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Abstract 
We study the distribution of goods that are freely duplicated and damaged. The monopolist 
solves a screening problem that is not cost-separable and requires a concave-linear 
preference specification to generate nontrivial allocations, associated with two interdependent 
inefficiencies: underacquisition and damaging. In a game where firms acquire market power 
through an irreversible investment, both monopoly and active competition emerge as 
equilibria. Despite worsening underacquisition and inducing double-spending, competition may 
increase welfare because it mitigates the damaging inefficiency by distributing a version for 
free. We discuss an application to information markets, where experts produce a signal and 
sell Blackwell-garbled versions of it. 
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1 Introduction

This paper studies the distribution of goods with the following characteristics:

1. They are produced along a single-dimensional quality ranking: consumers have

unit demand and agree on this ranking, but have heterogenous tastes for quality;

2. They are non-rival but excludable and sold through a price-quality menu;1

3. The cost of producing a version of the product is increasing and convex in its

quality, but sellers can duplicate and damage every version at no cost;

4. When multiple firms are active, their products are homogenous: same-quality

products offered by different sellers are treated as perfect substitutes.

Our analysis is targeted towards the market for digital content – computer software,

mobile apps, streaming services – where sellers can freely replicate (and hide some

of) the lines of code they have developed, as well as some portions of the market for

information – weather forecasts, non-strategic financial consultancy – where experts

sell the realization of a signal they have observed, possibly garbled to discriminate for

heterogeneous value of information. Until Section 5, that discusses the application

to information markets, we abstract from the specifics of any market and refer to

goods that have the four features listed above as digital goods. This paper explores the

role of market power in digital goods markets by characterizing the monopolist and

competitive allocations and comparing their properties against each other and against

a common efficiency benchmark.

The technological distinctiveness of digital goods (point 3.) is that after developing

a product of quality q the seller can offer arbitrary amounts of any quality (weakly)

below q. Since consumers have heterogeneous returns from quality (point 1.), a seller

with market power (point 2.) acts as classic multiproduct monopolist (Mussa and Rosen

(1978), Maskin and Riley (1984)) and might want to damage the good for screening

purposes (Deneckere and McAfee (1996)). Contrary to the standard setting, in our

model the cost incurred by the seller is not separable in the quality that each agent

ends up consuming but depends solely on a statistic – the maximum – of the whole

allocation.
1 An essential non-rivalry arises from free replicability in production, so this property and is one and

the same as the free-duplication listed in point 3. The excludability issue is more critical; a literature on

so-called “information goods” (e.g. Muto (1986), Varian (2000), Polanski (2007) among others) focuses

on the distribution of non-excludable products, including (some) software and books. Those are not
digital goods according to the definition given in this paper. Admati and Pfleiderer (1986) addresses the

partial non-excludability of canonical information products (signals about a payoff relevant state).
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Given the special form of non-separability, the monopolist treats the quality-

distribution and quality-development as two distinct phases: it is as if she payed

an acquisition cost to raise a maximum-quality constraint on a standard screening

problem with identically zero cost function. Because the production costs are sunk

at the distribution phase, preferences alone must determine the curvature – i.e. de-

pendance on consumers’ type – of the monopolist allocation. The multiplicative

specification θq, customarily employed in the literature of quality screening, lacks such

curvature and induces a trivial allocation where the seller offers a menu with a single

item and excludes low valuation types. This implication is empirically implausible

because digital goods are often distributed through rich (non-singleton) menus: Most

softwares and mobile apps are distributed in several versions where the inferior ones

are essentially created by disabling some features of the premium version; movies and

other kinds of digital content are also often distributed in versions that differ on video

and audio definition, availability of extra content, etc. A specification of consumers’

returns from quality (point 1.) that does not preclude rich contracts should therefore

be a distinctive feature of digital goods market, on the same level as the cost function.

For this reason, we treat the multiplicative specification as a degenerate case of a richer

set of preferences obtained by adding a common (i.e. type-independent) decreasing-

returns component. A simple microfoundation – detailed in Section 2 and arguably

a compelling description of the returns from software consumption– for this type of

preferences is that agents use the digital good to perform both a basic and a professional

activity with heterogeneous returns only in the accomplishment of the latteractivity.

Besides its empirical plausibility, such specification allows to extend the techniques for

cost-separable screening problems with multiplicative preferences since the common

component of the utility acts essentially like a cost term in determining each type’s

virtual valuation. Despite such apparent similarity in the setup of the problem, both the

shape and the welfare properties of the optimal contract are qualitatively different from

those that arise in a cost-separable environment with the same demand primitives. For

example, with the digital goods cost structure no type is ever excluded, a flat allocation

where every consumer receives the same quality (full bunching) can be optimal, and

the classic “efficiency at the top” result is restricted to distributional efficiency: even the

highest type receives a version below its first best.

With the solution of the monopolist problem at hands, it is easy to characterize

the outcomes of a Bertrand game in which homogenous firms (point 4.) compete to

distribute an exogenously given set of qualities. Endogenizing the production vector

as the (probabilistic) equilibrium of an irreversible investment game we establish

existence and study the welfare properties of equilibria with active screening and

competition, namely in a setting that is prone to market failures and tractability

issues (for a discussion, see Stole (2007)). With this competition structure we are able
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to match a second empirical regularity of digital goods markets: not only multiple

versions of the same good are offered, but one of those is often available for free.

An enormous amount of information is available at no monetary cost; the same

is true for online services, ranging from e-mail services to document storage and

digital contents.2 Alternative setups that deliver tractable equilibria of competition

with screening – most notably the entrant-incumbent and multidimensional spatial

(Hotelling) frameworks – are inconsistent with this “free version” regularity that instead

emerges in our framework as an immediate consequence of Bertrand competition across

homogenous products with sunk (acquisition and replication) costs. We therefore think

that the irreversibility of investment is a more plausible source of the market power

needed to prevent failure in the competitive provision of digital goods.3 The analysis of

competitive equilibria produces sharp results. We show that, relative to the monopolist

benchmark, competition shrinks the set of qualities that are available on the market.

This contraction has the counteacting welfare effects of i) exhacerbating the monopolist

underprovision of quality, while at the same time ii) reducing the discrimination

(damaging) inefficiencies. Depending on the primitives specification either of these

forces can dominate, and therefore the question of whether digital goods are a natural

monopoly cannot be answered before estimating the demand a production function of

the particular market.

The paper proceeds as follows. We conclude this introductory section by describing

our resutls in more detail and reviewing the relevant literature. Section 2 formalizes the

primitives and establishes the efficiency benchmark. Section 3 studies the problem of a

digital goods monopolist under asymmetric information. Section 4 presents a model

of competition in digital goods markets and compares the properties of monopolist

and competitive equilibria. Section 5 assesses the fitness of our framework to study the

market for information. Section 6 concludes. Appendix A presents additional results;

all proofs are gathered in Appendix B.

Preview of the Results

Because there are no replication costs damaging is always inefficient, the first-best is

a flat allocation where all consumers receive the version that maximizes the average

2As for computer software, it is interesting to notice that Open Office was released in 2002, 12 years
after Microsoft sold (at positive price) the first Office package, consistent with the implication of this
paper that active competition goes hands in hands with some versions of the good being provided for
free.

3Geographical proximity and transportation costs also don’t seem appealing justification for the
survival of dominated versions in reasonably transparent and global markets like those of software and
information. More in general, whatever in the production function makes the good freely replicable is
also likely to make transportation costs negligible. The ex-ante asymmetry across (potential) competitors
which is implicit in the incumbent-entrants models, which has indeed been successfully employed to
anaylize competition in large incumbent airline and cable industries, seems also less realistic when
imposed on digital goods markets.
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utility net of development costs. The problem of a monopolist under asymmetric

information is equivalent to choosing (at cost) what is the maximum quality that

agents can consume in a standard screening problem with zero costs. The constrained

allocations are easy to characterize: consumers receive the minimum between the

constraint itself and an increasing function of their types – the virtual value maximizer

–. We adopt a preference specification that ensures that this maximizer is well-behaved

and non trivial (at least for a positive measure of types), thus avoiding the “no-haggling

trap” where multiplicative preferences push all constrained allocations. Increasing

the constraint shifts up a bunching-at-the-top threshold, raising the allocation (and

rent) of high valuation types while leaving the allocation (and rent) of lower types

unchanged. In particular, low qualities are optimally distributed in a full-bunching

contract, with no inefficient damaging from screening. Notice an important difference

with a cost-separable setting where the benefits of changing the allocation of an agent –

including information rents for higher types – are traded-off with the cost of producing

that specific unit. A digital good monopolist faces instead an acquisition cost that is

distinct from the distribution cost: preferences alone determine the distribution of

each quality constraint, and the cost only pins down the level of the constraint. Two

interdependent sources of inefficiency arise as i) the monopolist always acquires a

suboptimally low quality and ii) may serve it damaged to some types. In particular, the

efficiency at the top property of texbook screening problems is limited to a distributional
efficiency: although a positive measure of types never receive a damaged quality, even

the highest type gets a quality below the efficient level.

We model competition as a two stage game of perfect information, akin to Kreps

and Scheinkman (1983) and Champsaur and Rochet (1989): In the first stage firms

make a costly and irreversible investment in quality that is observed by everyone

before a standard Bertrand pricing game is played. This second stage is easy to solve

using the tools developed in the monopolist problem; the owner of the largest quality

behaves indeed as an interim monopolist on the quality spectrum she owns exclusively,

while competition pushes the price of the second highest among produced versions

to zero. In the first stage there are multiple equilibria indexed by n, the number of

firms that choose to acquire a positive quality with positive probability – i.e. are

active –. With n = 1 the active firm replicates the monopolist allocation and implicitly

commits to wiping out the revenues from any quality below, which is sufficient to deter

entry. Although this is the only equilibrium in pure strategies, for any n ≥ 2 there is

a symmetric equilibrium in which n firms randomize investment with full support

ranging from zero to the monopolist quality. By shrinking the set of marketed qualities,

competition worsens underacquisition but alleviates the damaging inefficiency. It also

induces inefficient multiple spending since developing inferior versions is obviously

socially wasteful. We show that equilibria with active competition (n ≥ 2) are Pareto
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ranked, decreasing in n: The relevant comparison is therefore between the equilibrium

with one and two active firms. Their ranking is ambiguous as different shapes of

the acquisition cost function can shut down almost completely either the positive

or the negative impacts of competition. In particular, if the monopolist was not

damaging (steep acquisition cost inducing a full bunching contract), then competition

unambiguously reduces total welfare. By contrast, if costs are extremely convex – i.e.

approaching a fixed cost structure –, then a competitive market induces an allocation

that converges (in probability, since competitive allocations are always stochastic) to

the flat allocation where everybody receives the quality produced (but not distributed)

by a monopolist, and duopoly dominates.

1.1 Related Literature

We review the contributions related to the building blocks of our model: the demand

side, the production technology, and competition with screening. Models of information

markets are reviewed separately in Section 5.

The digital good monopolist solves a sequence of constrained screening problem

(Mussa and Rosen (1978), Maskin and Riley (1984) and Wilson (1993)). We impose

a preference specification which ensures that we can disregard ironing and other

technical complications within each constrained problem – i.e. the focus of the original

paper and Rochet and Choné (1998)–, and that we have a tractable revenue comparison

across different problems.

The idea of damaging a good for screening purposes was introduced in Deneckere

and McAfee (1996).4 The approach in this paper is different both in modeling choice

and in the type of questions addressed. From a modeling perspective, beyond preserv-

ing a positive marginal cost from distribution, Deneckere and McAfee (1996) take a

binary set of qualities as exogenously fixed – thereby excluding an acquisition margin –

and assume that the only way to produce the good of low quality is by damaging the

high quality good. Distribution costs are always positive and larger for the low quality

good.5 They focus on the monopolist problem, identifying conditions under which

the possibility to damage is Pareto improving; Appendix A.1 addresses the natural

extension of their question to our framework. Product versioning through quality

damaging has been explored also in the context of a durable good monopolist. In

related papers, Inderst (2008) and Hahn (2006) consider an environment with two

consumer types and a monopolist that sells different versions of a product over time

4Prior work of Srinagesh and Bradburd (1989) offer a very general analysis for the case where there
are two types of customer. A subsequent extension of McAfee (2007) provides an exact characterization
in terms of marginal revenues of when damaging is profitable.

5Their motivating examples include processors, printers and other technological products. Clearly,
under a positive cost of damaging it is more startling that a monopolist is (sometimes) willing to engage
in screening.
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and faces the Coasian commitment problem. Availability of a damaged quality may

also result from illegal activities such as piracy; Takeyama (1994) shows that the seller

may benefit from being copied since this reduces the commitment problem.6

The analysis of competition in markets with asymmetric information has produced

a vast body of literature initiated by the seminal contribution of Rothschild and Stiglitz

(1976) on insurance markets. They invoke a notion of stability, justified by a free entry

condition, which can be interpreted as the Nash equilibrium of a contract posting game

among many (ex-ante) symmetric firms. Existence is not guaranteed due to the many

deviations available to idle firms which can rip incumbents off of their profits by acting

after they posted their contracts.7 Garrett et al. (2019) assume that consumers are

also imperfectly informed about the offers in the market; this two-sided asymmetric

information generates dispersion over price-quality menus in equilibrium, where

competition may raise prices for low-quality goods. Market power may alternatively

arise because of geographical heterogeneity across consumers, which makes spatially

dispersed firms solve interdependent multidimensional (location and preferences)

screening problems. Rochet and Stole (2002) show that optimal pricing in this Hotelling

framework involves adding a fixed fee to the cost; Hernandez (2011); Lahiri et al. (2021)

also consider competition with price discrimination in similar spatial models and

find that a duopoly sells solely the high-quality good while a monopolist may serve

the damaged good. Such contraction of the pricing schedule under competition also

emerges in incumbent-entrant models, employed to study the airline (e.g. Borenstein

and Rose (1994); Gerardi and Shapiro (2009)) and cable (e.g. Crawford et al. (2019);

Boik and Takahashi (2020)) industries. Johnson and Myatt (2003) assume the entrant

and incumbent act simultaneously but that the former can only produce qualities

below a certain threshold, thus granting the incumbent an exogenous technological

advantage similar to the one that our interim monopolist will earn as a consequence of

its investment realization. Neither transaction costs nor the imbalance of an incumbent-

entrant framework seem however compelling sources of oligopolistic power in digital

goods markets; on the contrary, the separation between production and distribution

implicit in the cost structure8 suggests a two stage game with irreversible investment

6Peitz and Waelbroeck (2006) provides a critical overview of the theoretical literature that addresses
the economic consequences of end-user copying, though focusing mostly on the non-excludability of
low qualities that is induced by the illegal activity, hence drawing a connection with the literature on
non-excludable “information goods” referred to in footnote ??.

7For a thorough review, see in the Handbook chapter of Stole (2007). Notable exceptions rely on the
multidimensionality of the type space to generate competitive equilibria with profitable contracts in an
RS setting. Netzer and Scheuer (2010) extend the basic model to two-dimensional heterogeneity, one
exogenous (risk preferences) and one endogenous (wealth); equilibrium contracts that can earn strictly
positive profits because any contract that attracts good consumers would also attract bad risk types and
become unprofitable. Equilibria with profitable contracts also emerge in the two dimensional screening
model of Smart (2000) where both dimensions are exogenous.

8The well-known drawback of modeling competition as an extensive-form game is that by choosing
the imperfect competition model we make a number of implicit assumptions which make it problematic
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as a natural way of modeling imperfect competition, which is the direction we pursue

in Section 4.

2 Primitives and Efficiency

Demand

There is a unit mass of consumers that demand (at most) one version of the digital

good, which is marketed along a continuum of versions (or qualities); Q = R+ denotes

the quality space. Consumers are characterized by a payoff type θ that parametrizes

their cardinal ranking over different qualities. We assume that the returns from quality

are given by

u (q,θ) = g (q) +θq (1)

where is g a concave function that satisfies the Inada conditions limq→0 g
′ (q) =∞,limq→∞ g ′ (q) =

0. We will further assume that preference types are uniformly distributed θ ∼ U [0,1].

Section 3.2 considers relaxation of the demand primitives and identifies sufficient

conditions to preserve the basic structure of the monopolist allocation (Theorem 1).

Consumers have deep pockets and quasilinear preferences in money, so the demand

correspondence associated to a quality pricing function p : Q→R is given by9

Dp (θ) = argmax
q

u (q,θ)−p(q) (2)

Returns from quality: Interpretation and properties

As the specification (1) is non-standard and plays a central role in our analysis we

pause a moment to highlight its analytical properties and offer a microfoundation. We

need to depart from the linear preference specification10 u (θ,q) = θq because in the

digital goods setting such specification would induce an optimal screening contract

that is inconsistent with empirical evidence: A single version of the good would be

offered at positive price in any equilibrium (competitive or not). Specification (1) be

microfounded in a fairly natural two-tasks setup that we now describe in the context of

to compare results derived in different setups. This makes it difficult to compare our results with those
in the literature and identify the effect of the fundamental difference of digital goods market, namely
the cost function. For example, Boik and Takahashi (2020) prove (in an incumbent-entrant model)
that competition does not affect the highest quality provided though it may force the incumbent to
offer medium-quality packages. In our model competition (the mixed equilibrium of an irreversible
investment game) induces a highest quality that is stochastic but bounded by the monopolist level which,
contrary to their (or any cost-separable) setup is not efficient.

9Whenver necessary to avoid confusion with the realization values p,q, we use boldface notation p,q
to denote functions.

10We discuss thorughout the paper how our results would change under multiplicative preferences,
i.e. if the g function were identically zero. To save on notation, we avoid specifying the a class of utility
functions that includes the linear preferences as a special case and refer instead to that case directly.
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software consumption. Think of quality q as the computational power of an OS, which

consumers use to perform two tasks, one basic and one advanced. Everyone performs

the basic task – say, simple calculations, text editing and access to online services –

in the same way and measures returns to quality according to a common decreasing

returns function; both the fact that everyone

agents however have heterogeneous returns θ in the accomplishment of their

professional activity which can be more or less computationally intensive.

Technically, the key effect of the common component g is to make it more profitable

to screen type θ > θ′ when the quality level is large. To see why, notice that because

of the Inada conditions the source of heterogeneity θ ranges from being irrelevant to

being the dominant factor in uq = g ′ (q) +θ as we climb the quality ladder.11 Although

the difference in the marginal utilities θ −θ′ remains constant in q, their ratio

uq (·,θ)

uq (·,θ′)
=

g ′ (q) +θ
g ′ (q) +θ′

is not constant – as it would be under multiplicative preferences –, but increasing in q:

as q grows larger, there is effectively more heterogeneity in marginal utilities, i.e. larger

returns from screening.

Production and Sale

A producer creates a version of the good of quality q at cost c (q), increasing and convex

and measured in the same units as revenues.12 Then she can supply an arbitrary

quantity of version q as well as all versions dominated by q. Formally, firms operate

the production set13

Y =
{
I

{
q′ ≤ q

}
,−c (q)

}
q∈Q . (3)

11In the two-tasks interpretation detailed above, local to q = 0 quality increments are infinitely
more valuable for the accomplishment of the basic task, so there is little heterogeneity in the relative
marginal utilities. At large q, on the contrary, marginal returns in the basic task are negligible and
quality increments are used almost exclusively in the accomplishment of the professional task (where
heterogeneity matters).

12Again, using the re-definition of the quality spectrum from footnote ??, the cost reads c1 (q) =
c
(
g−1

2 (q)
)
, and we require that c ◦ g−1

2 is convex.
13Consumers are in unit measure and demand at most one version, so a supply of 1 is indeed

“arbitrarily large”.
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After producing q the seller quotes a feasible pricing function p : [0,q]→ R.14 Her

profit maximization problem therefore reads

max
q,p:[0,q]→R

∫ 1

0
p
(
Dp (θ)

)
dθ − c (q) (4)

2.1 The First-Best

As our efficiency benchmark, we consider the problem of a planner that chooses the

quality consumed by each agent to maximize aggregate utility net of the cost of service.

Her problem reads

W? = max
q:[0,1]→Q

∫ 1

0
u (ρ (θ) ,θ)dθ − c

(
sup
θ

ρ (θ)
)

(5)

Proposition 1. The efficient allocation q? : [0,1]→ Q is the constant function

q? (θ) = q? , ∀θ

where q? is the unique solution to

g ′ (q) +
1
2

= c′ (q) (6)

The efficient allocation has singleton image: as replication is free and everyone’s

utility in monotonic in q the planner never uses her ability to damage. Equation (6)

is the first order condition of problem (5) restricted to constant allocations. Both the

level q? and the fact it is distributed undamaged to every agent in the economy will

therefore constitute our efficiency benchmark. Per standard arguments, a monopolist

that is not subject to information frictions, namely that observes θ and can charge

different prices to different costumers (first-degree price discrimination) will induce

the efficient allocation rule q? and extract all the surplus W? in the form of profits.

In the remainder of the paper we assume that θ is not observable and compare the

resulting allocations with q? .

14An equivalent restatement we will sometimes use is to let the seller choose only a pricing function
p : Q→R∪ {∞} and define the cost function c on the space of pricing functions as:

c (p) = c (sup {q : p(q) <∞})

The seller’s problem reads

max
p:Q→R

∫ 1

0
p
(
Dp (θ)

)
dθ − c (p) .
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3 Monopolist

When θ is private information of the consumer the efficient allocation with full surplus

extraction is not implementable and the seller must rely on an incentive compatible

menu to allocate different qualities to different types. We set up the problem as a

multi-agent mechanism design problem and appeal to the revelation principle to write

the monopolist problem (4) as choosing a pair of allocation and transfer rules15

(q̃, p̃) : [0,1]→ Q ×R

to maximize profits under sorting and rationality constraints. What is new compared

to a standard quality screening problem is that the cost of an providing allocation

q̃ : [0,1]→ Q no longer takes an additively separable form: We cannot compute it by

summing up the costs to produce the versions that each agent ends up consuming, i.e.

there is no primitive cost c̃ : Q→R such that

c (q̃) =
∫ 1

0
c̃ (q̃ (θ))dθ (7)

By contrast, production cost c (q) depends on the allocation q only through a single

statistic of the allocation – the maximum – and can be written as16

c (q) = c
(
max
θ

q (θ)
)

(8)

where c is the acquisition cost function defined in Section 2. With these observations at

hand, we can write the monopolist problem as

max(q,p):[0,1]→Q×R
∫ 1

0
p(θ)dθ − c (maxθ q (θ))

s.t.

IC u (θ,q (θ))−p(θ) ≥ u (θ,q (θ′))−p(θ′) ∀θ,θ′ ∈ [0,1]2

IR u (θ,q (θ))−p(θ) ≥ 0 ∀θ ∈ [0,1]

(9)

15The steps for rewriting the monopolist problem (4) as the design of a direct mechanism are standard
(the unconventional cost specification is at this stage immaterial) and therefore omitted. It should not
create confusion that the pricing function p has domain the type space Θ rather than the quality space
Q.

16A natural extension of our analysis is the general investigation of screening problems with non-
separable cost functions of the form

c (q) =
∫
Θ

c̃ (q (θ) ,ρ)dF(θ) ,

flexible enough to describe less extreme versions of economies of scale, learning, or nontrivial cost of
quality replication and versioning. Such extension is beyond the scope of this paper which instead
focuses on the extreme at the polar opposite of the standard linear aggregator.
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Because of the non-separability of the digital goods cost function (8), problem (9)

cannot be solved by type-wise maximization of a virtual valuation function. However,

the simple form of non-separability characterizing (8) suggests that problem (9) can

be safely divided in two stages. First, the optimal allocation for each given quality

constraint is computed, then the revenues associate to it are compared with the

acquisition costs to pin down the optimal level of the constraint.

Lemma 1. Let V : Q→R the quality-constrained revenue function

V(q) 7−→ max(q,p):[0,1]→Q×R
∫ 1

0
p(θ)dθ

s.t. IC , IR
Quality constraint q (θ) ≤ q, ∀θ ∈Θ

(10)

and qq : [0,1]→ Q the associated policy. The solution to problem (9) is characterized by the
allocation

qM (·) = qqM (·)

where
qM ∈ argmax

q∈Q
V(q)− c (q) (11)

Given the value function V of problem (10), the solution of the acquisition prob-

lem (11) is straightforward: we will show V that is concave, so qM is unique and

characterized by a first order condition. The challenge to determine the monopolist

allocation qM (·) is therefore to characterize all constraint-conditional allocation rules

qq : [0,1]→ Q, where qq (θ) denotes the quality allocated to type θ when the quality

cap is q̄.

Towards this characterization we preliminarily define the virtual valuation function

ν (θ,q) = g (q) + (2θ − 1)q

and let β : [0,1]→ Q∪ {∞} be its maximizer17

β (θ) =

(g ′)−1 (2θ − 1) if θ < 1
2

∞ if θ > 1
2

Three properties of β, plotted in Figure 1,18 are relevant: First,

qFBB β (0) = (g ′)−1 (0) > 0

17With the abuse argmaxν (θ,q) =∞ whenever ν (θ, ·) is monotone increasing.
18All the plots use the specification g (x) =

√
x, under which qFB = 0.25.
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because of the Inada condition at q = 0; the superscript FB stands for Full Bunching for

reasons that will be apparent shortly. Second, β is monotonically increasing in
[
0, 1

2

)
diverging in the limit because of strict concavity and the Inada condition at q = ∞;

Third, β takes value infinity in the interior of the type space since θ > 1
2 implies the

multiplier of the linear part is positive so ν (·,θ) is monotonically increasing. Notice

that if g were absent from the specification (1), i.e. if preferences were linear, then the

virtual value is always maximized at the extrema of the quality space and β (θ) would

be 0 for θ < 1
2 while it would remain infinity for θ > 1

2 .

0 0.25 0.5 0.75
θ

0.25

1

2

β (θ )

χ=0, Linear Pref.

β (θ )=∞

qFB

χ=1, Concave Pref.

0 0.25 0.5 1
q

0.5

1

2
V'(q)

Full Bunching Active Damaging
qFB

χ=0, Linear Pref.

χ=1, Concave Pref.

Figure 1: Left: Virtual Value Maximizer β (θ) for standard (1) (blue) and their linear restriction (g ≡ 0,
yellow) Preferences. Right: Marginal Revenues.

We are now ready to characterize the allocation of a digital good monopolist.

Theorem 1. [Monopolist Allocation] i) The constrained allocations are given by

qq (θ) = min {q̄,β (θ)} (12)

ii) V is concave and continuously differentiable. Its derivative is given by

V′ (q) =

g
′ (q) q < qFB(1+g ′(q)

2

)2
q ≥ qFB

(13)

iii) The monopolist produces a quality qM that is strictly below q? .

Point i) provides a simple characterization of the constrained allocations: for each

value of the constraint q̄, we obtain qq by “capping” the β function (which we derived

independently of the constraint) at q̄. This result appears natural once we realize

that our preference specification allows to solve the problem of distributing q̄ as a

a standard screening problem with multiplicative preferences where the common

utility component simply adjusts the returns from production. Indeed, since g (q) is a

deterministic function of quality (independent of individuals’ types), it can be lumped

in with the payment so that it has exactly the same role as standard cost (with sign

flipped) in determining the virtual value of an agent θ that is now left with only the

13



multiplicative part qθ of his preferences.19 Therefore, the seller allocates to type θ the

quality qq (θ) that maximizes ν (θ,q) subject to q ≤ q̄: if the unconstrained maximizer

β (θ) is feasible – i.e. below q̄ – then it coincides with the allocation, else the allocation

is capped at q̄.

Notice that the inverse β function, b : Q→
[
0, 1

2

)
given by

b (q) = β−1 (q) =

0 q < qFB

1−g ′(q)
2 q ≥ qFB

(14)

returns a “bunching at the top” threshold that characterizes all distribution prob-

lems: when the cap is q types θ ∈ [b (q) ,1] receive the good undamaged while the types

θ ∈ [0,b (q)] receive β (θ). At an intermediate step of the derivation of the marginal

revenue (13) we get

V′ (q) = (1− b (q)) [g ′ (q) + b (q)]

which has an intuitive explanation. The term g ′ (q) + b (q) is the marginal utility of the

“marginally bunched” type b (q), while (1− b (q)) is the mass of types above him. By

increasing the quality cap above q the monopolist does not change the revenues she

makes from selling all qualities (weakly) below q, since she allocates those qualities to

the same types (and therefore at the same price). The extra revenues from the increment

come exclusively from selling such increment to types [b (q) ,1], who all increase their

transfer by uq (q,b (q)) = g ′ (q) + b (q). When b (q) = θ, or equivalently q < qFB, then

the cap is so low that it is suboptimal to discriminate any consumer and V′ (q) = g ′ (q),

delivering the first branch in (13). Substitution of the nontrivial expression of b delivers

the second branch, which we show is smoothly pasted.

By point iii) the quality qM produced – and therefore the highest quality distributed

– by a monopolist is below the efficient level q? characterized by (6). As a consequence,

the “efficiency at the top” result of screening problems does not hold in this setting and

is instead limited to distributional efficiency. Comparing points i) and iii) in Theorem 1

with Proposition 1 we notice that a digital good monopolist induces two interdependent

sources of inefficiency: an allocative inefficiency due to the fact that a positive measure

of types receive a damaged version (this inefficiency exists only if qM > qFB), and a

production inefficiency due to suboptimal investment in quality. Although associated to

different stages of the monopolist problem, these inefficiencies are interdependent as

(1) the screening allocation is constrained by the quality acquired and (2) the benefits

from quality acquisition are a function of the constrained distribution. Expression (13)

19Rather than deriving utility u (θ) = g (q (θ)) +θq (θ) and paying price p (θ), agents in the “modified”
economy have multiplicative preferences ũ (θ) = θq (θ) but pay an adjusted price p̃ (θ) = p (θ)− g (q (θ)).
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incorporates the optimal distribution of each maximal quality, which generally (in the

second branch of (13)) entails damaging.

3.1 Properties of the Monopolist Contract

Allocations

Before exploring in more details the properties of the monopolist contract, we make an

important observation.

Remark 1. (Triviality of allocations under linear preferences) Suppose g ≡ 0. The

constraint-conditional allocations are given by

qq̄ (θ) =

0 θ ≤ θ̃

q̄ θ > θ̃

and the monopolist has constant marginal revenue V′
(
qM

)
= θ̃

(
1− θ̃

)
.

With linear preferences, irrespectively of the acquisition cost, a monopolist would

sell a trivial menu containing a single positive quality (bottom panel of Figure 2).20 Cost-

separable screening problems with linear preferences generate a non-trivial allocation

by exploiting variations in marginal costs; since the problem of distributing a digital

good lacks by construction such variation, in order to generate a rich – i.e. non singleton

– allocation we must rely on the preference specification alone. Because rich contracts

are often observed in digital goods markets, we focus on a specification like (1) that

does not rule them out. Indeed, as an immediate consequence of point i) in Theorem 1,

we obtain

Corollary 1. i) [No Exclusion] In the monopolist contract, all types receive a positive
quality qqM (θ) > 0 ∀θ.

ii) [Full Bunching at low caps] If qM < qFB, then no damaging is optimal: qqM (θ) =

qM ∀θ.
iii) [Distributional efficiency at the top] Types θ ∈

[
1
2 ,1

]
always receive an undam-

aged quality.

Points i) and ii) present a contrast with the standard screening model, where the

monopolist may exclude some types but never does full bunching. For a fixed quality

constraint, both results are immediate consequences of the Inada condition of the

20

Remark 2. Notice that any multiplicatively separable utility specification u (q,θ) = u1 (q) ·u2 (θ) would
yield the same “no-haggling” result as the ratio of marginal utilities, key to determine the optimal
distribution contract, does not depend on the quality acquired.
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common component g around zero: by giving a marginal quality to the excluded

types the seller would get unbounded marginal revenues, which she can distribute

as information rents to make sure the sorting constraints for higher types still hold,

proving point i). Moreover, if the quality constraint is low enough there will be little

variation in relative marginal utilities across the available spectrum, so it will not be

optimal to screen any type (top panel of Figure 2).

By point iii), there is a set of types that are bunched at the top irrespectively of

the quality cap. The two-task interpretation of the concave specification provides

an effective way of explaining this result. As we climb the quality ladder agents’

marginal returns come almost exclusively from the accomplishment of the advanced

task (as g ′ (q)→∞) and hence coincide with those of the linear specification. The seller

optimally distributes increments from a large constraint to a set of types that shrinks to[
1
2 ,1

]
(measure 1

2 ) and at a price that grows with the marginal utility of the marginally

bunched type, which also converges to 1
2 . As the allocation of the marginal quality

coincides is the same as under linear preferences, marginal revenues also coincide and

limq→∞V′ (q) = 1
4 provides a lower bound for the (limit) marginal cost that ensures a

solution to the acquisition problem.

Figure 2 below shows a graphical derivation of the optimal contract under different

preferences and cost specifications: First, we use the constrained allocations to derive

the marginal revenue function (13) and intersect it with the marginal cost to determine

qM (left graphs, with axes flipped); Then, we carry this level on the graph of β and

obtain the optimal allocation by simply capping β at qM (right graphs).

Welfare

We now turn to the welfare properties of the monopolist allocation and provide an

analytic expression of the underacquisition and damaging inefficiencies (yellow and

blue shaded regions in the right panels of Figure 2). If qM is below qFB (top panel), then

per Corollary ??-i), only the former is active: the seller serves all types, makes revenues

V(q) = g (q) and leaves consumers with surplus wC (q) = 1
2q. If instead qM > qFB, then

some low types receive a damaged version. Through simple manipulations we get that

consumer surplus in this region grows at rate

wC (q) =
1
2

(
1 + g ′ (q)

2

)2

=
1
2

V′ (q) (15)
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Figure 2: Determination of Monopolist Quality (left) and Allocation with Second Best Inefficiencies
(right).

And therefore above qFB the aggregate surplus grows at rate

wM (q) =
(

1 + g ′ (q)
2

)2

− c′ (q)︸                  ︷︷                  ︸
marginal profits

+
1
2

(
1 + g ′ (q)

2

)2

︸           ︷︷           ︸
marginal rents

=
3
2

(
1 + g ′ (q)

2

)2

− c′ (q) (16)

Subtracting wM (q) from w? (q) = 1
2 + g ′ (q)− c′ (q), the efficient marginal surplus, we

obtain the following expression for the marginal inefficiencies from damaging

d (q) =
1
8

(1 + (2− 3g ′ (q))g ′ (q)) (17)

We can now provide an analytical decomposition of the monopolist inefficiencies.
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Proposition 2.
The monopolist allocation entails a welfare loss W? −WM given by

∫ qM

qFB
d (q)︸︷︷︸

damaging ineff. (17)

dq+
∫ q?

qM

underacquisition ineff.︷              ︸︸              ︷
1
2

+ g ′ (q)− c′ (q) dq (18)

with the convention that
∫ qM

qFB d (q)dq = 0 if qFB > qM.

Notice that in the linear case (g ≡ 0), damaging would take the extreme form of

excluding a constraint-independent set of types so d (q) is constant at 1
8 = 1

2E
[
θ
∣∣∣θ < 1

2

]
.

In the concave specification, (17) is valid only if g ′ (q) < 1, in which case it is a positive

hump-shaped function in q. Below that level there were no damaging inefficiencies.

Although (18) provides a decomposition of the monopolist inefficiencies associated

with damaging and underacquisition, it is important to remember that these two

inefficiencies are interdependent. The optimality of damaging depends on the quality

produced, which in turn depends on the extent of damaging. Appendix A.1 clarifies

this interdependence by characterizing the monopolist allocation in a setting where

it is impossible to damage versions, thereby exogenously eliminating one inefficiency.

Understanding the role of competition in the provision of digital goods, which is

the focus of the Section 4, will also require evaluating its impact on both sources of

inefficiency. Before turning to that, we address the robustness of our predictions in the

monopolist setting to a generalization of our demand primitives.

3.2 Discussion and Demand Primitives Relaxation

At the distribution stage, the common concave utility component g plays the same

role in the type-wise objective as a convex separable cost with sign flipped, inducing

smooth allocations given each quality constraint. In each of these constrained problems,

unboundedness of the common marginal returns around zero21 drives full bunching at

low caps and no exclusion – Corollary ??, i)− ii) –. Recall from the discussion following

Lemma 1 that such constraint-conditional arguments are relevant only because the

digital goods cost function creates a separation between the acquisition and distribution

problem. This clarifies the limits of the “cost-like” role of common returns component

g to a discipline of the constrained allocations (Proposition 1), leaving the selection of

the constraint to the “real” cost function c.

21Which is fairly natural both in the example of software consumption with simple but essential
activities that require access to a basic version of the software and in the binary location problem (invest
or not in a fixed income security) presented in the context of information markets Section 5.
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The demand primitives can be relaxed and leave unaltered the qualitative properties

of the monopolist allocation presented in Theorem 1. For example, it is straightforward

to extend the analysis beyond the uniform distribution and modify allow for a regular

(i.e. which generates increasing virtual value φ) distribution F. The full bunching

threshold qFB would be given by qFB = (g ′)−1 (φ (θ)) while the “marginal bunching” b

function used to calculate the marginal revenues (13) would be implicitly defined by

b (·) = max
{
0, h̃−1 ◦ g ′

}
where

g ′ (q) = (h (b (q))− b (q)) = h̃ (b (q)) .

Let θ̃ the zero of the function θ−h (θ) (θ̃ = 1
2 in the uniform case). All types above θ̃ are

always bunched at the top, giving constant marginal revenues under linear preferences

V′ (q) = θ̃
[
1− F

(
θ̃
)]

.

The preference specification (1) is instead more substantial. A slight but important

generalization – that we will permit the embedding of the value of information from

the decision problems presented in Section 5 into our framework – is the following. As

quality does not have a natural metric, preferences of the type

u (q,θ) = g1 (q) +θg2 (q) (19)

for a pair of increasing functions g1, g2 : Q → R fall into specification (1) once we

re-define quality x = g2 (q) with associated cardinal rankings

ũ (x,θ) = g1

(
g−1

2 (x)
)

+θx

provided that the common component g1 ◦ g−1
2 : R → R is concave-Inada.22 The

substantive assumption in (1) is therefore the additive separability between a common

and a type-dependent component and that the common component is “more concave”

than the type dependent one.

4 Competition

In this section we develop a model of competition in digital goods markets, solve for its

equilibria, and study their welfare properties. In Appendix A.2, we discuss the issue

of equilibrium existence and stability, central to the literature of competition with

screening (Stole, 2007).

We augment the model with countably infinite replica of the seller. The set of firms

is denoted by N, with typical element i. Firms produce a homogeneous range of goods:

22The acquisition cost function c, redefined in a similar fashion over the new quality domain, should
also remain convex.
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versions of the good produced by different firms are treated as perfect substitutes by the

consumers, who use the lower envelope of competitors’ pricing functions to determine

their demand. Firms play a two stage game: at the first stage, they independently make

an irreversible investment in quality whose outcome becomes common knowledge

before the pricing game is played. In this second stage, each firm quotes a pricing

function that is feasible – i.e. on a domain bounded by the quality she has invested in –

and treats production costs as sunk. Competitive equilibria are the subgame perfect

equilibria of this dynamic game of perfect information without discounting.

We now contrast our approach with the two classic references most relevant to our

analysis.23 Kreps and Scheinkman (1983) make firms commit to a quantity level before

Bertrand competing (without screening) on the realized investments. The two stage

equilibrium yields Cournot competition outcomes. Contrary to their setting, in our

model the value of aggregate production is the maximum of the qualities produced, not

the sum of the quantities; since production along multiple lines is wasteful (because of a

multiple spending inefficiency), us finding conditions under which competition is be

beneficial (Theorem 5-ii)) is to some degree surprising. Champsaur and Rochet (1989)

analyze a MR duopoly where each competitor costlessly commits to a subset of qualities

and then chooses a pricing function on the selected domain (paying the distribution

costs at this stage).24 In committing to a quality range firms face a trade-off: they want

a broad range to discriminate among consumers, but they also want to differentiate

their products as price competition lowers profit margins on neighboring qualities. In

a Nash equilibrium where each firm makes positive profits, the quality sets to which

firms commit are disjoint. In our investment game firms commit to a quality range of

the type [0,q], so it is technologically impossible to have an empty intersection. Indeed

in all of our competitive equilibria only one firm realizes positive revenues (Proposition

3), and first stage equilibria with active competition are only mixed (Proposition 4-ii)).

4.1 The Pricing Game

Fix a vector of realized qualities q ∈ QN; entries are denoted by qi ,qj , while q(i) denotes

the ith order statistic of q. Firm i chooses a pricing function pi from the feasible

set Ai (q) = R
[0,qi ] since at this stage she can sell arbitrary amounts of any version in

[0,qi]. Letting pi (q) =∞ whenever q > qi , we can define the market pricing function

23For a more comprehensive discussion of alternative models of competition with screening, refer to
Section 1.1.

24Our quality commitment stage is not cheap talk but requires a real and costly investment that
becomes sunk at the distribution phase. The relative plausibility of the two setups depends on the
length and transparency of R&D processes and patenting, entry regulations, etc. Arguably, costly
investment/free distribution is more realistic in markets for software and information.
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mp (q)Bminj pj (q) from which we associate each type with the version and the identity

of the firm he buys from25

Dp (θ) = argmaxq∈Qu (q,θ)−mp (q)

ιp (θ) = min
{
argmini

{
pi

(
Dp (θ)

)}} (20)

Firm i makes revenues

Ri (p) =
∫
{θ:ιp(θ)=i}

pi
(
Dp (θ)

)
dθ. (21)

The pricing game is Γ (q) =
〈
N,

(
Ai (q) ,Ri (·)

)
i∈N

〉
.

Proposition 3. For each q ∈ QN, Γ (q) has an essentially unique Nash equilibrium in pure
strategies. It induces allocations

q (θ,q) =


q(2) if β (θ) < q(2)

β (θ) if q(2) ≤ β (θ) < q(1)

q(1) if β (θ) ≥ q(1)

(22)

and revenues

Ri (q) = max
{

V(qi)−max
j,i

V
(
qj

)
,0

}
(23)

The first and second order statistic of the realized qualities are sufficient to deter-

mine of the outcome of the game Γ (q). We avoid carrying order statistics notation and

denote xq = q(1), yq = q(2), dropping also the subscript q when it causes no confusion.

The competitive allocation (22) is denoted compactly as

qx,y (θ) = max {min {β (θ) ,x} , y} . (24)

Proposition 3 has a fairly straightforward interpretation: since costs are sunk, Bertrand

competition drives to zero the revenues in the quality spectrum [0, y] where there

is active competition. Therefore, only the owner of the highest quality can make

positive revenues in equilibrium by distributing the set of qualities [y,x] over which

she has market power. She behaves as an interim monopolist that faces the distribution

problem (10) under the additional constraint that every agent consumes (at least) the

25The purchasing correspondence embeds a tie-breaking rule in favor of firms with lower indices,
which will be instrumental in ruling out competitive equilibria with strictly positive lower bound of
the acquisition support. Notice ι is measurable under the assumption that firms quote an increasing
function, that will be satisfied in equilibrium.
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version y that at least one competitor can offer.26 The set of IR read now

u (q (θ) ,θ)− p (θ) ≥ u (y,θ)

which, under the requirement that p ≥ 0, is equivalent to constraining the allocation

ρ to have image contained in [y,x]. The solution to this problem has again a simple

structure, since the allocations are now obtained by slicing the β function both from

below (at y) and from above (at x) – see Figure 3 –. All types below b (y) receive y for

free, the others get the same allocation as under monopolist with quality x but pay less.

If y is below qFB the lower bound constraint on the interim monopolist is not binding

and the competitive allocation coincides with that of an x−monopolist and transfers are

uniformly reduced by g (y). This is clearly never the case under the linear specification

where qFB = 0 and

Example (Competitive Equilibrium with linear preferences). Under the linear specification

g ≡ 0 competitive allocations and transfers are given by

(q,p)x,y (θ) =

(y,0) θ ∈
[
0, 1

2

](
x, 1

2 (x − y)
)

θ ∈
[

1
2 ,1

] (25)

Low types
[
0, 1

2

]
who were excluded in the monopolist contract now receive the free

version y; High types still receive the best available quality x but pay only 1
2 (x − y). The

interim monopolist earns revenues 1
4 (x − y).

We now endogenize x,y as the outcome of the acquisition game.

4.2 The Acquisition Stage

At the investment stage, firms trade off the acquisition cost with the revenues that will

realize in the second stage as the equilibrium utility of the pricing game Γ (q). Per

Proposition 3, those revenues depend on the competitive environment only through the

highest quality z that the opponents possess; in particular, the net returns of acquiring

q against a pool of competitors characterized by z are given by

Π (q,z) = R(q,z)− c (q) = max {V(q)−V(z) ,0} − c (q) , (26)

If z was known, a potential entrant would be solving the monopolist problem of Section

3 augmented with a fixed cost that can only affect his participation decision. Therefore,
26The equilibrium is only essentially unique because it is not determined who between the producer

of the highest and second highest quality ends up distributing y. Although this indeterminacy impacts
neither the firms’ payoff (and therefore first-stage play) nor welfare, it still has some empirical content:
in a competitive digital goods market we may observe multiple providers of the free version, but only
one seller of premium versions.
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the best response to any entry vector belongs to the doubleton set
{
0,qM

}
.27 As z is

(possibly) stochastic in equilibrium, firms take its distribution as given and choose

q to solve maxq∈QE [Π (q,z)], where boldface notation is now used to denote random

variables (and E integrates those under equilibrium play).28 To ensure the existence

of an equilibrium with active competition we allow firms to randomize among the

maximizers. Therefore, the symmetric game

Υ = 〈N,∆ (Q) ,Π (·, ·)〉

represents the strategic interaction at the acquisition stage. Notice that Υ has a structure

similar to an all-pay auction since the cost of participating is paid by every player, even

those that earn no revenues in the second stage. The “bid” of others, however, not only

affects the probability of winning, but has also a direct impact on the payoff of the

winner R(q,z) as it wipes out all revenues from the versions that are shared. We now

present and discuss the equilibria of Υ , first introducing some terminology.

A firm that plays δ0 ∈ ∆ (Q) is called idle. All other firms, i.e. those that play a

positive quality with positive probability, are called active. Equilibria are parametrized

by the number n of active firms: In an n−equilibrium, firms {1,2, . . . ,n} are active; the

idle firms m > n still play a role as we need to ensure they do not have a profitable

entry. An n−equilibrium is called symmetric if all active firms choose the same action.

Equilibria with n ≥ 2 are called competitive.

Proposition 4. For each number of active firms n ≥ 1, there is a unique and symmetric
n−equilibrium of Υ .

i) With n = 1, the active firm plays δqM and makes profits ΠM. This is also the only
equilibrium in pure strategies.

ii) For n ≥ 2, active firms play a mixed action with full support
[
0,qM

]
and continuously

differentiable distribution given by

HEQ(n) (q) =
[
c′ (q)
V′ (q)

] 1
n−1

(27)

and make zero (expected) profits.

It is immediate to notice that there are no competitive equilibria in pure actions,

since whomever commits to a dominated positive quality can save on acquisition costs

by becoming idle. All firms being idle cannot be an equilibrium as well, since everyone

27Although the returns of the interim monopolist are reduced by V(z), the marginal returns ∂
∂qR =

V′ (q)I [q > z] coincide with those of the unconstrained monopolist. Therefore, for any given x the unique
candidate for an interior optimum remains qM, but inactivity is preferred when the realization of z is
large.

28Notation x denotes a vector; notation x denotes a random variable.
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would deviate to qM. Therefore the only candidate equilibrium in pure actions is one

firm playing qM, everyone else being idle. Point i) establishes that this is indeed an

equilibrium. The active firm optimizes since the monopolist is (tautologically) the best

responder to an idle environment. Idle firms do not want to acquire a quality below qM

and make zero revenues; they can become interim monopolist by acquiring a quality

q > qM, but they would make negative profits as29

Π
(
q,qM

)
= V(q)−V

(
qM

)
− c (q)

=
∫ q

qM V′ (q′)− c′ (q′)︸           ︷︷           ︸
≤0 above qM

dq′ − c
(
qM

)
< 0.

We now turn to the probabilistic competitive equilibria. By standard arguments

from the construction of equilibria in the all-pay auction, each firm plays an atomless

distribution with full support that must include the lower bound 0,30 which implies

they make zero profits E [Π (q,z)] = 0. The indifference condition ∂
∂qE [Π (q,z)] = 0 pins

down the distribution of z in the interior of the support

H (z) =
c′ (z)
V′ (z)

(28)

Notice that H is differentiable since V′′ is continuous per Proposition 1-ii). Expression

(28) gives the distribution of the highest quality among (n− 1) competitors in any

n−competitive equilibrium; the number of active firms remains indeterminate: for

any n, individual play (27) generates the market distribution (28). Sufficiency is easily

checked and relies again on the irreversibility of the investment at the pricing stage that

allows incumbents to retaliate and make potential entries by idle firms not profitable.31

We put aside for a moment the full characterization (27) and notice an important

property of the competitive allocation that results from the support restriction alone,

combined with Proposition 3.

Corollary 2. All competitive equilibria distribute, with probability 1

1. A highest quality strictly below qM, and

2. A strictly positive quality for free
29Our timing assumption gives the incumbent monopolist the possibility to fight back at the interim

stage against a deviator; models in the spirit of Rothschild and Stiglitz (1976) allow instead the potential
entrant to make revenues approximately close to those of an “interim idle” incumbent. It is therefore
not surprising that the monopolist allocation can result as an equilibrium of the competition game.

30Equilibria with strictly positive lower bound that is played with strictly positive probability by
active firms (that hope to share revenues in the case all other competitors also realize the lower bound)
are ruled out by the tie-breaking rule (20).

31Entries at a quality in the support of the equilibrium induce a payoff lower than EX [Π (q,x)] = 0 –
since x is now the maximum of n rather than n−1 identical entry decisions – while entries above qM still
ensure an interim monopolist position but still add negative marginal profits.
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A valuable version is distributed for free if (and only if, since the monopolist never

offers free versions) there is active competition. In this case, high valuation types

receive a quality that is lower than their second-best allocation. This gives a qualitative

idea, represented graphically in Figure 3, of the impact that active competition has on

welfare. By forcing the distribution of a free quality (point 2.), competition effectively

prevents the interim monopolist from doing as much damaging as he would find

optimal, hence reducing the distributive inefficiencies (17). The underacquisition

inefficiency, however, is worsened (point 1.).
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Figure 3: Competitive Allocation (x,y stochastic) and Welfare Impact.

4.3 Properties of the Competitive Allocations

We now address the welfare properties of the equilibria derived in Proposition 4. In

particular, we study how welfare changes across competitive equilibria (i.e. compare

n,m both larger than 2) using welfare in the monopolist equilibrium as a common

benchmark (i.e. compare n = 1 with m > 1, quantifying the forces described in Corollary

2).

Conditional on the realized market (x,y), type θ gets surplus

Wx,y (θ) = g (y) +
∫ θ

0
qx,y (θ′)dθ′ (29)

using the En operator to integrate out the market statistics (x,y) under the distribution

induced by the n−competitive equilibrium (27) we get

Wn (θ)B En [Wx,y (θ)]
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Since producers make zero expected profits in any competitive equilibrium, total

surplus in an n−competitive equilibrium is simply

Wn =
∫ 1

0
Wn (θ)dθ

Proposition 5. i) Competitive equilibria are Pareto-ranked, decreasing in n. Moreover,
improvement is uniform in types, that is

Wn (θ) ≥Wm (θ) , ∀θ ∈ [0,1] , 2 ≤ n ≤m.

ii) The comparison between monopolist and duopoly welfare is ambiguous and depends
on the shape of the cost function. In particular, if qM ≤ qFB (full bunching monopolist),
then competition reduces welfare. However, for any qM > qFB it is possible to specify a cost
function under which the competitive allocation is arbitrarily close to qM and the double
spending inefficiency vanish, meaning that the complete undoing of damaging inefficiency
makes the duopoly dominate.

The type-dependent surplus (29) is increasing in x and y: higher x gives extra

surplus to high types without affecting the allocation (and rent) of low types; higher y

increases the allocation (and rent) of low types and reduces the payment of high types.

We show that the joint distribution of (x,y) is decreasing in n along the FOSD order,32

from which point i) follows. Therefore, the stochastic ranking of market statistics gives

a conclusive comparison across competitive equilibria, establishing that more intense

competition is detrimental.

Point ii) shows that W2 can exceed or fall short of the monopolist surplus WM,

depending on the shape of the cost function. In general, the difference between duopoly

and monopolist welfare can be written – maintaining the convention that
∫ b

a
f (x)dx = 0

whenever a > b – as

W2 −WM = E2[
∫ y

qFB
d (q)dq︸        ︷︷        ︸

undo screening

− c (y)︸︷︷︸
double spending

∫ qM

x
wM (q)dq︸            ︷︷            ︸

underacquisition

] (30)

where wM is the marginal monopolist surplus (16) and d is the marginal damaging

inefficiencies (17). The decomposition (30) highlights that welfare gains in duopoly

result solely from realizations of y above qFB: realizations below that level have no

effects on welfare as they only imply a one-for-one transfer of surplus from the seller

to (all) consumers in the form of lower payments (left panel of Figure 4). If qM < qFB,

32In particular, the distribution of y conditional on x = x is independent of n for each x, and the
marginal distribution of x is ranked in n according to FOSD.
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i.e. the monopolist is not damaging for screening purposes, then then y never realizes

above qFB and there is no channel through which competition can improve welfare:

(17) has only negative summands and monopoly dominates.

Guaranteeing that qM > qFB is clearly not sufficient to turn (17) positive. For that to

happen both x and y should put significant weight on high realizations: the former must

be close (in distribution) to qM to reduce the integration domain of the underprovision

inefficiency, while the latter should be well above qFB to imply a substantial undoing of

damaging inefficiencies (right panel of Figure 4). High realizations of y come with the

detrimental effect of worsening the double spending inefficiency. Intuitively, by the

Jensen’s inequality we can increase E2 [y] at limited costs E2 [c (y)]. In particular, for

any target quality q̃ > qFB, the class of acquisition cost functions cα (q) =
(
q
q̃

)α
induce

(irrespectively of the demand primitive) large α limits that satisfy

qM
∞ = lim

α→∞
qM (α) = q̃, cM

∞ = lim
α→∞

(
qM (α)

)α
= 0

Moreover, substituting marginal cost into (27) we get that competitive equilibrium

strategies converge in probability to qM
∞ and that E2

[
c
(
yEQ(2) (α)

)]
≤ c

(
qM (α)

)
→ 0.

Plugging these results in (30) we conclude that

limα→∞W2 −WM =
∫ q̃

qFB d (q)dq > 0 (31)

in the limit only the “undo screening” effect is active, and is also complete: all types

receive the quality that a monopolist would have produced (but not distributed), double

spending and underacquisition are both shut down. This is not surprising, as the limit

approaches a fixed cost structure with little adjustment on the acquisition margin and

substantial cost savings due to “extreme” convexity.
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Figure 4: Monopoly (left) and Duopoly (right) Domination for different realizations of (x,y)

We now complete the analysis of equilibria under linear preferences by studying

their welfare properties.
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Example (Linear Competitive Equilibrium, Cont’d.). By substituting the allocation rule

(25) we get that welfare in a competitive equilibrium is given by

Wn = En


∫ 1

2

0
θydθ +

∫ 1

1
2

[
xθ − (x − y)

1
2

]
dθ

 =
1
8
En [x+ 3y]

If the acquisition cost is quadratic c (q) = 1
2q

2, then the monopolist produces qM = 1
4

and makes profit equal to 1
32 that coincide with consumer surplus, so WM = 1

16 . Per

Proposition 4, in an n−competitive equilibrium active firms play

HEQ(n) (q) = I

[
0 ≤ q ≤ 1

4

]
· (4q)

1
n−1 .

Integrating, we obtain Wn = 5
64

n
2n−1 , which is decreasing in n — conforming with

Proposition 5-i) –. Moreover, notice that

WM =
1

16
>

5
64
· 2

3
= W2 > W3 > · · · > lim

n→∞
Wn =

5
128

>
1

32
= WC,

namely, under moderately convex cost the monopolist dominates duopoly in terms of

total surplus but competition of any intensity makes consumers better off.

The class of convex cost function c (q) = qα induce a large α limit (fixed-cost

structure) of qM
∞ = 1 and monopolist welfare

WM =
∫ 1

1
2

(
θqM − 1

2
qM

)
dθ +

∫ 1

1
2

1
2
qMdθ − c

(
qM

)
−→ 1

∫ 1

1
2

θdθ − 0 =
3
8

Equilibrium play under duopoly is

HEQ(2)
α (q) = I

q ∈
0,( 1

4α

) 1
α−1


 · (4αq)α−1

which converges in probability to 1. Therefore W2→ 1
8 (1 + 3) = 1

2 , exceeding the limit

monopoly surplus by 1
8 ; this conforms with equation (31), as 1

8 is exactly the (limit)

damaging inefficiency induced by excluding types
[
0, 1

2

]
∫ qM

∞

0
d (q)dq =

∫ 1

0

∫ 1
2

0
dθ

dq =
1
8

5 Application: The Market for “Hard” Information

This section explores information markets as an application of our previous analysis.

We emphasize the implicit assumptions regarding demand and production technology,
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illustrating why our framework is more suitable than alternative approaches (which are

briefly reviewed) for studying certain phenomena in these markets. We then introduce

a straightforward yet precise microfoundation where producers observe increments of

a common Brownian motion at a cost and sell its realization—potentially damaged by

hiding some bits—to agents. These agents then solve a two-asset investment problem,

resulting in a value of information that falls within the generalized specification (19).

5.1 General Features of the Market

We use our model to study a market for information that has the following features.

Demand A consumer θ is identified with a bayesian decision problem33 (action set,

prior, utility) defined over a common one-dimensional state space Ω. Consumers can

not create their own information structure and must rely on those offered by a set of

profit maximizing experts. This contrasts with models of unrestricted information

acquisition with statistical pricing of information structures (e.g. Shannon entropy)

which is the approach taken in (most of) the rational inattention literature.34 Agents

have no difficulty in understanding the signal they pay for, to do the proper (bayesian)

updating, and assign to each structure the appropriate value based on their decision

problem. Marketable signal structures are ranked according to a single-dimensional

Blackwell order Q, and the class of decision problems faced by consumers (i.e. the

set of decision problems θ ∈ [0,1]) is such that returns from information fall within

the generalized preference (19). In a similar setting, Bergemann et al. (2018a) derive a

(piecewise) linear value of information when agents’ types are their prior beliefs over a

finite dimensional state space. The monopolist seller never damages information by

reducing precision – conforming with the “no-haggling” result stated in this paper as

Corollary ?? – but she degrades and sells non-trivial screening packages that reveal

only a portion of the available data to the buyer – a deterioration margin along which

margin consumers’ valuation are not linear –.35

33We do not allow for strategic interaction to avoid that the value of information is endogenous –
inconsistent with specification (1) – as it would depend on equilibrium acquisition and use of information.
Several contributions (Hellwig and Veldkamp (2009), Myatt and Wallace (2011), and Colombo et al.
(2014)) show that in the presence of strategic externalities also the information acquisition game has
strategic complementarities.

34Sims (1998, 2003) proposed the idea that decision makers are finite capacity information channels,
unable to process all the information available. Their information acquisition problem is equivalently
rewritten by having they pay an attention cost that is linear in the reduction of Shannon entropy, where
the (per-bit) price emerges as the Lagrange multiplier on the attention constraint. In this interpretation,
information is floating around agents that grasp it costly bit by costly bit, and agents with deep pockets
(large capacity constraint) can obtain any state-action correlation.

35As an example of damaging through partial revelation occurring in information markets, Bergemann
et al. (2018b) point at the “Undisclosed Debt Monitoring” packages sold by Equifax in which the data
broker offers individual rating reports to financial firms considering application for loans in three
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Production Experts (the firms) are endowed with a technology to produce primary

information structures (signals about the state) and a free technology to replicate and

Blackwell-garble those structures. Both production and damaging occurs along a single

dimension, exogenously given, and signals produced by different firms are perfect

substitutes.36 Firms maximize the expected revenues from the sale of (their menu

of) information structures, net of production cost. Notice that the objective function

clearly differs from that of a Bayesian Persuasion (e.g. Kamenica and Gentzkow (2011))

and, more in general, Information Design (e.g. Bergemann and Morris (2017)) setting,

where the principal tailors the information transmission to influence the action of

agents that are payoff-relevant for him. Also, the market of newspapers, cable tv and

opinion outlets that are chosen based on consumers’ ideology rather than information

value and make revenues from advertising rather than from subscription fees are not

examples of information markets whose functioning is likely captured by this paper’s

model.37 Finally, both reputation issues and problems related to non-excludability of

the information product are neglected.38

5.2 A microfoundation

We present a class of investment problems and information structures such that the

value of information falls within specification (19). Derivations and additional details

are in Appendix C.3.

Investors

Agents make two investment decisions, and both of the returns depend on the realiza-

tion of the same unknown state ω ∈R, commonly known to be distributedN
(
0,τ−1

p

)
and broadly interpreted as the fundamentals of an economy. The first is a binary

different versions differing in the number of “red flags” that the lender receives if the borrowers’ history
includes some negative events.

36Free replication and damaging is a somehow innocuous assumption in this setting, as it simply
requires that sellers have no disutility in sharing multiple times, say, a report (or any partial version of
it) about the state of an economy. As for the perfect substitutes assumption, section C.3 discusses its
empirical content and considers an extension.

37Galperti and Trevino (2020) endogenize the supply of information as the outcome of competition
among potential information sources that choose where to locate on the accuracy/clarity space in a
Myatt and Wallace (2011) setting. In a different setting Perego and Yuksel (2018) study competitive
provision and endogenous acquisition of political information with horizontal differentiation of potential
consumers. In both those papers firms compete for the attention of their consumers, which is justified as
many information companies make most revenues from advertising.

38Reputation issues in information transmission are studied, among others, by Wang (2009) and
Ottaviani and Sørensen (2006). The issue of non-excludability is particularly relevant for information
markets: beyond prohibiting re-selling of opinions, private information may be “leaked” through
aggregate variables (this channel is explored in Admati and Pfleiderer (1986)). Many financial
information packages include agent-specific information (as the rating of potential borrowers in the
Equifax example of Bergemann et al. (2018b)), and live prices (Bloomberg vs Reuters), which somehow
reduce the concern of non-excludability.
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decision A1 = {−1,1}, where agents have to guess just the sign of the state (buying or not

buying a fixed income security that defaults if ω < 0):

u1 (a1,ω) = sign(a1 ·ω)

The second decision is a standard tracking problem in which investors have to guess

the exact location of the state, A2 = R (fine-tuning the investment in the stock market to

match the exact state of the economy), and face quadratic losses

u2 (a2,ω) = − (a2 −ω)2

Investors have heterogeneous and exogenous relative exposure θ ∼ U [0,1] to the second

problem (risk aversion, risky-investment endowment), meaning that their overall utility

is given by

U (a1, a2,ω) = u1 (a1,ω) +θu2 (a2,ω)

Investors evaluate information structures S ∈ ∆ (S)Ω by firstly associating with each

realization s the policies ai (s)i∈{1,2} and then computing

v (S ,θ) = v1 (S) +θv2 (S)

where vi (S) = ES×Ω [ui (ai (s) ,ω)]−EΩ
[
ui

(
a
p
i ,ω

)] (32)

The class of information structures that are produced and marketed under technology

(33) (next section) take the form S (q) = N
(
ω,q−1

)
, from which it is immediate to

check that for any q and realization s ∼ S (q), investors choose a1 = sign(s) , a2 = sq
q+τp

.

Notice that information structures are Blackwell-ordered along the precision parameter

q ∈ R so v (S (q) ,θ) is increasing in q for any θ; moreover, the value (32) falls within

the generalized specification (19) described in Section 3.2: Although returns in both

problems are concave in q, there exists a concave transformation g such that v1 (q) =

g (v2 (q)) for all q < τp, which becomes a bound on our quality space.39 The intuition is

that the first bits of the signal are infinitely more informative about the sign of the state

than about its exact location; once the sign is (approximately) known, the extra bits of

information are valuable almost exclusively as they allow to better target such location.

39Clearly, a cautious specification of the cost function ensures that the constraint is satisfied. This is
anyways a substantial restriction since it means that the amount of information that is distributed can not
exceed the amount that is already possessed by agents in the form of common knowledge. A reasonable
interpretation requires therefore to take an “incremental” perspective and think of information about
perturbations of economies whose fundamentals are relatively well-known. Notice in this respect that
the zero prior mean is completely immaterial: the fixed-income problem corresponds to a bet on whether
the perturbation ameliorates such fundamentals or not while the tracking problem corresponds to a
quantification of its effects.
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Consultants

There is a set N of experts that decide how much of their costly time to spend observing

a Brownian motion (Xt)t≥0 with drift ω, reflecting that the more time an expert spends

staring at the process, the more precisely they learn about ω. Formally, Xt that evolves

according to

dXt = ωdt + dWt (33)

After staring at X for qj units of time,40 expert j has effectively produced a signal

sj =
1
√
qj

Xqj ∼N
(
ω,

1
qj

)
about the state ω, which is sold to investors in the following way. Expert j quotes a

menu of contracts mj =
{(

Xq,pq
)}
q≤qj

meaning they commit to reveal the realization of

X at a time q ≤ qj that they have observed once they are paid price pq. Two remarks

are in order. First, it is a substantive assumption that damaged information coincides

with “non-terminal” realizations of X: in principle, experts could report whether X

belongs to a certain region, whether it is closer to point A or B, or in general commit

to any garbling. We are imposing that both production and damaging occur along the

same Blackwell order. Second, that inferior qualities can be equivalently obtained by

adding independent normal noise, i.e. reporting Xq = Xqj + ε with ε ∼N
(
0,σ

(
q,qj

))
for

an appropriately defined function σ. If agents do not care about correlation (e.g. they

play independent decision problems) then how the signal is damaged is immaterial.41

Discussion and Extensions

The market for financial information described above fits the general framework of

this paper: Investors make across-experts comparison to determine the market pricing

function m, then choose the signal with precision that maximize their value (32) net of

price. Since the (common) fixed income investment is “solved” with the first bits, the

heterogeneity in values – and therefore the motives to damage the signal for screening

purposes – grows with the precision of the signal. The full bunching threshold is

given by qFB =
2π

(
π+

√
π2−τ2

p

)
τp

− τp, which is inside the feasible quality space if and only

40Consistency with the preference specification requires that marketed qualities, which corresponds
in the acquisition setting to redefining the cost function over the domain v2

([
0,τp

])
. Since it just

complicates the exposition, we keep this transformation implicit.
41In a strategic setting, the correlation induced by signal damaging affects agents’ value. In particular,

in presence of strategic substitutability, the desire for anti-coordination implies that a monopolist may
damage the best signal she possesses by adding valuable investor-uncorrelated noise. This is interesting
as it offers an explanation for imperfect principal’s disclosure alternative to that of Admati and Pfleiderer
(1986) (reduce the dissemination through aggregate variables) and that embedded in the obedience
constraints of a classic sender-receiver problem.
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if τp < π
2 . Else, the monopolist induces full bunching and the effect of competition

is only to distribute (to all types) a lower quality signal at below-monopolist price,

which is unambiguously welfare reducing per Proposition 5-ii). Another implication

of the model, that only one firm sells positive qualities and makes profits (Proposition

3), seems to be counterfactual in the market for financial consultancy. The result is

driven by the combination of Bertand competition and product homogeneity, which

arises from all firms observing the same Brownian Motion (33): whomever stares at

it the longer can push out of the market everyone else by undercutting any positive

price competitors charge for the realizations that they can also offer. A natural way to

introduce product heterogeneity in this application is to add a degree of “originality”

in the experts’ signal formation process. To this end, suppose that expert j observes the

Brownian motion Xj

dXj
t = ωdt + dWj

t

where dWj
t = ρdWt +

√
1− ρ2dZj

t

(34)

where dZj
t is a firm-specific process42 and ρ ∈ [0,1] is a measure of the correlation in

experts’ conjecturing effort; one can easily check that Cov
(
Xqj ,Xqi

)
= ρmin

{
qi ,qj

}
for

all i, j. If ρ = 1 then we are back to homogenous setting presented in this paper, while if

ρ = 0 (signals are uncorrelated) generates a model of additive social value of production

as in Kreps and Scheinkman (1983). In general, products are no more homogeneous and

a inferior production effort qj < qi creates a signal Xqj contains now information about

ω even after conditioning on Xqi . In Appendix C.3 we argue that, as preferences admit

a quality aggregator, it is straightforward to extend the analysis of first and second

best presented in this paper to the setting with heterogeneous values. The second best,

however, cannot be decentralized as a pricing stage equilibrium among competitive

firms as we did for the case of homogenous products. The technical complications

to solve for a competitive equilibrium with screening and heterogeneous products

are illustrated by (Stole, 2007), and a generalization of the competitive equilibria we

derived for the homogenous goods case has proven elusive.

6 Conclusions

We developed a model of production and distribution of digital goods. The monopolist

solves a quality screening problem where the cost of providing an allocation is not

separable but depends solely on one statistic of such allocation (the maximum). We

discipline the demand side of the market with a preference specification, interpreted in

a two-tasks setting, that renders the problem tractable and its solution non-trivial – in

42Meaning dWt , dZj
t , dZi

t for i , j are independent Wiener processes.

33



the sense that rich menus are offered –. Contrary to a standard screening problem with

the same demand primitives, no agent is ever excluded, full bunching can be optimal

and efficiency at the top is limited to a distributional efficiency. Market power and

asymmetric information induce the interdependent inefficiencies of under-investment

in quality and product damaging.

We modeled competition in digital goods markets as two-stage game in which

investment in quality is a sunk cost at the pricing stage. Monopolist allocation emerges

as one equilibrium of this game – the only one in pure strategies –, which also admits

(mixed) equilibria with active competition. Competition induces wasteful double

spending and worsens under-acquisition since the highest quality distributed by a

competitive market is stochastic but bounded by the monopolist level. However, the

distribution of the second-highest quality for free reduces the distributive inefficiency.

The welfare comparison between monopoly and duopoly – Pareto dominant among

competitive equilibria – is ambiguous and we showed by example that the acquisition

cost function can be tailored to completely shut down the channels that favor either of

them.

Finally, we presented an application of the general framework to the market for

financial information. We motivated some extensions of the model by discussing how

its structure imposes limitations within this application and sketch, as an example, a

natural way of generating product heterogeneity through correlation of the primary

information sources.
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A Additional Results

In this appendix we discuss two issues that, while not directly related to our main investigation

of the role of market power in digital goods markets, still enhance our understanding of

the forces at play. Specifically, we examine how the monopolist allocation would change if

damaging were not allowed and the robustness of competitive equilibria to deviations by idle

firms as the investment game unfolds.

A.1 No-Screening Economy

We compare the monopolist allocation of Section 3 with a No-Screening economy in which

the monopolist cannot sell damaged versions: this can occur either because of a technological

constraint (damaging is costly as in the original Deneckere and McAfee (1996) paper, and

prohibitively so), or because of a “damaging ban”.43 For convenience we follow the second

interpretation and present our results as if we were evaluating the effects of a ban. The exercise

is useful for two reasons. First, it represents the natural extension of the Deneckere and McAfee

(1996) normative question “when is the possibility of screening beneficial for all types in the

economy?”. The different specification of the cost function and the fact that available qualities

are not pre-determined add different channels through which the (im)possibility of screening

affects allocations and welfare. Second, interpreting NS as the result of a regulatory ban, we are

evaluating how a policy intervention might affect the inefficiencies of digital goods monopolies,

thus providing a useful benchmark of comparison for the welfare implications of competition

(Proposition 5).

43We have discussed two cases where even an “unconstrained” digital good monopolist offers a single
version of the good: Either preferences are linear, a constant mass of agents receives the undamaged
quality while others are excluded (Remark ??), or g is concave but the quality produced is low enough
(steep marginal cost) that the optimal distribution entails full bunching (Corollary ??).

37



The NS Problem

A No-Screening (NS) monopolist chooses a quality qNS and the threshold consumer n
(
qNS

)
to

serve. Types
[
n
(
qNS

)
,1

]
buy quality qNS at price g

(
qNS

)
+n

(
qNS

)
qNS, the others are excluded.44

The exclusion policy n : Q→ [0,1] solves the quality-conditional pricing problem

VNS (q) = max
θ

[g (q) +θq] (1−θ) .

and the constrained monopolist acquires the quality qNS that solves maxq∈Q VNS (q)− c (q).

Proposition 6. i) The exclusion policy is given by

n (q) = max
{
q − g (q)

2q
,0

}
;

n (q) ≤ b (q), strictly whenever b (q) > 0. Moreover, n (q) = 0 for some q > qFB.

ii) qNS ≤ qM, strictly whenever qM > qFB.

Consider first – point i) – how the constrained and unconstrained monopolists distribute the

same quality q. As n (q) < b (q), the NS monopolist will serve it undamaged to a larger portion

of types; this is the mechanical positive impact of prohibiting quality damaging. However,

the ban may induce the seller to perform an extreme version of price discrimination, namely

full exclusion: The types that are “screened” by the NS monopolist receive nothing, while

in the unconstrained contract they had strictly positive consumption and value – Corollary

??-ii) –. Proposition 6-i) suggests a three-way partition of the quality space, highlighted in

the right panel of Figure 5. In Region A, where q < qFB, the constraint is immaterial and the

marginal revenue functions coincide. In Region B, where q > qFB but still n (q) = 0, the NS

monopolist sells to all types so her marginal revenues are still g ′ (q), strictly below the branch

of (13) associated with positive damaging. In Region C also n (q) > 0 and the NS monopolist

excludes a positive mass of low types. This partition is useful in evaluating the distributional

impact of the ban; for its overall effect we must also take into account that – point ii) – the ban

strictly worsens the acquisition inefficiency:45 by depressing the (marginal) revenues, it makes

the seller produce an even lower quality. Notice however that by making the cost function

arbitrarily steep around the monopolist quality – approaching a fixed cost structure – we can

effectively shut down this channel and work in an exogenous supply setup similar to that

analyzed in Deneckere and McAfee (1996), focusing on the allocative effects of the ban.

We are now ready to investigate the welfare effects of the ban. It is clear that the low types

that are excluded in Region C are harmed by the ban. Likewise, the monopolist is always worse

off since she is solving a constrained version of problem (9). By focusing on the case where the

unconstrained monopolist (and, a fortiori, the constrained one) produces in Region B we obtain

tighter normative implications of the damaging ban.

44To ease comparison with the unconstrained monopolist, we present the problem of the NS
monopolist as a two stage maximization. An equivalence result similar to Lemma 1 is immediate
and omitted.

45In particular, it is possible that qM falls in Region C while qNS falls in Region B.
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Exclusion and Damaging Thresholds (dashed), Constrained and Unconstrained distribution of quality
1.5 (Region C).

Proposition 7 (Welfare impact in Region B). If qM belongs to Region B, then

i) A set of (low) types is better-off under the NS policy.

ii) The net gains from enacting the NS policy can be expressed as

WNS −WM =
∫ qNS

qFB
d (q)dq −

∫ qM

qNS
wM (q)dq (35)

where wM (q) is the marginal monopolist surplus (16) and d (q) are the marginal damaging inefficien-

cies (17).

iii) If c′′
(
qM

)
is large enough (approaches the fixed cost limit), the NS policy increases total

welfare.

The reason for the reversal of the welfare effect on low types from Region B to Region C –

point i) – is the following. Since the allocation in Region B is flat, the consumer surplus function

is given by WNS (θ) = θqNS; in the unconstrained case the types below b
(
qM

)
get surplus

WM (θ) =
∫ θ

0 β
(θ′)dθ′. Since qNS > β (0) = qFB, then local to θ = 0 it must hold WNS (θ) > WM (θ).

As for the overall effect of the ban, focusing on Region B makes the “complete exclusion” margin

non-existent, so point ii) only trades off the positive impact from undoing damaging in the[
qFB,qNS

]
region, and the negative underacquisition impact. Assuming costs are extremely

convex around qM ensures marginal cost quickly covers the gap between marginal revenues

and so qNS → qM. In the fixed cost limit every type receives under the ban the quality that

an unconstrained monopolist would produce but fail to distribute: also the underprovision

inefficiency is shut down and the ban has only the positive “mechanical” effect of undoing

the damaging inefficiencies
∫ qM

qFB d (q)dq. A graphical representation of the effects of the ban

in Region B under steep and flat marginal cost is offered in the top panel of Figure 6, while

the bottom panel performs a specular analysis in the case both monopolists produce in Region

C. As the distributional inefficiency from excluding consumers
[
0,n

(
qNS

)]
is present even

under exogenous supply (actually, it is made worse as n is increasing), an unambiguous “limit

domination” result similar to point iii) does not hold in this case.

Essentially, the specification of the cost function leaves us a degree of freedom which is

crucial to determine the impact of a policy in digital goods markets. In this case, the level of the

marginal cost curve selects the region that is relevant for the distributional impacts of the ban
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Figure 6: Left: Constrained and unconstrained acquisition, linear vs. fixed cost. Center: Constrained
and unconstrained distribution, linear cost. Right: Constrained and unconstrained distribution, fixed
cost. Top: Production in Region B. Bottom: Production in Region C.

(i.e. whether or not it induces exclusion), while its curvature around the monopolist quality

determines the size of the acquisition gap qM − qNS. A similar logic applies to the analysis of

the competitive environment, which we now introduce.

A.2 Equilibrium Stability

Although it ensures the existence and tractability of competitive equilibria in a setting that is

prone to Rothschild and Stiglitz (1976)-like market failure, our timing assumption raises issues

of equilibrium stability: As the game unfolds in two stages and there are (infinitely many) idle

players during and after the pricing stage, we might worry about off-equilibrium deviations by

some firms that – violating the rules of the game – produce a version of the digital good after

the first stage. Whether such deviations are plausible clearly depends on the specifics of the

application; we abstract from those specifics and investigate the robustness of our equilibria.

Depending on when the outsiders make an unexpected move, two notions of stability naturally

emerge

• Interim deviation: after the first stage, a potential entrant observes the realized entry

vector q and chooses whether (and eventually at which quality) to enter and play the

second stage against q.

• Ex-post deviation: after the whole game is played, a potential entrant observes the realized

market pricing function and chooses whether (and eventually with which pricing function)

to enter and compete with the realized contract.

Definition. An entry vector is interim (ex-post) stable if it rules out profitable interim (ex-post)

deviations. The degree of interim (ex-post) stability of an equilibrium is the probability that

the realized entry vector is interim (ex-post) stable.
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Notice that neither of the stability notions are associated to the equilibrium of a game in

which active firms recognize the threat from outsiders.46 If firms were playing a pure strategy

equilibrium in the first stage game Υ , however, the ex-post stability refinement would collapse

to the equilibrium of a Rothschild and Stiglitz (1976) modeling of digital goods markets:

firms quote a pricing function pi : Q→ R+ at cost c (pi) = c (sup {q : pi (q) <∞}),47 all strategic

interaction being subsumed in the revenue specification Rj

(
{pi}i∈N

)
given by (21).

Definition. An ex-post (Rothschild and Stiglitz (1976)) equilibrium is a profile of contracts{
p?i

}
i∈N

such that

Ri

(
p?i ,p

?
−i
)
− c

(
p?i

)
≥ Ri

(
pi ,p

?
−i
)
− c (pi) , ∀i,pi

By the same arguments of Proposition 4-i), one firm quoting the monopolist pricing function

– and everyone else abstaining at pj ≡ ∞ – is the unique candidate ex-post equilibrium. This

time, however, an entrant can produce qM and make revenues that are arbitrarily close to V
(
qM

)
by granting a small discount that attracts every type against the “idle” monopolist, breaking

the equilibrium. Therefore,

Proposition 8.

i) There is no ex-post equilibrium; the monopolist equilibrium of Proposition 4-i) is interim stable

(degree 1), but ex-post unstable (degree 0).

ii) All competitive equilibria of Proposition 4-ii) feature intermediate degrees of interim and

ex-post stability, and both of them are decreasing in n.

The intuition for point i) is given above, while the other results derive from the following

logic. The best response to any realized entry vector (x,y) is either to abstain or to choose qM

and earn net profits Π
(
x,qM

)
in a market where x becomes the free version. At the ex-post

stage, however, the entrant can obtain also the revenues that the interim monopolist makes in

the quality spectrum [y,x]; therefore y becomes the relevant market statistic to determine the

value of the optimal deviation – which is arbitrarily close to Π
(
y,qM

)
–. Since

Π
(
qM,qM

)
< 0 <Π

(
qM,0

)
=ΠM

and Π
(
qM, z

)
is continuous and monotonically decreasing in z, there is a unique threshold

z? ∈
(
0,qM

)
such that Π

(
z? ,qM

)
= 0. An entry vector q is interim stable if xq > z? , and it

is ex-post stable if yq > z? , so the degrees of stability are pinned down by the equilibrium

distributions (evaluated at z?) of the market statistics (x,y). Point iii) then follows from the

fact that (x,y) are FOSD ordered across competitive equilibria – as established in the proof of

Proposition 5-i) –.

46Indeed, an interim monopolist that anticipates ex-post entry would not (generally) choose allocation
rule (22). Likewise, active firms that anticipate interim and/or ex-post deviations would not evaluate the
returns from quality according to (26).

47Contrary to the original setting, our production primitives imply that this cost neither depends on
competitors’ actions nor on consumers’ demand.
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B Proofs of the Main Results

B.1 Proofs of Section 2

Proof of Proposition 1

As utility is increasing in quality for any type θ, damaging is always inefficient. Therefore,

the planner’s problem becomes a maximization in a single variable, the quality produced and

efficiently allocated to all types

W? = max
q̄

∫ 1

0
u (q̄,θ)dq − c (q̄)

= max
q̄

g (q̄) +
1
2
q̄ − c (q̄)

(6) is the first order condition of this problem (sufficiency is immediate because the objective

is concave) and we let q? be its solution. A seller with perfect information can charge a type-

dependent price pθ. Then the profit maximization problem coincides with the social surplus

problem, he produces q? , distributes it to all types and he extracts all the surplus.

Proof of Lemma 1

Using the notation introduced in Section 2, the monopolist problem reads

maxq,p:[0,1]→Q×R
∫ 1

0 p (θ)dθ − c (q)

s.t. IC,IR
. (36)

Define

ω (x) = {q,p : [0,1]→ Q ×R : IC, IR hold and c (q) ≤ x} ,

the set incentive compatible and individually rational allocation and pricing function whose

cost does not exceed x. Using this constraint sets, problem (36) can be rewritten as

max
x,{p:∃q,(q,p)∈ω(x)}

∫ 1

0
p (θ)dθ − x

= max
x∈R

[
max

{p:∃q,(q,p)∈ω(x)}

∫ 1

0
p (θ)dθ

]
− x (37)

given the specification of the cost function (8)

q ∈ ω (x) only if c (maxθ q (θ)) ≤ x

⇐⇒ maxθ q (θ) ≤ c−1 (x)

so

ω (x) =
{
q,p : [0,1]→ Q ×R : IC, IR hold and max

θ
q (θ) ≤ c−1 (x)

}
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and therefore

max
{p:∃q,(q,p)∈ω(x)}

∫ 1

0
p (θ)dθ = V

(
c−1 (x)

)
where V is the value of quality defined in (10) as the constraint set of that problem coincides

with ω
(
c−1 (x)

)
. Redefining the domain of choice to be Q = c−1 (R) – which is possible as c

strictly increasing –, Problem (37) becomes

max
q∈Q

V(q)− c (q)

as we wanted to show.

B.2 Proofs of Section 3 (Monopolist)

Proof of Theorem 1

Step 0: Properties of β. We first establish the properties of β stated in the text. The virtual

value is supermodular as

∂
∂q∂θ

ν (q,θ) =
∂

∂q∂θ
[g (q) + (2θ − 1)q] = 2 > 0

and so has an increasing maximizer β. When θ > 1
2 , ν is monotonically increasing and β (θ) =∞;

on the contrary the maximizer is characterized by

g ′ (β (θ)) = 1− 2θ

Putting the two branches together we get

β (θ) =

(g ′)−1 (1− 2θ) θ < 1
2

∞ θ ≥ 1
2

That β (θ) > 0 follows from the Inada condition at 0. Likewise, β (θ)→∞ as θ→ 1
2 .

Step 1: Constrained Allocations are q (q,θ) = min {β (θ) ,q}. Fix a generic quality cap q.

The quality constrained problem (10) equivalently reads

V(q) 7−→ maxq,p:[0,1]→Q×R
∫ 1

0 p (θ)− c∞ (q (θ))dθ

s.t. IC , IR

for the extreme cost

c∞ (q′) =

0 q′ ≤ q

∞ else
.
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Notice c∞ (q′) is not differentiable, but can be approximated by the continuously differentiable

convex function

cn (q′) =
(
q′

q

)n
We can now define the sequence of auxiliary problems

Vn (q) 7−→ maxq,p:[0,1]→Q×R
∫ 1

0 p (θ)− cn (ρ (θ))dθ

s.t. IC , IR

As limn→∞ cn (q′) = c∞ (q′) pointwise, the objective in Vn converges to the objective in V and as

policies and values of the auxiliary problems are bounded, the sequence of solutions (qn,pn)

converges to the solution of the original problem. The auxiliary problem for a generic n can be

solved using standard techniques of (cost-separable) monopolist screening.

Firstly, the pairwise comparison of incentive constraints implies that the allocation qn
is monotonically increasing. Through standard arguments, we can rewrite the monopolist’s

objective as

max
qn(θ) increasing

∫ 1

0

[
u (qn (θ) ,θ)− cn (qn (θ))−qn (θ) (1−θ)

]
dθ.

Substituting the preference specification (1) and maximizing the integrand point-wise we obtain

a candidate qn (θ) as the solution to

g ′ (qn (θ)) + (2θ − 1)− n
qn

(qn (θ))n−1 = 0 (38)

which defines a monotonically increasing function as

νq,n (x,θ)B g (x) +θx − x (1−θ)−
(
x
q

)n
= ν (θ,x)−

(
x
q

)n
is still supermodular (and the FOC still characterizes a maximum). Recall that β (θ) solves the

cost-free version of (38)

g ′ (β (θ)) + (2θ − 1) = 0

and since

lim
n−→∞

n
qn

xn−1 =

0 x < q

∞ x > q

the pointwise limit of qn (θ) is

qn (θ)→

β (θ) if β (θ) < q

q β (θ) > q

and so q (q,θ) = min {β (θ) ,q}, which is our desideratum.
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Step 2: Marginal Revenues Let b : Q→
[
0, 1

2

]
the inverse β function, namely

b (q) = β−1 (q) = max
{

0,
1− g ′ (q)

2

}
(39)

so that allocations computed in Step 1 read

q (q̄,θ) =

β (θ) θ ≤ b (q̄)

q else

Now,
V(q) =

∫ 1
0 u (q (θ,q) ,θ)− (1−θ)q (θ,q)dθ

=
∫ b(q)

0 u (β (θ) ,θ)− (1−θ)β (θ)dθ +
∫ 1
b(q)u (q,θ)− (1−θ)qdθ

which is differentiated using Leibniz’s rule to obtain

V′ (q) = b′ (q) [u (q,b (q))− (1− b (q))q]− b′ (q) [u (q,b (q))− (1− b (q))q] +
∫ 1
b(q)uq (q,θ)− (1−θ)dθ

=
∫ 1
b(q) g

′ (q) + (2θ − 1)dθ = (1− b (q)) (g ′ (q)− 1) +
(
1− b (q)2

)
= (1− b (q)) [g ′ (q)− 1 + (1 + b (q))] = (1− b (q)) [g ′ (q) + b (q)]

(40)

We now just need to substitute the expression (39) for b. In the concave case, if q < qFB then

g ′ (q) > 1 which implies b (q) = 0 and V′ (q) = g ′ (q); substitution of the non-trivial branch of (39)

gives that when g ′ (q) < 1 marginal revenues are

V′ (q) =
(

1 + g ′ (q)
2

)2

which is the expression in the Proposition. Notice that the argument is easily modified to

account for the linear case g ≡ 0, whence we get b (q) and V′ (q) are constant, respectively at 1
2

and 1
4 .

Step 3: V is Continuously Differentiable To conclude that V′ is C1 we need to show that

the two branches are smoothly pasted at qFB since continuous differentiability inside the two

branches is immediate. Notice (
1 + g ′ (q)

2

)2 ∣∣∣∣∣
qFB

= 1 = g ′ (q)
∣∣∣∣∣
qFB

proves continuity, while

d
dq

(
1 + g ′ (q)

2

)2 ∣∣∣∣∣
g ′(q)=1

= 2
1 + g ′ (q)

2
g ′′ (q)

2

∣∣∣∣∣
g ′(q)=1

= 2
1 + 1

2
g ′′ (q)

2
= g ′′ (q) =

d
dq

g ′ (q)

proves continuous differentiability.
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Step 4: Monopolist Underprovision To show that qM < q? it is sufficient to show that

V′ (q) < w? (q) = g ′ (q) +
1
2

(41)

Clearly, g ′ (q) + 1
2 > g ′ (q) so in the full bunching region monopolist underprovision follows from

the classic average vs marginal agent targeting. Since

x ≤ 1 =⇒ x+
1
2
>
(1 + x

2

)2

it follows that V′ (q) is strictly below efficient marginal surplus even when g ′
(
qM

)
≤ 1, proving

that (41) is always satisfied and completing the proof.48

Proof of Proposition 2

As the monopolist surplus follows from the marginal revenue equation (13), to compute the

second best welfare WM we just need to derive consumer surplus.

Lemma. In the monopolist contract, consumer surplus is given by

WC =
1
2

qFB +
∫ qM

qFB

(
1 + g ′ (q)

2

)2

dq

 (42)

(of the Lemma). Since in equilibrium uθ = q (θ), the surplus of agent θ when the cap is q is given

by

WC (θ,q) = u (0) +
∫ θ

0
uθ (q (θ′ ,q) ,θ′)dθ′ =

∫ θ

0
min

{
β (θ′) ,q

}
dθ′ (43)

Total consumer surplus is then given by

WC (q) =
∫ 1

0 W(θ,q)dθ =
∫ 1

0

(∫ θ
0 min {β (θ′) ,q}dθ′

)
dθ

=
∫ 1

0 min {β (θ) ,q} (1−θ)dθ =
∫ 1

0 min
{
(g ′)−1 (2θ − 1) ,q

}
(1−θ)dθ

=
∫ b(q)

0
(g ′)−1 (2θ − 1)(1−θ)dθ +

∫ 1
b(q) q (1−θ)dθ

Now, if b (q) = 0 the first term is zero and WC (q) = 1
2q; if b (q) > 0 we use the same steps in

the derivations (40) of marginal revenues to show that terms in b′ drop and consumer surplus

grows at rate
wC (q) =

∫ 1
b(q)

d
dq (q (1−θ))dθ =

∫ 1
b(q) (1−θ)dθ

= (1− b (q))− 1
2x

2
∣∣∣∣1
b(q)

= 1
2 (1− b (q))2

= 1
2

(1+g ′(q)
2

)2
= 1

2 V′ (q)

(44)

which is the expression given in the text. Integrating marginal surplus below, and above

(44) qFB we obtain (42).

48Again, extension to the linear case is straightforward as it is implied by the inequality 1
2 > 0.
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Summing marginal revenues (13) and consumer surplus (44) we get monopolist surplus

below qFB grows as first best (has no damaging), while above it grows with slope

wM =
(

1 + g ′ (q)
2

)2

− c′ (q) +
1
2

(
1 + g ′ (q)

2

)2

=
3
2

(
1 + g ′ (q)

2

)2

− c′ (q)

Monopolist welfare can therefore be written as

WM =
∫ qFB

0
1
2 + g ′ (q)− c′ (q)dq+

∫ qM

qFB
3
2

(1+g ′(q)
2

)2
− c′ (q)dq (45)

First best surplus is given by

W? = 1
2q

? + g
(
q?

)
− c

(
q?

)
=

∫ q?

0

1
2

+ g ′ (q)− c′ (q)︸              ︷︷              ︸
w?(q)

dq

In the region
[
qFB,qM

]
we have marginal damaging inefficiencies

d (q) =
1
2

+ g ′ (q)− c′ (q)︸              ︷︷              ︸
w?

−
3

2

(
1 + g ′ (q)

2

)2

− c′ (q)

︸                       ︷︷                       ︸
wM

= 1
8 (1 + (2− 3g ′ (q))g ′ (q))

which is expression (17) in the text. The inefficiencies decomposition (18) is obtained

by splitting the integral representation of W? ,WM in the three regions
[
0,qFB

]
,
[
qFB,qM

]
and[

qM,q?
]

as follows

W? −WM =
∫ qFB

0

(
1
2 + g ′ (q)− c′ (q)

)
dq −

∫ qFB

0

(
1
2 + g ′ (q)− c′ (q)

)
dq

+
∫ qM

qFB

(
1
2 + g ′ (q)− c′ (q)

)
dq −

∫ qM

qFB
3
2

(1+g ′(q)
2

)2
− c′ (q)dq

+
∫ q?

qM

(
1
2 + g ′ (q)− c′ (q)

)
dq − 0

= 0

+
∫ qM

qFB d (q)dq

+
∫ q?

qM

(
1
2 + g ′ (q)− c′ (q)

)
dq

B.3 Proofs of Section 4 (Competition)

Proof of Proposition 3

Let x,y generic be the maximum and second order statistics of the realized entry vector q.

Because of Bertrand competition and zero distribution cost, no firm can make revenues by

selling qualities q ≤ y: if that was the case, a competitor can modify his pricing function to

copy the revenue-earner in that quality region, not alter the market pricing function (hence his
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revenues on other qualities) and share those positive revenues. By definition of y, this deviation

is feasible for at least one competitor.

We now solve the problem of the interim monopolist.

Using the same steps as for the unconstrained monopolist, we write the problem of the

interim monopolist as choosing a type dependent quality allocation rule ρ which is increasing

(pairwise comparison of IC) and has image [y,x] (as p (y) = 0). The interim monopolist revenues

are therefore

Ri (x,y) −→ max
q(θ)∈[y,x], increasing

∫ 1

0
[u (q (θ) ,θ)−q (θ) (1−θ)]dθ

Pointwise maximization of the objective delivers the candidate allocation

q̃x,y (θ) = arg max
q∈[x,y]

g (q) + q (2θ − 1)

From the concavity of the objective first order condition characterizes the interior optimum,

hence q̃x,y (θ) = β (θ) if β (θ) ∈ [y,x]. The objective is instead strictly decreasing (on the relevant

domain) in q if β (θ) < y, strictly increasing if β (θ) > x. It therefore follows

q̃x,y (θ) =


y y < β (θ)

β (θ) β (θ) ∈ [y,x]

x x > β (θ)

which is a weakly increasing function (in θ), hence the solution of the interim monopolist

problem. This proves the allocation rule (22).

We now need to compute the revenue function. Per the discussion above all firms but the

interim monopolist make zero revenues. The interim monopolist earns

Ri (x,y) = R(y,y) +
∫ x

y

∂
∂q

R(q,y)dq (46)

Clearly, R(y,y) = 0 and, given allocation function (22), marginal revenues for the interim

monopolist coincide with those of the unconstrained monopolist: the marginal quality is

assigned to types [b (q) ,1] at marginal price g ′ (q) + b (q). So

∂
∂q

R(q,y) =

0 y > q

V′ (q) y ≤ q

Therefore,

Ri (x,y) =
∫ x

y
V′ (q)dq = V(x)−V(y)

as we wanted to show.
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Proof of Proposition 3 (Acquisition Equilibria)

Step 1: Monopolist is the only equilibrium in pure strategies. The argument is given

in the text. Notice an entrant at q > qM makes profits

Π
(
q,qM

)
= R

(
q,qM

)
− c (q) = V(q)−V

(
qM

)
− c (q)

=
∫ q

qM (V′ (q′)− c′ (q′))dq′ − c
(
qM

)
< 0

as c′ (q) > V′ (q) above qM.

Step 2: Active firms play an atomless distribution with support including 0. The

support of equilibrium play must contain 0: if the support was bounded below by a strictly

positive quality q, then playing the costly q gives the firm with larger index zero revenues

with probability 1 as the tie-breaking rule (20) excludes revenues sharing, so she deviates to

inactivity. The argument why no firm can choose a quality q with positive probability is typical

of war of attrition games. If that were the case, all opponents best respond by placing zero

probability on an open set including q to get a discrete jump in the probability of winning

and (almost) the same profits. But then the firm itself wants to shift the mass away from q,

depending on the sign of V′ (q)− c′ (q).

Step 3: The distribution of the maximum of opponent’s qualities must be H (q) =
c′(q)
V′(q) . From (23), the maximum across competitors’ realizations z is sufficient to determine

firms’ revenues. Let H (z) be the distribution of such maximum, which from the previous step

we know is continuous on [0,q] for some q > 0. By playing q makes expected profits

Π (q) = E [Π (q,z)] =
∫

Q
R(q,z)dH (z)− c (q)

Using Leibniz’s rule on an invariant support and (23), the flat profit condition Π
′
(q) = 0,

necessary for indifference reads, gives

c′ (q) =
∫

Q
∂
∂qR(q,z)dH (z) =

∫ q

0 V′ (q)dH (z)

= V′ (q)
∫ q

0 dH (z) = V′ (q) H (q)

and therefore

H (q) =
c′ (q)
V′ (q)

(47)

It holds H (0) = 0 since, by Proposition 1 ii), for low q marginal revenues V′ (q) is equal to g ′ (q)

approaching∞ by the Inada condition. H is increasing as c is assumed convex and V is concave.

The right extremum of the support is determined by

H (q) = 1 =⇒ c′ (q) = V′ (q) =⇒ q = qM

Hence the maximum among n − 1 competitors is an absolutely continuous random variable

with support
[
0,qM

]
and distribution (47).
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Step 4: An equilibrium candidate with n active firms is (27) The CDF (47) pins down

the distribution of the maximal quality among n − 1 competitors that makes the nth firm

indifferent among any quality q ∈
[
0,qM

]
. So for each n we have one (and only one) candidate

equilibrium which has everyone plays

HEQ(n) (q) = [H (q)]
1

n−1

that delivers (27). Notice HEQ(n) admits a positive density

hn (q) =
1

n− 1
[H (q)]

2−n
n−1 h (q)

which is continuous since h (q) = d
dqH (q) is continuous in q in light of continuity of V′′

established in Proposition 1 ii).

Step 5: Sufficiency By construction, all active firms are indifferent across all qualities in[
0,qM

]
and they are indifferent with abstaining as 0 is in the support of the equilibrium. We are

left to prove that firms do not want to produce more than qM. In that case they would be sure

to be the interim monopolist, making profits

Π (q) = E

[
Π

(
qM,z

)]
+
∫ q

qM
V′ (q′)− c′ (q′)dq′

The first summand is zero by the flat profit condition, while the second term is negative by

definition of qM. Inactive firms do not want to deviate either: each of the n firms, competing

against n− 1 opponents makes zero profits in expectation and competing competing against n

firms increases (in the sense of FOSD) the distribution of the best competitors’ quality.

Proof of Proposition 5

Point i) - Pareto Ranking of Competitive Equilibria.

In any equilibrium with active competition firms make zero profits in expectation and welfare

coincides with the consumer surplus. Using the allocation rule of Proposition 3 we obtain the

expression (29) in the text for type-dependent welfare in a x,y market.

Wx,y (θ) = u (0,x,y) +
∫ θ

0 uθ (qx,y (θ′) ,θ′)dθ′

= g (y) +
∫ θ

0 max {y,min {x,β (θ′)}}dθ′

It is immediate to notice

∀θ, (x,y) ≥2 (x′ , y′) implies Wx,y (θ) ≥Wx′ ,y′ (θ)

where ≥2 is the standard order in R
2. Given monotonicity of value conditional on the realized

qualities, to establish point i) it is sufficient to show that the random vector of marketed
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qualities x,y has distribution ordered according to first order stochastic dominance (FOSD) in

the equilibria with active competition.

Using individual firms’ equilibrium play (27) we derive the distribution of the maximal

quality x in the n−competitive equilibrium

HEQ(n)
x [x] = PrEQ(n) [max {q1,q2, . . .qn} ≤ x] = [H (q)]

n
n−1 .

Since

s (n) = v
n

n−1

is a (strictly) increasing function of n for every v ∈ [0,1], it follows

n > m =⇒ Hn [x] > Hm [x] ∀x

meaning the highest quality is FOSD decreasing in the intensity of competition. Now we use

the following

Fact. Let X1, . . .Xn be independent observations from a continuous CDF F. Then, the conditional

distribution of the second order statistic given maxi∈[n] Xi = x is the same as the unconditional

distribution of the maximum in a sample of size n− 1 from a new distribution, namely the original F

truncated at the right at x.

Conditional on x = x, the second order statistics y in the n−competitive equilibrium is

therefore distributed on [0,x] according to

HEQ(n)
y|x [y] =

[H (y)
H (x)

] 1
n−1


n−1

=
H (y)
H (x)

(48)

which is independent of n. As the distribution of x is FOSD decreasing across competitive

equilibria and the distribution of y given x is invariant across equilibria, it follows the joint of

x,y is FOSD decreasing across equilibria, completing the argument.

Point ii)- Monopoly and Duopoly Comparison.

Suppose (y ≤ x ≤)qM ≤ qFB. As both market statistics realize (w.p. 1) in the full bunching

region, the competitive allocation (22) will assign every type the undamaged quality x at price

g (x)− g (y). Per (29), type dependent surplus is

Wx,y (θ) = g (y) +θx

Using the law of iterated expectation, we can write total surplus as

W2 = E2 [Wx,y] = Ex

[
Ey|x [g (y)] +

1
2
x
]

(49)

Since

Hx (y) =
g ′ (x)
c′ (x)

c′ (y)
g ′ (y)

, y ∈ [0,x]
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is the conditional CDF of y given x = x it follows

Ey|x [g (y)] =
∫ x

0 g (y)dHx (y) = 1
H(x)

(
H (y)g (y)

∣∣∣∣x
0
−
∫ x

0 g ′ (y) H (y)dy
)

= 1
H(x)

[
(H (x)g (x))−

∫ x

0 g ′ (y) c′(y)
g ′(y)dy

]
= g (x)− c(x)

H(x) = g (x)− c (x) g ′(x)
c′(x)

(50)

Notice that function

s (x) = g (x)− c (x)
g ′ (x)
c′ (x)

is positive and monotonically increasing in
[
0,qM

]
since s (0) = 0 and

s′ (x) = g ′ (x)− c′ (x) g ′(x)
c′(x) − c (x) g ′′(x)c′(x)−g ′(x)c′′(x)

[c′](x)2

= −c (x) g ′′(x)c′(x)−g ′(x)c′′(x)
[c′](x)2 > 0

Substituting (50) into (49) we get

W2 = E2

[
g (x)− c (x) g ′(x)

c′(x) + 1
2x

]
=

∫ qM

0

[
g (x)− c (x) g ′(x)

c′(x) + 1
2x

]
dH2 (x)

Integrating by parts the last expression we finally obtain

g
(
qM

)
− c

(
qM

)
+

1
2
qM︸                      ︷︷                      ︸

WM

−
∫ qM

0


g ′ (x)− d

dx

(
c (x)

g ′ (x)
c′ (x)

)
︸                       ︷︷                       ︸

s′(x)>0

+
1
2


H2 (x)dx

that quantifies the competitive losses from a full-bunching monopolist.

We now prove the general welfare decomposition (30). As for Proposition 2, we consider

the integral representation Wx,y =
∫ x

0
d

dqWx,y (q)dq and study how competitive welfare grows

relative to monopolist. In the relevant case y > qFB, it holds

d
dq

Wx,y (q) =

w
? (q)− c′ (q) q < y

wM (q) q ∈ [y,x]

for the following reason: quality increments below y are distributed undamaged (as in

first-best) but production costs are incurred twice; for versions [y,x] instead competitive and

monopolist marginal welfare coincide since those increments are distributed to the same types

(and cost incurred only once). Therefore, the net welfare gains in a (x,y) competitive market,
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Wx,y −WM can be written as(∫ y

0 w? (q)− c′ (q)dq+
∫ x

y
wM (q)dq

)
−
(∫ qFB

0 w? (q)dq+
∫ qM

qFB w
M (q)dq

)
= −c (y) +

∫ qFB

0
w? (q)−w? (q)dq︸                      ︷︷                      ︸

=0

+
∫ y

qFB w
? (q)−wM (q)︸            ︷︷            ︸

=d(q)

dq+
∫ x

y
wM (q)−wM (q)dq︸                      ︷︷                      ︸

=0

−
∫ qM

x
wM (q)dq

= −c (y) +
∫ y

qFB d (q)dq −
∫ qM

x
wM (q)dq

Integrating out the market statistics (x,y) – maintaining the convention
∫ y

qFB d (q)dq = 0

whenever y < qFB – we obtain (30).

We are now left to prove competitive domination under extremely convex acquisition costs.

WLOG, assume qFB < 1 and consider the class of convex functions cα (q) = qα. Irrespectively of

the revenue function V, it holds

qM
∞ = lim

α→∞
qM (α) = 1, cM

∞ = lim
α→∞

(
qM (α)

)α
= 0 (51)

Moreover,

HEQ(2)
α (q) =


c′(q)
V′(q) q ≤ qM (α)

1 q > qM (α)
−→

0 q < qM
∞

1 q ≥ qM
∞

(52)

namely firms’ strategies converge in probability to qM
∞ . Finally, since y ≤ qM (α) then

Eα [c (y)] ≤ c
(
qM
α

)
→ 0 (53)

Plugging (51)-(52)-(53) in (30) we get limit welfare difference of

W2 −WM→
∫ qM

∞

qFB
d (q)dq − cM

∞ −
∫ qM

∞

qM
∞

wM (q)dq =
∫ 1

qFB
d (q)dq > 0

completing the argument.

C Proofs of Additional Results

C.1 Proofs of Appendix A.1 (NS Monopolist)

Proof of Proposition 6

The quality-conditional pricing problem reads

VNS (q) = max
θ

[g (q) +θq] (1−θ)

The first order condition θq −θg (q)−θ2q ≥ 0 gives

n (q) = max
{
q−g(q)

2q ,0
}
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From which it follows that the no-exclusion threshold n−1 (0) satisfies g (q) = q. As qFB = β (0)

solves instead g ′ (q) = 1, qFB < n−1 (0) follows from the Lagrange’s Theorem and the fact that g is

concave, which also implies

n (q) =
q − g (q)

2q
<

1− g ′ (q)
2

= b (q)

whenever g ′ (q) < 1.

iii) The marginal revenue function d
dqVNS (q) is equal to g ′ (q) when q−g (q) < 0 and we have

full bunching (serve everyone at price g (q)). If n (q) ∈ (0,1), we can use the envelope theorem to

obtain

VNS (q) = maxθ [g (q) +θq] (1−θ)
d

dqVNS (q) = [g ′ (q) +n (q)] (1−n (q)) = (q+g(q))(q−g(q)+2qg ′(q))
4q2

from which we can observe that d
dqVNS (q) is continuously but not smoothly pasted at n−1 (0).

To prove that qNS ≤ qM it is sufficient to show that

d
dq
ΠNS (q) ≤ V′ (q)

strictly when g ′ (q) ≤ 1. If q ∈
[
qFB,n−1 (0)

]
, then

V′ (q) =
(

1 + g ′ (q)
2

)2

> g ′ (q) =
d

dq
VNS (q)

If q > n−1 (0), then the derivative of the profit function is given by

d
dqVNS (q) = (q+g(q))(q−g(q)+2qg ′(q))

4q2 < (q+q)(g(q)−g(q)+2qg ′(q))
4q2

= g ′ (q) ≤
(1+g ′(q)

2

)2

= V′ (q)

where the first inequality uses g (q) < q (twice) and the second uses g ′ (q) ≤ 1.

Proof of Proposition 7

The welfare of type θ under the NS allocation is

WNS (θ) =


(
θ −n

(
qNS

))
qNS θ > n

(
qNS

)
0 else

which is zero at the exclusion threshold and grows linearly in θ with slope qNS. If qM is in

region B, then n
(
qNS

)
= 0 and

qM > qNS > qFB
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By continuity of β, there exists some θ > 0 for which

qNS > β (θ) = ρM (θ) ∀θ ∈
[
0,θ

]
Now pick θ ∈

(
0,θ

)
and notice

W(θ) =
∫ θ

0 β
(θ′)dθ′ <

∫ θ
0 qNSdθ′ = θqNS = WNS (θ)

proving that θ is better-off under the NS policy.

ii) Since in Region B no one is excluded by the NS monopolist, total surplus is

WNS = g
(
qNS

)
− c

(
qNS

)
+ 1

2q
NS

=
∫ qNS

0 g ′
(
qNS

)
− c′

(
qNS

)
+ 1

2dq

Subtracting this from monopolist surplus 47 and breaking down the integral in regions qFB <

qNS < qM we get

WNS −WM =
∫ qNS

(g ′)−1(1)

(
1
2 + g ′ (q)− c′ (q)

)
dq −

∫ qM

(g ′)−1(1)
3
2

(1+g ′(q)
2

)2
− c′ (q)dq

+ 0−
∫ qM

qNS
3
2

(1+g ′(q)
2

)2
− c′ (q)dq

=
∫ qNS

qFB d (q)dq −
∫ qM

qNS
3
2

(1+g ′(q)
2

)2
− c′ (q)dq

first term are welfare gains from undoing damaging, second are losses from underacquisition

(compared to monopolist).

iii) We keep fixed qM. As c′′
(
qM

)
→ ∞, then c′

(
qM

)
− c′ (q) → ∞ for each q > qM. As

V′
(
qM

)
−
(
VNS

)′ (
qM

)
is positive but finite this means qNS→ qM and by ii) above

WNS −WM→
∫ qM

qFB
d (q)dq

when convex costs shut down underacquisition, NS policy in Region B has the only (welfare

increasing) effect of undoing screening inefficiencies.

C.2 Proof of Proposition 8 (Stability, Appendix XX)

One firm offering the monopolist pricing function pM (·), everyone else abstaining, is again the

only candidate equilibrium. In this case, however, an inactive firm can offer pricing function

pM (·) − ε (so that allocations would be unchanged), pay c
(
qM

)
and make revenues that are

ε−close to V
(
qM

)
, a profitable deviation. So, there is no ex-post equilibrium and the monopolist

equilibrium is fully ex-post unstable (but fully interim stability per Proposition 4 i)).

To prove ii) and iii) we ask when a competitive market (x,y) is immune to (interim and

ex-post) deviations. Notice preliminarily that

0 = R
(
qM,qM

)
< c

(
qM

)
< R

(
qM,0

)
= V

(
qM

)
55



and R
(
qM, z

)
is monotonically decreasing, so there is a threshold z? such that R

(
qM, z?

)
= c

(
qM

)
.

At the interim stage, a potential entrant solves

ID(x) = max
q

R(q,x)− c (q)

the objective is always maximized at qM and delivers positive value ID(x) ≥ 0 ⇐⇒ x ≤ z? . At

the ex-post stage a deviator that enters at qM can push out of the market the interim monopolist

– by granting a small discount to all types in [b (y) ,b (x)] – and earn revenues arbitrarily close to

R
(
qM, y

)
, exceeding investment costs and therefore inducing entry whenever y ≤ z? .

The degree of interim stability of the n−equilibrium is therefore HEQ(n)
x

(
z?

)
, while the

degree of ex-post stability is HEQ(n)
y

(
z?

)
. Point ii) now follows from x ≥ y, while the n−ranking

in iii) follows from the FOSD ranking of market statistics proved in Proposition 5-i).

C.3 Detailed Derivations for Section 5

Value of Information

With no information, the agent randomizes and gets value 1
2 , independently of τp. As a1 (s) =

sign(s) = sign(ω+ ε) for ε ∼N
(
0,q−1

)
independent of ω,

ES×Ω [u1 (a1 (s) ,ω)]− 1
2

= E [sign(ω · (ω+ ε))] = P [ω · (ω+ ε) ≥ 0]− (P [ω · (ω+ ε) ≤ 0])− 1
2

= 2P [ω · (ω+ ε) ≥ 0]− 3
2

=
3π − 2arctan

(τp
q

)
+ 2arctan

(
q
τp

)
2π

− 3
2

In the second problem agents choose the conditional expectation a2 (s) = qs
q+τp

and the value is

given by the reduction of the conditional variance of ω

ES×Ω [u2 (a2 (s) ,ω)] = Vprior −Vpost = − 1
q+ τp

+
1
τp

=
q

τp

(
q+ τp

)
Now we need to show that there exists a concave function g : v1

([
0,τp

])
→R such that v1 (q) =

g (v2 (q)). Recall that this is equivalent to requiring that

Av1
= −

v′′1 (q)
v′1 (q)

> −
v′′2 (q)
v′2 (q)

= Av2

By direct computations,

Av1
=

1
2q

+
1

q+ τp

Av2
=

2
q+ τp
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and therefore Av1
> Av2

⇐⇒ q < τp. Then, letting y = q
τp(q+τp)

∈
[
0, 1
τ2
p

]
we can finally write the

utility as g (y) +θy with

g (y) =
arctan

(√
τpy

1−τpy

)
− arctan

(√
1−τpy
τpy

)
π

,

g ′ (y) =

√
τpy

1−τpy

πy

from which we easily check the Inada condition at 0 and that

yFB = (g ′)−1 (1) =

π
τp

+

√
π2−4τ2

p

τp

2π

Inverting yFB delivers the expression for qFB given in the text, as well as the non-triviality upper

bound

yFB <
1

τ2
p
⇐⇒ τp <

π

2
.

Correlation as product heterogeneity

In the text we argued that perfect correlation of experts’ conjecturing effort – implied by

specification (33) – drives the implausible (for the application) implications of Proposition 3. A

natural extension is to suppose firms observe

dXj
t = ωdt + dWj

t

where dWj
t = ρdWt +

√
1− ρ2dZj

t

(54)

where dZj
t is a firm-specific process and ρ ∈ [0,1]. Consider, for expositional convenience,49 a

duopoly in which firms i, j have produced qi > qj . It holds

Cov
(
Xqj ,Xqi

)
= ρmin

{
qi ,qj

}
meaning that, if ρ < 1, Xqj contains information about θ even after conditioning on Xqi .

Consumers, still characterized by preference (32), only care about the combined precision

of their signal, so u
(
qi ,qj ,θ

)
admits the aggregator representation

u
(
qi ,qj ,θ

)
= u

(
Ψ

(
qi ,qj

)
,θ

)
where Ψ : Q2→ Q, derived by the normal updating formulas is the piecewise convex function

given by

Ψ
(
qi ,qj

)
=
qi

(
qj (1− 2ρ) + qi

)
qi − qjρ2

49The expression for the quality aggregator Ψ and the social cost function c are immediately extended
to a setting with n active firms.
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Notice that if ρ = 0 (signals are uncorrelated), then Ψ (q) = qi + qj and we have a model of

additive social value of production as in Kreps and Scheinkman (1983), though the distribution

problem is subject to the screening frictions. If ρ = 1 then we are back to homogenous products

and maximum aggregator Ψ (q) = qi which we have analyzed throughout this paper. The

following full deterioration property holds instead for any ρ as it is just a consequence of

continuity of Ψ : for each qi ,qj and q′ < Ψ
(
qi ,qj

)
we can find

(
q′i ,q

′
j

)
≤

(
qi ,qj

)
such that q′ =

Ψ
(
q′i ,q

′
j

)
.

Define the cost c : Q→R

c (q) = min
qi ,qj

c (qi) + c
(
qj

)
, s.t. Ψ

(
qi ,qj

)
≥ q (55)

Given the full deterioration property, the characterization of first and second best allocations

follow immediately from our analysis by working in the aggregate quality space and replacing

the cost function c with c. Second best is equivalent to a monopolist that owns all production

sources and distributes damaged qualities only subject to information frictions: he allocates

packages
{
qi (θ) ,qj (θ)

}
θ∈[0,1]

subject to IR and IC where each type θ can only choose among

profiles
{
qi (θ′) ,qj (θ′)

}
(cannot pick qi (θ′) and qj (θ′′) for i , j). Proposition (1) applies verbatim

to characterize the second best distribution of aggregate qualities which are produced at cost

(55). However, this second best contract cannot be decentralized as a pricing stage equilibrium

among competitive firms.
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