case,
the set of marginal consumers is a one-dimensional curve. Then, conditional on this set,
the functions u' (x,pu,a) and c(z, ) become u(x,a,u* (p,x,a)) and c(z,u* (p,x,a)) and
are therefore univariate in a for a given (p,z). Then, if two univariate functions are co-
or anti-monotone, the covariance between them is signed.” This is stated in the following

result which, importantly, applies for instruments other than a linear actuarial rate. Let
u=u(z,p,a).

PI‘OpOSitiOH 2. Let S5 = S(p,:r,a,,u* (p,$,(1)) = 6281:1{/88:55& B 82;7{/6;,1?M ’HZ#*(R%“)' [f S s

signed, it has the opposite sign of Cov, [u/, ¢ | p = p*].

Proof. Marginal buyers have WTP equal to price. Since 2% o L >0 and = > 0, for a fixed level

of WTP, dd% < 0, as in Figure 1. Thus W aa,; < 0is monotonlc Then, the
sorting incentive depends only on - (8“(’3’“”5;(” ’x’a))> =Zu 4 81:;#—&% Since —a“— = gz;gz

and = > 0, this has the same sign as S. If S <0, then v’ is co-monotonic with ¢ within the

margin, so sorting is adverse, and vice-versa. For an extension, see Theorem 2 O]

We are concerned with the set of marginal users, where the level of WTP is constant (and
equal to price). Therefore, sorting is adverse when risk () raises marginal WTP relative to
level of WTP more than risk aversion (a) raises marginal WTP relative to the level WTP.
Theorem 2 below shows that this logic holds for more general preferences and cost functions,
namely if types are bidimensional. Then, if 6; is the type dimension that increases marginal

WTP of x most rapidly relative to the rate it increases WTP, and 6; also increases cost most

4This notation is not useful when considering instruments other than a linear actuarial rate. However, in
the case of the linear actuarial rate, all results stated in this section remain true if @ is replaced by v = ac?
even if o2 is allowed to be heterogeneous across individuals.

°For a simple proof, see Schmidt (2003).



rapidly relative to the rate at which it increases WTP, then x sorts adversely. Since the
curvature of a function captures the difference between its margin and its average, sorting
favors the dimension of type which generates a more convex demand for . The following

corollary is immediate.

Corollary 1. An actuarial rate sorts adversely (Cov,, [u',c | p= p*] >0).

9%u/0xda 0%u/0xdp 2z
PT’OOf. du/da ~  Oufou —0 3 < 0. o

WTP is u = xp + Waaz. Demand induced by p is linear, while that induced by
a is concave in x. There is a constant incentive to transfer mean risk, but insurance value
has decreasing returns. For profitable marginal individuals (high a, low p) additional = has
rapidly decreasing marginal benefit, but for unprofitable marginal individuals (high p, low
a) each unit of z has only slowly decreasing marginal benefit. This is why raising z attracts
bad risks more intensely than good risks, as suggested by Figure 1.

It is also useful to consider sorting by instruments other than an actuarial rate. Since
these cases are less analytically tractable, we proceed computationally, providing details in
Appendix A. For realism, we consider cases where reimbursements occur only for negative
shocks and study three instruments: a standard actuarial rate (a share x of the shock are
covered), a deductible (value of shock above a threshold x are covered), and an indemnity
cap (shock is covered up to a value z). Finally, we consider a measure of comprehensiveness,
where there is a probability x that a shock is covered. We assume shocks [ have a Gaussian
density f with heterogeneous mean p and homogeneous variance o2. The insurer makes a
payment G (I,x) > 0 when the individual incurs a loss [. Consumers have CARA utility.
The homogeneous initial wealth is wy. Without insurance, final wealth is wy = wg — .
With insurance, it is w; = wy — [ + G (I, x) — p. Expected surplus from insurance is U =
[ lemowN —em@wr] fdl. Appendix A shows how to express WTP (and thus S) in terms of U.
Computationally, we generate draws of (p,x,a), compute the value of yu = p* (p,z,a) that
makes an individual marginal (U = 0), then evaluate S |,—,x(p,a)- We calibrate our analysis
following HHW: we set 02 = 10%, which is the mean value of o2 is that data. We consider
a € [1075,1073] and p € [0, 5 - 10%], which are approximately the ranges of risk aversion and
risk in that data. We focus on the relatively high levels of insurance and assume insurance
is perfect along every dimension other than the one we consider. The computational output

justifying the following claims is in Appendix A.

Claim 1. Additional insurance sorts adversely (Cov, [v/,¢ | u = p*] > 0) when:

e 1 is an actuarial rate, so G (I, x) = max {0, zl}.



e 1 is a deductible, so G (I,z) = max {0,] — x}.
e 1 is an indemnity cap, so G (z,!) = min {max{0,(},z}.

These canonical dimensions of insurance quality sort adversely (for a deductible, increas-
ing x implies less generous insurance). This suggests an explanation for why insurers have
an incentive to share costs with consumers relative to full insurance, since this would im-
prove the composition of its buyers. Notice that this does not imply that insurance would
be reduced to zero: a monopoly must balance the incentive to sort on the right hand side
(RHS) of Equation 1, with the incentive to exploit the gains from trade from more insurance
on the left hand side (LHS).

Finally, we consider an instrument that sorts advantageously even at full insurance. We
assume an insurer covers the full loss [ with probability x, which we refer to as the plan’s
“comprehensiveness.” This can be thought of as the share of conditions that are covered by
insurance, or the completeness of the insurance contract.’ Final wealth without insurance is
wy. With insurance, with probability x, final wealth is w;, = wo — p; with probability 1 — z
it is w;_ = wo — | — p. Surplus from insurance U is as above.

Claim 2. Comprehensiveness sorts advantageously (Cov, [/, ¢ | p = p*] < 0).

In this case, additional insurance (increasing z) sorts advantageously even at full insur-
ance (z = 1). Given that gains from trade also tend to raise coverage towards full insurance,
this suggests that insurers have a incentive to offer contracts that are as complete as possible,
since this disproportionately attracts the risk-averse (although doing so may entail additional
costs that are not modeled above). In particular, no insurance contract that we are aware

of explicitly makes the probability of reimbursement random.

2.4 Competition

The general message of RS and of a large subsequent literature is that competing insurers
have incentives to offer low levels of insurance, and that, as a result, equilibrium may not
exist. In their conclusion, RS suggest that frictions, such as multidimensional types or im-
perfect competition, might mitigate these extreme results. Consistent with this hypothesis,
Einav, Finkelstein and Cullen (2010) and others have shown how multidimensional types
can mitigate or even reverse the welfare effects of adverse selection (that is, selection on the

number of individuals & la Akerlof (1970), without endogenous product quality).” Despite

6This is equivalent to: 1) a condition is drawn from a U [0, 1] distribution; 2) an associated loss drawn
from a N (u, 02). Then z captures the share of conditions covered. Notice that all conditions have the same
likelihood and loss distribution. The term z can also be thought of as capturing the completeness of the
contract offered by the insurer.

"See Einav and Finkelstein (2011) for an excellent summary of the literature.
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this, to our knowledge, no paper has quantified the effect of such frictions on outcomes in
the RS environment, where non-price product characteristics are endogenous.®

Our characterization of the sorting incentive allows us to shed light on the interaction of
both these frictions with product design. We confirm RS’s intuition that these frictions may
restore the existence of a perfectly competitive pooling equilibria with positive insurance.
However, our calibration in the next section shows that market power is more likely than
multidimensional heterogeneity to actually do so. Moreover, our characterization allows us
to describe the level of insurance under perfect competition and it implies that market power
tends to increases insurance quality.

We extend the framework above to a simple Hotelling environment as in Villas-Boas and
Schmidt-Mohr (1999) and Bénabou and Tirole (2013). We consider two insurers, indexed by
i € {0,1}, where i captures location on the Hotelling unit interval. Insurer i chooses a linear
actuarial rate z; and a price p;. We assume the two insurers are identical apart from their
Hotelling location, so cost is ¢ (x, ;1) = xu for either insurer. Consumers have an additional
dimension of type, b € [0, 1], which captures preferences over insurers. An individual with
type b incurs a cost tb by purchasing from firm 0 and a cost #(1 — b) from purchasing from
firm 1, and this cost is fungible with price. Thus, ¢ captures market power. WTP is as in
Subsection 2.2. We return to using v = ao?.

We assume that every consumer purchases from one of the insurers. Doing so allows us to
focus on the effect of competition on quality (x), abstracting from its effect on the number of
consumers covered. Moreover, we are particularly interested in the competitive limit where
t — 0, in which case the results of a covered and uncovered market are qualitatively similar,

as we argue in Subsection 5.3. Finally, it is often the case that a government mandate implies

8In fact, few papers have studied models of competitive product design that include either of these
features. While two recent papers have considered purchasers who are heterogeneous in two dimensions
(Wambach, 2000; Smart, 2000), both assume four discrete types, providing partial characterizations of per-
fectly competitive equilibrium. Two other recent papers that have considered equilibrium product design
with imperfectly competitive firms (Villas-Boas and Schmidt-Mohr, 1999; Bénabou and Tirole, 2013) in en-
vironments with binary (unidimensional) types and conclude that market power may enhance social welfare,
though neither paper focuses on insurance markets. All of this work has focused on theoretical possibilities
rather than calibration.

This contrasts sharply with extensive empirical evidence that multidimensional types and market power
are crucial to understanding the functioning of insurance markets. Dozens of recent papers surveyed by
Einav, Finkelstein and Levin (2010) find that multidimensional heterogeneity of individuals is crucial to
explain observed behavior in insurance markets.Chiappori et al. (2006) provide empirical evidence that,
they argue, is hard to explain unless firms have market power, writing “(O)ur findings...suggest that more
attention should be devoted to the interaction between imperfect competition and adverse selection on risk
aversion...there is a crying need for such models.” On a similar note, Einav and Finkelstein (2011) write, “On
the theoretical front, we currently lack clear characterizations of the equilibrium in a market in which firms
compete over contract dimensions as well as price, and in which consumers may have multiple dimensions of
private information (like expected cost and risk preferences).” A major goal of this paper it to provide such
a characterization.
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a covered market, and indeed this is a common assumption in the literature.’

Individuals purchase from the insurer that offers the highest utility net of transportation
costs. We define b* = 2% (w(zo, 1, v) — po — (u(x1, 1, v) — p1)) + 5. Then buyers of insurer 0
are those for whom b < b*, buyers of insurer 1 have b > b*, and marginal individuals have
b = b*. We assume, following Rochet and Stole (2002), that b is distributed uniformly on
the interval [0, 1], independent of (u,v), so the joint distribution of types is f (u,v)."° This
is a natural benchmark, since there is no obvious relationship between these variables in a
market with symmetrically differentiated firms.

We will focus on local deviations pooling equilibria (LDPE). Intuitively, we will assume
both insurers choose ¢ = x1 = 2* and py = p1 = p*, and we consider as an LDPE a point
(x*, p*) where both firms’ First and Second Order Conditions (SOC) for profit maximization
are satisfied.

This concept is defined rigorously in Subsection 4.4 and builds on a recent literature in
the design of mechanisms for environments with rich multidimensional types. In some such
settings, LDPE may be a more plausible solution concept than is standard Nash Equilibrium
that allows for global deviations. While an insurer could likely identify a non-local deviation
in the simpler environment of RSs, this may be less plausible in a setting with continuous
multidimensional types. For example, Erdil and Klemperer (2010) write that “in a complex
environment, bidders are unlikely to understand the full space of alternatives, but may have a
clearer view of where and how to gain from smaller deviations” and Carroll (2012) writes that
“one might consider that agents are not capable of contemplating every possible misreport
of their preferences... (but believe) that agents are at least rational enough to be capable of
imitating any nearby type.”

Moreover, considering LDPEs greatly increases the model’s tractability without elimi-
nating the main effects of interest in the literature following on RS. In particular, in the
continuous type version of that paper, there is a local first-order local deviation from all
candidate positive insurance symmetric competitive equilibria, and there is a second-order
local deviation from the candidate equilibrium with zero insurance (Riley, 1979). Thus con-
sidering local deviations is sufficient to rule out the existence of equilibrium in the RS model.
As a result, we show below that many of the intuitions present in the literature (including

non-existence) still arise using the more tractable concept of LDPE.!! Furthermore note that

9For instance, a covered market is mandated under the recent Affordable Care and Patient Protection
Act in the United States. The assumption is mirrored in several recent papers such as Rochet and Stole
(2002) and Handel, Hendel and Whinston (2013).

10This independence assumption is relaxed in an earlier version of this paper, Veiga and Weyl (2012) and
uniformity can easily be dispensed with.

HFollowing on the non-existence results of RS, several papers have introduced modified concepts of equi-
librium. Riley (1979) showed that non-existence is generally the case with continuous types although, from
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the set of LDPE is strictly larger than the set of pooling (symmetric) equilibria, as LDPE
imposes strictly fewer conditions.

Turning to this analysis, let ); be the number of buyers from insurer i. At an LDPE,
the market is split evenly so b* = @y = @1 = % and M = —%% = —%;%1 = % The
set of marginal consumers has the same composition as the set of all consumers, so all
expectations and covariances are unconditional. Moreover, a profit maximizer catering to its
marginal consumers is simultaneously catering to its average consumers, so we abstract from
the Spence distortion mentioned in Section 4, thereby focusing on the effect of the sorting
incentive on 2. Then ITy = [ f; fob* (po — wopt) f (i, v) dbdudv is the profit of insurer 0, and

similarly for insurer 1.
1—(1—x)?
2

surplus from insurance or the value a consumer places on insurance beyond the off-loading

v as the social

It is convenient to define ¢ = ¢ (z,v) = u(x,p,v) — c(x,u) =

of mean risk to the insurer.
Proposition 3. There ezists a unique * € (0,1) that satisfies the competitive FOC

E[¢] = %COV [/, ] .

Thus, sorting is adverse at an LDPE and full insurance is never an LDPE.

Proof. The FOC can be derived from Proposition 1, using @ = 3, M = 5,

pectation and covariance unconditional (for details, see Theorem 3) Then, the FOC becomes
(1—2*)E[v]t = Cov[p+v (1l —a*),z*u|, which can be written as ;—*S%Z]} - = C(g[[:]’“}

As a function of z* € (0, 1), x%%i]] — 1711* has range R and is continuous strictly decreasing.
%, there exists a unique z* € (0,1) where the FOC holds. Sorting
must be adverse at an LDPE because 0 < (1 — 2*) E [v] = E [¢/]. Moreover, at full insurance

E[¢/] =0s0 &L |,1< 0. O

making the ex-

Therefore, for any

On the one hand, increasing x generates gains from insurance E [¢'], which the firm can
perfectly capture because of the absence of a Spence distortion. On the other hand, firms use
x to sort for the most valuable consumers thereby skimming the cream from its rival. The
relative weight on these two forces is determined by market power, since the sorting term is
multiplied by % When competition is intense (in the sense of undifferentiated Bertrand, ¢
low), a large weight is placed on sorting, as in the perfectly competitive world of RS where

a small change in x creates a large amount of cream-skimming, as we discuss below.

Dasgupta and Maskin (1986), equilibrium still exists in mixed strategies. Miyazaki (1977) and Wilson (1977)
suggest notions of equilibrium which allow for richer reactions on the part of other firms. We use the con-
cept of LDPE for tractability, not existence, purposes. Broadly speaking, we find that RS’s non-existence
conclusions hold also using the concept of LDPE for the circumstances considered in that paper.
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Proposition 3 implies that full insurance is never an LDPE, independently of f (u,v).
The reason is that, at full insurance, the marginal utility for additional insurance (u' =
i+ (1 —x)v) stems entirely from off-loading mean risk to the insurer (u) rather than from
insurance per se ((1 — z) v |,—;= 0). This has two implications. First, there are no gains from
trade at full insurance, so even a small incentive to sort reduces coverage away from x = 1.
Second, at full insurance, sorting must be adverse (Cov [+ v (1 — ), zp] [z=1= V [u] > 0).
Thus, near full insurance, costly marginal individuals are more intensely attracted than
individuals with high insurance value. When coverage is low, additional coverage may lead
to advantageous sorting by attracting individuals with high insurance value and low risk
types, as found by Finkelstein and McGarry (2006), but sorting always puts downward
pressure on insurance quality near full insurance.

Proposition 3 also shows that sorting is also adverse at an LDPE, again independently
of f(u,v). Intuitively, if sorting were advantageous, raising = would increase the number of
buyers and improves their composition. This intuition will constitute the basis of the next

result.
Proposition 4. Market power increases insurance quality (% >0).
Proof. See Appendix C. O

As we saw, sorting is adverse at an LDPE, thus placing downward pressure on x*. Market
power reduces the incentive to sort, thus leading to higher insurance quality at an LDPE. As
far as we are aware, this result establishes formally for the first time the intuition of RS that
market power improves the quality of insurance, though related results have been derived
in simpler credit (Villas-Boas and Schmidt-Mohr, 1999) and compensation (Bénabou and
Tirole, 2013) contracting environments. '

We derive the SOC for an imperfectly competitive market in Appendix B. In Section 4
we argue that, generically, the SOC is satisfied for sufficiently large t. Therefore, we focus
below on a discussion of the competitive limit (t — 0), where the SOC is least likely to hold.
Notice that, in this limit, firms make zero profit (as in RS) since t captures the markup in

this setting.

E[v]?

Cov]v,u] 1
4 V[y]

> 0. In the limit where t — 0:
Vp]

Proposition 5. Let § =

12Tn our particular setting, it is easy to see that the social optimum is full insurance, since there is no
moral hazard. Thus market power brings z* closer to its welfare-maximizing level. However, we emphasize
that this is an artifact of our assumption (no moral hazard, a covered market and no Spence distortion),
although the positive effect of ¢ on x* is more robust. In Subsection 5.3 we discuss further the issue of
welfare and present and scenario that, while similar to the one presented above, it is competition that brings
x* closer from its welfare maximizing level. In Subsection 5.3 we argue that an interior optimal degree of
market power is typically optimal because increased prices reduce the quantity of individuals covered.
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with 2 =14 3| | with 2* =0
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= 2

Figure 2: LDPE for various values of 5 (increasing to the right).

e There is at most a single LDPE, which must satisfy the first-order condition Cov [u/, ¢] =
2V [ (14 (1 — 2*) B) = 0 and the second-order condition (1 — 2*)* y—1 < (1-32%) 8.

o If -1 <~—1<pf, the unique LDPE has x* = 0. If 2y < — (8% + %), then B < —1
and the unique LDPE has x* = 1 + % .

e For any v > 0, there is a range of [ for which there is no LDPE, and this range
increases in y. However, for v > 0, there is a unique B < —1 such that there exists an
LDPE if B < 3 < —1.

Proof. See Appendix C. O]

These results are expressed in Figure 2. A competitive LDPE must have zero sorting
incentive, which is a generalization of the logic of Rothschild and Stiglitz (1976) to a context

of multidimensional types. Cream skimming incentives are proportional to M, so in an LDPE

where t —0 demand becomes infinitely responsive (M = % — 00) since, loosely speaking,

all consumers are marginal. Thus, any incentive to sort will cause firms to deviate from the
LDPE. This implies that the unique actuarial rate possible at an LDPE can be computed

solely on the basis of a simple moment of the distribution of types in the population. This

Cov(u,v]
Viu]
the entire population. This provides a simple condition to take to data in order to calibrate

rate is z* = 1+%3 where § = is the uncontrolled OLS regression coefficient of ;2 on v in
how much insurance would be provided at a competitive LDPE which we do in Section 3.
Positive insurance at an LDPE requires § < —1. This occurs when risk aversion is
sufficiently negatively correlated with risk so that sorting is advantageous at zero insurance,
as in the data of Finkelstein and McGarry (2006). Recalling the results above, it is useful
to think of the sign of sorting as x decreases from full insurance. Sorting is always adverse
at full insurance and at the LDPE, independently of the distribution of types. However,

the level of insurance quality at the LDPE (and specifically whether it is positive) does

Cov|[u,v]
VK]

depend on the distribution of types through § = . Importantly, this results requires
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multidimensional types. Otherwise, we would have Cov [v, u] = f = 0 so the only candidate
LDPE is z* = 0, as in RS.

However, LDPE also requires that SOCs are satisfied. If v = 0, then 2* = 1 + % is the
LDPE when § < —1, and x* = 0 is the LDPE if § > —1. In this case, an LDPE always exists
although there is no demand for insurance since E[v] = 0 = v = 0. The intuition again
mirrors that of RS, extended to a multidimensional context. Here, v is a force pushing for
second-order deviations away from a low-insurance LDPE, arising from the gains from trade
from insurance, E [v]. The smaller is 7, the smaller is the range over which no LDPE exists.
If 5 > v—1, a no-insurance LDPE exists because sorting is so adverse at zero insurance that
it overcomes the pressure of 7 to deviate from that LDPE. If § is negative enough, sorting
is sufficiently advantageous that there is a first-order gain from raising insurance quality
above zero. In the intermediate region, adverse sorting local to zero-insurance eliminates
the possibility of a positive insurance LDPE, but insurance demand makes a zero-insurance

LDPE vulnerable to second-order deviations, so no LDPE exists.

3 Empirical Calibration

This section uses summary statistics from Handel, Hendel and Whinston (2013) to perform
a calibration of the competitive model described in Section 2.4 above.'® These authors use
proprietary claims data from a large employer. The data does not arise from a competi-
tive market, instead stemming from a firm which uses cross-subsidies to achieve a variety of
objectives other than single-plan profit maximization, such as employee retention and pro-
ductivity. Assuming that a widely-used proprietary risk estimation package represents the
information set of individuals, the authors are able to recover the joint distribution of u and
v for the entire population from the joint distribution of claims, risk estimates based on the
package and plan choice by individuals.'* We use moments of this distribution to determine
the properties of the LDPE if individuals in this data bough insurance from a competition
market such as the one described in Section 2.4. For the purposes of the calibration, we
follow HHW in allowing three dimensions of type: a, p and o?. However, all the formulae
from Section 2 remain valid.

To the first two significant digits, HHW find E[u] = 6.6-10%, E[v] = 68-10%, V(i) = 50-10°
and Cov [, v] = 630 - 10° (units are dollars and dollars squared). This implies § ~ 13 > 0
and thus the unique candidate LDPE is x = 0. However v =~ 23 > 13 + 1, thus the zero-

13We thanks these authors for their generosity.

4They follow an approach analogous to that of Cohen and Einav (2007), using individuals’ choices among
available plans coupled with an assumption that a is distributed normally conditional on j,c?and other
covariates to estimate the joint distribution of u, 02 and a.
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Figure 3: Unique candidate LDPE actuarial rate x* as a function of the relative markup
(R), shown on a logarithmic scale.

insurance candidate is not actually an LDPE because the average value of insurance is too
great. While these statistics are taken for the full population, the same qualitative features
apply to the market in every five-year age bucket. Thus, in their data, no LDPE exist.

Multidimensionality of private information exacerbates rather than mitigates adverse
selection in this case. Insurance value is positively correlated with mean risk, as in Cohen
and Einav (2007) but unlike in Finkelstein and McGarry (2006). Interestingly, HHW find
that a is negatively correlated with pu, as in Finkelstein and McGarry, which would suggest
3 < 0. However, there is an even stronger positive correlation between o2 and u because
sick individuals have both high and highly variable expenditures, which makes 8 > 0. This
illustrates how seemingly innocuous simplifications of the nature of consumer heterogeneity
can have important effects on a model’s predictions.!’

These results are consistent in spirit with those reported by HHW. They analyze two-
plan equilibria between plans with exogenously specified (and approximately linear) actuarial
rates. They find severe adverse selection leading almost always to complete collapse of the
plan with the higher actuarial rate. Thus the value of [ is a reduced-form statistic that helps
provide intuition for their structural results.

We then use the same moments to calibrate the tendency of market power to increase
insurance provision (Proposition 4). Markup in this Hotelling framework is ¢. Since insurer

cost is per consumer is zE [u], we measure market power using the proportional-to-cost

mark-up R = xE#M, which monotonically increases with . We can therefore solve the FOC
of Proposition 3 for R = m*é[ﬂ] = 1—130* Vi I}EJ[;?EE;[}“ 4] Figure 3 shows the unique candidate

LDPE actuarial rate x* as a function of this relative-to-cost mark-up.
At a mark-up of 161%, the actuarial rate at the candidate LDPE is 40%. A relative

5Even if 02 is treated as homogeneously equal to its average value, 3 is negative but always above —1 in
their data so that no positive insurance candidate LDPE exists even in this case.
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markup of 198% is necessary for an actuarial rate of 80% to emerge as an LDPE. Calibration
of the second-order condition shows that a relative mark-up of 170% (R = 1.7) is necessary
for an LDPE to exist.'® While such large mark-ups would likely generate political resistence

given their distributive consequences, they clearly increase welfare in our model.'”

4 A General Model of Sorting

In this section we show how the techniques and results of Section 2 generalize to richer
settings and provides rigorous proofs of the results above. We will focus on relating these
more general concepts to those of the previous sections, rather than discussion of the results

or assumptions.

4.1 Setup

A monopoly offers an insurance contract characterized by a price p € R and a non-price
characteristic # € R. The scalar = can trivially be extended to be a vector (see Veiga and
Weyl (2013)). There is a unit mass of consumers characterized by their type, a T-dimensional
vector § = (61, ...,07) € (01,01) % -+ x (6, 07r) C RT, which is not contractible. It is common
knowledge that 6 is distributed according to the atomless and full support probability density
function f(0).

Consumers face a wealth shock [ € R, distributed according to the atomless density

g (l,0) > 0. Consumers have a utility function U = U (w, ), where w is final wealth and
U =U">0and g% < 0. An insurer reimburses G = G (I, x) if the consumers incurs a loss

. Then, G = [ is full insurance and G = 0 is no insurance. Initial wealth is wq (potentially
heterogeneous). Let E; [-] denote expectation over . The WTP of a consumer of type 6 is

u (z, ), the level of p that equates expected utility with insurance to that without insurance:

E U (wo—14+G(l,z)—u(x,0),0)] 0] =E [U (wy—1,0) | 0]. (2)
We assume that u (z, 0) is continuously differentiable in all arguments and strictly increasing
in all arguments. We define % = u > 0. Expected cost of type 6 to the risk-neutral

insurer is ¢ = ¢ (z,0) = E, [G | 6], so = E; [2¢ | 0]. We assume ¢ (z, ) is twice continuously

16This result is also consistent with the very low actuarial rates for non-group markets prior to the
Affordable Care Act in the US.

17 Of course in a more realistic model where population coverage is endogenous, such prices are likely to
significantly undermine the sustainability of an individual mandate and thus likely reduce the fraction of
the population covered. In Subsection 5.3 we show that allowing for such uncovered market puts additional
downward pressure on price, implying that more reasonable rates of mark-ups can achieve these levels of
insurance quality and again lead to nearly first-best welfare.
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differentiable in all arguments. Differentiating Equation 2 yields v’ — ¢ = % o
Increasing = captures more generous insurance if ¢’ > 0.

The set of consumers purchasing the product is © = {6 : u (x,0) > p}, while the set of
marginal consumers is 900 = {0 : u(x,0) = p}. We define 0_7 = (04, ...,07r_1) and follow

Veiga and Weyl (2013) in making the following assumption

Assumption 1. There exists a function 05 (p,x,0_7) such that u(z,0) > p < Op >
0;" (paxae—T)'

This function therefore defines the margin.'? Defining t = (0_r, 0% (p, z,0_7)), an integral
over 0O can be expressed as an iterated integral over the #_r. That is, for an integrable

function ¢ (z, ), we define

01
/Qx@d&—/ / ¢ (x,0) b,
61 5 (pyx,0-1)

01 01
Q(mtdﬁ_T—/ / C(z,0_7,0% (p,x,0_7))d0_1

00 Or_1

The quantity of buyersis Q@ = Q (z,p) = [, f o f(8)df. Tt is shown in the proof of Proposition
1 below that % < 0 for all @ > 0. We can therefore invert @ (x,p) with respect to p to
recover the function P (x,q), which solves Q (P (x,q),z) = q. Profit is Il = ¢P (z,q) — C,
where C' = [, ¢ (z,0)df is total cost.

We define the density of the margin and expectation conditional on the margin as

= —8—Q = —f (t) d6_T

ap 50 au (I, t) /89T

For details on %Q, see the proof of Proposition 1 below. For integrable functions (; = ¢ (x, 6)

and (3 = (3 (z,0), expectation conditional on the margin is

E, (i (z.0) | 00] Ez\14 d@%d@ .

Similarly, Cov,, [(1, (e | 00] = E, [(1¢ | 900] — E, [¢1 | 9] E, [ | 00].7°

18The amount by which type § values additional insurance ('), is the transfer of mean risk to the insurer
d =E [% | 9} in addition to the marginal social surplus insurance ¢’. This marginal surplus captures
whether insurance quality increases for those states with highest marginal utility (i.e., high realizations of
1). Under risk neutrality, U’ is constant so ¢’ = 0. In Section 2, we had ¢’ = (1 — z) v.

9Tn Section 2, this was the function u* (p,z,v).

20Tn Section 2, we had (QT“T = %Z = %, so this term vanishes in E,, [ (z,0) | 96)] since it is present in the
numerator and denominator. This occurs whenever the margin is a straight line in the space of types.
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4.2 Monopoly

The firm chooses ¢ and = to maximize profit. The FOC with respect to ¢ is familiar (P —
% = Ey[c| 006], or marginal revenue equals marginal cost) so we do not discuss it more

extensively.?! Instead, our analysis will focus on the the non-price product dimension .

Theorem 1. A necessary FOC' for a monopoly’s profit maximizing choice of x is

J/ J/

—qE[" | ©] +¢E, [u" | 98] = MCov, [/, c | 0O

Vv TV
cost Spence term sorting effect

Proof. See Appendix C. n

4.3 Signing the sorting incentive

The following Theorem presents commonly-satisfied conditions under which the sorting in-
centive can be signed. Essentially, this is the case when ' and ¢, conditional on # € 90, can

be expressed as monotone univariate functions.

Theorem 2. Suppose there exists a function g(z,0) : R x (61,0,) x -+ x (07,07) — R
such that ¢ = ¢(x, g (x,0)) and v’ = u(x, g (x,0)). Suppose é(x, g (z,0)) and u(x, g (x,0)) are

monotone in g (x,0). Then, Cov, [u/,c | 0O] has the same sign as

di(z, g (x,0)) du(, g (x,0))
dg dg '

Alternatively, suppose that = (01,0,) € R If V0 € 00, we have

Ou [0y _ 0w [0\ (/00 9c/d0 _
ou/00,  Oujo0y ) \Ou/00,  Ouj0b, ’

then Cov,, [u',c | 0©] > 0. The statement remains true if both inequalities are reversed.
Proof. See Appendix C. m

The assumptions of Theorem 2, while seemingly special, apply naturally in contexts such
as non-linear pricing, where the scalar amount purchased by each individual determines both
her cost to the firm and her marginal utility from a change in the per-unit price, as in the
model of Subsection 5.2. The logic of this theorem can also be generically applied when types

are bi-dimensional, say (61, 6s), so that the margin (00) is a one-dimensional curve. Since

2Tts more sophisticated component, marginal cost E, [c | 90], is discussed in Veiga and Weyl (2013),
Einav, Finkelstein and Cullen (2010) and Einav and Finkelstein (2011).
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WTP is is increasing in all arguments, if (6, 6,) and (él,ég) are both indifferent, 0, > 6,
must imply ég < 3. Then, within the margin, 6, is a decreasing function of 6;. Thus an
index can be constructed and the logic of Theorem 2 can be applied. Whether the relevant
terms in the statement of Theorem 2 can be signed depends on the details of the specific
model, although we have yet to find a case where this approach cannot be usefully applied,

as in the computational exercise of Subsection 2.3.

4.4 Competition

We extend our analysis to a simple Hotelling (1929) competitive environment. We consider
two insurers, indexed by ¢ € {0,1}, where ¢ captures the insurer’s location on a Hotelling
line and —i refers ¢’s competitor. Each insurer ¢ chooses a non-price characteristic x; and
a price p;. The two insurers are identical apart from their Hotelling location. Consumer
types 6 € R” is augmented by b € [0,1]. An individual with type b incurs a cost of tb by
purchasing from firm 0 and by ¢(1 —b) from purchasing from firm 1, where ¢ captures market
power. This cost is fungible with price. Individuals have a WTP u as above. We make the

two following simplifying assumptions.
Assumption 2. The market is covered.
Assumption 3. The joint distribution of heterogeneity is f ().

Given these assumptions, individuals purchasing product 0 are those for whom b < b* =
o (u(zo,0) — po — w(z1,0) + p1) + 5 and those purchasing from insurer 1 are those for whom
b > b*. The set of consumer for whom b = b* is marginal to both insurers.?”

We will focus on local deviation pooling equilibria (LDPE), which we define as follows.

Definition 1. A local deviation pooling equilibrium (LDPE) is a pair (z*, p*) such that, if
firm i plays (z;,p;) = (2%, p*) then there exists an € > 0 such that (z*,p*) maximizes the

profit of firm —i in the set (z* — €, 2% + €) X (p* — €, p* + ¢€).

Then, if the FOC and SOC are satisfied at (z*,p*), then (2*,p*) is an LDPE. At an
LDPE, the market is split evenly, so b* = 3. Defining Qo = [, fob* f(0) dbdh and similarly
for 1, at an LDPE Qo = @, = % Moreover, M = —% = % (for details, see Appendix
B). At an LDPE, the set of marginal consumers is 90 = {(6,b) : b = 1} and it has the same
composition as the set of buyers overall. Otherwise the model is as in Subsection 4.1, with

subscripts denoting the relevant firm.

22 Assumption 3 is relaxed in an earlier version of this paper, Veiga and Weyl (2013).
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Pricing at an LDPE in this Hotelling context is well-known: p+t = E [¢], where marginal
cost [E [] is the average cost in the full population (by Assumptions 3 and 2). Recall that
¢ =u' — . We define %—(Z/ =¢".

Theorem 3. Fort > 0, a necessary FOC for the profit maximizing value of = is

E[¢'] = %COV [, c].

Sorting is adverse at an LDPE. If Cov [¢,c] > 0 at full insurance, then sorting is adverse at
full insurance and there exists an interior value of x at which the FOC holds. The SOC is

tE [¢"] + %E (¢ < Cov [u”, ¢] + 2Cov [/, ¢].

Proof. See Appendix C. O

Theorem 4. Market power increases insurance quality ( ~ > 0).

Proof. Applying the IFT to the FOC yields % = —% If the SOC is satisfied, then
O%11/02* < 0. If = captures higher insurance quality, ¢’ > 0. Then 22" > 0. n

We can now consider the competitive limit as ¢ — 0. Recall G = [ corresponds to full
insurance while G = 0 corresponds to zero insurance. Notice that, in this limit, firms make

zero profit as in RS.

Theorem 5. Assume E|[¢'] is bounded. In the limit as t — 0, an LDPE must satisfy

Cov|[¢/,c']
Vie]

Cov [u/,c] = 0, no insurance is an LDPE if 1& n V[ /] lg=o —1 < lc=o and there is an

interior candidate LDPE if Cov ¢ C) la=o< —1.

Proof. See Appendix C. n

It is useful to relate these results to those of Section 2. There, we had C‘g[[ffj lg=0=
% |z=0= 3, so the condition for existence of an interior candidate LDPE is a gener-
alization of Proposition 5. Similarly, the SOC at no insurance presented above implies that,

in Section 2, the SOC holds for x* =0 if v — 1 < (3, as in Proposition 5

5 Robustness Checks & Welfare Analysis

In this section we discuss the robustness of our conclusions to the inclusion of moral hazard
and market expansion. We also consider the welfare implications of our model in a third

robustness check.
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5.1 Moral hazard

Our calibration in Section 3 relied on the assumption that mean risk p was invariant to the
generosity of insurance coverage x, which implies that full insurance was optimal. In reality,
there is substantial evidence of moral hazard in insurance markets, which would imply that
the social optimum prescribes less than full insurance (Aron-Dine, Einav and Finkelstein,
2013). In this subsection, we consider a simple form of moral hazard.

In the model of Subsection 2.4, suppose that mean health expenditures p respond to
out-of-pocket expenses according to a constant elasticity function of the kind used in Saez
(2001). Then, mean risk at an actuarial rate of x is p(z) = p (&) (=2)°, where € is the
constant elasticity of utilization and Z is a reference level of insurance against. We calibrate
this model using the canonical estimate of ¢ = 0.2 for the elasticity of medical expenditures
from the RAND experiment.?® We use as common reference level for all individuals & = 0.85,
which is the mean actuarial rate in the HHW data.

Then, the socially optimal actuarial rate (see the next subsection) is approximately 87%.
The reason why even high expenditure elasticities (¢) do not significantly reduce optimal
insurance is that, with a high elasticity, even a small decrease of generosity below full in-
surance discourages much of the wasteful mean expenditure. Even an unrealistically high
elasticity of € = 1 yields a socially optimal insurance of about 78%. Therefore moral hazard
reduces our estimate of socially optimal insurance rates, though not significantly. Given that
in our calibration of Section 3 insurance is driven entirely out of the market, our conclusions
that LDPE insurance is vastly below the social optimum seem robust to plausible degrees of

moral hazard.

5.2 Welfare

A natural question following our analysis above is the socially optimal pooling contract:
constrained to choosing xq = x1 = = and py = p; = p, what is the welfare maximizing value
of (z,p)? To proceed with this analysis, we equate WTP with utility as in the standard
Kaldor (1939)-Hicks (1939) analysis. If the market is covered, there is no optimal value of
p because prices are purely distributive and do not affect behavior. Thus, we focus on the
optimal level of x and on the effect of market power on welfare through z* at the LDPE.
As in analysis above, competition increases the importance of sorting (attracting the
right kind of consumers) relative to the importance of gains from trade (attracting more
consumers). However, this can increase or decrease welfare. To emphasize this point, we

consider both the model of ex-ante insurance contracting without moral hazard and a variant

238ee Manning et al. (1987) and Aron-Dine, Einav and Finkelstein (2013).
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with ex-post contracting and moral hazard that yields a sharply different result.**

First, consider the model of Subsection 4.4, and thus define welfare as W = E [¢].

Proposition 6. In the competitive model of Subsection 4./, full insurance (x = 1) is socially

optimal. If Cov [u/, €] is bounded, then lim; ., x* = 1.
Proof. See Appendix C. O]

Since there is no moral hazard (unlike in the previous subsection), full insurance is the
social optimum. However, even with some moral hazard, LDPE always has insufficient
insurance (Theorem 3). Since market power increases * (Theorem 4) and the level of p has
no effect on welfare, market power increases welfare in this model.

We now present a model that, while using the same basic framework, focuses on moral
hazard and ex-post efficient consumption, rather than ex-ante efficient insurance. We intro-
duce a Spence distortion driven by ex-post expenditure heterogeneity that incentivizes firms
to create moral hazard that is in turn mitigated by sorting.

Individuals incur a (heterogeneous) health shock of value L and then purchase healthcare
of value D = D (L, ), as a function of L and a cost-sharing rate x, described below. The
realized distribution of losses in the population has density f (L) > 0. An individual with
loss L has demand D = L(1—xz)~¢, where € > 0 captures the degree of moral hazard. Of this
amount, consumers pay a share 1 — z, so the cost to a hospital of serving an individual with
loss L is L(1 —z)~¢. Thus z is “quasi-insurance” since a larger x allows consumers to better
mitigate their health shock through ex-post healthcare purchases. By the envelope theorem,

the change in consumer surplus from an increase in x is equal to —D. Thus, consumer surplus

is fox D(L,z)dt = LM and wealth loss by the consumer is L (1 — M) =

T—e T—e
LA (z). Let A = A(z).”” Individuals have CARA utility, —e~®, where w is final wealth
and a is absolute risk aversion. The market is covered. There are two competing hospitals.
Individuals are uniformly distributed on [0, 1] with respect to b, which is independent of
L. There is a wealth cost tb from using hospital 0 and ¢ (1 — b) from using hospital 0. We
consider an LDPE. Hospitals choose cost-sharing rates x and prices p.

Social welfare generated by an individual w = L (1 — \) — 2D is maximized for x = 0, the

point at which each individual fully internalizes her costs and purchases L units of healthcare.

24This builds on a general insight of Rochet and Stole (2002) and Yin (2004): competition in non-linear
pricing leads to efficiency when average and marginal consumers have the same preferences.

ZFor instance, when x = X (0) = 0 there is no surplus. It is also possible that A (z) < 0 for x large enough,
in which case those with highest L are the best-off (for example, if € = .2 then X (0.82) = 0, then for smaller
x it is positive, and for larger it is negative). However, we will see below that in equilibrium z will always
be below this level.
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Figure 4: The LHS (downward-sloping) and RHS (upward sloping) of Equation 3 as a
function of z, for different values of the relative mark-up (R). Intersections represent LDPE.

The FOC for the profit maximizing choice of x is

(E. (D] - E[D]) = o* (1

N | —

T EID]+ v, (D)) )

where E, [( | b= V"] = %#L))M =E, [(]. It is clear that {2“E[D] + MV, [D] > 0. Since
e®l* places greater weight on larger values of L, we have E, [D] > E[D], so for t > 0, we
must have z* > 0 for the FOC to hold at an LDPE. At a competitive LDPE the sorting term
(x*MV, [D]) must vanish, so we must have lim; o, 2* = 0 . Therefore, the social optimum
obtains at the competitive limit.

We then calibrate this model to match the distribution of losses and the mean risk-
aversion in the Handel, Hendel and Whinston (2013) data, as detailed in Appendix D, to
compare it quantitatively to that of Section 3. The FOC with respect to price is p* —
2*E, [D] = 51;. Absolute markup is 5~
firmis R = QM—ED] One can solve for M as a function of the the markup R, then plug that
expression into the FOC for x. Letting ¢ = 0.2, we now plot the RHS and the LHS of the

FOC for z, as a function of x, for different values of R. The results are shown in Figure 4.

and markup as a ratio of the cost absorbed by the

We observe a levels of insurance similar to that we saw in the basic model (approximately
.65 to .76). Furthermore, the mark-up increases, LDPE quasi-insurance rises, as in Section
3, where we also considered mark-ups as a fraction of the expenditure absorbed by the firm.
However x* is now much less responsive to R; as R ranges from 1.61 to 3.3, z* ranges
from .65 to .76 rather than from .4 to .9 as in Section 3. This is likely because moral

hazard makes large x values very unattractive. Nonetheless both models generate fairly high
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levels of insurance (here quasi-insurance) for reasonably large mark-ups and both have this
insurance increasing in market power, despite radically different normative implications of

these results.

5.3 Market expansion

The model of competition in Section 2.4 assumes a covered market. We now relax that
assumption and, with some additional structure, calibrate this model with market expan-
sion. We outline our analysis here and provide details in Appendix E. We consider the
CARA-Normal linear co-insurance set-up of Section 2.4, maintain that b is distributed inde-
pendently of (u,v) and focus on LDPE. We then assume, following White and Weyl (2012)
that the Hotelling transportation cost to the nearest insurer is zero, while to the furthest
insurer is ¢ (1 — 2b). This preserves the difference in transportation costs between the insur-
ers and therefore the marginal incentives of consumers to choose between insurers. However,
at an LDPE every consumer purchases from the closer of the two firms and thus no con-
sumer actually incurs any transportation cost. As a result, at each b € [0, 1], the set of
types (u,v) purchasing insurance is the same. Under these assumptions, consumers on the
“switching” margin between the two firms, {(,u, v,b) 1 b= %, > (p,x, v)}, are represen-
tative of all buyers in terms of (u,v). Consumers on the exiting margin of either firm,
{(pt,v,0) : p = p* (p, z,v)}, are not. These two margins are pictured in Figure 5, with (u, v)
collapsed to a single dimension to allow 2-dimensional representation. The threshold for

x _ P _ 2=z

purchasing p* (p,z,v) = p* =2 5.

msurer 0 msurer 1

T p* (z,p,v)

Exiting Switching

1/2

Figure 5: The b — u plane of a competitive market with an expansion margin.

Market expansion changes LDPE conditions in several ways. All expressions evaluated
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for marginal consumers are now a mixture of the switching and exiting margins, com-
bining the logic of Subsection 2.2 with that of Subsection 2.4. We denote the density
of individuals along the exiting margin of either firm when they are pooled at (p,z) as
MX(p,z) = % fz f (v, b Q_T””v) dv and the density of individuals along the switching mar-
gin as M%(p,x) = %. Note that as t — 0, M — oo so that 2Cov|pu, i+ (1 —v)x | p >
1] = 0 is still necessary for a competitive LDPE. Thus the necessity of zero sorting incentive
at a perfectly competitive limit carries over.

The FOC for maxmizing welfare with respect to x is

q(1=a")E[v | p > p] = M*Covy[p, p+ (1 —v)a* | p=p]. (4)
marginal s;;ial surplus monopolistic/soci;ﬁy-optimal sorting

For any fixed z, it is always socially optimal to include as many consumers as possible as all
have strictly positive insurance value. Once all individuals are thus covered, M* = 0 and
thus x* = 1 solves Equation 4. Thus our basic conclusion is robust to the possibility that the
market is not fully covered: perfect competition often drives out the possibility of a positive
insurance pooling LDPE while pooling on full insurance is socially optimal.

To confirm our quantitative conclusions, we calibrate a model with market expansion
using the HHW data. We assume that (u,v) have a joint log-normal distribution with pa-
rameters matched to the means and variance-covariance matrix of the HHW data.? We
then compute, as described in Appendix E, the first-order equilibrium conditions using nu-
merical integration. Finally, we approximately solve for a candidate LDPE for a given ratio
of markup to average cost, by hand using a Tattonement process.

Figure 5.3 pictures LDPE values of z*, p* as a function the ratio of markup to average
cost R = P(q*’f:])Em;gZ l’f 20 2T Ast — 0, 2* — 0, as does welfare. Welfare peaks when the
relative markup is 99%, when 92% actuarial rate is achieved with 84% population coverage.
Welfare is then 97.5% of first-best welfare (W/w« = .975). Thus, surprisingly to us, nearly all

of first-best welfare can be achieved with through appropriate degree of market power with

an expanding market. After this point welfare then declines as population coverage shrinks
despite the actuarial rate continuing to increase. However, welfare is a large fraction of the
first-best even for very large market power (70% or above), while it approaches zero under
perfect competition.

The findings are consistent with those of Section 3. However, here both the possibility

of exit and competition discipline pricing. Therefore, significant insurance can be sustained

26We do not know V [v] from HHW, so we assumed that a was homogeneous and equal to E [a], and
constructed V [v] = (E[a])*V [0?].

27This grows steadily with ¢, except at very extreme values of ¢t where effects are weak and our numerical
integration procedures introduce some error.
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Figure 6: As a function of markup relative to average cost (R), share of users who purchase
insurance (¢*), insurance quality (z*) and welfare as a share of the socially optimal value

(W/W=).

without the exorbitant mark-ups required in Section 3 where, for example, a 94% actuarial
rate required a relative markup of more than 330%. Market power distorts population
coverage downward, as in Mahoney and Weyl (2013), so very high market power is also
suboptimal and instead there is an interior optimal degree of market power, but this level

still manages to acheive welfare very close to the first-best.

6 Conclusion

This paper makes three primary contributions. First, we provide a general characterization
of a firm’s incentive to use non-price instruments in a selection market with multidimensional
heterogeneity to attract the most profitable consumers. Second, we apply this characteriza-
tion to a simple model of imperfect competition, deriving reduced-form statistics that char-
acterize the LDPE level of insurance. Third, we calibrate these characterizations to show
the direction and size of sorting effects, their impact on social welfare and their interaction
with market power.

From a policy perspective, our results suggest there may be a case for restricting harm-
ful competition over non-price product characteristics. Blanket structural attempts to limit
competition are unlikely to be truly optimal policy because competition on price is often
beneficial to population coverage, particularly under adverse selection (Mahoney and Weyl,
2013). However such remedies may be superior to allowing cream-skimming to destroy a

market altogether, if better regulation is infeasible. In such a second-best case, estimating
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reduced-form statistics such as the one we develop may help determine whether it is better to
allow competition with its other benefits (efficient quantities, cost reductions or innovations)
or whether competition is likely to be so destructive that it should curtailed. Such estimation
may also help determine ways in which markets can be re-organized through various forms
of pooling so that dimensions of type offset one another within each pooled group thereby
preventing harmful cream-skimming. In particular, employment relationships typically bun-
dle together safety measures, multiple tasks, several types of insurance, etc. These packages
may help to mitigate cream-skimming in sub-elements of the employment package, thereby
allowing valued services to be provided at competitive equilibria.

While we focused throughout the paper on applications to insurance markets, selection
is of interest in many other contexts, including employment relationships, matching markets
with non-transferable utility, platform markets, etc.?® Research on these markets has, in
recent years, increasingly focused on the possibility multidimensional types to which our
analysis is adapted.

Additionally, a number of theoretical issues remain unaddressed in our analysis. We do
not consider the possibility of asymmetric “separating” equilibria, of more than two firms,
or non-local deviations by firms. It would also be interesting to study alternatives to our
assumption that switching consumers are representative of the full population of consumers,
as Bonatti (2011) does for the Rochet and Stole (2002) context.

28 An earlier version of this paper, Veiga and Weyl (2012) contains several detailed analyses of such settings.
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A Computational signing of monopoly sorting incentive
(Subsection 2.3)

Each consumer faces a normally distributed wealth loss [ ~ A (u, 0?), where u is hetero-
geneous between consumers. Let f = f (I, u,0?) denote the Gaussian density of shocks of
an individual with type p. The insurer’s policy prescribes a payment G = G (I, x) when
the insurer incurs a loss [ and the insurer’s instrument is . Consumers have CARA utility
—e~ ™ where w is final wealth and « is the (heterogeneous) absolute risk aversion. Let the
(homogeneous) initial wealth be wj.

Without insurance, final wealth is wy = wg—1[. With insurance, it is w; = wg— [+ G —p.
Then, expected surplus from insurance in

U=U (z,a,p,p) = / [—e’““” — (—e"“‘w)] fdl.

9%u/0zda 0%u/0x0p

Then, we express the elements of S = S (p,z,a,u) = Dulda  Dujon in terms of the
ou/o
function U by applying the IFT to U (z,a, u,u (x,a,u)) = 0. We obtain % - _Wéax’
p
oU /v oU/op
du du
Ou _ _ and £ = —————. Moreover,
v oU /op op oU /op
82u _ g @ _2 _aU/ax __( 2ga+8zgp%)%_(aiga+%%>%
dxda ~ da\dzr) da\ 9UJdp) (8U /0p)*
Pu D (au) ) (_8U/8:1:> () - ()&
dxdp op\ox)  ou\ oUJop (8U/op)? '

Following Handel, Hendel and Whinston (2013), we set wy = 10° and o? = 10%. We
consider a € [1075,1073] and pu € [0,5-10%]. We evaluate S as a function of a, p and z,
knowing that there exists some function p* (x, p, @) that determines the boundary, which can
be characterized by U = 0. In all cases below properties of the Normal distribution imply
that S can be computed analytically using mathematical software.

We consider p € {16000, 20000,24000}. We focus on relatively high levels of insurance,
since these are the ones with greater economic relevance. We assume insurance is complete
in dimensions other than x. In each case, we consider 3 values of = equally spaced within
a given range, described for each of the instruments below. In the graphs presented, the
top row corresponds to p = 16000, while the bottom row has p = 24000. Each column
corresponds to a level of x, with the left column capturing the lowest value of x.

Then, we make take 100 evenly-spaced draws of a from the range on which where is some
type u* (p,x,a) > 0 that is marginal. For each value of a, we compute the p* (p, x,a) that
makes a consumer indifferent and then compute S (p, x, a, u* (p, x,a)). We then plot S as a
function of p*, with the draws of a acting as parametric variables for the plot. At times, the
estimated value of p* converges to a negative value, which should be ignored. Notice that
these computations require no assumptions on the joint distribution of (u,v).
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Figure 10: The sorting sign S with comprehensiveness.

First, we consider the case where x is a regular actuarial rate, then G = max {0, z{}. The
range of the instrument is x € [%, 1]. It is clear from the graphs that S < 0. Since higher
values of x correspond to better insurance, insurance sorts adversely.

Second, we consider the case where x is a deductible, then G = max {0,/ — z}. The
considered range is x € [0,2000]. It is clear from the graphs that S > 0. Notice that, in the
case of a deductible, a low = captures more generous insurance. Thus more insurance sorts
adversely in this case also.

Third, we consider the case of an indemnity cap, so G = min{max{0,(},z}. The
considered range is x € [30000, 70000]. It is clear from the graphs that S < 0. In this case,
higher values of x correspond to better insurance, so more generous insurance sorts adversely
also in this case.

Finally, we consider that the insurer covers the loss [ with probability z, but with prob-
ability 1 — x, the consumer incurs the full wealth shock and pays the insurer the insurance
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premium. Final wealth without insurance is wy = wg — [. With insurance, with probability
x final wealth is wy, = wy — p, and with probability 1 — x final wealth is w;_ = wg — 1 — p.
Then, surplus from insurance in

U= / [# (—e™r+) 4 (1 — 2) (e ) — (—e~)] fd.

The range of = considered is x € [0.9, 1].

While the numerical optimization algorithm struggles to converge consistently for the
smaller values of x, it is clear that for x = 1 we have S > 0. Thus, this instrument sorts
advantageously even at full insurance this case.

B LDPE FOC and SOC (Proposition 3 and Theorem 3)

We have b* = “zof)=p 2&“(11 H)=p1) + 2. Then ab =—Land & =¥,
Profit is 7 = |, fo c(z,0)) f (0) dbde. We obtain
b‘k
// VAU dbd9+/——[ —c(z,0)] f(0)do =Q — ME[p— ¢].
— [ = = — 2M <0
o= [t Odo+ [~5r@)as

87T U/ 1 / . / /
e = egf(e)deJr/e—Z(—c)f(Q)dG_ME[u L] >0,

/e/ob* —c' f () dbdo + /eg_; (p—c) f(0)db.

67'(' u’ / b 1/ 1 " / /
— = /9%(—c)f(9)d9+/9/0 (—c)f(&)dbd9+2t/9{u (p—c)+u' (=)} f(0)do

= M {tE [u" — c”] — Cov [u”, c] —2E [u'] E [c’] — 2Cov [u', c’]} .

Then the Hessian determinant is

g oo Omom [ om \'_
- Op? 0x2 opdx )

= —2MM {tE [u" — "] — Cov [u",c] — 2E [« E [¢] — 2Cov [«

]} = (ME [ +¢])°
= —M? {QtE [u” - c"} — 2Cov [u”, c] — 4Cov [u’, c'] +E [u' - c/]Z

b

Then H is positive if
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tE [¢"] + %E (¢ < Cov [u”, ¢] + 2Cov [/, ¢].

Evaluating this SOC at t = G = 0 yields ;11

]2 _ Cov|[¢/,c']
7] 1< e

C Omitted Proofs

g . oy . . 6x* _
Proof of Proposition 4. Applying the IFT to the FOC from From Proposition 3 yields %~ =

B[ot +V[;E]1 +(ﬁ )25’])00‘1[# ok The numerator is positive. Using the FOC to substitute for E[v]t in

the denominator yields the leftmost term of

X[/g* (1 - 2)Covly, 0] > V[u] + (1 — 2%)Covu, o] = ~— 2

E[v]t > 0

where < [“ L > V[u] because z* € (0,1) and the equality follows from the FOC.
[

Proof of Proposition 5. From Proposition 3, ast — 0, Cov [t/, ¢] — Osince E [¢/] = (1 — z) E [v]
is bounded. In this setting, Cov [o/,c] = 2V [u] (1 4+ (1 — z) ), so LDPE requires 2* = 0 or
r* = 1—|—%. The SOC is derived in Appendix B. When t — 0, it is (1 — 2)*y—1 < (1 — %x) B.
The FOC always holds at * = 0, but the SOC requires —1 < v —1 < . The FOC holds at
=1+ l if 3 < —1, in which case the SOC requires 2y < —/3% — 2. The threshold defined

by 8 = fy — 1 increases with ~ (aﬁ = 1), while that defined by 2y = — (8% + 3?) decreases
with ~ ( 5y = —3 L (3% +2B) < 0if 3 < —1). For B < —1, we have —3% — 32 positive, with

range R, and Strictly decreasing.
O

Proof of Theorem 1. We follow Veiga and Weyl (2013). We apply the IFT to u (z,t) —p =0
to obtain
My 1
op  Ou(x,t)/00r
90y Ou(z,t)/0x
or  Ou(x,t)/00r
Using the Leibniz Rule to differentiate () and C' yields

0Q [ 00 ) -
ap o0 OD f(t)dQ_T N /69 8u(x, t)/aere_T =M
oQ [ 007 M u'(z,t) f(t) ,
r oo 92 T WO =37 | Gute ) oy 0T = ME L [ 96)
aoCc c(x,t)f(t)
a_p_/a@ St d-r = ~ME, [c] 96
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ac [ 06;

8 = oo 0 @I )d6+/ df(0)d9 = ME, [u'c| 96)] + qE[¢ | O]

Applying the IFT to Q (P (z,q),z) = g, and using the results above for 2 —x and 99 we
obtain

OP(z,q) ~ 0D/0x  ME,[u'|00©] ,
or  0DJop o Belv 196

Differentiating I (z, q) with respect to x yields

oIl oP 0C 0COP

or — Tor " 0x  Opow
= ¢E,[u' | 98] — ME, [u'c| 00] +¢E [ | ©] — ME, [c | O] E, [u' | 0O]

The definition of Cov [/, ¢] yields the result.
[

Proof of Theorem 2. We have Cov,, (v/,c |0 € X) = Cov,, (¢(x; g (,0)),0(x; g (x,0)) | 0 € X)for
any sub-set of consumers X. If ¢(z;¢g(x,0)) and u(z; g (x,0)) are monotone increasing in
their second argument, from Schmidt (2003), the covariance of two monotone increasing
functions of a single variable is positive. The other cases are obtained by changing the
direction of monotonicity of é(x, g (z,6)) and u(x, g (x,0)).

Given Assumption 1, 00 is defined by a function 63 (p, x, 0;) such that u (z, 01, 05 (p, z,01)) =
p. Thus, conditional on 00, v’ = v’ (x, 61,05 (p, z,01)) = u(x,0;) and ¢ = ¢ (z, 04,05 (p,x,61)) =
¢(x,01). Thus 0 is a unidimensional index. It thus remains only to determine conditions
for the monotonicity of 4 and ¢ in 6;. First, we apply the IFT to u (x, 6,05 (p,x,01)) = p,

yielding
39§(x,p,91) . ou (ZE, 01785 (p7x781)) /801

881 N ou (.T, 91,95 (p,x,@l)) /892

Then, we compute

8'&(1’,91) _ ou' ($79170§ (paxagl)) ou' (1'791,95 (paxvel)) ou ($’9179§ (p7x791)) /801

00, 00, - 005 Ou (z,01,05 (p,x,01)) /00
Since u increasing in all arguments, 8“ (=; 91 ) has the sign of a = u/ /659‘?91 - 62; 1{ ;9598292 . The analogous

formula applies for 88761 by the same loglc.
O

Proof of Theorem 3. The competitive FOC and SOC are derived in Appendix B. If ¢/ >
0, the FOC implies Cov [v/,c] > 0 at an LDPE. The derivative of profit evaluated at no
insurance is 21 = 1E[¢/] +0 > 0, but evaluated at full insurance it is 3% = —1Cov [¢/, ] < 0.
By continuity, there is some interior point at which BH =0.

We emphasize that Cov[¢,c] > 0 is a natural condltlon it implies only that reducing
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insurance quality implies larger cost reductions for the costliest consumers.?” As in Section
2.4, sorting is adverse at an LDPE and at full insurance. Thus sorting places a downward
pressure on insurance quality = at an LDPE.

O

Proof of Theorem 5. If E [¢'] is bounded, satisfying Equation 3 requires lim,_,o Cov [v/, ¢] = 0.
At zero insurance, c¢ is constant, so Cov v/, ¢] = 0 holds. Evaluating the SOC at t = G =
0, and noticing Cov [u”, ¢] |4=o= 0, yields the first inequality result.
Theorem 3 shows Cov [v/,¢] |g=;> 0. Then, by continuity, the sorting term vanishes

at some interior point if BC%W lg=o< 0. To show this, first we compute —80053[6“/’01 =
Covlu”,c] + Cov[u/, ¢]. Then, Cov[u”,c] |g=o= 0 and therefore we require —BCogiu’,c] lg=0=

V] + Cov[¢’, ] < 0.

[

1 0G

Proof of Proposition 6. We have v’ — ¢ = ¢/ = W
vary, so the FOC for the maximization of welfare is satisfied (E[¢'] = 0). The derivative
of profit at full insurance is g—g =E[¢] — Cov[d + ¢, c]. At full insurance, ¢’ = 0, so this
derivative is negative since we have assumed Cov [¢/,¢| |,=1> 0. From Proposition 3, an
LDPE satisfies E[¢/]t = Cov [/, ¢]. If the SOC holds, then 2% < 0. Applying the IFT to

. At full insurance, U’ does not

the FOC yields % = —% > 0, since ¢’ > 0.

[
D Welfare (Subsection 5.2)
First we obtain 2 = —(1—2)“ = —1D and 22 = —eL (1 - 2)" N (~1) = = D. Intu-

itively, the share of the burden faced by consumers (\) decreases with =, whereas the demand
for healthcare (D) increases. For an individual with type (L, b), the surplus of purchasing
from hospital 0 over hospital 1 is—e~@(=EXw0)=po) —pp — (—ema(=LA@I=P) — (] — b){). Letting

ea(LA(z1)+p1) _pa(LX(z0)+p0)

b* be the level of b that makes this surplus vanish, we obtain b* = %—1— o

We compute

ob* 1

— _ = a.0LA(z0) ,apo
e 570 e
ob* _ _i eaL)\(zo)eapoL% _ laeaLA(a:g)eapOD
Oxo 2t or 2t

Intuitively, an increase in price decreases demand, whereas an increase in cost-sharing in-
creases demand.

The number of buyers from hospital 0 is Qo = [ fob* f(L)dbdL. Then,

_ 9@ [ OV _ [ L gerrato) aro
M = o) apOf(L) dL = /L 57 %€ e f(L)dL

29For instance, in Section 2, this condition becomes Cov [¢/,c] = 'V [u] > 0.
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I 320@‘ i fL CedA@o) £ (L) dL

BC10=V] =P8 = e =5

Notice that expectations conditional on the margin are different from unconditional expec-
tations, but are mdependent of b.

Profit is my = [ fo [po — xoD (L, x0)] f (L) dbdL. We now compute the two FOCs. At
an LDPE we have 1 = g = x and p; = pg = p. The FOC for price is

omo b ob* _ Q _
= - /L/O F(L) L+ [ S5 fp =D (L)) (L)AL =0 = 57 = B, [p— D)

while the FOC for z is

omy b oD ob*
o _ _// [D”Uax}f@)dbdu | Ga Ipo—woD) f (L)dL

v oD 1 aLX(zo) ,apo fL aL)\(yO)D [po B xOD] f(L) dL
_/L/O |:D+$08x:| f(L) dde—&-/LEae e P f(L) fL e‘lL’\(W)f( )dL
Qxe
1—=x

— —QE[D] - ~“““E[D] + QE, [D] - <MV, [D] = 0

Q(E.[D] - E[D]) =« (@ E[D] + MV, [D])

1—a

At a competitive LDPE the sorting term must vanish, so we must have MV, [D] =0 =
x = 0 . Therefore, the social optimum obtains at the competitive limit. Moreover, since
e?A®) ig increasing in L, we have

L aL)X(zo) aL)X(z
o L (1—x)ee f(L)dL 1 f Le ( )f( ) 1 _
By [D] - fL eaL/\(Ig)f(L)dL 1 _ Jr j‘ eaLA( z)f ) > (1 _ x)€ /LLf(L)dL =E [D]

It is clear that %E [D] +2MV, [D] > 0. Since E, [D] —E[D] > 0, for t > 0, we must have
x > 0 for the FOC to hold at an LDPE.

We now calibrate these results to show that they are empirically similar to those of
Section 3. Recall that, in that section, we had E [] = 6.6-10% and V [u] = 5-107. We assume
individuals have homogeneous constant absolutely risk-aversion equal to 4-107*. L is drawn
from an individual-specific normal distribution with mean p and variance o = 1.6 - 10, so
o~ N(6.5-10%5-107) and L | g ~ N (p,1.6 - 10%). Notice A = A () is not a function of
L. Then, E[D] = 5=5:6.6 - 10°. We then obtain

2
o (s-s507)
e 2(1.6:108) e 2(5.0107)

V27 (1.6 - 108) /27 (5.0 - 107)

fL) = frpu (L | w) fu(p) =
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M = laeap/ e“L’\f (L)dL = laeapoe)\(16.8/\+2.64)
2t L 2t

JpJy are ™ f(L)dLdp 8.4 10'A + 6.6 - 10°

E, [D] [ [ e f(LydLdy (1—x)e
) ) 1 [, [ et f(L)dLdp s 5-107+1.6-108  2.1-108
Vu[D] = E,[D°] -E.[D]" = (1— )2 f [, esA f(L)dLdy —E,[D] = (1j$)26 - (1 — )2

Notice that the weighting e*/* will enter into the normal density f (L) leaving the denom-
inator unchanged, where the denominator captures the variance of the normal distribution.
Therefore we should not expect V,, [D] to depend on A.

Now, consider the FOC with respect to price, using Q) = = at the LDPE: p—E, [zD] =
Absolute markup is 557 = aeamemﬁ S3TTE0) - Markup as a ratlo of the cost absorbed by the

2M
firmis R = One can solve for M = . We can then plug this value of M into
the FOC for z:

WE[D} 2Ra:IE[D]

Q(E,[D)-E[D)) == (Qlwa[DH%)

Note that all other quantities have been computed above as functions of x and e. Letting
€ = 0.2, we now plot the RHS and the LHS of the FOC for x, as a function of z, for different
values of R. The resulting graphs and discussion are in Subsection 5.2.

E Market Expansion (Subsection 5.3)

A derivation of the LDPE and social optimality conditions appears in Veiga and Weyl (2012).
At a LDPE, individuals purchase insurance from one firm if 4 > p* = & — Mv Thus the
fraction of individuals who buy is Q(p, f f " (v, p)dudv and the average cost of these
individuals is now endogenous. Invertlng Q Wlth respect to p for a given x yields P(q, ) as

in Subsection 2.2. Recall that, at an LDPE, we have p > p*. Specializing the conditions
from Veiga and Weyl to the expectations here among exiters and switchers yields LDPE
conditions

X % S *
MBS p | p = A MPE | p2 ] q 5)
~ MX 4 M5 MY+ MY
price ~
average cost of marginal consumers mark-up

p MXEy [ut(1—a*)olp=p* ]+ MOE[u+ (1—2* )v|u>p*] — E[u|u>p*] _

X S = -

MX 4+ M B \ )

. . . marginal cost of average consumer
marginal utility of average marginal consumer

@ | MX Covulp,pt(1—a* Yol u=p*] + M5 Covlp,pt(1—a* ol u>p*] | . (6)
N N J/
monopolistic sorting cream-skimming
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From Equations 6 one can derive the analog of Proposition 5, which is mentioned in
Subsection 5.3 above.

Now we turn to the calibration. To two significant digits, in the HHW data, we have
Elu] ~ 6.6 - 103, E[v] ~ 6.7 - 10, V[u] = 5.0 - 107 and Cov[u,v] ~ 6.3 -10”. We do not
haveV[v]. However, the variation in a seems to be quite small and only weakly correlated
with that in o2, so we simply set V[v] = E[a]*V [0?] ~ 9.8 - 10°. We assume that (u,v) has a
joint log-normal distribution:

(e ) (e ).

Then E[u] = e+ F and similarly for E[v], V[u] = (E[u])? (e"* — 1) and similarly for V[v]
and Cov|p,v] = E[v]E[y] (e“ — 1). This system of equations of 5 equations with 5 unknowns
can be solved analytically and uniquely (calculations omitted here) to yield m, = 8.4,
m, =11, V, = .76, V, = 1.2 and C' = .63.

All quantities in Equations 5-6 can then be computed, though not analytically. In-
stead we employ numerical quadrature, sampling 100 points uniformly spaced from the
inverse CDF of v and p given v. Note that, by Normal updating and given v, log(u) ~
N (8.4 + .53(log(v) — 11),.43). Let f (v), F (v) be the marginal PDF and CDF of v, respec-
tively. Let g(u | v) and G(p | v) represent the conditional PDF and CDF of p given v,
respectively.

Rather than discussing all of the calculations, we now just take two sample equations
and discuss how they were computed. For instance,

oo 0o
E |}u I u> B B 2 — xv:| _ fv:() M:max{o,%— 2;.7: (M I v)f('v)dudv N 1 2100 I( (005 + ﬁ))
x 2 oo ﬁ,,,ax{o,g,'z%wv}g(# | v)f()dpdv — 1552100 7 (F=1 (.005 + 1i5))

where [ and J are functions, described shortly, that represent the value of the interior of
the two integrals. We have used the Riemann sum approximation of the outer integral
( fyoio( ) f(v)dv) on both top and bottom based on 100 points evenly spaced in probability
space, as is standard in numerical quadrature. The inner integral ( f# max{0,2— 2524} () g(p |

v)du) is then evaluated in one of two ways in order to form the functions I and J that
enter into this sum. If 2 < 2 =5*v, the integral is taken over the full space of values and
has the analytic expression for the mean of a log-normal distribution in the case of [

(e84T-530os() =1 +5-43) and a value of 1 in the case of J. If 2 > 22y then for J the ex-
pression is analytic simply 1 — G (g — Q’Txv | v) and in the case of I we again compute it by

100
1G_1(_005+1%0|v)>§_?v6’ (005 + 355 | U) As our other example

quadrature as 100 i1

100

= L 12 o B o (o ) 22 ()

These procedures allowed us to calculate the FOCs at an LDPE. Then, for each t of in-
terest, we manually searched for an LDPE, beginning at the covered-market LDPE p*
and x* computed analytically in Section 3. To do so we followed an informal single-
equation Tattonement process using p and x as our search variables: if the LHS>RHS
of Equation 5, we incremented price, and if LHS<RHS we decremented it until we had
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reached satisfied the first-order equilibrium conditions to 3 significant digits. In partic-
ular we ensured that no change less fine than this number of digits avoided overshoot-
ing. Then we applied the same process to Equation 6 to find an approximately equili-
brating value of x. We then took this value back to Equation 5 and iterated until both
had converged to 4 significant digits. In all cases convergence obtained within 5 minutes
of trial. We then computed welfare by a similar quadrature method. The results, for
t=>5-10%,3-10%5-10%6-10%7-10%,7.5-10%,8-10%,9-103, 1-10%,2-10* 5-10% 1-10° and
1- 108, are presented in the chart in the main text.
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