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Abstract 
Pessimistic bilevel optimization problems are not guaranteed to have a solution even when restricted classes of 
data are involved. Thus, we propose a concept of viscosity solution which can satisfactory obviate the lack of 
optimal solutions since it allows to achieve in appropriate conditions the security value. Differently from the 
viscosity solution concept for optimization problems, introduced by H. Attouch in 1996 and defined through a 
viscosity function that aims to regularize the objective function, viscosity solutions for pessimistic bilevel 
optimization problems are defined through regularization families of the solutions map to the lower level 
optimization These families are termed "inner regularizations" since they approach the optimal solutions map from 
the inside. First, we investigate several classical regularizations of parametric minimum problems giving sufficient 
conditions for getting inner regularizations; then, we establish existence results for the corresponding viscosity 
solutions. 
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1 Introduction

In this paper, we are concerned with pessimistic bilevel optimization problems, (PBOP ), in Banach spaces, also

called generalized Stackelberg or weak Stackelberg problems, [1, 2, 3, 4, 5, 6, 7, 8, 9]. The lack of solutions to such

a problem, highlighted for example in [4, 5, 6], is a consequence of the possible lack of lower semicontinuity of

the solutions mapM for the lower level problem. In spite of this inherent difficulty, due to relevant motivations

in Game Theory and its applications [2, 5], the research on pessimistic bilevel optimization problems has been

intensified and several papers have been devoted to different aspects of these problems: optimality conditions

[9, 10], reformulations [11], numerical methods [12]....

Very recently, in the setting of pessimistic bilevel problems (MinSup problems) we investigated two topics:

1) a method to approach the security value ω [13, Section 1] in the presence or not of perturbations,

2) a concept of viscosity solution which can take the place of the exact solutions if they do not exist.

Point 1) has been developed in [13] for pessimistic bilevel problems with constraints described by the solutions

to a quasi-variational inequality in Rk.

Point 2) has been developed in [14] when the constraints are described by a Nash equilibrium problem in Rk,

and in [15] when the constraints are described by a quasi-equilibrium problem in Banach spaces.

In this paper, which aims to be a continuation of [6], we investigate several possibilities of obviating the lack

of lower semicontinuity of the solutions map M to the lower level problem, and we define different concepts of

viscosity solution for (PBOP ) by the aid of suitable regularizations. Then, we investigate existence results for

each of them in Banach spaces.

The definition of viscosity solution given in [15] is based on the concept of inner regularization for a paramet-

ric quasi-equilibrium problem. Here, we consider pessimistic bilevel problems with constraints described by

optimization problems. First, for a family of parametric minimum problems, we define inner regularizations

requiring, among other conditions, the lower semicontinuity of the approximation maps of the lower level prob-

lem. Then, we suggest several possible regularizations of the lower level, two of which in line with [4, 6] and
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one inspired by [19], but it turns out that the classical strict ε-solutions map gives rise to an inner regulariza-

tion family under the less restrictive assumptions, having also the advantage of satisfying a Slater constraint

qualification condition that could be useful to produce necessary conditions for pessimistic bilevel optimization

problems.

The rest of the paper is divided in five sections. In Section 2, first we present the problem statement, main

definitions and notations, then we consider classical approximations of minimum problems in order to define

inner regularizations of the lower level. In Section 3, other possible inner regularizations of the lower level

problem are investigated; in Section 4, existence results of viscosity solutions are presented, whereas Section 5

is devoted to illustrative examples and counterexamples and Section 6 to conclusive remarks.

2 Preliminaries and inner regularizations

2.1 Statement of the problem, notations and definitions

We define a Pessimistic Bilevel Optimization Problem as follows:

(PBOP ) find t̃ ∈ T ′ such that sup
y∈M(t̃)

L(t̃, y) = inf
t∈T ′

sup
y∈M(t)

L(t, y) = ω,

where: (T, τ) is a Hausdorff topogical space, Y is a Banach space, T ′ ⊆ T and Y ′ ⊆ Y are nonempty sets,

F : T ′×Y ′ → R and L : T ′×Y ′ → R are real-valued functions, K : t ∈ T ′ → K(t) ⊆ Y ′ is a set-valued map with

nonempty values from T ′ to Y ′ and M(t) denotes, for any t ∈ T ′, the optimal solutions set of the parametric

optimization problem

P (t) find ỹ ∈ K(t) such that F (t, ỹ) = inf
y∈K(t)

F (t, y).

The number ω is called the security value of (PBOP ). Everywhere in the paper, we indicate by s and w the

strong and the weak topology on Y respectively, by cl(H) and int(H) the closure and the interior of a subset H

of Y respectively, and by (εn)n a sequence of positive real numbers which decreases to zero. We use the notions

of sequential lower semicontinuity, sequential closedness and sequential subcontinuity for set-valued maps (see,
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for example, Section 1 in [15]) omitting the term “sequential” and we do similarly for continuity properties

of real-valued functions. Moreover, we assume that for every t ∈ T ′ the set M(t) is nonempty, that is the

optimization problem P (t) has at least a solution, and that the objective function F (t, ·) is bounded from below

for every t ∈ T ′. This last condition is made purely for the sake of simplicity in defining different concepts of

approximate solutions to P (t).

Definition 2.1 A family of maps T = {T ε, ε > 0}, where T ε : t ∈ T ′ → T ε(t) ⊆ Y ′, is an inner regularization

for the family of minimum problems {P (t), t ∈ T ′} if the conditions below are satisfied:

R1) M(t) ⊆ T ε(t) for every t ∈ T ′ and ε > 0;

R2) for any t ∈ T ′, any (tn)n τ -converging to t in T ′ and any sequence (εn)n,

one has

w − lim sup
n

T εn(tn) ⊆ M(t);

R3) T ε is a (τ, s)-lower semicontinuous set-valued map on T ′, for every ε > 0.

In line with Mosco convergence for functions and sets [16, 3.3] and in order to avoid too much restrictive

assumptions in infinite dimensional spaces, we consider the weak topology in condition R2) and the strong

topology in condition R3).

Then, inspired by [17], we give the following definition:

Definition 2.2 Let T be an inner regularization for the family {P (t), t ∈ T ′}. A point t̃ ∈ T ′ is said to be

a T-viscosity solution for the pessimistic bilevel optimization problem (PBOP ) if for every (εn)n there exists

(tεn)n, tεn ∈ T ′ for any n ∈ N, such that:

V1) t̃ ∈ cl τseq {tεn , n ∈ N}, i.e. there exists a subsequence (tεn′ )n′ τ -converging to t̃;

V2) for any n ∈ N, tεn is a minimum point for the marginal function

iεn : t ∈ T ′ → iεn(t) = sup
y∈T εn (t)

L(t, y); (1)
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i.e. sup
y∈T εn (tεn )

L(tεn , y) = min
t∈T ′

sup
y∈T εn (t)

L(t, y);

V3) the sequence (iεn(tεn))n converges towards the security value ω, i.e.

lim
n

sup
y∈T εn (tεn )

L(tεn , y) = inf
t∈T ′

sup
y∈M(t)

L(t, y) = ω.

We show in Proposition 4.2 that if the sequence of functions (iεn)n τ -epiconverges over the set T ′ [16] towards

the function C defined by C(t) = clτseq sup
y∈M(t)

L(t, y), the sequentially τ -lower semicontinuous regularization of

sup
y∈M(·)

L(·, y), then any viscosity solution for the problem (PBOP ) turns out to be a minimum point for C.

Therefore, a viscosity solution does not depend on the class used to find it and one can deal with the most

suitable inner regularizations for the family {P (t), t ∈ T ′}.

2.2 Inner regularizations

For any given positive real number ε, we consider the maps:

Mε : t ∈ T ′ →Mε(t) =

{
y ∈ K(t) : F (t, y) ≤ inf

y′∈K(t)
F (t, y′) + ε

}
,

M̃ε : t ∈ T ′ → M̃ε(t) =

{
y ∈ K(t) : F (t, y) < inf

y′∈K(t)
F (t, y′) + ε

}
,

D̃ε : t ∈ T ′ → D̃ε(t) = {y ∈ K(t) : d(y,M(t)) < ε}

and the families they describe

M = {Mε, ε > 0} M̃ =
{
M̃ε, ε > 0

}
D̃ =

{
D̃ε, ε > 0

}
.

We point out that the maps M̃ε andMε have been fruitfully used in a bilevel setting [4, 6, 18] whereas the use

of the maps D̃ε is new and it has been inspired by results in [19].

Although it is clear that

M(t) ⊆ D̃ε(t) and M(t) ⊆ M̃ε(t) ⊆Mε(t),

inclusion relations between Mε and D̃ε, as well between M̃ε and D̃ε, may change depending on the function

F (t, ·).
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Example 2.1 Assume that T = Y = R, K(t) = R and that F (t, 0) = −1, F (t, y) = |y| if y 6= 0 and t ∈ T .

Then, for ε < 1, M(t) = Mε(t) = {0} and D̃ε(t) =] − ε, ε[, so, in this case, Mε(t) ⊂ D̃ε(t). In the same

assumptions, if F (t, y) = |y| for every y ∈ R and t ∈ T , then

M̃ε(t) = D̃ε(t) = ]− ε, ε[ ⊂ [−ε, ε] = Mε(t),

whereas if F (t, y) = (y− 1)2 for every y ∈ R and t ∈ T , then M̃ε(t) =]1−
√
ε, 1 +

√
ε[ and D̃ε(t) =]1− ε, 1 + ε[,

so that D̃ε(t) ⊂ M̃ε(t) ⊂Mε(t) = [1−
√
ε, 1 +

√
ε].

Nevertheless, we can prove the condition below.

Proposition 2.1 Let t ∈ T ′. If F (t, ·) is w-lower semicontinuous over Y ′ and K(t) is sequentially weakly

compact, then

∀ ε > 0 ∃ η > 0 such that Mη(t) ⊆ D̃ε(t). (2)

The same holds if F (t, ·) is w-lower semicontinuous and sequentially w-coercive over Y ′ [15] and K(t) is w-closed.

Proof

If we suppose that (2) is not true, there exists a positive number ε and a sequence (yn)n, yn ∈ K(t), such that

F (t, yn) ≤ inf
y′∈K(t)

F (t, y′) + 1/n and d(yn,M(t)) ≥ ε for every n ∈ N. A subsequence of (yn)n has to w-converge

to ỹ ∈ K(t) and F (t, ỹ) ≤ inf
y′∈K(t)

F (t, y′). Then ỹ ∈ M(t) and we get a contradiction. The proof in the second

case is analogous to the previous one so it is omitted.

First, we focus our attention on property R2) of Definition 2.1.

Proposition 2.2 Assume that:

i) the set-valued map K is (τ, s)-lower semicontinuous and (τ, w)-closed over T ′;

ii) the function F is (τ × w)-lower semicontinuous and (τ × s)-upper semicontinuous over T ′ × Y ′.

Then, the families M̃ and M satisfy condition R2).
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Proof Let (tn)n, tn ∈ T ′, τ -converging to t̃ ∈ T ′ and let (yn)n w-converging to ỹ in Y ′ such that yn ∈Mεn(tn)

for any n ∈ N. Since F (tn, yn) ≤ inf
y∈K(tn)

F (tn, y) + εn and yn ∈ K(tn), (τ, w)-closedness of K and (τ ×w)-lower

semicontinuity of F imply that ỹ ∈ K(t̃) and

F (t̃, ỹ) ≤ lim inf
n

F (tn, yn) ≤ lim sup
n

inf
y∈K(tn)

F (tn, y) = lim sup
n

m(tn),

where the function m is the marginal function defined by

m : t ∈ T ′ → inf
y′∈K(t)

F (t, y′) ∈ R. (3)

Then, the τ -upper semicontinuity of m, which is ensured by assumption ii) (see, for example, [20]), implies that

F (t̃, ỹ) ≤ m(t̃), so that ỹ ∈M(t̃).

The result holds true also for the family M̃ since M̃ε(t) ⊆Mε(t) for any t and any ε > 0. 2

Proposition 2.3 Assume that the assumptions of Proposition 2.2 and the following hold:

i) the set-valued map K is (τ, w)-subcontinuous over T ′.

Then, the family D̃ satisfies condition R2).

Proof Let yn ∈ D̃εn(tn) and let (yn)n be w-converging to ỹ. Since the map K is (τ, w)-subcontinuous, then

also the map M is (τ, w)-subcontinuous over T ′ and we can apply the second part of Lemma 2.2 in [21] with

Sn =M for all n ∈ N. Then, we get d(ỹ,M(t̃)) ≤ lim inf
n

d(yn,M(tn)) ≤ 0 and ỹ ∈M(t̃) sinceM(t) is w-closed

by the assumptions of Proposition 2.2. 2

Now, we investigate condition R3), that is the (τ, s)-lower semicontinuity for these maps for any given ε > 0.

Proposition 2.4 [6] If assumptions of Proposition 2.2 and the following hold:

i) the set-valued map K is (τ, w)-subcontinuous over T ′;

then the map M̃ε is (τ, s)-lower semicontinuous over T ′, i.e. for any t ∈ T ′ and any (tn)n τ -converging to t in

T ′ we have

M̃ε(t) ⊆ s− lim inf
n
M̃ε(tn). (4)
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Proof

Let t ∈ T ′ and let (tn)n be a sequence τ -converging to t in T ′. Consider y ∈ M̃ε(t), that is y ∈ K(t) and F (t, y) <

inf
y′∈K(t)

F (t, y′) + ε. There exists a sequence (yn)n s-converging to y such that yn ∈ K(tn) for n sufficiently large

and, due to the (τ, s)-upper semicontinuity of F , we get lim sup
n

F (tn, yn) ≤ F (t, y) < inf
y′∈K(t)

F (t, y′) + ε. On

the other hand, the (τ, w)-lower semicontinuity of F and the properties of the map K imply that the marginal

function m, defined in (3), is τ -lower semicontinuous over T ′ (see, for example, [20]), so that

lim sup
n

F (tn, yn) < lim inf
n

m(tn) + ε.

Then, F (tn, yn) < inf
y′∈K(tn)

F (tn, y
′) + ε, i.e. yn ∈ M̃ε(tn), for n sufficiently large. 2

Proposition 2.5 [6] If the assumptions of Proposition 2.4 and the following hold:

i) the map K is convex-valued over T ′;

ii) F (t, ·) is strictly quasiconvex on K(t) [22], for every t ∈ T ′;

then the map Mε is (τ, s)-lower semicontinuous over T ′.

Proof

Assumptions i) and ii) imply that

Mε(t) ⊆ cl(M̃ε(t)),

for any t ∈ T ′ (see, for example, [6]). So, from Proposition 2.4 we infer that

Mε(t) ⊆ cl(s-lim inf
n
M̃ε(tn)) = s-lim inf

n
M̃ε(tn) ⊆ s-lim inf

n
Mε(tn)

for every (tn)n τ -converging to t in T ′ and this completes the proof. 2

For what concerning the lower semicontinuity property of the map D̃ε, we can show that it may not be satisfied

even in favourable conditions.

Example 2.2 Let T = Y = R, T ′ = Y ′ = [0, 1], K(t) = [0, 1] for any t ∈ T ′ and let F (t, y) = ty for every

(t, y) ∈ [0, 1]2. It is easy to check that M(0) = [0, 1] and M(t) = {0} if t ∈]0, 1], so that D̃ε(0) = [0, 1] and

D̃ε(t) = [0, ε[ if t ∈]0, 1] and the map D̃ε is not lower semicontinuous over T ′.
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However, the proposition below proves that if, moreover, property (2) in Proposition 2.1 is satisfied “uniformly”

with respect to the variable t, then the map D̃ε is lower semicontinuous.

Proposition 2.6 If the assumptions of Proposition 2.4 and the following hold:

i) the set-valued map K is convex-valued over T ′;

ii) for any t̃ ∈ T ′ and every θ > 0 there exist η > 0 and a τ -neighbourhood Q of t̃ such that

Mη(t) ⊆ D̃θ(t) ∀ t ∈ Q ;

then the map D̃ε is (τ, s)-lower semicontinuous over T ′.

Proof

Let t̃ ∈ T ′ and (tn)n be a sequence τ -converging to t̃ in T ′. If ỹ ∈ D̃ε(t̃), then ỹ ∈ K(t̃) and d(ỹ,M(t̃)) < ε.

Since the map K is (τ, s)-lower semicontinuous, there exists a sequence (yn)n strongly converging to ỹ and such

that yn ∈ K(tn) for n sufficiently large. Let z ∈M(t̃) such that ||ỹ− z|| < ε and let θ be a positive real number

such that ||ỹ−z|| < θ/2 < θ < ε. If η is the positive number existing by assumption i) in correspondence to θ/2,

since M(t̃) ⊆ M̃η(t̃), we have that z ∈ M̃η(t̃) and from Proposition 2.4 we infer that there exists a sequence

(zn)n s-converging to z such that zn ∈ M̃η(tn) for n sufficiently large and, by condition i), zn ∈ D̃θ/2(tn), that is

zn ∈ K(tn) and d(zn,M(tn)) < θ/2, for such indexes n. Then, consider (ỹn)n defined by ỹn = αnzn+(1−αn)yn,

where (αn)n, αn ∈ [0, 1], is a sequence of real numbers converging to zero: we have that ỹn ∈ K(tn), since K

is convex-valued, and that (ỹn)n s-converges to ỹ, so it remains only to prove that d(ỹn,M(tn)) < ε for n

sufficiently large. If z′n ∈ M(tn) is such that ||z′n − zn|| < θ/2, we get that d(ỹn,M(tn)) ≤ ||ỹn − z′n|| =

||αnzn + (1−αn)yn − z′n|| = ||αnzn − zn + (1−αn)yn + zn − z′n|| ≤ (1−αn)||yn − zn||+ ||zn − z′n|| < θ < ε and

d(ỹn,M(tn)) < ε for n sufficiently large. 2

Corollary 2.1 The family M̃ =
{
M̃ε, ε > 0

}
is an inner regularization for the problem (PBOP ) whenever the

assumptions of Proposition 2.4 are satisfied.

The family M = {Mε, ε > 0} is an inner regularization for the problem (PBOP ) whenever the assumptions of

8



Proposition 2.5 are satisfied.

The family D̃ =
{
D̃ε, ε > 0

}
is an inner regularization for the problem (PBOP ) whenever the assumptions of

Proposition 2.6 are satisfied.

In the rest of this section, we show that the security value ω can be approximated by the security values of

suitable regularizations that do not need to be necessarily inner regularizations.

Consider a family of maps T = {T ε, ε > 0}, where T ε : t ∈ T ′ → T ε(t) ⊆ Y ′ and, given any t ∈ T ′, define

iε(t) = sup
y∈T ε(t)

L(t, y) and ϕε = inf
t∈T ′

iε(t).

First, we establish a general result that will be next applied to the specific approximations families M̃, M and

D̃.

Proposition 2.7 Assume that:

i) the family T = {T ε, ε > 0} satisfies conditions R1) and R2);

ii) the function −L is (τ × w)-coercive on T ′ × Y ′;

iii) for every t ∈ T ′ there exists a sequence (tn)n τ -converging to t in T ′ such that for every y ∈ Y ′ and any

(yn)n w-converging to y in Y ′ one has

lim sup
n

L(tn, yn) ≤ L(t, y).

Then we have:

ω = lim
ε→0

ϕε.

Proof

Observe that ω ≤ ϕε for every ε > 0, since M(t) ⊆ T ε(t) for any t ∈ T ′, so when ω = +∞ then also ϕε = +∞

and there is nothing to prove. When ω ∈ R ∪ {−∞}, it is sufficient to prove that

lim
ε→0

ϕε = inf
ε>0

ϕε ≤ ω,
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since ϕε increases with respect to ε.

If we assume that there exists η ∈ R such that

ω < η < inf
ε>0

ϕε (5)

we can determine a point t̃ ∈ T ′ such that sup
y∈M(t̃)

L(t̃, y) < η, so that

L(t̃, y) < η ∀ y ∈M(t̃). (6)

We infer from condition iii) that a sequence (t̃n)n, which τ -converges to t̃ in T ′, is such that

lim sup
n

L(t̃n, yn) ≤ L(t̃, y) (7)

for any y ∈ Y ′ and any (yn)n w-converging to y in T ′.

Then, for any given (εn)n, we have from (5) that η < ϕεn ≤ sup
y∈T εn (t̃n)

L(t̃n, y) for any n ∈ N and we can

determine (ỹn)n such that

ỹn ∈ T εn(t̃n) and η < L(t̃n, ỹn) ∀ n ∈ N.

A subsequence (ỹnk
)k of (ỹn)n w-converges to ỹ ∈ Y ′, due to condition ii), and ỹ ∈M(t̃) because the family T

satisfies condition R2).

Then, by (7) we get that η ≤ L(t̃, ỹ) and this gives a contradiction with (6). 2

In order to give specific results for the security values related to the families M, M̃ and D̃, it is useful to

introduce the notations below:

ωε = inf
t∈T ′

sup
y∈Mε(t)

L(t, y), ω̃ε = inf
t∈T ′

sup
y∈M̃ε(t)

L(t, y), d̃ε = inf
t∈T ′

sup
y∈D̃ε(t)

L(t, y).

Therefore, from Propositions 2.2 and 2.7 we infer an approximation result for the security value of the problem

(PBOP ) which does not require any convexity assumption.

Corollary 2.2 Assume that all conditions in Propositions 2.2 and 2.7 hold. Then, we have:

lim
ε→0

ωε = lim
ε→0

ω̃ε = ω.
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If conditions i) in Propositions 2.3 and 2.7 hold, then we have:

lim
ε→0

d̃ε = ω.

3 Further types of inner regularizations

In this section, we present an overview of further possible inner regularizations for the lower level problem that

could be useful in applications.

For any given positive real number ε, we consider the maps:

Pε : t ∈ T ′ → Pε(t) =

{
y ∈ K(t) : F (t, y) ≤ inf

y′∈K(t)

(
F (t, y′) + ||y − y′||2

)
+ ε

}
,

Eε : t ∈ T ′ → Eε(t) =

{
y ∈ K(t) : F (t, y) ≤ inf

y′∈K(t)
(F (t, y′) + ε||y − y′||)

}
,

and their ”strict” version:

P̃ε : t ∈ T ′ → P̃ε(t) =

{
y ∈ K(t) : F (t, y) < inf

y′∈K(t)

(
F (t, y′) + ||y − y′||2

)
+ ε

}
,

Ẽε : t ∈ T ′ → Ẽε(t) =
{
y ∈ K(t) : F (t, y) < F (t, y′) + ε||y − y′|| ∀ y′ ∈ K(t)− {y}

}
,

which are all nonempty-valued, since M(t) is contained both in P̃ε(t) and in Ẽε(t).

The letters choosen to denote these approximations recall that the maps P̃ε and Pε have been inspired by

the proximal approximation method [23, 24, 25] and the maps Ẽε and Eε have been inspired by the Ekeland

variational principle [26].

The families they describe are

P = {Pε, ε > 0}, P̃ =
{
P̃ε, ε > 0

}
, E = {Eε, ε > 0}, Ẽ =

{
Ẽε, ε > 0

}
.

Moreover, in the spirit of [15], we can deal with strict approximate solutions for P (t) that are allowed to violate

the constraint K(t) though lying close to it, so, we also introduce the following maps:

M̃ε
d : t ∈ T ′ → M̃ε

d(t) =

{
y ∈ K : d(y,K(t)) ≤ ε and F (t, y) < inf

y′∈K(t)
F (t, y′) + ε

}
,

11



P̃εd : t ∈ T ′ → P̃εd(t) =

{
y ∈ K : d(y,K(t)) ≤ ε and F (t, y) < inf

y′∈K(t)

(
F (t, y′) + ||y − y′||2

)
+ ε

}
,

Ẽεd : t ∈ T ′ → Ẽεd(t) =
{
y ∈ K : d(y,K(t)) ≤ ε and F (t, y) < F (t, y′) + ε||y − y′|| ∀ y′ ∈ K(t)− {y}

}
,

and we denote by M̃d, P̃d, Ẽd the families they describe.

We proceed, as in Section 2, by investigating firstly property R2) and, then, property R3) for all the above

families.

Proposition 3.1 Under the assumptions of Proposition 2.2, the following assertions hold:

1. The maps Eε, Ẽε, Ẽεd and M̃ε
d satisfy condition R2).

2. If the hypotheses below also hold:

i) the map K is convex-valued over T ′;

ii) F (t, ·) is convex on K(t), for every t ∈ T ′;

then the maps Pε, P̃ε and P̃εd satisfy condition R2).

Proof

Point 1.

Let (tn)n, tn ∈ T ′, τ -converging to t̃ ∈ T ′ and let (yn)n w-converging to ỹ in Y ′ such that yn ∈ Eεn(tn) for any

n ∈ N. In order to prove that ỹ ∈ M(t̃), consider v ∈ K(t̃). There exists (vn)n s-converging to v such that

vn ∈ K(tn) for n sufficiently large. So, for such indexes n, F (tn, yn) ≤ F (tn, vn) + εn||yn− vn|| and we infer that

F (t̃, ỹ) ≤ F (t̃, v) because the sequence (||yn− vn||)n is bounded and lim
n
εn||yn− vn|| = 0. Since ỹ ∈ K(t̃) due to

the (τ, w)-closedness of K, we get that ỹ ∈M(t̃). The result holds true also for the maps Ẽε since Ẽε(t) ⊆ Eε(t)

for any t.

Now, assume that (yn)n w-converges to ỹ, yn ∈ Ẽεnd (tn) for any n, that is

d(yn,K(tn)) ≤ εn and F (tn, yn) < F (tn, y
′) + εn||yn − y′|| ∀y′ ∈ K(tn)− {yn} .

For any z ∈ K(t̃)− {ỹ} there exists (zn)n s-converging to z such that zn ∈ K(tn)− {yn} for n sufficiently large.

Therefore, we get F (tn, yn) < F (tn, zn) + εn||zn − yn|| for such indexes n and F (t̃, ỹ) ≤ F (t̃, z). Moreover,
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ỹ ∈ K(t̃) since d(ỹ,K(t̃)) ≤ lim infn d(ỹn,K(tn)) = 0 (see, for example, [21]) and K(t̃) is closed, so we obtain

that ỹ ∈M(t̃).

Now, assume that (yn)n w-converges to ỹ, yn ∈ M̃εn
d (tn) for any n, that is

d(yn,K(tn)) ≤ εn and F (tn, yn) < inf
y∈K(tn)

F (tn, y) + εn.

For any z ∈ K(t̃) there exists (zn)n s-converging to z such that zn ∈ K(tn) for n sufficiently large. Therefore, we

get F (tn, yn) < F (tn, zn) + εn for such indexes n and F (t̃, ỹ) ≤ F (t̃, z), so ỹ ∈M(t̃) since we get d(ỹ,K(t̃)) = 0

arguing as before.

Point 2.

Now, assume that yn ∈ Pεn(tn) and that (yn)n w-converges to ỹ.

Since F (tn, yn) ≤ inf
y∈K(tn)

(
F (tn, y) + ||y − yn||2

)
+εn and yn ∈ K(tn), the (τ, w)-closedness of K and the (τ×w)-

lower semicontinuity of F imply that ỹ ∈ K(t̃) and F (t̃, ỹ) ≤ lim inf
n

F (tn, yn) ≤ lim sup
n

inf
y∈K(tn)

(
F (tn, y) + ||y − yn||2

)
.

Then, from the τ -upper semicontinuity of the marginal function inf
y∈K(·)

(
F (·, y) + ||ỹ − y||2

)
, which is guaranteed

under the assumptions of Proposition 2.2, we infer that

F (t̃, ỹ) ≤ inf
y∈K(t̃)

(
F (t̃, y) + ||ỹ − y||2

)
(8)

and therefore ỹ ∈ M(t̃). Indeed, for any given v ∈ K(t̃) and n ∈ N consider the sequence defined by vn =

(1 − αn)ỹ + αnv where (αn)n converges to 0 in ]0,1]. Since vn ∈ K(t̃) by assumption i), we infer from ii) and

(8) that

F (t̃, ỹ) ≤ F (t̃, vn) + ||ỹ − vn||2 ≤ (1− αn)F (t̃, ỹ) + αnF (t̃, v) + α2
n||ỹ − v||2.

So, dividing by αn, we get F (t̃, ỹ) ≤ F (t̃, v) + αn||ỹ − v||2 for any n and F (t̃, ỹ) ≤ F (t̃, v).

The result holds also true for the map P̃ε since P̃ε(t) ⊆ Pε(t) for any t.

Now, assume that (yn)n w-converges to ỹ, yn ∈ P̃εnd (tn) for any n, that is

d(yn,K(tn)) ≤ εn and F (tn, yn) < inf
y∈K(tn)

(F (tn, y) + ||yn − y||2) + εn.

For any z ∈ K(t̃) there exists (zn)n s-converging to z such that zn ∈ K(tn) for n sufficiently large. Therefore,

we get F (tn, yn) < F (tn, zn) + ||yn − zn||2 + εn for such indexes n and by the assumptions we infer that
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F (t̃, ỹ) ≤ F (t̃, z)+||ỹ−z||2. Arguing as before, we have that d(ỹ,K(t̃)) = 0, that is ỹ ∈ K(t̃), and F (t̃, ỹ) ≤ F (t̃, v)

for every v ∈ K(t̃). So, we can conclude that ỹ ∈M(t̃). 2

Now, we investigate property R3) starting with “strict” approximations.

Proposition 3.2 Under the assumptions of Proposition 2.4 the following assertions are true:

1. The map P̃ε is (τ, s)-lower semicontinuous over T ′.

2. If also the following hold:

i) the map K is convex-valued over T ′;

ii) for any τ -converging sequence (tn)n, tn ∈ T ′, there exists ν ∈ N such that

int
⋂
n≥ν

K(tn) 6= ∅;

then the maps M̃ε
d and P̃εd are (τ, s)-lower semicontinuous over T ′.

3. If also the following holds:

iii) for every t ∈ T ′ and every (tn)n τ -converging to t in T ′ one has

lim inf
n

F (tn, un)− F (tn, vn)

||un − vn||
< ε

whenever (un)n and (vn)n weakly converge towards the same point u ∈ K(t),

then the map Ẽε is (τ, s)-lower semicontinuous over T ′.

4. If also conditions i), ii) and iii) hold, then the map Ẽεd is (τ, s)-lower semicontinuous over T ′.

Proof

Point 1.

Let t ∈ T ′ and let (tn)n be a sequence τ -converging to t in T ′. Consider y ∈ P̃ε(t), that is y ∈ K(t) and

F (t, y) < inf
y′∈K(t)

(F (t, y′) + ||y− y′||2) + ε. There exists a sequence (yn)n s-converging to y such that yn ∈ K(tn)
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for n sufficiently large, since the map K is lower semicontinuous, and we can prove that

inf
y′∈K(t)

(F (t, y′) + ||y − y′||2) ≤ lim inf
n

inf
y′∈K(tn)

(F (tn, y
′) + ||yn − y′||2) (9)

which gives yn ∈ P̃ε(tn) for n sufficiently large since lim sup
n

F (tn, yn) ≤ F (t, y) < inf
y′∈K(t)

(F (t, y′)+||y−y′||2)+ε.

Indeed, if inequality (9) is not true, there exist a ∈ R, a subsequence (nk)k and a sequence (vk)k such that

vk ∈ K(tnk
) and

F (tnk
, ynk

) + ||ynk
− vk||2 < a < F (t, y′) + ||y − y′||2 ∀ y′ ∈ K(t).

A subsequence of (vk)k has to w-converge towards v ∈ K(t) and by the assumptions we infer that

F (t, v) + ||y − v||2 ≤ lim inf
k

(F (tnk
, ynk

) + ||ynk
− vk||2) < F (t, y′) + ||y − y′||2 ∀ y′ ∈ K(t)

getting a contradiction.

Point 2.

Let t ∈ T ′ and let (tn)n be a sequence τ -converging to t in T ′. Consider y ∈ M̃ε
d(t), that is

d(y,K(t)) ≤ ε and F (t, y) < inf
y′∈K(t)

F (t, y′) + ε.

From Proposition 5.1 in [27] we infer that there exists a sequence (yn)n strongly converging to y in Y ′ such

that d(yn,K(tn)) ≤ ε for n sufficiently large and arguing as in Proposition 2.4 it can be shown that F (tn, yn) <

inf
y′∈K(tn)

F (tn, y
′) + ε, i.e. yn ∈ M̃ε

d(tn), that gives the lower semicontinuity of M̃ε
d over T ′. The proof for P̃εd is

similar and is omitted.

Point 3.

Let t ∈ T ′ and let (tn)n be a sequence τ -converging to t in T ′. Consider y ∈ Ẽε(t), that is y ∈ K(t) and

F (t, y) < F (t, y′)+ε||y−y′|| for all y′ ∈ K(t)−{y}, and a sequence (yn)n s-converging to y such that yn ∈ K(tn)

for n sufficiently large. If we assume that ynk
/∈ Ẽε(tnk

) for an increasing sequence of integers (nk)k, we can

determine a sequence (vnk
)k such that vnk

∈ K (tnk
) − {ynk

} and F (tnk
, ynk

) − F (tnk
, vnk

) ≥ ε||ynk
− vnk

||

for any k ∈ N. The map K being (τ, w)-closed and (τ, w)-subcontinuous, we get that a subsequence of (vnk
)k

weakly converges towards v ∈ K(t) and we have a contradiction in any case. Indeed, if v = y we would contradict
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assumption iii), if v 6= y we would infer that y /∈ Ẽε(t).

Point 4.

Now, given t ∈ T ′ and a sequence (tn)n τ -converging to t in T ′, consider y ∈ Ẽεd(t), that is

d(y,K(t)) ≤ ε and F (t, y) < F (t, y′) + ε||y − y′|| ∀ y′ ∈ K(t)− {y} .

As in Point 2, we can prove that there exists (yn)n strongly converging to y such that d(yn,K(tn)) ≤ ε for any

n ∈ N. If we assume that ynk
/∈ Ẽε(tnk

) for an increasing sequence of integers (nk)k, we reach a contradiction

arguing as in Point 3. 2

Remark 3.1 Condition iii) is satisfied if, for instance, the function F is locally Lipschitz in the variable y

uniformly with respect to t with the Lipschitz constant smaller than ε.

The next result is in line with Proposition 2.5, since it extends Point 1 in Proposition 3.2 to ”large” approximate

solutions maps Pε.

Proposition 3.3 Under the assumptions of Proposition 2.5 the map Pε is (τ, s)-lower semicontinuous over T ′.

Proof

Similarly as in Proposition 2.5, it is sufficient to prove that Pε(t) ⊆ cl
(
P̃ε(t)

)
for any given t ∈ T ′ since the

map P̃ε is (τ, s)-lower semicontinuous.

If y ∈ Pε(t) and we assume that F (t, y) < inf
y′∈K(t)

(
F (t, y′) + ||y − y′||2

)
+ ε, we have y ∈ P̃ε(t) and there is

nothing to prove. Then, assume now that

F (t, y) = inf
y′∈K(t)

(
F (t, y′) + ||y − y′||2

)
+ ε = F (t, ỹ) + ||y − ỹ||2 + ε,

where the existence of ỹ ∈ K(t) such that inf
y′∈K(t)

(
F (t, y′) + ||y − y′||2

)
+ε = F (t, ỹ)+ ||y− ỹ||2 +ε is guaranteed

by the made assumptions. Consider a sequence (αn)n converging to 0 in [0,1] and the sequence defined by

yn = αnỹ + (1 − αn)y which s-converges to y in K(t) by condition i). From ii) we infer that F (t, yn) <

max {F (t, y), F (t, ỹ)} = F (t, y) = inf
y′∈K(t)

(
F (t, y′) + ||y − y′||2

)
+ ε, so yn ∈ P̃ε(t) for any n ∈ N and y ∈

cl
(
P̃ε(t)

)
. 2
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Remark 3.2 We note that even if the map Ẽε is lower semicontinuous and all assumptions in Proposition 2.5

are satisfied, the map Eε may be not lower semicontinuous. Indeed, consider T = E = R, T ′ = Y ′ = [0, 1],

K(t) = [0, 1] for any t ∈ T ′ and let F (t, y) = ty for every (t, y) ∈ [0, 1]2. Then, it is easy to check that

Eε(t) = [0, 1] for t ∈ [0, ε] and that Eε(t) = {0} for t ∈ ]ε, 1], so that Eε is not lower semicontinuous at t = ε.

We stress that, among the numerous regularizations presented here, the unique which turns out to be an inner

regularization only under the assumptions of Proposition 2.4 is M̃, all the other ones needing supplementary

hypotheses. This is emphasized in the next corollary.

Corollary 3.1 Assume that the assumptions of Proposition 2.4 hold. Then, the following assertions are true:

1. The family Ẽε is an inner regularization for the problem (PBOP ) whenever also condition iii) in

Proposition 3.2 holds.

2. The families P and P̃ are inner regularizations for the problem (PBOP ) whenever also conditions i) and ii)

in Proposition 3.1 hold.

3. The family M̃d is an inner regularization for the problem (PBOP ) whenever also conditions i) and ii) in

Proposition 3.2 hold.

4. The family P̃d is an inner regularization for the problem (PBOP ) whenever also conditions i) and ii) in

Proposition 3.2 and ii) in Proposition 3.1 hold.

5. The family Ẽεd is an inner regularization for the problem (PBOP ) whenever also conditions i), ii) and iii)

in Proposition 3.2 hold.

4 Existence of viscosity solutions

We first establish a general result about the existence of viscosity solutions.

Proposition 4.1 If T = {T ε, ε > 0} is an inner regularization for the family {P (t), t ∈ T}, the set T ′ is τ -

sequentially compact and the following hold:
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i) the function −L is (τ × w)-coercive on T ′ × Y ′;

ii) for every t ∈ T ′ there exists a sequence (tn)n τ -converging to t in T ′ such that for every y ∈ Y ′ and any

(yn)n w-converging to y in Y ′ one has

lim sup
n

L(tn, yn) ≤ L(t, y);

iii) the function L is (τ × w)-lower semicontinuous on T ′ × Y ′;

then, there exists a T-viscosity solution for the pessimistic problem (PBOP ).

Proof

From the made assumptions we infer that for every ε > 0 the function iε(t) = sup
y∈T ε(t)

L(t, y) is τ -lower semicon-

tinuous over T ′, so there exists tε ∈ T ′ such that iε(tε) = inf
t∈T ′

iε(t) = ϕε. Then, if (εn)n decreases to zero and

(tεn)n is such that iεn (tεn) = ϕεn for all n ∈ N, there exists a subsequence of (tεn)n which τ -converges towards

a point t̃ ∈ T ′, so conditions V1) and V2) of Definition 1.2 are satisfied. The point t̃ turns out to be a T-viscosity

solution for the problem (PBOP ) because lim
n
ϕεn = ω thanks to Proposition 2.7. 2

Now, we explicitely give an existence result for the viscosity solutions generated by the inner regularization

families introduced before.

Theorem 4.1 Assume that the set T ′ is τ -sequentially compact and that conditions in Propositions 2.4 and 4.1

hold. Then, we have:

1. There exists a M̃-viscosity solution for the pessimistic problem (PBOP ).

2. There exists a D̃-viscosity solution for the pessimistic problem (PBOP ) whenever also conditions i) and

ii) in Proposition 2.6 hold.

3. There exists a Ẽ-viscosity solution for the pessimistic problem (PBOP ) whenever also condition iii) in

Proposition 3.2 holds.
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4. There exists a M-viscosity solution, P-viscosity solution and a P̃-viscosity solution whenever also condi-

tions i) and ii) in Proposition 3.1 hold.

5. There exists a M̃d-viscosity solution for the pessimistic problem (PBOP ) whenever also conditions i) and

ii) in Proposition 3.2 hold.

6. There exists a Ẽd-viscosity solution for the pessimistic problem (PBOP ) whenever also conditions i), ii)

and iii) in Proposition 3.2 hold.

7. There exists a P̃d-viscosity solution for the pessimistic problem (PBOP ) whenever also conditions i) and

ii) in Proposition 3.2 and ii) in Proposition 3.1 hold.

Proof

The proof follows from Corollary 2.1, Corollary 3.1 and Proposition 4.1. 2

Now, we prove that any viscosity solution solves a suitable minimization problem as announced in Section 2.

We recall that a sequence of real-valued functions (fh)h τ -epiconverges to a function f over T ′ if the following

conditions hold:

• for every t ∈ T ′ and every sequence (th)h τ -converging to t in T ′

f(t) ≤ lim inf
h

fh(th);

• for every t ∈ T ′ there exists a sequence (t′h)h τ -converging to t in T ′

lim sup
h

fh(th) ≤ f(t).

Then, we establish the following result.

Proposition 4.2 If T = {T ε, ε > 0} is an inner regularization for the family {P (t), t ∈ T} and the following

assumptions hold:

i) for every t ∈ T ′, the function −L(t, ·) is w-coercive in y on Y ′;
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ii) for every t ∈ T ′, the function L(t, ·) is s-upper semicontinuous on Y ′;

then the sequence (iεn)n τ -epiconverges towards the function C defined in T ′ by

C(t) = clτseq sup
y∈M(t)

L(t, y).

Consequently, a T-viscosity solution for (PBOP ), if there are any, is also a minimum point for C.

Proof

The sequence (iεn)n is monotone decreasing, so it is sufficient to prove that it pointwise converges over T ′

towards the function ψ defined by ψ(t) = sup
y∈M(t)

L(t, y) (see, for example, [16]).

Given any t ∈ T ′ and n ∈ N one has ψ(t) ≤ iεn(t) and ψ(t) ≤ lim
n
iεn(t). If we assume that ψ(t) < lim

n
iεn(t),

there exists α ∈ R such that ψ(t) < α < lim
n
iεn(t) = inf

n
iεn(t). Therefore, for any n ∈ N there is yn ∈ T εn(t)

such that α < L(t, yn) and α ≤ lim sup
n

L(t, yn). Due to assumption i), a subsequence (ynh
)h w-converges to

y ∈ Y ′ and by condition ii) we get lim sup
h

L(t, ynh
) ≤ L(t, y). Therefore, since y ∈ M(t) by condition R2), we

get the contradiction ψ(t) < α ≤ sup
y∈M(t)

L(t, y) = ψ(t).

Therefore, due to a known property of the epiconvergence [16], every τ -sequence of minimum points for the

functions iεn has to converge towards a minimum point of the function C, which implies the second assertion.

2

5 Illustrative examples

The first example illustrates, in a simple case, the behavior of all regularization maps previously considered.

Example 5.1 Let T = Y = R, T ′ = Y ′ = [0, 1], K(t) = [0, 1] for any t ∈ T ′ and let F (t, y) = −y2 + (1 + t)y− t

for every (t, y) ∈ [0, 1]2. It is easy to check that:

• M(0) = {0, 1} and M(t) = {0} if t ∈]0, 1];

• D̃ε(0) = [0, ε[∪]1− ε, 1] and D̃ε(t) = [0, ε[ if t ∈]0, 1];
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• Ẽε(t) = {0, 1} if t ∈ [0, ε[

Ẽε(t) = {0} if t = ε

Ẽε(t) = {0} if t ∈ ]ε, 1];

• Eε(t) = {0, 1} if t ∈ [0, ε[

Eε(t) = {0, 1} if t = ε

Eε(t) = {0} if t ∈ ]ε, 1].

Now, for ε < 1/4, we set αε(t) =
1

2

(
t+ 1−

√
(t+ 1)2 − 4ε

)
and βε(t) =

1

2

(
t+ 1 +

√
(t+ 1)2 − 4ε

)
, the

solutions to the equation

y2 + (t+ 1)y + ε = 0.

So, we get that

• Mε(t) = [0, αε(t)] ∪ [βε(t), 1] if t ∈ [0, ε[

Mε(t) = [0, ε] ∪ {1} if t = ε

Mε(t) = [0, αε(t)] if t ∈ ]ε, 1];

• M̃ε(t) = [0, αε(t)[ ∪ ]βε(t), 1] if t ∈ [0, ε[

M̃ε(t) = [0, ε[ if t = ε

M̃ε(t) = [0, αε(t)[ if t ∈ ]ε, 1].

Now, we set γε(t) = 1/4
(

1 + t−
√

(1 + t)2 − 8ε
)

and δε(t) = 1/4
(

1 + t+
√

(1 + t)2 − 8ε
)

, the solutions

to the equation

2y2 − (1 + t)y + ε = 0

and µε(t) = 1/4
(

3 + t−
√

(1− t)2 − 8ε
)

and νε(t) = 1/4
(

3 + t+
√

(1− t)2 − 8ε
)

, the solutions to the

equation

2y2 − (3 + t)y + 1 + t+ ε = 0.

Then, we get that

21



• P̃ε(t) = [0, γε(t)[ ∪ ]δε(t), µε(t)[ ∪ ]νε(t), 1] if t ∈
[
0, 1−

√
8ε
[

P̃ε(t) = [0, γε(t)[ ∪ ]δε(t), 1] −
{

1−
√
ε/2
}

if t = 1−
√

8ε

P̃ε(t) = [0, γε(t)[ ∪ ]δε(t), 1] if t ∈
]
1−
√

8ε, 1
]

• Pε(t) = [0, γε(t)] ∪ [δε(t), µε(t)] ∪ [νε(t), 1] if t ∈
[
0, 1−

√
8ε
[

Pε(t) = [0, γε(t)] ∪ [δε(t), 1] if t ∈
[
1−
√

8ε, 1
]
.

Therefore, it is easy to see that:

• the maps M, D̃ε, Mε and Eε are not lower semicontinuous; more precisely, the maps M and D̃ε fail to

be lower semicontinuous at t = 0, the maps Mε and Eε fail to be lower semicontinuous at t = ε;

• the maps M̃ε, Ẽε, P̃ε and Pε are lower semicontinuous;

• the maps M̃ε, Ẽε, Mε, Eε and D̃ε satisfy condition R2);

• the maps P̃ε and Pε do not satisfy condition R2) at t = 1;

• the maps M̃ε and Ẽε generate an inner regularization class for the lower level problem.

We emphasize that the objective function of this example does not fulfill neither condition ii) in Proposition 2.5

nor condition ii) in Proposition 2.6, which explains the lack of lower semicontinuity by the maps Mε and D̃ε.

It is easy to check that also assumption ii) in Proposition 3.1 is not satisfied and this explains the lack of

property R2) by Pε and P̃ε.

The following example illustrates the existence of M̃-viscosity solutions and the lack of M-viscosity solutions

where M̃ and M have been determined in Example 5.1.

Example 5.2 Consider the function L(t, y) = t+ y where (t, y) ∈ [0, 1]2.

With the data of Example 5.1 is easy to check that:

ψ̃ε(t) = sup
y∈M̃ε(t)

(t+ y) = t+ 1 if t ∈ [0, ε[, ψ̃ε(ε) = 2ε, ψ̃ε(t) = t+ αε(t) if t ∈ ]ε, 1].

22



Then, we get that ω̃ε = inf
t∈[0,1]

ψ̃ε(t) = 2ε = ψε(ε), so the unique M̃-viscosity solution is to = 0.

On the contrary, if we compute the function ψε(t) = sup
y∈Mε(t)

(t+ y) we get that:

ψε(t) = t+ 1 if t ∈ [0, ε], ψε(t) = t+ αε(t) if t ∈]ε, 1],

and ωε = inf
t∈[0,1]

ψε(t) = 2ε. Then, lim
ε→0

ωε = 0 = ω, nevertheless it does not exist any minimum point for ψε

and, consequently, any M-viscosity solution for (PBOP ).

Finally, the last example shows that a viscosity solution for (PBOP ) does not necessarily solve the Optimistic

Bilevel Optimization Problem [21]:

(OBOP ) find (t̃, ỹ) ∈ T ′ × Y ′ such that ỹ ∈M(t̃) and L(t̃, ỹ) = inf
t∈T ′

inf
y∈M(t)

L(t, y).

Example 5.3 Consider the map K(t) = [0, 1] for t ∈ [0, 1] and the functions F (t, y) = t(t−1/2)y, L(t, y) = t+y

for (t, y) ∈ [0, 1]2. It is easy to check that (PBOP ) does not have a solution whereas the unique viscosity solution,

t = 1/2, is different from the unique solution t = 0 for (OBOP ).

6 Conclusions

The Pessimistic Bilevel Optimization Problem can modelize the behavior of a risk adverse Leader which would

like to solve a minsup problem aiming to reach the security value ω. When this problem does not have a solution,

which may arise even under strong assumptions, the leader can make do with alternative solution concepts and

the T-viscosity solutions, as defined here, represent a possible and satisfactory surrogate to the lack of exact

solutions since they allow to realize the value ω under suitable hypotheses. In this paper, we have presented

several classical approximation maps for the lower level optimization problems P (t) and we have investigated

when they define inner regularizations finding that, among all of them, the family of strict ε-minimum maps needs

fewer assumptions. In our definitions and results, we have appropriately balanced continuity and compactness-

like properties using the strong and weak convergence property features, in line with the approach of U. Mosco

[16], and we have got reasonable sufficient conditions for the existence of such solutions in infinite dimensional
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spaces. Future developments of this topic will concern stability properties as well necessary conditions for the

existence of viscosity solutions, also possibly with respect to other inner regularization families.
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