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Abstract

We consider a general equilibrium model of a private ownership economy with con-
sumption and production externalities. Utility functions and production technolo-
gies may be affected by the consumption and production activities of all other agents
in the economy. We use differential techniques to show that the set of competitive
equilibria is non-empty and compact. Fixing the externalities, the assumptions on
utility functions and production technologies are standard in a differentiable frame-
work. Competitive equilibria are written in terms first-order conditions associated
with agents’ behavior and market clearing conditions, following the seminal work
by Smale (1974). Adapting differential techniques to economies with externalities
is non trivial and it requires some ingenious adjustments, because the production
technologies are not required to be convex with respect to the consumption and
production activities of all agents.
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1 Introduction

We consider a general equilibrium model of a private ownership economy with
consumption and production externalities. We use differential techniques to
show that the set of competitive equilibria is non-empty and compact.

The general equilibrium model of Arrow and Debreu has been extended to
economies with consumption and production externalities. Our model of ex-
ternalities is based on the seminal models given in Arrow and Hahn (1971),
Laffont and Laroque (1972), and Laffont (1988), where individual preferences
and production technologies are affected by the consumption and production
activities of all other agents. Consumption externalities have been widely rec-
ognized in the literature on network externalities and other-regarding prefe-
rences. Polluting production activities are a classical example of production
externalities induced on individual preferences and technological processes of
other firms.

We consider a private ownership economy with a finite number of commodi-
ties, households and firms. Each household’s preferences are represented by a
utility function. Each firm’s production technology is represented by a trans-
formation function. 3 Utility and transformation functions may be affected
by the consumption and production activities of all other agents. Each agent
(household or firm) maximizes his goal by taking as given both commodity
prices and choices of every other agent in the economy. The associated concept
of competitive equilibrium is an equilibrium à la Nash, the resulting allocation
being feasible with the initial resources of the economy. This notion is given,
for instance, in Arrow and Hahn (1971), and Laffont (1988), and it includes
as a particular case the classical equilibrium definition without externalities.

Fixing the externalities, the assumptions on utility and transformation func-
tions are standard in a differentiable framework. In particular, preferences and
production technologies are convex. However, we do not require preferences
and production technologies to be convex with respect to the externalities.
Our main theorem (Theorem 8) states that the set of competitive equilibria
with consumptions and prices strictly positive is non-empty and compact. We
prove Theorem 8 following the seminal work by Smale (1974), and more recent
contributions by Villanacci and Zenginobuz (2005), del Mercato (2006) and

Address: Centre d’Economie de la Sorbonne, 106-112 Boulevard de l’Hôpital, 75647
Paris Cedex 13, France. E-mail: vincenzo.platino@gmail.com; Elena L. del Mercato,
Paris School of Economics – Université Paris 1 Panthéon–Sorbonne. Address: Centre
d’Economie de la Sorbonne, 106-112 Boulevard de l’Hôpital, 75647 Paris Cedex 13,
France. E-mail: Elena.delMercato@univ-paris1.fr
3 This is a convenient way to represent a production set using an inequality on a
function called the transformation function, see for instance Mas-Colell et al. (1995).
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Bonnisseau and del Mercato (2008). That is, we use:

(1) Smale’s approach.
(2) Homotopy techniques.
(3) The topological degree modulo 2.

In Smale’s approach, equilibrium is written as a solution of an extended sys-
tem of equations consisting of first-order conditions associated with agents’
behavior and market clearing conditions. No externalities are taken into ac-
count in the seminal work of Smale (1974). However, this approach is used
in many different settings such as incomplete markets, public goods and ex-
ternalities. In the presence of externalities, Smale’s approach overcomes the
following difficulty: individual demand and supply depend on individual de-
mand and supply of all other agents which, in turn, depend on individual
demand and supply of all other agents, and so on. So, it is problematic to
define an aggregate demand and an aggregate supply which depend only on
prices and initial endowments.

The homotopy idea is that any economy is connected by an arc to some other
economy that has an unique regular equilibrium. Along this arc, equilibrium
moves in a continuous way without sliding off the boundary. It does not imply
that at the end of the arc there is still an unique regular equilibrium. But, it
implies that at the end of the arc the equilibrium set is non-empty and com-
pact. This is a kind of standard technique used in many contribution in general
equilibrium theory, see for instance Villanacci and Zenginobuz (2005), del Mer-
cato (2006), Mandel (2008), Bonnisseau and del Mercato (2008), Kung (2008),
and Ericson and Kung (2015). However, adapting this technique to economies
with externalities is non trivial and it requires some ingenious adjustments,
because the production technologies are not required to be convex with re-
spect to the consumption and production activities of all agents (for more
details, see Subsection 4.2). Furthermore, our proof covers the case in which
the economy is a standard private ownership economy without externalities
at all. 4

The technique described above is based on the homotopy invariance of the
topological degree. Our proof is based on the topological degree modulo 2. 5 The
degree modulo 2 is simpler than the Brouwer degree which is based on the
notion of oriented manifold. 6 The reader can find in Geanakoplos and Shafer
(1990) a brief review of the degree theory. In Section 6, we recall the definition
and fundamental properties of the degree modulo 2.

4 In Chapter 9 of Villanacci et al. (2002), the reader can find a homotopy proof for
a standard private ownership economies without externalities. Our proof is simpler
than the latter one, because we do not homotopize the shares.
5 See for instance, Chapter 4 in Milnor (1965), and Villanacci et al. (2002).
6 See for instance, Chapter 5 in Milnor (1965), and Mas-Colell (1985).
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We now compare our contribution with previous works. del Mercato (2006)
and Balasko (2014) study pure exchange general equilibrium models with ex-
ternalities. In Villanacci and Zenginobuz (2005), and Kung (2008), there are
no externalities on the production side. In Ericson and Kung (2015), utility
and transformation functions are also affected by the commodity price. In
order to get their existence result, the authors need to perturb utility and
transformation functions. 7 Our contribution highlights the fact that, in the
presence of consumption and production externalities, there is no need for per-
turbing utility and transformation functions to get the existence of an equi-
librium. Furthermore, the contribution of Ericson and Kung (2015) presents
some technical problems. 8 The existence results of Laffont and Laroque (1972),
Bonnisseau and Médecin (2001), and Mandel (2008), are more general than
ours. In Laffont and Laroque (1972), and Bonnisseau and Médecin (2001), the
authors use fixed point arguments. The approach in Mandel (2008) differs from
ours for two main reasons: the author uses the excess demand approach and
the topological Brouwer degree. In order to use the excess demand approach,
the author enlarges the commodity space treating externalities as additional
variables. Moreover, in Bonnisseau and Médecin (2001), and Mandel (2008),
production technologies are also non-convex with respect to the individual
firm’s choice. For that reason, their equilibrium notion involves the concept of
pricing rule and their existence proofs consist of techniques more sophisticated
than those we use. In our mild context, we provide an existence proof sim-
pler than the ones provided in Bonnisseau and Médecin (2001), and Mandel
(2008).

The paper is organized as follows. In Section 2, we present the model and
the assumptions. In Section 3, we provide the notion of competitive equilib-
rium and equilibrium function. The equilibrium function is built on first-order
conditions associated with households and firms maximization problems, and
market clearing conditions. In Section 4, we first present our main result (The-
orem 8) which states that the equilibrium set is non-empty and compact. Sec-
ond, we provide the homotopy theorem (Theorem 9) which is used to prove
Theorem 8. In order to apply Theorem 9, in Subsection 4.1 we build an appro-
priate private ownership economy that has a unique regular equilibrium. In
Subsection 4.2, we provide our homotopy and its properties. All the lemmas
are proved in Section 5. Finally, in Section 6, the reader can find a brief review
on the topological degree modulo 2.

7 See pages 53–55 in Ericson and Kung (2015).
8 Some basic assumptions for the existence of an equilibrium are missing, i.e., the
possibility of inaction and the compactness of the set of feasible allocations, or any
related assumptions. See for instance, Assumptions 1(2) and 3 in our paper, or
Assumptions P(2) and UB in Bonnisseau and Médecin (2001).
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2 The model and the assumptions

There is a finite number C of physical commodities labeled by the superscript
c ∈ C := {1, . . . , C}. The commodity space is RC . There are a finite number
J of firms labeled by the subscript j ∈ J := {1, . . . , J} and a finite number
H of households labeled by the subscript h ∈ H := {1, . . . , H}. Each firm
is owned by households and it is characterized by a technology described
by a transformation function. Each household is characterized by preferences
described by a utility function, the shares on firms’ profits and an endowment
of commodities. Utility and transformation functions may be affected by the
consumption and production activities of all other agents. The notations are
summarized below.

• yj := (y1
j , .., y

c
j , .., y

C
j ) is the production plan of firm j, as usual if ycj > 0

then commodity c is produced as an output, if y`j < 0 then commodity ` is
used as an input, y−j := (yf )f 6=j denotes the production plan of firms other
than j, y := (yj)j∈J .
• xh := (x1

h, .., x
c
h, .., x

C
h ) denotes household h’s consumption, x−h := (xk)k 6=h

denotes the consumption of households other than h, x := (xh)h∈H.
• The production set of firm j is described by a transformation function. This

is a convenient way to represent a production set using an inequality on
a function called the transformation function, see for instance Mas-Colell
et al. (1995). In the case of a single-output technology, the production set is
commonly described by a production function. The transformation function
is the counterpart of the production function in the case of production
processes which involve several outputs.

The main innovation of this paper comes from the dependency of the trans-
formation function tj on the production and consumption activities of all
other agents. So, tj describes both the technology of firm j and the way in
which firm j’s technology is affected by the activities of the other agents.
More precisely, for a given (y−j, x), the production set of the firm j is given
by the following set,

Yj(y−j, x) :=
{
yj ∈ RC : tj(yj, y−j, x) ≤ 0

}
where the transformation function tj is a function from RC×RC(J−1)×RCH

++

to R, t := (tj)j∈J .
• Household h has preferences described by a utility function,

uh : (xh, x−h, y) ∈ RC
++ × RC(H−1)

+ × RCJ −→ uh(xh, x−h, y) ∈ R

uh(xh, x−h, y) is the utility level of household h associated with (xh, x−h, y).
So, uh also describes the way in which household h’s preferences are affected
by the actions of the other agents. Denote u := (uh)h∈H.
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• sjh ∈ [0, 1] is the share of firm j owned by household h; sh := (sjh)j∈J ∈
[0, 1]J denotes the vector of the shares owed by household h; s := (sh)h∈H ∈
[0, 1]JH .
• eh := (e1

h, .., e
c
h, .., e

C
h ) ∈ RC

++ denotes household h’s endowment, e := (eh)h∈H ∈
RCH

++ and r :=
∑
h∈H

eh ∈ RC
++.

• E := ((u, e, s), t) is a private ownership economy with externalities.
• pc is the price of one unit of commodity c, p := (p1, .., pc, .., pC) ∈ RC

++.
• Given w = (w1, .., wc, .., wC) ∈ RC , we denote w\ := (w1, .., wc, .., wC−1) ∈
RC−1.

We make the following assumptions on the transformation functions.

Assumption 1 For all j ∈ J ,

(1) The function tj is continuous on its domain. For every (y−j, x) ∈ RC(J−1)×
RCH

++ , the function tj(·, y−j, x) is differentiable and Dyj tj(·, ·, ·) is conti-
nuous on RCJ × RCH

++ .
(2) For every (y−j, x) ∈ RC(J−1) × RCH

++ , tj(0, y−j, x) = 0.
(3) For every (y−j, x) ∈ RC(J−1) × RCH

++ , the function tj(·, y−j, x) is differen-
tiably strictly quasi-convex, i.e., it is a C2 function and for all y′j ∈ RC,
D2
yj
tj(y

′
j, y−j, x) is positive definite on KerDyj tj(y

′
j, y−j, x). 9

(4) For every (y−j, x) ∈ RC(J−1)×RCH
++ , Dyj tj(y

′
j, y−j, x)� 0 for all y′j ∈ RC.

Fixing the externalities, the assumptions on tj are standard in a differentiable
framework. From Points 1 and 4 of Assumption 1, the production set is a C1

manifold of dimension C and its boundary is a C1 manifold of dimension C−1.
Point 2 of Assumption 1 states that inaction is possible. Consequently, using
standard arguments from profit maximization, the individual wealth of house-
hold h derived from his endowment eh ∈ RC

++ and his profit shares is strictly
positive for every price p ∈ RC

++, from which one deduces the non-emptiness of
the interior of the individual budget constraint. From Point 3 of Assumption 1,
the production set is convex. Furthermore, if the profit maximization problem
has a solution then it is unique, because the function tj(·, y−j, x) is continuous
and strictly quasi-convex. We remark that tj is not required to be quasi-convex
with respect to all the variables, so we do not require the production set to be
convex with respect to the externalities. From Point 4 of Assumption 1, the
function tj(·, y−j, x) is strictly increasing and so the production set satisfies

9 Let v and v′ be two vectors in Rn, v · v′ denotes the scalar product of v and v′.
Let A be a real matrix with m rows and n columns, and B be a real matrix with
n rows and l columns, AB denotes the matrix product of A and B. Without loss of
generality, vectors are treated as row matrices and A denotes both the matrix and
the following linear mapping A : v ∈ Rn → A(v) := AvT ∈ R[m] where vT denotes
the transpose of v and R[m] := {wT : w ∈ Rm}. When m = 1, A(v) coincides with
the scalar product A · v, treating A and v as vectors in Rn.

6
 
Documents de Travail du Centre d'Economie de la Sorbonne - 2015.34



the classical “free disposal” property.

Remark 2 All our analysis holds true if some commodities are not involved
in the technological process of firm j. In this case, for every firm j, one defines
the set Cj of all the commodities c ∈ C that are involved in the technological pro-
cess of firm j, where Cj denotes the cardinality of the set Cj with 2 ≤ Cj ≤ C.
The production plan of firm j is then defined as yj := (ycj)c∈Cj ∈ RCj and the

transformation function tj is a function from RCj ×
∏
f 6=j

RCf × RCH
++ to R. In

this case, all the assumptions on the transformation functions are written just
replacing RC × RC(J−1) × RCH

++ by RCj ×
∏
f 6=j

RCf × RCH
++ . Furthermore, in the

definition of a competitive equilibrium, one also adapts the market clearing
condition for every commodity c by considering only the firms that use com-
modity c in their technological process. That is, for every commodity c, the
sum over j ∈ J is replaced by the sum over j ∈ J (c) := {j ∈ J : c ∈ Cj}.

For any given externality (x, y) ∈ RCH
++ ×RCJ , define the set of all the produc-

tion plans which belong to the production sets, that is

Y (x, y) := {y′ ∈ RCJ : tj(y
′
j, y−j, x) ≤ 0, ∀ j ∈ J } (1)

We remind that r =
∑
h∈H

eh and we make the following assumption which

is analogous to Assumption UB (Uniform Boundedness) in Bonnisseau and
Médecin (2001), and Assumption P(3) in Mandel (2008).

Assumption 3 (Uniform Boundedness) There exists a bounded set C(r) ⊆
RCJ such that for every (x, y) ∈ RCH

++ × RCJ ,

Y (x, y) ∩ {y′ ∈ RCJ :
∑
j∈J

y′j + r � 0} ⊆ C(r)

The following lemma is an immediate consequence of Assumption 3.

Lemma 4 There exists a bounded set K(r) ⊆ RCH
++ ×RCJ such that for every

(x, y) ∈ RCH
++ × RCJ , the following set is included in K(r).

A(x, y; r) := {(x′, y′) ∈ RCH
++ × RCJ : y′ ∈ Y (x, y) and

∑
h∈H

x′h −
∑
j∈J

y′j ≤ r}

It is well known that the boundedness of the set of feasible allocations is a
crucial condition for the non-emptiness and the compactness of the equili-
brium set. Fixing the externalities, from Assumption 3 one deduces that
the set of feasible allocations is bounded. So, in this sense, Assumption 3
is standard. Furthermore, Assumption 3 guarantees also that the set of fea-
sible allocations A(x, y; r) is uniformly bounded with respect to any possible
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externalities (x, y). In particular, it implies that the set F(r) = {(x, y) ∈
RCH

++ × RCJ | tj(yj, y−j, x) ≤ 0, ∀j ∈ J and
∑
h∈H

xh −
∑
j∈J

yj ≤ r} is bounded.

However, for the non-emptiness of the equilibrium set it would not be suffi-
cient to assume only the boundedness of the set F(r). 10 Lemma 4 is used to
prove compactness properties of the homotopy, see Steps 1.1 and 2.1 in the
proof of Proposition 15, see Section 5.

We make the following assumptions on the utility functions.

Assumption 5 For all h ∈ H,

(1) The function uh is continuous on its domain. For every (x−h, y) ∈ RC(H−1)
++ ×

RCJ , the function uh(·, x−h, y) is differentiable and Dxhuh(·, ·, ·) is con-
tinuous on RCH

++ × RCJ .

(2) For every (x−h, y) ∈ RC(H−1)
++ × RCJ , the function uh(·, x−h, y) is diffe-

rentiably strictly increasing, i.e., Dxhuh(x
′
h, x−h, y)� 0 for all x′h ∈ RC

++.

(3) For every (x−h, y) ∈ RC(H−1)
++ × RCJ , the function uh(·, x−h, y) it is dif-

ferentiably strictly quasi-concave, i.e., it is C2 and for all x′h ∈ RC
++,

D2
xh
uh(x

′
h, x−h, y) is negative definite on KerDxhuh(x

′
h, x−h, y).

(4) For every (x−h, y) ∈ RC(H−1)
+ × RCJ and for every u ∈ Imuh(·, x−h, y),

clRC{xh ∈ RC
++ : uh(xh, x−h, y) ≥ u} ⊆ RC

++

Fixing the externalities, the assumptions on uh are standard in a differentiable
framework. From Point 3 of Assumption 5, the upper contour sets are convex,
and if the utility maximization problem has a solution then it is unique. Notice
that uh is not required to be quasi-concave with respect to all the variables, so
we do not require preferences to be convex with respect to the externalities.
Point 4 of Assumption 5 is the classical Boundary Condition (BC) which means
that the closure of the upper counter sets is included in RC

++. We notice that
in Points 1 and 4 of Assumption 5, we consider consumption externalities
x−h on the boundary of the set RC(H−1)

++ in order to look at the limit of the
behavior of uh with respect to the consumption externalities. It means that
BC is still valid whenever consumption externalities converge to zero for some
commodities. 11

10 See Bonnisseau and Médecin (2001) and Mandel (2008), where the authors also
need uniform boundedness assumptions in order to prove the non-emptiness of the
equilibrium set.
11 See Step 2.2 in the proof of Proposition 15, Section 5.
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3 Competitive equilibrium and equilibrium function

In this section, we provide the definition of competitive equilibrium à la Nash
and the notion of equilibrium function.

Without loss of generality, commodity C is the “numeraire good”. So, given
p\ ∈ RC−1

++ with innocuous abuse of notation, we denote p := (p\, 1) ∈ RC
++.

Definition 6 (Competitive equilibrium) (x∗, y∗, p∗\) ∈ RCH
++×RCJ×RC−1

++

is a competitive equilibrium for the economy E if for all j ∈ J , y∗j solves the
following problem

max
yj∈RC

p∗ · yj

subject to tj(yj, y
∗
−j, x

∗) ≤ 0
(2)

for all h ∈ H, x∗h solves the following problem

max
xh∈RC

++

uh(xh, x
∗
−h, y

∗)

subject to p∗ · xh ≤ p∗ · (eh +
∑
j∈J

sjhy
∗
j )

(3)

and (x∗, y∗) satisfies market clearing conditions, that is∑
h∈H

x∗h =
∑
h∈H

eh +
∑
j∈J

y∗j (4)

Using first-order conditions, one easily characterizes the solutions of firms and
households maximization problems. The proof of the following proposition is
standard, because in problems (2) and (3) each agent takes as given both the
price and the actions of the other agents.

Proposition 7

(1) From Assumption 1, if y∗j is a solution to problem (2), then it is unique
and it is completely characterized by KKT conditions. 12

(2) From Point 2 of Assumption 1 and Assumption 5, there exists a unique
solution x∗h to problem (3) and it is completely characterized by KKT
conditions.

(3) As usual, from Point 2 of Assumption 5, household h’s budget constraint
holds with an equality. Thus, at equilibrium, due to the Walras law, the
market clearing condition for commodity C is “redundant”. So, one re-
places condition (4) with

∑
h∈H

x
∗\
h =

∑
h∈H

e
\
h +

∑
j∈J

y
∗\
j .

12 “KKT conditions” means Karush–Kuhn–Tucker conditions.
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Let Ξ := (RC
++×R++)H×(RC×R++)J×RC−1

++ be the set of endogenous varia-
bles with generic element ξ := (x, λ, y, α, p\) := ((xh, λh)h∈H, (yj, αj)j∈J , p

\)
where λh denotes the Lagrange multiplier associated with household h’s bud-
get constraint, and αj denotes the Lagrange multiplier associated with firm
j’s technological constraint. We can now describe the competitive equilibria
associated with the economy E using the equilibrium function F : Ξ→ Rdim Ξ,

F (ξ) := ((F h.1 (ξ) , F h.2 (ξ))h∈H, (F
j.1 (ξ) , F j.2 (ξ))j∈J , F

M (ξ)) (5)

where F h.1 (ξ) := Dxhuh(xh, x−h, y)−λhp, F h.2 (ξ) := −p ·(xh−eh−
∑
j∈J

sjhyj),

F j.1 (ξ) := p − αjDyj tj(yj, y−j, x), F j.2 (ξ) := −tj(yj, y−j, x), and FM (ξ) :=∑
h∈H

x
\
h −

∑
j∈J

y
\
j −

∑
h∈H

e
\
h.

ξ∗ = (x∗, λ∗, y∗, α∗, p∗\) ∈ Ξ is an extended equilibrium for the E if and only if
F (ξ∗) = 0. By Proposition 7, (x∗, y∗, p∗\) is a competitive equilibrium for E
if and only if there exists (λ∗, α∗) such that ξ∗ is an extended equilibrium for
E. We simply call ξ∗ an equilibrium.

4 Existence and compactness

In this section, we show that the set of competitive equilibria with consump-
tions and prices strictly positive is non-empty and compact. The result is
provided by the following theorem.

Theorem 8 The equilibrium set F−1(0) is non-empty and compact.

In order to prove Theorem 8, we use a homotopy approach following the
seminal paper by Smale (1974). The following theorem is a consequence of the
homotopy invariance of the topological degree. Following Chapter 4 in Milnor
(1965), and more recent contributions by Villanacci and Zenginobuz (2005),
del Mercato (2006) and Bonnisseau and del Mercato (2008), our homotopy
approach is based on the theory of degree modulo 2. The degree modulo 2
is simpler than the Brouwer degree which requires the concepts of oriented
manifold. 13 The reader can find a survey of the degree theory, for example, in
Geanakoplos and Shafer (1990) and in Villanacci et al. (2002). In Section 6,
we recall the definition and fundamental properties of the degree modulo 2.

Theorem 9 (Homotopy Theorem) Let M and N be C2 manifolds of the
same dimension contained in euclidean spaces. Let y ∈ N and f, g : M → N
be two functions such that f is continuous, g is C1, y is a regular value for g

13 See for instance, Chapters 5 in Milnor (1965), and Mas-Colell (1985).
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and #g−1(y) is odd. Let L be a continuous homotopy from g to f such that
L−1(y) is compact. Then,

(1) g−1(y) is compact and deg2(g, y) = 1,
(2) f−1(y) is compact and deg2(f, y) = 1.

The equilibrium function F plays the role of the function f given in Theorem
9. In order to construct the function playing the role of the function g, we
proceed as follows. In Subsection 4.1, we construct an appropriate economy
called the “test economy”. G is the equilibrium function associated with the
test economy and it plays the role of g. The test economy has an unique regular
equilibrium, i.e., #G−1(0) = 1 and 0 is a regular value of G, see Proposition 12.
In Subsection 4.2, we provide the required homotopy H from G to F playing
the role of the homotopy L. Proposition 15 states the compactness of H−1(0).
Using Propositions 12 and 15, all the assumptions of Theorem 9 are satisfied,
and so one gets the following lemma.

Lemma 10 F−1(0) is compact and deg2(F, 0) = 1.

Using Lemma 10 and the non-triviality property of the topological degree one
gets F−1(0) 6= ∅, and so Theorem 8 is completely proved.

Finally, we remark that if E is a regular economy (i.e., the equilibrium func-
tion F is C1 and 0 is a regular value of F ), then using Lemma 10 and the
computation of the degree modulo 2, one obviously finds that, at a regular
economy, the number of equilibria is finite and odd. 14 However, this paper does
not address any regularity issues. In the presence of consumption and produc-
tion externalities, the analysis of regular economies is a quite sensitive topics.
For the case without any externalities on the production side, see for exam-
ple Bonnisseau (2003), Kung (2008), and Bonnisseau and del Mercato (2010).
In the presence of production externalities, the analysis of regular economies
deserves a separate analysis, see del Mercato and Platino (2015).

4.1 The “test economy” and its properties

We construct the test economy in two steps. We first fix the externalities and
we consider a Pareto optimal allocation of a standard production economy
E without externalities. Second, using the Second Theorem of Welfare Eco-
nomics, we construct an appropriate private ownership economy Ẽ that has
an unique regular equilibrium. Ẽ is the test economy and it is an economy
without externalities.

14 The computation of the degree modulo 2 for C1 functions and regular values is
provided by Proposition 17 in Section 6.
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Fix an allocation (x, y) ∈ RCH
++ × RCJ . Define uh(xh) := uh(xh, x−h, y) for all

h ∈ H, tj(yj) := tj(yj, y−j, x) for all j ∈ J , and the production economy

E := (u, t, r) where r =
∑
h∈H

eh. It is well known that, under Assumptions 1,

3 and 5, there exists a Pareto optimal allocation (x̃, ỹ) of the economy E and
Lagrange multipliers (θ̃, γ̃, β̃) such that (x̃, ỹ, θ̃, γ̃, β̃) is completely character-
ized by the first-order conditions for Pareto optimality. This result is stated
in the following proposition.

Proposition 11 There exists a Pareto optimal allocation (x̃, ỹ) ∈ RCH
++×RCJ

of the economy E and (β̃, θ̃, γ̃) = ((β̃j)j∈J , (θ̃h)h6=1, γ̃) ∈ RJ
++ × RH−1

++ × RC
++

such that (x̃, ỹ, β̃, θ̃, γ̃) is the unique solution to the following system.
(1) Dx1u1(x1) = γ, ∀ h 6= 1 : (2) θhDxhuh(xh) = γ, (3) uh(xh) = uh(x̃h)

∀ j ∈ J : (4) γ = βjDyj tj(yj), (5) − tj(yj) = 0, (6)
∑
h∈H

xh −
∑
j∈J

yj = r

(6)

Also, it is well known that the Pareto optimal allocation (x̃, ỹ) can be sup-
ported by some price system p̃. 15 From system (6), one easily deduces a sup-
porting price p̃, a redistribution of initial endowments ẽ = (ẽh)h∈H and the
equilibrium equations satisfied by (x̃, ỹ) for appropriate Lagrange multipliers
(λ̃, α̃) ∈ RH

++ × RJ
++. More precisely, define

ẽh := x̃h −
∑
j∈J

sjhỹj (7)

and the function G : Ξ→ Rdim Ξ,

G (ξ) := ((Gh.1 (ξ) , Gh.2 (ξ))h∈H, (G
j.1 (ξ) , Gj.2 (ξ))j∈J , G

M (ξ)) (8)

where Gh.1 (ξ) := Dxhuh(xh, x−h, y)−λhp, Gh.2 (ξ) := −p ·(xh− ẽh−
∑
j∈J

sjhyj),

Gj.1 (ξ) := p − αjDyj tj(yj, y−j, x), Gj.2 (ξ) := −tj(yj, y−j, x) and GM (ξ) :=∑
h∈H

x
\
h −

∑
j∈J

y
\
j −

∑
h∈H

ẽ
\
h.

The function G is nothing else than the equilibrium function associated with
the economy Ẽ := ((u, ẽ, s), t) which is a private ownership economy without

externalities. Now, define ξ̃ := (x̃, λ̃, ỹ, α̃, p̃\) with p̃ := γ̃
γ̃C

, λ̃1 := γ̃C , λ̃h := γ̃C

θ̃h

for all h 6= 1 and α̃j := β̃j
γ̃C

for all j ∈ J . Using system (6), it is an easy matter

to check that G(ξ̃) = 0. As stated in the following proposition, ξ̃ is the unique
regular equilibrium of the economy Ẽ.

15 Using Debreu’s vocabulary, (x̃, ỹ) is an equilibrium relative to some price system
p̃, see Section 6.4 in Debreu (1959).
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Proposition 12 G−1(0) = {ξ̃}, G is C1 and 0 is a regular value for G.

Remark 13 The redistribution of endowments ẽ = (ẽh)h∈H given in (7) is
not necessarily strictly positive. However, at equilibrium, the individual wealth
of household h is equal to p̃ · x̃h which is strictly positive. One might wish to
consider a different redistribution that gives rise to positive endowments. But,
such a redistribution involves also some redistributions of the shares. 16 Our
redistribution of endowments ẽ = (ẽh)h∈H does not involve any redistribution of
the shares, so that we do not need to homotopize the shares, see the homotopy
H in the next subsection.

4.2 The homotopy and its properties

The basic idea is to homotopize the endowments and the externalities by an
arc from the equilibrium conditions associated with the test economy Ẽ to the
ones associated with our economy E. But, one finds the following difficulty.
At equilibrium, the individual wealth is positive at the beginning as well as at
the end of the homotopy arc. 17 Nevertheless, since the production sets are not
required to be convex with respect to the choices of all agents, the individual
wealth may not be positive along the homotopy arc. Consequently, the indi-
vidual budget constraint may be empty along the homotopy arc. We illustrate
the details below.

Homotopize first the endowments by a segment. Then, for every τ ∈ [0, 1] the
individual wealth is given by p · [τeh + (1− τ)ẽh] + p ·

∑
j∈J

sjhyj which is equal

to
p · [τeh + (1− τ)x̃h] + p ·

∑
j∈J

sjh[yj − (1− τ)ỹj]

So, the individual wealth is positive if p · yj ≥ p · (1− τ)ỹj for all j ∈ J . Using
standard arguments from profit maximization, at equilibrium, this condition
is satisfied if (1 − τ)ỹj belongs to the production set of firm j. On the other
hand, if at same time one homotopizes the externalities by a segment, the
production set becomes the following set,

Yj(τy−j + (1− τ)y−j, τx+ (1− τ)x)

But, one does not know whether or not the production plan (1−τ)ỹj belongs to

16 For example, the redistribution êh := ŝjh
∑

h∈H eh with ŝjh := p̃·x̃h
p̃·
∑

h∈H x̃h
.

17 Indeed, at the economy E, the equilibrium individual wealth p · (eh +
∑
j∈J

sjhy
∗
j )

is strictly positive because of the possibility of inaction (Point 2 of Assumption 1)
and standard arguments from profit maximization.
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the production set given above, unless the transformation function tj is quasi-
convex with respect to all the variables. Indeed, tj(0, y−j, x) = 0 because of

the possibility of inaction, and tj(ỹj, y−j, x) = 0 because G
(
ξ̃
)

= 0. If tj is

quasi-convex with respect to all the variables, then tj((1 − τ)ỹj, τy−j + (1 −
τ)y−j, τx + (1 − τ)x) ≤ 0, and so (1 − τ)ỹj belongs to the production set
given above. But, tj is not required to be quasi-convex with respect to all the
variables.

Thus, to overcome the difficulty described above, we define the homotopy H
in two times using two homotopies Φ and Γ. Namely,

• in the first homotopy Φ, we homotopize the endowments without homo-
topizing the externalities,
• in the second homotopy Γ, we homotopize the externalities in preferences

and production technologies without homotopizing the endowments.

Remark 14 Notice that,

(1) If the externalities are fixed, then only one homotopy is needed, namely the
homotopy Φ. So, our homotopy proof covers the case in which the economy
E is a standard private ownership economy without externalities. 18

(2) If the production sets are convex with respect to the choices of all agents,
then endowments and externalities can be obviously homotopized at the
same time.

Formally, using (x, y) ∈ RCH
++ × RCJ and ẽh given by (7), define the following

convex combinations

eh(τ) := τeh + (1− τ)ẽh, x(τ) := τx+ (1− τ)x, y(τ) := τy + (1− τ)y (9)

and the two following homotopies Φ,Γ : Ξ× [0, 1]→ Rdim Ξ,

Φ (ξ, τ) := ((Φh.1 (ξ, τ) ,Φh.2 (ξ, τ))h∈H, (Φ
j.1 (ξ, τ) ,Φj.2 (ξ, τ))j∈J ,Φ

M (ξ, τ))
(10)

where Φh.1 (ξ, τ) = Dxhuh(xh, y−j, x) − λhp, Φh.2 (ξ, τ) = −p · [xh − eh(τ) −∑
j∈J

sjhyj], Φj.1 (ξ, τ) = p − αjDyj tj(yj, y−j, x), Φj.2 (ξ, τ) = −tj(yj, y−j, x),

ΦM (ξ, τ) =
∑
h∈H

x
\
h −

∑
j∈J

y
\
j −

∑
h∈H

eh(τ)\.

Γ (ξ, τ) := ((Γh.1 (ξ, τ) ,Γh.2 (ξ, τ))h∈H, (Γ
j.2 (ξ, τ) ,Γj.2 (ξ, τ))j∈J ,Γ

M (ξ, τ))
(11)

18 In Chapter 9 of Villanacci et al. (2002), the reader finds a homotopy proof for
a standard private ownership economies without externalities. Our proof is simpler
than the latter one because we do not homotopize the shares.
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where Γh.1 (ξ, τ) = Dxhuh(xh, x−h(τ), y(τ))− λhp, Γh.2 (ξ, τ) = −p · [xh − eh −∑
j∈J

sjhyj], Γj.1 (ξ, τ) = p−αjDyj tj (yj, y−j(τ), x(τ)), Γj.2 (ξ, τ) = −tj (yj, y−j(τ), x(τ)),

ΓM (ξ, τ) =
∑
h∈H

x
\
h −

∑
j∈J

y
\
j −

∑
h∈H

e
\
h.

Finally, define the homotopy H : Ξ× [0, 1]→ Rdim Ξ,

H(ξ, ψ) :=

Φ(ξ, 2ψ) if 0 ≤ ψ ≤ 1
2

Γ(ξ, 2ψ − 1) if 1
2
≤ ψ ≤ 1

The homotopy H is continuous since Φ and Γ are composed by continuous
functions. Importantly, H

(
ξ, 1

2

)
is well defined since Φ(ξ, 1) = Γ(ξ, 0). Fur-

thermore, H (ξ, 0) = Φ (ξ, 0) = G(ξ) and H (ξ, 1) = Γ (ξ, 1) = F (ξ). We
conclude providing the following lemma.

Proposition 15 H−1(0) is compact.

5 Proofs

Proof of Lemma 4. Let (x′, y′) ∈ A(x, y; r). Since
∑
h∈H

x′h � 0, y′ belongs to

the bounded set C(r) given by Assumption 3. Furthermore, for every h ∈ H,
0 � x′h �

∑
h∈H

x′h ≤
∑
j∈J

y′j + r. Thus, there exists a bounded set K(r) ⊆

RCH
++ × RCJ such that for every (x, y) ∈ RCH

++ × RCJ , A(x, y; r) ⊆ K(r).

Proof of Proposition 11. Let E be the production economy defined in
Section 4.1. We remind that A(x, y; r) := {(x′, y′) ∈ RCH

++ × RCJ : tj(y
′
j) ≤

0, ∀j ∈ J and
∑
h∈H

x′h −
∑
j∈J

y′j ≤ r}. Consider the set U(r) := {(u′h)h∈H ∈∏
h∈H

Imuh | ∃(x′, y′) ∈ A(x, y; r) : uh(x
′
h) ≥ u′h, ∀h ∈ H}. By Point 2 of

Assumption 1, the set Ur is non-empty. Fix (u′h)h∈H ∈ U(r) and consider the
following maximization problem

max
(x,y)∈RCH

++×RCJ
u1(x1)

subject to tj(yj) ≤ 0, ∀j ∈ J

uh(xh) ≥ u′h, ∀h ∈ H∑
h∈H

xh −
∑
j∈J

yj ≤ r

(12)
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Step 1. Problem (12) has at least a solution. Let K be the set determined
by the constraints of problem (12). K is non-empty since (u′h)h∈H ∈ Ur. We
claim that K is compact. Define the set N := {(x, y) ∈ RCH

++ ×RCJ : uh(xh) ≥
u′h, ∀h ∈ H} and notice that K = N ∩ A(x, y; r). So, K is bounded by
Lemma 4. Furthermore, K is a closed set included in RCH

++ ×RCJ by Point 4 of
Assumption 5 and the continuity of the functions uh and tj. By Weierstrass’
Theorem, there exists a solution to problem (12).

Step 2. Let (x̃, ỹ) be a solution to problem (12). Then, (x̃, ỹ) solves the fol-
lowing problem and it is a Pareto optimal allocation of the economy E.

max
(x,y)∈RCH

++×RCJ
u1(x1)

subject to −tj(yj) ≥ 0, ∀j ∈ J

uh(xh)− uh(x̃h) ≥ 0, ∀h 6= 1

r −
∑
h∈H

xh +
∑
j∈J

yj ≥ 0

(13)

Let K̃ be the set determined by the constraints of problem (13), (x̃, ỹ) obvi-
ously belongs to K̃. Consider now (x, y) ∈ K̃ and remind that K is the set
determined by the constraints of problem (12). If u1(x1) ≥ u′1, then (x, y) ∈ K
and so u1(x̃1) ≥ u1(x1). If u1(x1) < u′1, then u1(x̃1) > u1(x1) since u1(x̃1) ≥ u′1.
Thus, (x̃, ỹ) solves problem (13). Now, suppose by contradiction that (x̃, ỹ)
is not a Pareto optimal allocation of E. Then, there is another allocation
(x̂, ŷ) ∈ RCH

++ × RCJ such that tj(ŷj) ≤ 0 for all j,
∑
h∈H

x̂h ≤ r +
∑
j∈J

ŷj,

uh(x̂h) ≥ uh(x̃h) for all h, and uk(x̂k) > uk(x̃k) for some k ∈ H. If k = 1,
then we get a contradiction since (x̃, ỹ) solves problem (13). If k 6= 1, using
the continuity of uk, there exists ε > 0 such that uk(x̂k− ε1c) > uk(x̃k) where
the vector 1c ∈ RC

+ has all the components equal to 0 except the component
c which is equal to 1. Consider the allocation (x, y) defined by x1 := x̂1 + ε1c,
xk := x̂k − ε1c, xh := x̂h for all h 6= 1, h 6= k, and yj := ŷj for all j. (x, y) ∈ K̃
and u1(x1) > u1(x̃1) since u1 is strictly increasing. So, once again we get a
contradiction since (x̃, ỹ) solves problem (13).

Step 3. Let (x̃, ỹ) be a solution of problem (12). Then, there exists (β̃, θ̃, γ̃) :=
((β̃j)j∈J , (θ̃h)h6=1, γ̃) ∈ RJ

++×RH−1
++ ×RC

++ such that (x̃, ỹ, β̃, θ̃, γ̃) is the unique

solution to system (6). We first prove the existence of (β̃, θ̃, γ̃), afterwards we
show the uniqueness of (x̃, ỹ, β̃, θ̃, γ̃).

Existence of (β̃, θ̃, γ̃) � 0. By Step 2, (x̃, ỹ) solves problem (13). The KKT
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conditions associated with problem (13) are given by


Dx1u1(x1) = γ, ∀h 6= 1 : θhDxhuh(xh) = γ, θh(uh(xh)− uh(x̃h)) = 0

∀j ∈ J : γ = βjDyj tj(yj), βj(−tj(yj)) = 0, ∀c ∈ C : γc(rc −
∑
h∈H

xch +
∑
j∈J

ycj) = 0

(14)
where (β, θ, γ) := ((βj)j∈J , (θh)h6=1, (γ

c)c∈C) ∈ RJ
+ × RH−1

+ × RC
+ are the La-

grange multipliers associated with the constraint functions of problem (13). We
first claim that KKT conditions are necessary conditions to solve problem (13).
It is enough to verify that the Jacobian matrix associated with the constraint
functions of problem (13) has full row rank equal to N := J + (H − 1) + C.
For every firm j, fix a commodity c(j) ∈ C. The matrix given below is the
N×N square sub-matrix which is obtained considering the partial derivatives
of the constraint functions with respect to ((y

c(j)
j )j∈J , (x

1
h)h6=1, x1). Point 4 of

Assumption 1 and Point 2 of Assumption 5 imply that the determinant of
this square sub-matrix is different from zero, which complete the proof of the
claim. 19 

−D
y
c(1)
1

t1(y1) . . . 0 0 . . . 0 0

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 . . . −D
y
c(J)
J

tJ (yJ ) 0 . . . 0 0

0 . . . 0 D
x1
2
u2(x2) . . . 0 0

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 . . . 0 0 . . . D
x1
H

uH (xH ) 0[
1c(1)

]T
. . .

[
1c(J)

]T
−
[
11
]T

. . . −
[
11
]T

−IC


Therefore, there exists (β̃, θ̃, γ̃) ≥ 0 such that (x̃, ỹ, β̃, θ̃, γ̃) solves system (14).
Furthermore, Point 4 of Assumption 1 and Point 2 of Assumption 5 imply that
all the Lagrange multipliers (β̃, θ̃, γ̃) must be strictly positive. Consequently,
all the constraints of problem (13) are binding, and so (x̃, ỹ, β̃, θ̃, γ̃) is a solution
to system (6).

Uniqueness of (x̃, ỹ, β̃, θ̃, γ̃). Define θ̃1 := 1, by equations (1) and (2) of system

(6), for all h one gets Dxhuh(x̃h) = γ̃

θ̃h
. So, for every h, x̃h solves the maxi-

mization problem: max
xh∈RC

++

uh(xh) subject to γ̃

θ̃h
· xh ≤ γ̃

θ̃h
· x̃h because KKT are

sufficient conditions to solve this problem. Thus, the uniqueness of x̃h obvi-
ously follows from the strict quasi-concavity of uh. Analogously, by equations

(4) and (5) of system (6), ỹj solves the maximization problem: max
yj∈RC

γ̃

β̃j
· yj

subject to tj(yj) ≤ 0 for every j. Thus, the uniqueness of ỹj follows from the
continuity and the strict quasi-convexity of tj. Therefore, (x̃, ỹ) is unique and

consequently, the uniqueness of (β̃, θ̃, γ̃) obviously follows by equations (1),

19 We remind that for every commodity c, the vector 1c ∈ RC+ has all the components
equal to 0 except the component c which is equal to 1.
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(2) and (4) of system (6).

Proof of Proposition 12. For the proof we use the functions uh and tj
defined in Subsection 4.1. We have already pointed out that G(ξ̃) = 0. Let
ξ′ = (x′, λ′, y′, α′, p′\) ∈ Ξ be such that G(ξ′) = 0, we show that ξ̃ = ξ′.

First, notice that ∑
h∈H

x′h −
∑
j∈J

y′j =
∑
h∈H

eh (15)

Indeed, summing Gh.2(ξ′) = 0 over h, one gets
∑
h∈H

x′h −
∑
j∈J

y′j =
∑
h∈H

ẽh by

GM(ξ′) = 0. Using the definition of ẽh given in (7) and Proposition 11, one
obviously deduces (15).

Second, we show that
uh(x

′
h) = uh(x̃h),∀h ∈ H (16)

Using the definition of ẽh given in (7) and Gh.1(ξ′) = Gh.2(ξ′) = 0, x′h solves
the following maximization problem

max
xh∈RC

++

uh(xh)

subject to p′ · xh ≤ p′ · x̃h +
∑
j∈J

sjh p
′ · (y′j − ỹj)

(17)

because KKT are sufficient conditions to solve this problem. Analogously, from
Gj.1(ξ′) = Gj.2(ξ′) = 0, y′j solves the maximization problem: max

yj∈RC
p′ ·yj subject

to tj(yj) ≤ 0. Notice that ỹj satisfies the constraint of this problem because

Gj.2(ξ̃) = 0. Thus, p′ · (y′j − ỹj) ≥ 0 for all j, and consequently x̃h belongs to
the budget constraint of problem (17). So, uh(x

′
h) ≥ uh(x̃h) for all h. Now,

suppose that uk(x
′
k) > uk(x̃k) for some k ∈ H. From (15) and Gj.2(ξ′) = 0

for all j, one deduces that (x′, y′) is a feasible allocation of the production
economy E, and so one gets a contradiction since (x̃, ỹ) is a Pareto optimal
allocation of E by Proposition 11. Thus, (16) is completely proved.

Now, define β′ := (β′j)j∈J where β′j := λ′1α
′
j for all j, θ′ := (θ′h)h6=1 where θ′h :=

λ′1
λ′
h

for all h 6= 1 and γ′ := λ′1p
′. From Gh.1(ξ′) = 0 for all h, Gj.1(ξ′) = Gj.2(ξ′) =

0 for all j, (15) and (16), it is an easy matter to check that (x′, y′, β′, θ′, γ′)
solves system (6). So, Proposition 11 implies that (x̃, ỹ, β̃, θ̃, γ̃) = (x′, y′, β′, θ′, γ′),
and consequently, one obviously deduces that ξ̃ = ξ′.

We remark that G is C1 by Point 1 of Assumptions 1 and 5. Finally, in order
to show that 0 is a regular value for G, one proves that DξG(ξ̃) has full row

rank. In this regard, we show that if ∆DξG(ξ̃) = 0, then ∆ = 0 where ∆ :=(
(∆xh,∆λh)h∈H, (∆yj,∆αj)j∈J ,∆p

\
)
∈ Rdim Ξ. The system ∆DξG(ξ̃) = 0 is
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given below.

(h.1) ∆xhD
2
xh
uh(x̃h)−∆λhp̃+ ∆p\ [IC−1|0] = 0, ∀ h ∈ H

(h.2) −∆xh · p̃ = 0, ∀ h ∈ H

(j.1)
∑
h∈H

∆λhsjhp̃− α̃j∆yjD2
yj
tj(ỹj)−∆αjDyj tj(ỹj)−∆p\ [IC−1|0] = 0, ∀ j ∈ J

(j.2) −∆yj ·Dyj tj(ỹj) = 0, ∀ j ∈ J

(M) −
∑
h∈H

λ̃h∆x
\
h +

∑
j∈J

∆y
\
j = 0

We first prove that ∆xh = 0 for all h ∈ H. Otherwise, suppose that there is
h ∈ H such that ∆xh 6= 0. The proof goes through the two following claims
that contradict each others.

We first claim that ∆p\ · (
∑
h∈H

λ̃h∆x
\
h) > 0. Multiplying (h.1) by λ̃h∆xh and

summing over h, from (h.2) we get
∑
h∈H

λ̃h∆xhD
2
xh
uh(x̃h)(∆xh) = −∆p\ ·

(
∑
h∈H

λ̃h∆x
\
h). Multiplying Gh.1(ξ̃) = 0 by ∆xh and using (h.2), we get ∆xh ·

Dxhuh(x̃h) = 0 for all h. Therefore, Point 3 of Assumption 5 completes the
proof of the claim since λ̃h > 0 for all h and ∆xh 6= 0.

Second, we claim that ∆p\ · (
∑
h∈H

λ̃h∆x
\
h) ≤ 0. Multiplying both sides of

Gj.1(ξ̃) = 0 by ∆yj and using (j.2), we get ∆yj · p̃ = 0. So, multiplying (j.1)
by ∆yj and summing over j, from (j.2) we get −

∑
j∈J

α̃j∆yjD
2
yj
tj(ỹj)(∆yj) =

∆p\ ·
∑
j∈J

∆y
\
j . Since, α̃j > 0 for all j, Point 3 of Assumption 1 and (j.2) imply

that ∆p\ ·
∑
j∈J

∆y
\
j ≤ 0. Using (M), the claim is completely proved.

Since p̃C = 1 and ∆xh = 0 for all h ∈ H, from (h.1) we get ∆λh = 0 for all
h, and so ∆p\ = 0. Thus, multiplying (j.1) by ∆yj, Point 3 of Assumption 1
and (j.2) imply that ∆yj = 0. So, using once again (j.1), we get ∆αj = 0 by
Point 4 of Assumption 1. Therefore, ∆ = 0.

Proof of Proposition 15. Observe that H−1(0) = Φ−1(0) ∪ Γ−1(0). Since
the union of a finite number of compact sets is compact, it is enough to show
that Φ−1(0) and Γ−1(0) are compact.

Claim 1. Φ−1(0) is compact.

We prove that, up to a subsequence, every sequence (ξν , τ ν)ν∈N ⊆ Φ−1(0)
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converges to an element of Φ−1(0), where ξν := (xν , λν , yν , αν , pν \)ν∈N. Since
{τ ν : ν ∈ N} ⊆ [0, 1], up to a subsequence, (τ ν)ν∈N converges to some τ ∗ ∈
[0, 1]. From Steps 1.1, 1.2, 1.3 and 1.4 below, up to a subsequence, (ξν)ν∈N
converges to some ξ∗ := (x∗, λ∗, y∗, α∗, p∗ \) ∈ Ξ. Since Φ is continuous, taking
the limit, one gets (ξ∗, τ ∗) ∈ Φ−1(0).

We remind that for every τ ∈ [0, 1], eh(τ) is given by (9).

Step 1.1. Up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH
+ ×

RCJ . We show that for r =
∑
h∈H

eh, the sequence (xν , yν)ν∈N is included in the

bounded set K(r) given by Lemma 4. By Φj.2(ξν , τ ν) = 0, for every j we get

tj(y
ν
j , y−j, x) = 0, ∀ ν ∈ N

Thus, the sequence (yν)ν∈N is included in the set Y (x, y) given by (1). Summing
Φh.2(ξν , τ ν) = 0 over h, by ΦM(ξν , τ ν) = 0 we have

∑
h∈H

xνh−
∑
j∈J

yνj =
∑
h∈H

eh(τ
ν)

for every ν ∈ N. Using the definition of ẽh given by (7) and Proposition 11,
one gets

∑
h∈H

eh(τ) = r for every τ ∈ [0, 1], and so
∑
h∈H

xνh −
∑
j∈J

yνj = r for

every ν ∈ N. Thus, (xν , yν)ν∈N ⊆ A(x, y; r) ⊆ K(r). Consequently, (xν , yν)ν∈N
is included in clK(r) which is a compact set. Then, up to a subsequence,
(xν , yν)ν∈N converges to some (x∗, y∗) ∈ clK(r) ⊆ RCH

+ ×RCJ , and so (x∗, y∗) ∈
RCH

+ × RCJ .

Step 1.2. The consumption allocation x∗ is strictly positive, i.e. x∗ � 0. By
Φh.1(ξν , τ ν) = Φh.2(ξν , τ ν) = 0 and KKT sufficient conditions, xνh solves the
following problem for every ν ∈ N.

max
xh∈RC

++

uh(xh, x−h, y)

subject to pν · xh ≤ pν · [τ νeh + (1− τ ν)x̃h] + pν ·
∑
j∈J

sjh(y
ν
j − (1− τ ν)ỹj)

(18)
We first claim that for every ν ∈ N, the following bundle

êh(τ
ν) := τ νeh + (1− τ ν)x̃h (19)

belongs to the budget constraint of the problem above. By Φj.1(ξν , τ ν) =
Φj.2(ξν , τ ν) = 0 and KKT sufficient conditions, yνj solves the following problem
for every ν ∈ N.

max
yj∈RC

pν · yj

subject to tj(yj, y−j, x) ≤ 0
(20)

tj(ỹj, y−j, x) = 0 since Gj.2(ξ̃) = 0, see (8). By Point 2 of Assumption 1,
tj(0, y−j, x) = 0. So, we get tj((1 − τ ν)ỹj, y−j, x) < 0 since tj(·, y−j, x) is

20
 
Documents de Travail du Centre d'Economie de la Sorbonne - 2015.34



strictly quasi-convex, that is, the production plan (1 − τ ν)ỹj belongs to the
constraint set of problem (20). Thus, pν · (yνj − (1− τ ν)ỹj) ≥ 0 for every j, and

so pν ·
∑
j∈J

sjh(y
ν
j − (1− τ ν)ỹj) ≥ 0 which completes the proof of the claim.

Therefore, for every ν ∈ N, uh(x
ν
h, x−h, y) ≥ uh(êh(τ

ν), x−h, y). By Point 2 of
Assumption 5, for every ε > 0 we get uh(x

ν
h + ε1, x−h, y) > uh(êh(τ

ν), x−h, y)
where 1 := (1, . . . , 1) ∈ RC

++. Taking the limit over ν and using Point 1 of
Assumption 5, x∗h � 0 since it belongs to the closure of the upper counter
set associated with uh(êh(τ

∗), x−h, y) which is included in RC
++ by Point 4 of

Assumption 5. Thus, x∗ � 0.

Step 1.3. Up to a subsequence, (λν , pν \)ν∈N converges to some λ∗ ∈ RH
++ ×

RC−1
++ . The proof is similar to the proof of Step 2.3.

Step 1.4. Up to a subsequence, (αν)ν∈N converges to some α∗ ∈ RJ
++. The

proof is similar to the proof of Step 2.4.

Claim 2. Γ−1(0) is compact.

Let (ξν , τ ν)ν∈N be a sequences in Γ−1(0). As in Claim 1, (τ ν)ν∈N converges to
τ ∗ ∈ [0, 1]. From Seps 2.1, 2.2, 2.3 and 2.4 below, up to a subsequence, (ξν)ν∈N
converges to an element ξ∗ := (x∗, λ∗, y∗, α∗, p∗\) ∈ Ξ. Since Γ is a continuous
function, taking limit, we get (ξ∗, τ ∗) ∈ Γ−1(0).

We remind that for every τ ∈ [0, 1], x(τ) and y(τ) are given by (9).

Step 2.1. Up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH
+ ×

RCJ . We show that for r =
∑
h∈H

eh, the sequence (xν , yν)ν∈N is included in the

bounded set K(r) given by Lemma 4. Then, one completes the proof as in
Step 1.1. By Γj.2(ξν , τ ν) = 0, for every j we have that

tj(y
ν
j , y

ν
−j(τ

ν), xν(τ ν)) = 0, ∀ν ∈ N

Thus, for every ν ∈ N, the production allocation yν belongs to the set Y (xν(τ ν), yν(τ ν))
given by (1). Now, summing Γh.2(ξν , τ ν) = 0 over h, by ΓM(ξν , τ ν) = 0, we
get

∑
h∈H

xνh−
∑
j∈J

yνj = r. So, for every ν ∈ N, the allocation (xν , yν) belongs to

the set A(xν(τ ν), yν(τ ν); r) ⊆ K(r), and consequently, (xν , yν)ν∈N ⊆ K(r).

Step 2.2. The consumption allocation x∗ is strictly positive, i.e. x∗ � 0. The
argument is similar to the one used in Step 1.2 except for the last part which
is quite different due to the presence of consumption externalities in the utility
functions.

First, according to Γh.1(ξν , τ ν) = Γh.2(ξν , τ ν) = 0, replace problem (18) with
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the following problem

max
xh∈RC

++

uh(xh, x
ν
−h(τ

ν), yν(τ ν))

subject to pν · xh ≤ pν · eh + pν ·
∑
j∈J

sjhy
ν
j

(21)

and replace êh(τ
ν) given by (19) with êh(τ

ν) := eh. Second, according to
Γj.1(ξν , τ ν) = Γj.2(ξν , τ ν) = 0, replace problem (20) with the following problem

max
yj∈RC

pν · yj

subject to tj(yj, y
ν
−j(τ

ν), xν(τ ν)) ≤ 0

Finally, one follows the same strategy as for Step 1.2. But, differently from
Step 1.2, in this case if τ ∗ = 1, then x∗−h(τ

∗) = x∗−h which a priori is not
necessarily strictly positive. For this reason, in Points 1 and 4 of Assumption
5 we allow for consumption externalities on the boundary of RC(H−1)

++ so that
x∗h � 0 because x∗h belongs to the closure of the upper contour set associated
to (eh, x

∗
−h(τ

∗), y∗(τ ∗)).

Step 2.3. Up to a subsequence, (λν , pν \)ν∈N converges to some (λ∗, p∗ \) ∈
RH

++ × RC−1
++ . By Γh.1 (ξν , τ ν) = 0, fixing commodity C, for every ν ∈ N we

have λνh = DxC
h
uh(x

ν
h, x

ν
−h(τ

ν), yν(τ ν)). Taking the limit, by Points 1 and 2 of

Assumption 5, we get λ∗h := DxC
h
uh(x

∗
h, x

∗
−h(τ

∗), y∗(τ ∗)) > 0.

By Γh.1 (ξν , τ ν) = 0, for all commodity c 6= C and for all ν ∈ N we have pν c =
Dxc

h
uh(x

ν
h, x

ν
−h(τ

ν), yν(τ ν))

λνh
. Taking the limit, by Points 1 and 2 of Assumption

5, we get p∗ c :=
Dxc

h
uh(x

∗
h, x

∗
−h(τ

∗), y∗(τ ∗))

λ∗h
> 0. Therefore, p∗ \ � 0.

Step 2.4. Up to a subsequence, (αν)ν∈N converges to some α∗ ∈ RJ
++. For

every firm j, fix a commodity c(j) ∈ C. By Γj.1 (ξν , τ ν) = 0, for every ν ∈ N
we have that

ανj =
pν c(j)

D
y
c(j)
j
tj(yνj , y

ν
−j(τ

ν), xν(τ ν))

which is strictly positive by Point 4 of Assumption 1. Taking the limit, by

Points 1 and 4 of Assumption 1, we get α∗j :=
p∗ c(j)

D
y
c(j)
j
tj(y∗j , y

∗
−j(τ

∗), x∗(τ ∗))
> 0.
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6 Appendix

We introduce a definition of the degree modulo 2 for continuous functions, see
Appendix B in Geanakoplos and Shafer (1990), and Chapter 7 in Villanacci
et al. (2002).

Let M and N be two C2 manifolds of the same dimension contained in eu-
clidean spaces. Let A be the set of triples (f,M, y) where

(1) f : M → N is a continuous function,
(2) y ∈ N and f−1(y) is compact.

Theorem 16 There exists a unique function, called degree modulo 2 and de-
noted by deg2 : A → {0, 1} such that

(1) (Normalisation) deg2(idM ,M, y) = 1
where y ∈M and idM denotes the identity of M .

(2) (Non–triviality) If (f,M, y) ∈ A and deg2(f,M, y) = 1, then f−1(y) 6= ∅.

(3) (Excision) If (f,M, y) ∈ A and U is an open subset of M such that
f−1(y) ⊆ U , then

deg2(f,M, y) = deg2(f, U, y)

(4) (Additivity) If (f,M, y) ∈ A and U1 and U2 are open and disjoint subsets
of M such that f−1(y) ⊆ U1 ∪ U2, then

deg2(f,M, y) = deg2(f, U1, y) + deg2(f, U2, y)

(5) (Local constantness) If (f,M, y) ∈ A and U is an open subset of M with
compact closure such that f−1(y) ⊆ U , then there is an open neighborhood
V of y in N such that for every y′ ∈ V ,

deg2(f, U, y′) = deg2(f, U, y)

(6) (Homotopy invariance) Let L : (z, τ) ∈ M × [0, 1] → L(z, τ) ∈ N be a
continuous homotopy. If y ∈ N and L−1(y) is compact, then

deg2(L0, U, y) = deg2(L1, U, y)

where L0 := L(·, 0) : M → N and L1 := L(·, 1) : M → N .

If there is no possible confusion on the manifoldM , we simply denote deg2(f, y)
the degree modulo 2 of the triple (f,M, y).

As stated in the following proposition, in the case of C1 functions and regular
values, the degree modulo 2 is computed using the residue class modulo 2.
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Proposition 17 If (g,M, y) ∈ A, g is a C1 function and y is a regular value
of g (i.e., for all z∗ ∈ g−1(y), the differential mapping Dg(z∗) is onto), then
g−1(y) is finite (possibly empty) and the degree modulo 2 of g is given by

deg2(g,M, y) = [#g−1(y)]2 =

 0 if #g−1(y) is even

1 if #g−1(y) is odd
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