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1 Introduction

It is common for economic agents to discover their talent (productivity) before entering
the labor market. For example, students choose majors and take classes to increase their
attractiveness to potential employers.1 During a probation period, job applicants undergo
additional training to increase their chances of being hired. Moreover, either by design or due
to historical reasons, economic agents often operate in different institutional environments.
For instance, in some countries, students are restricted in their choices of subjects as there
are mandatory classes everybody must take. In other countries, students’ choices are more
flexible. During the probation, some companies require job applicants to devote effort to
tasks not perfectly correlated with their future duties. In other companies, job applicants
devote their time and effort to a narrow task set directly related to their future jobs.

How are the agents’ incentives to discover their productivity shaped by the institutional
environment? How do these incentives depend on agents’ bargaining powers and competi-
tion? What if agents from one institutional environment (for example, more flexible) compete
with agents from another (i.e., more restrictive)? How should an employer treat applicants
from different systems in the global international market?

We develop a model where a principal (she) hires an agent (he). The agent’s productivity
(type) could be either high or low. The agent’s type is initially unknown. The prior prob-
ability that the agent is a high type is common knowledge. The high type is a productive
agent who can generate a high profit if hired. The low type is not productive. Thus, the
principal would hire only the high type if the type was known. Consequently, the principal
hires the agent only if the belief that he is the high type is sufficiently high.

Before the hiring decision, the agent generates an informative signal observed by the
principal. The agent is endowed with a fixed amount of time (effort) and can allocate it
towards two symmetric tasks. If the agent allocates some of his time toward a task, he either
succeeds or fails.2 Signaling technology is taking the form of looking for good news. That
is, the probability of success is increasing in both the agent’s type and the devoted effort.
Success in any of the two tasks increases the principal’s belief that the agent is a high-type.

Our model captures the idea that markets operate with incomplete information regarding
the applicants’ productivity. Additional evidence, such as informative signals, updates beliefs
regarding the applicant’s type. To sharpen the intuition, we assume the principal hires the
agent only if he succeeds in at least one task.3

1Similarly, high schoolers choose classes to signal their potential to universities.
2Rodina and Farragut (2016) show that the optimal grading policy has a threshold form in a similar

framework under symmetric information. Bonatti and Hörner (2017) model success as a breakthrough in a
professional career that reveals the worker’s type.

3We also assume that the initial belief is sufficiently low so that if the agent chooses not to exert any
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We distinguish two scenarios depending on how restricted the agent is in allocating his
effort. In the Flexible system, the agent picks any allocation of his effort endowment across
the two tasks. That is, the agent can choose to exert some effort toward both tasks or
concentrate on one task only. The agent experiments if he splits his effort equally across the
two tasks. The agent specializes if he devotes his entire effort endowment toward one task
only. In the Rigid system, the agent must devote some (non-zero) effort level to both tasks.
Therefore, specialization is not feasible.

After observing the signal generated by the agent’s chosen effort allocation, the principal
updates her belief that the agent is of high type. If the belief is sufficiently high (the agent
succeeds at least in one task), the agent is hired. His wage is then increasing in his expected
productivity. To capture various competitive environments, we assume the agent is paid a
portion (i.e., bargaining power) of his expected productivity.

We begin the analysis by describing the efficient allocation of effort across the tasks.
Efficiency requires experimentation (equally splitting the effort endowment across the two
tasks) if either the two types are sufficiently close in terms of productivity, the ex-ante share
of high types is relatively low, or loss in production imposed by a low-type is quite significant
compared to the productive benefit generated by a high-quality agent. To see the intuition,
note the following trade-off. On the one hand, experimentation is more "volatile" as it
generates more dispersed posterior beliefs: high beliefs after two successes, intermediate
after one success on either task and low beliefs after two failures. On the other hand,
specialization is less "risky" as the posterior it generates are closer to each other: either
one success or one failure. There is a lower risk if the two types are sufficiently close in
productivity. Hence, agents are willing to experiment in this scenario as this would improve
their expected productivity, though increasing risk.

In the Flexible system, where the agent can pick any allocation of his effort across the
two tasks, he faces the following trade-off. On the one hand, the expected wage is higher if
he succeeds in both tasks. Hence, there is a possible benefit from experimentation. On the
other hand, experimentation increases the chance of failing (on one or even both of the tasks),
which entails a lower expected wage. Thus, there is a possible benefit from specialization.
We find that experimentation remains optimal under conditions similar to those in case of
the efficient effort allocation. The reason is that, if the agent has all the bargaining power
vis-á-vis the principal, his preferences are perfectly aligned with the social ones. A corollary
from this observation is that experimentation is less likely in an environment that gives the
agent sufficiently large bargaining power.

In the Rigid system, the agent must devote some effort to both tasks. As a result,

effort on both tasks, he is not hired.
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specialization is not possible. Therefore, if specialization is optimal under some conditions in
the Flexible system, the agent in the Rigid system is worse off due to the imposed constraints.

Having characterized the optimal choice of one agent, we next consider the case of com-
petition between two agents. When two agents compete, an agent is hired not only if he
succeeds in one task, but also if the posterior beliefs that he is a high type are higher than
the beliefs about his rival.

To sharpen the effect of competition, we first discuss the case of competition within the
Flexible System. That is when the two agents from the Flexible system compete with each
other. Multiple equilibria emerge. First, if the two types are sufficiently close in produc-
tivity, there is an equilibrium where both the competing agents experiment. Intuitively,
experimentation increases the risk of not being hired, but it increases the expected wage
conditional on being hired. If the two types are close in productivity, the posterior beliefs
from experimentation are close to each other. As a result, the benefit of the higher expected
wage outweighs the cost of not being hired. Moreover, if the two types are sufficiently close
in productivity, the best response to even a specializing rival is to experiment. Second, we
characterize necessary and sufficient conditions for both agents to specialize in equilibrium.
An agent who experiments might fail on both tasks while facing a rival who succeeds at
least once. As a result, the presence of a rival makes experimentation riskier. Consequently,
competition makes specialization more likely. Third, if the two types are sufficiently different
in productivity, there is a symmetric equilibrium in which both agents allocate some effort
to both tasks.

We then move to a case of competition between the two systems. That is when one
agent from the Flexible system competes with an agent from the Rigid system. The main
conclusion is two-fold. First, if the Rigid System is sufficiently restrictive, there is a unique
equilibrium where both agents experiment. Second, if the Rigid System is not very restrictive,
then there is a symmetric equilibrium with both agents allocating some effort to both tasks.

In Section 7.1, we discuss how the excessive experimentation our model predicts might
be linked to the increase of college double majors in the USA. We also review the connection
of our model to the differences in the distribution of talents across countries and the trade
patterns discussed in Grossman and Maggi (2000). In Section 7.2, we discuss our results
in light of the job classification (stars, guardians, and foot soldiers) by Baron and Kreps
(1999). We describe inefficiencies in talent discoveries due to domestic and international
competition. We then discuss how additional signals put in place by the companies, such as
those generated during a probation period, alleviate those inefficiencies.
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2 Related Literature

The idea that task allocation affects future job prospects is not novel. A strand of the
literature started by Gibbons and Waldman (1999a,b) emphasized that the worker’s ability
to discover and display talent to the market depends on the tasks they are assigned within
a firm. The intuition is that different task allocations to a worker within a firm might
lead to different revelations of his talent (success/failure) and, as a result, different market
perceptions of a worker’s productivity. Picariello (2020) allows agents to accumulate portable
human capital while learning from the tasks they perform. More recently, Bar-Isaac and Lévy
(2022) study how workers’ effort and companies’ task allocation interact through the extent
of labor market competition. Pagano and Picariello (2023) show that if firms compete for
talent, the more risk-averse workers might choose less quality-revealing jobs.4

Our paper is related to the literature on career concerns pioneered by Holmström (1999).
The literature has explored how career concerns might lead to over-provision of effort. Mil-
bourn et al. (2001) consider a manager’s choice of signal’s precision on the project qual-
ity. The main finding is that the manager’s investment in signal precision is excessive in
the presence of career concerns.5 We complement the literature by studying the experi-
mentation/specialization trade-off. In particular, we highlight novel channels for excessive
experimentation - an additional rigidity constraint and competition.

In a related paper, Brunner et al. (2021) study the experimentation-specialization trade-
off for an agent seeking to discover his talent. The main difference is that there are two job
sectors, and the agent’s talent is sector-specific (whereas productivity is transferable across
the sectors in our model). Experimentation (trying to discover talent in different sectors)
is always efficient. The intuition is that, after trying his talent in one sector, the agent has
"nothing to lose" by experimenting in a different sector. The reason is that the agent retains
an option of working for the initial sector if the signal from the newly tried one is lower. In
our paper, experimentation is not always efficient, and we provide necessary and sufficient
conditions for specialization. One of the findings of Brunner et al. (2021) is that agents with
higher bargaining power experiment more. We complement this finding by pointing out that
if the talent is not sector-specific, the result is the opposite: an environment that gives the
agent sufficiently large bargaining power makes experimentation less likely (see Corollary 1).
In addition, we study the effect of within and across the systems competition on the agents’

4See also Kurino and Kurokawa (2023) and Canidio and Legros (2023).
5Hirshleifer and Thakor (1992) show that workers with career concerns may invest in excessively safe

projects to avoid early project failure. Hermalin (1993) studies how a manager’s career concern can affect
his choice of project riskiness. Rodivilov et al. (2022) explore career concerns when the agent’s private
information is multidimensional.
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incentives to discover productivity. Therefore, the agents’ choices in our model are strategic.
We also contribute to the literature on certification (see Ali et al. (2022) for a recent

literature review). The literature has explored both profit-maximizing and efficient certi-
fication. Lizzeri (1999) showed that a profit-maximizing certification intermediary might
optimally use a threshold rule. DeMarzo et al. (2019) analyze optimal certification with ex-
ante symmetric information when the agent can conceal a negative outcome. In our model,
certification (signals generated by success/failures) is chosen strategically by an agent given
the exogenous constraints. We also contribute to the literature by studying the effect of
completion between agents with heterogeneous certification policies.

Finally, our paper is related to the literature on strategic experimentation and, in partic-
ular, to the model of looking for good news (see Khalil et al. (2020) for a literature review).
The key novelty is that we consider competition across two heterogeneous systems and study
how this leads to excessive experimentation.

3 Model

The agent’s type. A principal (firm) would like to hire an agent (employee). It is com-
monly known that the agent’s productivity is θ = {θL, θH} with 0 6 θL < θH 6 1. The
principal and the agent are symmetrically but incompletely informed about the latter’s type.
The agent’s productivity is θH with probability µ0 ∈ (0, 1) and θL with probability 1− µ0.

The signal structure. Before the hiring decision is made, the agent can generate an
informative signal that is correlated with his productivity. In particular, we assume that
the agent can perform two tasks: "A" and "B". By exerting effort, the agent can either
succeed (yi = S) or fail (yi = F ) in each task i = {A,B}. We denote by ei ∈ [0, 1] the effort
level devoted to task i. Let the total amount of effort be normalized to one: eA + eB = 1.
The available signaling technology is taking the form of looking for good news. Therefore,
we define the probability of success in task i given agent’s type θ and effort level ei for
i = {A,B} as follows:

Pr(yi = S|θ) = θei. (1)

Our model captures the idea that markets operate with incomplete information regarding
the applicants’ types, and some evidence (i.e., signals) is used to screen the applicant’s type.
Since the applicants differ in their productivity, hiring decisions are optimally made after
observing signals correlated with the agent’s type.
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The posterior beliefs. An effort allocation (eA, eB) such that eA, eB > 0 with cost

C(eA, eB) =
e2A
2

+
e2B
2
, (2)

generates a vector of signals
m = (mA,mB), (3)

where
mi ∈ {S, F, ∅} for i = {A,B}. (4)

That is, the agent can either succeed (S), fail (F ), or not to perform the task at all, thus
delivering no signal (∅).

After observing a signal m, the principal believes that the agent has productivity θH with
probability µm, generated using the Bayes’ rule:6

µm =
g(m|θH)µ0

g(m|θH)µ0 + g(m|θL)(1− µ0)
. (5)

Accordingly, let us define the ex-ante distribution over posterior beliefs τ ∈ (0, 1) such
that

τ(µm) = g(m|θH)µ0 + g(m|θL)(1− µ0). (6)

The posterior beliefs defined in (5) can then be rewritten for all τ(µm) > 0 as

µm =
g(m|θH)µ0

τ(µm)
. (7)

Note that if the agent succeeds in both tasks, the posterior belief does not depend on the
effort allocation:

µ(S,S) =
θ2Hµ0

θ2Hµ0 + θ2L(1− µ0)
. (8)

However, if the agent succeeds in one task only, the exact effort allocation (which is correctly
anticipated by the principal in equilibrium) is necessary to determine the posterior beliefs.

6Note that the conditional probabilities g(m|θ) depend on the chosen effort levels eA and eB . For interior
effort choices, the probabilities are:

g
(
(S, S)|θ

)
= θeAθeB , g

(
(F, F )|θ

)
= [1− θeA][1− θeB ],

g
(
(S, F )|θ

)
= θeA[1− θeB ], g

(
(F, S)|θ

)
= [1− θeA]θeB .

For the corner choices eA, eB ∈ {0, 1}, the probabilities are given by:

g((S, ∅)|θ) = g((∅, S)|θ) = θ and g((F, ∅)|θ) = g((∅, F )|θ) = 1− θ.

The signal (∅, ∅) is irrelevant since the agent chooses positive effort for at least one task in equilibrium.

7



For example, if the agent succeeds in task A only, the posterior belief µ(S,F ) is decreasing in
eA, as can be seen in Figure 1. Similarly, if the agent succeeds in task B only, the posterior
belief µ(F,S) is increasing in eA. Intuitively, the agent is more likely to be highly productive
if he succeeds in a certain task while devoting less effort to that task. Finally, since the two
tasks are symmetric, the posterior beliefs µ(S,F ) and µ(S,F ) are symmetric over eA = 1

2
.

The production function. We assume that the agent’s output, denoted by f(θ), is per-
fectly correlated with his productivity. To sharpen the intuition, we assume the following
production function:

f(θ) =

y > 0, if θ = θH

−k < 0, if θ = θL

That is, if the principal knew the agent’s type perfectly, she would employ only highly
productive (θ = θH) agents.7

The Flexible and the Rigid systems. We compare two frameworks (i.e., systems)
differing in the restrictions on the effort choice. In a Flexible System, the agent is free
to choose any combination of non-negative eA and eB such that eA + eB = 1. In such
a framework, agents have the option of not performing one task and devoting their entire
effort to the other one. In the Rigid system the agent must explore (allocate a strictly positive
effort towards) each of the two tasks; hence, a signal "∅" is not feasible. Formally, the agent’s
effort choice in the Rigid system has to satisfy an additional assumption: eA, eB > e > 0.

Assumptions on the primitives. We assume that the initial belief µ0 is sufficiently low
so that if the agent chooses not to experiment with any task, he is not hired. Formally, the
ex-ante expected productivity is strictly negative:

µ0y − (1− µ0)k = µ0(y + k)− k < 0 ⇐⇒ µ0 <
k

(y + k)
. (A0)

Therefore, the agent is hired only if the posterior belief µm is sufficiently large:

µm ≥ µ̂ :=
k

k + y
∈ (0, 1). (9)

To focus on the most interesting results of the model, let us consider a set of parameters
such that µ̂ is sufficiently large. In particular, we assume that the agent is hired only if he

7Assuming a more general production function would not change our qualitative results as long as the
highly productive agent is sufficiently more productive than the low productivity type.
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succeeds in at least one task. If the agent was hired regardless of the generated signal, there
would be no incentive for him to generate a (costly) signal to begin with. The reason is that
with the Bayesian updating, the expected posterior productivity must be equal to the prior
(i.e., the "Bayes plausibility").8

Let us assume that the lowest belief generated when the agent succeeds in at least one
task is greater than µ̂. Recall that

µ(S,F ) =
g((S, F )|θH)µ0

g((S, F )|θH)µ0 + g((S, F )|θL)(1− µ0)
, (10)

where g((S, F )|θ) = θeA(1 − θeB). The lowest value of µ(S,F ), which is achieved if eA = 1

and eB = 0, is formally µ(S,∅). Therefore, the condition becomes θHµ0
θHµ0+θL(1−µ0)

> k
k+y

, which
can be rewritten as

θH > θH ≡
(1− µ0)k

µ0y
θL. (A1)

Furthermore, notice that (A0) implies that the largest belief generated when the agent
fails in both tasks is smaller than µ̂. To see this, recall that

µ(F,F ) =
g((F, F )|θH)µ0

g((F, F )|θH)µ0 + g((F, F )|θL)(1− µ0)
, (11)

where g((F, F )|θ) = (1−θeA)(1−θeB). The largest value of µ(F,F ) is achieved if eA = 1
2

= eB

and it is smaller than k
k+y

if

µ0 <

k
k+y

(
1− θL

2

)2
k
k+y

(
1− θL

2

)2
+ y

k+y

(
1− θH

2

)2 . (12)

which is automatically satisfied since µ0 <
k

(y+k)
.9 Intuitively, since the agent is not hired if

he chooses not to perform any task, the posterior belief after he fails on both tasks becomes
even smaller.

In Figure 1, we illustrate an example of possible posterior beliefs. Figure 2 illustrates the
probabilities τ(µm) of generating posterior beliefs.

8See Kamenica and Gentzkow (2011) for details.
9The statement immediately follows from the fact that θH > θL.
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Payoffs. Given the posterior beliefs µm, an agent’s expected output is

E
[
f(θ)

∣∣ µm] := µmy − (1− µm)k = µm(y + k)− k. (13)

The principal hires an agent and offers a competitive wage depending on the observed
signal. Therefore, the agent’s wage is increasing in his expected productivity. We apply the
generalized Nash bargaining solution and assume that the agent is paid a portion γ ∈ (0, 1]

of the expected output. Consequently, the principal retains the portion 1−γ of the expected
output. For example, if γ = 1, the market is perfectly competitive and the agent collects the
entire expected surplus. Given the posterior belief µm, the agent is paid a wage defined as

w(µm) := γE
[
f(θ)

∣∣ µm]︸ ︷︷ ︸
expected output

= γ
[
µm(y + k)− k

]
. (14)

For a given wage schedule w(µm), an agent who generates posterior beliefs µm with effort
profile (eA, eB) has an expected utility function

U(w, eA, eB) :=
∑
µm

τ(µm)w(µm)︸ ︷︷ ︸
expected wage

−C(eA, eB)︸ ︷︷ ︸
cost of effort

. (15)

Finally, given the posterior belief µm, the principal has the following expected profit if
she hires an agent:

π(w, µm) := (1− γ)
[
µm(y + k)− k

]︸ ︷︷ ︸
expected output

− w(µm)︸ ︷︷ ︸
agent’s wage

(16)

and earns zero profits when not hiring any agent.

The timing. The timing of the model is as follows:
t = 1 : The agent allocates his effort across the two tasks given the common prior beliefs.
t = 2 : Principal and agent observe the signals generated and form the posterior beliefs.
t = 3 : The agent is hired if the posterior belief is high enough.
t = 4 : Payoffs are collected (i.e., wages are paid).

3.1 Social Planner’s Problem

In order to provide a benchmark against which to compare all our next results, let us first
consider the efficient allocation of effort across tasks, i.e. the one that maximizes social
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welfare. To do so, we analyze the maximization program for a utilitarian social planner.
Formally, the problem can be described as

max
{eA>0,eB>0}

∑
µm>µ̂

τ(µm)

[
µmf(θH) + (1− µm)f(θL)

]
− C(eA, eB)

subject to eA + eB = 1.

The solution to the problem is summarized in the following proposition.

Proposition 1. Efficient Effort Allocation.
Efficiency requires to equally split effort (experimentation), e∗A = e∗B = 1

2
, if

yµ0θ
2
H − k(1− µ0)θ

2
L < 1; (EE)

e∗A = 1− e∗B ∈ {0, 1} (specialization) is the efficient strategy if

yµ0θ
2
H − k(1− µ0)θ

2
L > 1. (ES)

Proof : See Appendix A.

Any of the following three conditions are sufficient for experimentation, rather than
specialization, to be efficient. First, the two types are close in terms of productivity (θH
close to θL). Recall that assumption (A0) implies that an agent who does not perform
any task is not hired (the expected productivity is negative). Comparing the left-had-side of
(EE) with the left-had-side of (A0), it is immediate to see that the former is negative if θH is
close enough to θL. In this case, (EE) holds true. Intuitively, if the two types are sufficiently
close in terms of productivity, there is low volatility, i.e. low risk ex-ante. Hence, agents
are willing to experiment in this scenario as this would improve their expected productivity,
though increasing risk. To see, note that experimentation is more "volatile" in the sense
that it generates more dispersed posterior beliefs. As shown in Figure 1, experimentation
might generate high posterior µ(S,S), low posterior µ(F,F ), and intermediate levels µ(S,F ) and
µ(F,S). Specialization, on the other hand, is less "risky" as the posterior it generates are closer
to each other. If the two types are getting closer in terms of productivity, experimentation
becomes less volatile and, as a result, leads to a higher social surplus.10 For example, consider
Figure 3 that illustrates the social surplus for µ0 = 0.2, θL = 0.2, k = 3, and y = 10. If the

10For instance, if θH is getting closer to its lower bound θH introduced in (A1), then limθH→θH µ(S,S) = µ̂.
Similarly, as θH approaches θH , if the agent generates a good signal before being hired, the posterior belief
about his type will be such that µ(S,∅) is closer to µ̂ the lower θH . If θH is getting closer to θL, the difference
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Figure 3. Efficient specialization and experimentation if µ0 = 0.2, θL = 0.2, k = 3, and y = 10.

two types are far apart in terms of productivity, then specialization is efficient (θH = 0.8 on
the left-hand side of Figure 3). If the two types become closer in terms of productivity, then
experimentation becomes efficient (θH = 0.7 on the right-hand side of Figure 3).

Second, the ex-ante expected share of high productivity agents, i.e. µ0, is relatively low.
The left-hand side of (EE) is increasing in µ0 and is strictly negative if µ0 = 0. Thus, if the
prior belief is small, experimentation is efficient. We define a threshold value µE0 such that
experimentation is efficient if:

µ0 < µE0 :=
1 + kθ2L
yθ2H + kθ2L

. (17)

Intuitively, if µ0 is small, the agent’s ex-ante expected wage is small. Then, it is efficient
to experiment, i.e. to take more risk, thus implementing higher volatility of the expected
output. In such a scenario, a negative signal would not entail too large a productive loss,
whereas a positive signal would generate high expected productivity.

Third, the loss in production imposed by a low-type agent is quite significant compared to
the productive benefit generated by a high-type agent. Rearranging (EE), experimentation
is efficient if:

k > kE :=
yµ0θ

2
H − 1

(1− µ0)θ2L
. (18)

Intuitively, experimentation, by reducing the variance between expected outputs in any
possible scenario with at least one success, should efficiently be used as a "hedging device"

in the posterior beliefs generated with success and with failure under specialization is getting smaller:

µ(S,∅) − µ(F,∅) =
µ0(1− µ0)(

E[θ]
)(
E[1− θ]

) (θH − θL).
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against excessive output volatility.
If either of these three conditions does not hold, it is efficient for the agent to focus on

just one task (specialization).

4 The Flexible System

Let us now consider a framework in which the agent allocates his effort as he sees fit. In
particular, he can choose any combination of non-negative eA and eB such that eA + eB = 1.
Optimally chosen eA and eB generate a signal m = (mA,mB) from the set

MF =
{

(S, F ), (F, S), (S, S), (F, F ), (S, ∅), (F, ∅), (∅, S), (∅, F )
}
. (19)

In this scenario, the agent solves

[P F ] max{eA>0,eB>0}
∑

µm∈MF |µm>µ̂ τ(µm)w(µm)− C(eA, eB)

subject to eA + eB = 1.

Specifically, the agent maximizes his expected wage conditional on the posterior beliefs
about his type being sufficiently high, net of the cost of effort. While doing so, he faces
the following trade-off. On the one hand, the expected wage is higher if he succeeds in
both tasks, hence there is a possible benefit from experimentation. On the other hand,
experimentation increases the chance of failing (on one or even both of them), which entails
a lower expected wage, thus, there is a possible benefit from specialization. The following
proposition characterizes the optimal allocation of effort:

Proposition 2. Optimal Effort in the Flexible System.
The agent equally splits effort (experimentation) across the two tasks, e∗A = e∗B = 1

2
, if

γ
[
yµ0θ

2
H − k(1− µ0)θ

2
L

]
< 1; (FE)

the agent specializes in either of the two tasks, e∗A = 1− e∗B ∈ {0, 1}, if

γ
[
yµ0θ

2
H − k(1− µ0)θ

2
L

]
> 1. (FS)

Proof : See Appendix B.

Comparing the results in Proposition 2 and Proposition 1, it is immediate to see that,
on top of the parameter conditions described in Section 4.1, bargaining power also plays a
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role in the optimal choice of effort. Specifically, in the Flexible system effort is efficient if
the agent has all the bargaining power vis-á-vis the principal (i.e., γ = 1). Intuitively, if the
agent captures all the surplus generated, he aims at maximizing the expected surplus net of
the cost of effort.

Proposition 2 shows how the market structure and the consequent sharing rule for surplus
affect incentives to experiment. In particular, since γ

[
yµ0θ

2
H−k(1−µ0)θ

2
L

]
is positive11 and,

therefore, increasing in γ, specialization is more likely if the agent captures a larger portion
of the expected output (if γ becomes higher). We summarize the results in Corollary 1 below:

Corollary 1 (Experimentation and Bargaining Power). An environment that gives
the agent sufficiently large bargaining power makes experimentation less likely.

Also note that if an agent chooses to specialize, it does not matter which task (A or B)
he picks. Since signal realization across the two tasks is independent, there are two possible
equilibria: one in which e∗A = 1 and e∗B = 0, and another where e∗A = 0 and e∗B = 1.

5 The Rigid System

We now analyze the Rigid system. The agent is constrained in his effort choice and can
no longer choose the corner solutions of eA ∈ {0, 1}. As a result, a signal "∅" can not be
generated. In particular, eA and eB generate a signal m = (mA,mB) from a set

MR =
{

(S, F ), (F, S), (S, S), (F, F )
}
. (20)

The agent’s optimization problem becomes the following

[PR] maxeA,eB
∑

µm∈MR|µm>µ̂ τ(µm)w(µm)− C(eA, eB) subject to

(C1R) eA, eB > e > 0,

(C2) eA + eB = 1.
11To see that yµ0θ

2
H − k(1− µ0)θ

2
L is positive, we evaluate it at the smallest value of θH to obtain:

limθH→θH
[
yµ0θ

2
H − k(1− µ0)θ

2
L

]
= yµ0

( (1−µ0)k
µ0y

)2
θ2L − k(1− µ0)θ

2
L =

k(1− µ0)θ
2
L

[ (1−µ0)k
µ0y

− 1
]
> 0,

where the last inequality follows from assumption (A0), i.e., (1− µ0)k > µ0y.
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Without loss of generality, we assume that the threshold level e is such that

0 < e <
1

2
. (21)

The novel constraint (C1R) captures the agent’s restriction in the Rigid system. Essen-
tially, an agent who wants to specialize in one task must devote some resources to the second
task as well. If the agent devotes to one task just enough effort to satisfy (C1R), he risks
failing. In this case, sending a signal "F" diminishes the posterior beliefs. This was not the
case in the Flexible system, where signal ∅ was available.

We can use the solution from the flexible version and compare the unconstrained optima
with e > 0. In particular, when deriving the solution for the Flexible system in Appendix
B, we establish conditions that guarantee an interior as well as a corner solution. Repeating
exactly the same steps and replacing the corner solution 1 − e∗B = e∗A ∈ {0, 1} with e∗A = e

constitutes the proof. We summarize the results in Proposition 3 below.

Proposition 3. Optimal effort choice in the Rigid System.
The agent equally splits effort (experimentation) across the two tasks, e∗A = e∗B = 1

2
, if

γ
[
yµ0θ

2
H − k(1− µ0)θ

2
L

]
< 1; (RE)

and e∗A = 1− e∗B = e or e∗A = 1− e∗B = 1− e if

γ
[
yµ0θ

2
H − k(1− µ0)θ

2
L

]
> 1. (RS)

Intuition is reminiscent of that in the case of the Flexible system. If either the two types
are similar (θH close to θL), or the agent is unlikely to be of high type (µ0 low), or the loss
in production imposed by a low-type agent is significant (k high enough), it is optimal for
the agent to experiment. This was the case in the Flexible system as well.

If either the two types are significantly different (θH significantly higher than θL), or the
agent is likely to be of high type (µ0 high enough), or the loss in production imposed by a
low-type agent is significant (k high enough), it is optimal for the agent to specialize in one
subject only. However, in the Rigid system, devoting the entire time to one task only is not
feasible. As a result, the agent devotes the minimum required effort to one task, e∗A = e > 0

or e∗B = e > 0, so that (C1R) becomes binding. Intuitively, in the Rigid system, the agent
specializes to the extent it is feasible given the constraint.
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6 The Effect of Competition

We now consider the case in which two agents compete for a job in both a closed and an
open economy, i.e., within and between systems. The firm hires only one agent, thus agents
compete against each other for the position. In particular, if two agents form identical
posterior beliefs, each is hired with equal probability. To distinguish the two agents from
different systems, we use a superscript R (Rigid) and F (Flexible), respectively. That is,
we denote by (eFA, e

F
B) and (eRA, e

R
B) the effort choices of an agent from the Flexible and the

Rigid system, respectively. The posterior belief that the agent from system s = {F,R} has
productivity θH generated by signal ms is denoted by µsms .

We now define the equilibrium effort choice with competition.

Definition. The Equilibrium effort profiles with competition.
Effort profiles (êFA, ê

F
B) and (êRA, ê

R
B) constitute an equilibrium if

1. (êFA, ê
F
B) solves

max
eFA>0, eFB>0, eFA+eFB=1

∑
µF
mF >max{µR

mR ,µ̂}

τ(µFmF )w(µFmF )− C(eFA, e
F
B).

2. (êRA, ê
R
B) solves

max
eRA>e, eRB>e, eRA+eRB=1

∑
µR
mR>max{µF

mF ,µ̂}

τ(µRmR)w(µRmR)− C(eRA, e
R
B).

Two features distinguish the current scenario from the previously considered benchmarks
without competition. First, the agent from the Flexible System is now facing competition
from another agent. As can be seen under the summation sign in the optimization problem
above, in addition to the posterior beliefs being sufficiently high (µFmF > µ̂), now the agent is
hired only if the posterior belief µFmF is no smaller than the belief about his rival. Therefore,
the agent from the Flexible system is hired only if the posterior belief µFmF is higher than
both the threshold level µ̂ and the rival’s posterior belief µRmR :

µFmF > max
{
µRmR , µ̂

}
. (22)

Second, the two competing agents are coming from different systems and, therefore, are
facing a different set of constraints. For instance, the agent from the flexible system can
choose any eFi > 0 whereas his competitor must respect the additional eRi > e > 0 constraint
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for i = {A,B}. Both these effects shape the equilibrium emerging in this environment. To
decompose these two effects, we first consider a scenario where one agent from the Flexible
System competes with another agent from the same Flexible System.

6.1 Competition within the Flexible System

To sharpen the intuition, we first ignore the fact that the agent from the Rigid system must
respect the additional eRi > e > 0 constraint for i = {A,B}. Therefore, in this subsection, we
study the effect of competition within the Flexible system. Multiple equilibria emerge in this
scenario: the "experimentation" and "specialization" equilibria, as well as an equilibrium
where the agents mimic each other by devoting some effort to both tasks. We discuss each
of them and provide the intuition below. The main takeaway from this section is that
specialization is more likely with competition. The reason is that an attempt to succeed in
two tasks becomes a riskier option in the presence of a rival.

Experimentation equilibrium. Recall that experimentation is socially efficient if the two
types are sufficiently close in productivity (see Section 4.1). Intuitively, if θH is close to θL, the
posterior beliefs from experimentation are close to each other. As a result, experimentation
increases the expected wage although increases the risk. This intuition remains intact in case
of competition within the Flexible system. If the two types are sufficiently close in terms
of productivity, the best response to even a specializing rival is to experiment. Moreover,
experimentation might be a dominant strategy. For instance, consider Figure 4A where
we plot the best response effort allocation if θL = 0.2 and θH = 0.6. As can be seen,
experimentation (êFA = 1

2
for all choices of a rival) is a dominant strategy. However, if

the two types are getting farther apart in productivity, experimentation becomes a riskier
best-response strategy. As can be seen in Figures 4A-4D, as θH increases, experimentation
remains the best response only if the rival’s effort is close to experimentation as well.

Note that, for the rival’s effort in the range between specialization and experimentation,
the best response is to experiment a bit more than the rival. Moreover, this tendency
increases as the two types become farther apart in productivity. As can be seen in Figures
4C and 4D, the best response for the rival’s effort strictly between êFA = 0 (specialization)
and êFA = 1

2
(experimentation) is slightly above the 45-degree line. Experimenting just a

bit more than a rival leads to the following trade-off. On the one hand, it prevents the two
competing agents from generating the same beliefs, which is beneficial. On the other hand,
it makes the posterior beliefs more volatile. If the two types are getting farther apart in
productivity, the former effect dominates.
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Figure 4. Best response correspondences (Flexible System) if µ0 = 0.2, θL = 0.2, k = 3, and y = 10.

Specialization. If the two types are significantly different in productivity, it is the best
response strategy to mimic the rival’s behavior. Matching the rival’s choice of effort allocation
leads to the following trade-off. On the one hand, it increases the chances of the competing
agents generating identical posterior beliefs, which is beneficial, since then each is hired with
some probability. On the other hand, it lowers the expected wage conditional on being hired.
If the two types are getting farther apart in productivity, the latter effect dominates. As
can be seen in Figures 4C and 4D, the best response for the rival’s effort close to êFA = 0

(specialization) coincides with the 45-degree line.
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We next provide a necessary and sufficient condition for the specialization equilibrium.

Lemma 1. Necessary and sufficient condition for Specialization.
There exists an equilibrium where agents competing within the Flexible specialize if

γ
[
yµ0θ

2
H − k(1− µ0)θ

2
L

]
> 1︸ ︷︷ ︸

Specialization with single agent (FS)

− 2γ
[
yµ0θH − k(1− µ0)θL

]
E[θ]︸ ︷︷ ︸

> 0 by (A1)

. (WFS)

Proof : See Appendix C.

Competition within the Flexible system introduces a novel effect. In particular, it makes
specialization more likely. To see, recall from condition (FS) in Proposition 2 that the agent
in the Flexible system specializes in the absence of competition if γ

[
yµ0θ

2
H−k(1−µ0)θ

2
L

]
> 1.

Given that the second term on the right-hand side of (WFS) is positive,12

2γ
[
yµ0θH − k(1− µ0)θL

]
E[θ] > 0, (23)

an agent facing a competitor from the same system is more likely to specialize.
Note that although the success/failure of one agent in each task is not explicitly affected

by the presence of a rival, the wage and probability of being hired are indeed affected by
competition. This is exactly what the term 2γ

[
yµ0θH−k(1−µ0)θL

]
E[θ] captures. By altering

the probability of being hired, competition increases incentives to specialize. Intuitively, if an
experimenting agent fails at least once, he might face a rival who succeeds at least once while
specializing. For instance, consider a scenario in which the experimenting agent succeeds once
(with posterior belief µ(S,F ) or µ(F,S)) while the rival who chose to specialize succeeds. Then,
the former agent is not hired. Moreover, the chances of the specializing agent succeeding are
higher the greater θH .

Lemma 2. Mimicking the rival.
If condition (WFS) holds, there exists eM > 0 such that the agents competing within the
Flexible System both choosing eAF , 1− eAF ∈ (0, eM ] is an equilibrium.

Proof : See Appendix C.

6.2 Competition between the Flexible and the Rigid Systems

We now consider a scenario where an agent from the Flexible system competes with an-
other agent from the Rigid system. The equilibrium where both agents experiment remains

12The statement immediately follows from (A1).
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êR A

(e
F A

)

Figure 5. Best response correspondences (Rigid System) if e = 0.1, µ0 = 0.2, θL = 0.2, k = 3, and y = 10.

intact in this environment as none of the additional constraints in the Rigid system are bind-
ing. Equilibrium where the competing agents specialize is not feasible anymore. The main
takeaway from this section is two-fold. First, if the Rigid System is sufficiently restrictive
(e > eM), the only equilibrium is the one where both agents experiment. Second, if the
Rigid System is not very restrictive (e < eM), then there is a symmetric equilibrium with
both agents choosing effort eA ∈ [e, eM ]:

Lemma 3. Restrictive rigid system and the effect of between competition.
For any set of parameters, there exist a high enough value of emax, such that

• if e > emax, there is a unique equilibrium where both agents experiment .

We provide the intuition and explain the mechanics using Figure 5, where we plot the
best response correspondence êRA(eFA) for the agent from the Rigid System for e = 0.1. As
can be seen, for low values of θH in Figure 5A, experimentation is a dominant strategy. If
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the two types are sufficiently close in terms of productivity, the best response to even a
specializing rival is to experiment. This is reminiscent of competition within the Flexible
System (see Figure 4). In this case, both agents experimenting is the only equilibrium.

For higher values of θH , the additional constraint in the Rigid System affects the agent’s
choices. For example, in 5B, the agent cannot mimic a rival who chooses eFA < 0.1. As a
result, the equilibria possible for these parameters are eRA = eFA ∈ [e, eM ]. In 5D, the Rigid
System is very restrictive, and the only possible equilibrium is the one where both agents
experiment.

7 Applications

7.1 Education systems

Every year, about six million high schoolers and two million college freshmen in the U.S.
struggle with mandatory algebra classes.13 There is an ongoing debate regarding mandatory
classes in U.S. high schools.14 While some advocate for keeping mandatory classes, others
argue that all high school courses should be elective.15 Why are students subject to this
mandatory ordeal? What are the implications of mandatory classes for students trying to
discover their productivity and future job market perspectives?

The questions are even more relevant given the differences in high school and university
systems across countries. For example, in countries like China, India, and Russia (the
“Eastern System”), most classes are mandatory in high schools. In contrast, in Europe,
Australia, and the USA (the “Western system”), pupils choose subjects they take.16 There
are similar differences at the college/university level. While students in the Eastern system
are admitted to a particular department and, therefore, must choose their specialization in
advance, students in the Western system typically do not have to commit to a specialization
in their studies at the time of admission.

The question of whether mandatory classes are beneficial for graduates has been exten-
sively addressed in the education literature, albeit with mixed evidence. Levine and Zimmer-
man (1995) find a positive effect of taking more high-school math on future wages;Görlitz
and Gravert (2018) analyze the effect of increasing the instruction time in core STEM sub-
jects in Germany. Similarly, Berggren and Jeppsson (2021) examines the effect of a decrease

13This extends beyond algebra to a standard mathematics sequence. See https://www.nytimes.com/
2021/11/04/us/california-math-curriculum-guidelines.html

14See https://www.nytimes.com/2024/05/22/nyregion/middle-school-math-algebra.html
15https://www.washingtonpost.com/news/answer-sheet/wp/2013/01/22/

why-all-high-school-courses-should-be-elective/?noredirect=on&utm_term=.99a96781fdfctext
16In some countries, pupils choose subjects in addition to a so-called "core" set of classes.
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in mandatory mathematics requirements on education outcomes and earnings in Sweden.
Goodman (2019) shows that mandatory STEM classes positively affect job returns (up to
10% for some groups). Jia (2021) examines the impact of stricter high school math require-
ments on the likelihood of completing a degree in STEM fields.17 At the same time, Betts
and Rose (2001) suggest that schools should not make math courses mandatory but rather
encourage students to take them. Malamud (2010) studies the trade-off between early and
late specialization assuming that talent is field-specific.18

Our results highlight the effect of mandatory classes on students’ opportunities to explore
their productivity and their implications in the labor market. Our model captures the idea
that hiring decisions are made after observing information correlated with the applicant’s
productivity. A firm hires an applicant whose productivity is unknown. It is common
knowledge that the applicant can be either productive or not. The firm makes a hiring
decision after looking at the academic track record. The wage reflects both the expected
output and the bargaining power.

The Flexible and the Rigid systems capture the pivotal difference between the Western
and Eastern systems. In the Western system, students might take a broad range of classes
(experiment) or devote their effort toward a narrow set of subjects (specialize).19 This
opportunity is captured in our model by the Flexible system environment. In the Eastern
system, students must take mandatory classes across a range of disciplines. Thus, a narrow
specialization is not feasible. This feature is captured by the Rigid system environment.

We show that students in the Eastern system might be worse due to mandatory classes.
In particular, we derive conditions under which specialization (devoting the entire effort
endowment to a narrow set of subjects), prohibited in this system, is optimal. For instance,
this is the case if the productivity distribution has "fat tails" (the types are sufficiently
different in productivity in our model).

We also study the effect of market structure on the students’ incentives to experi-
ment/specialize. An environment where the agent has sufficiently strong bargaining power
makes experimentation less likely. The reason is that, with strong bargaining power, the
applicant captures a higher portion of his expected productivity through the wage. If spe-
cialization is socially efficient, it remains optimal for a student with strong bargaining power.
If the student captures only a small portion of the generated surplus, his incentives are not

17Rose and Betts (2004) estimate the effect of high school math courses on earnings a decade after grad-
uation. See also Altonji et al. (2012) for a survey of the literature on the demand for high school and
post-secondary education by various fields.

18Dur et al. (2022) discuss the effect of students choosing college-major pairs jointly in college admissions.
See also Malamud (2011).

19Another example of experimentation is the "double major." See, e.g., Del Rossi and Hersch (2008) and
Zafar (2012).
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aligned well with the social ones. Then, it is optimal to specialize less and experiment more.
Finally, we analyze the effect of competition between students from the Eastern and

the Western systems in the international market. Consider a company (or a Ph.D. program)
accepting applicants from different countries. Applicants from the Flexible system anticipate
competition from candidates from the Rigid System. Our model predicts that the former
choose to experiment (allocate their effort across multiple courses/disciplines) even if it would
not be optimal without competition. Thus, we highlight a negative externality that the Rigid
system imposes on applicants from the Flexible system.

The education literature has long acknowledged the connection across education systems.
For example, Kimhi et al. (2019) argue that higher education in the US has obtained features
of an arms race.20 The reason for the arms race is the need to gain an edge in a competitive
job market. Our paper addresses one aspect of this arms race - "excessive experimentation."
Our model predicts that students in the Western system choose to experiment more often
due to potential competition from abroad. For instance, one of the features of "excessive
experimentation" can be found in the increase of the double majors in the USA.21 The
number of college graduates with more than one undergraduate major has been steadily
increasing in the U.S., where the number of double majors is forty percent in many schools.22

From the market point of view, students who manage to double major are good at getting
work done in general. Thus, one of the explanations for the rise in double majors is that
students see it as a way to add one more credential to their resumes. Our results indicate
that part of the "credential arms race" is due to the risk of competition from more restrictive
education systems. Indeed, Hanks et al. (2024) estimate that double majors lower sensitivity
to earnings shocks.

From a normative perspective, practitioners argue that the extent of experimentation
should be limited. For example, David Coleman, the president of the College Board (a non-
profit organization that designed the SAT and Advanced Placement exams in the USA),
states:23

"... Applications for college have as many as 10 spaces for students to fill out with
activities outside of class. How about three? Let’s say to students: Share 1 to 3 things you

20See also Leuven and Oosterbeek (2011) for a survey of the economics literature on over-education.
21Del Rossi and Hersch (2008) report that, in 2006, about twenty-five percent of college graduates had

double major (see also Del Rossi and Hersch (2016) for more recent data).
22According to The Chronicle of Higher Education, forty percent of students at Vanderbilt University

choose to double major; the number of double majors has risen fifty percent in five years at the University
of California at Davis, and double majors doubled since 1993 at MIT. See https://www.chronicle.com/
blogs/next/the-worrying-rise-of-double-majors

23See https://www.nytimes.com/2018/10/24/opinion/higher-education-double-major-
extracurricular-activities.html
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are devoted to outside your classwork. If you want to do more than three things outside of
class, that’s great, but not to get into college."

Our results highlight a drastic difference in limiting the extent of experimentation depending
on the nature of the economy. In a closed economy (i.e., in a local market), limiting the
extent of experimentation might improve efficiency. In an open economy, students from
flexible systems might be worse off with a limited extent of experimentation. The optimal
educational system (the amount of mandatory classes) depends on the degree and origin of
labor market competition.

When studying how the differences in the distribution of talents across countries explain
the trade patterns, Grossman and Maggi (2000) make two points regarding the educational
systems. First, if talent discovery affects a country’s comparative trade advantage, the
optimal education policy depends on the policies adopted by trading partners. Second,
given the heterogeneity of trading patterns, countries optimally adopt different educational
approaches. Our analysis explicitly addresses these two points. Regarding the first point, we
show that if the Eastern System is sufficiently restrictive (measured by the time students must
devote to mandatory classes), there is a unique equilibrium in which all agents experiment. In
addition, if the Eastern System is not very restrictive, then there is a symmetric equilibrium
with both agents allocating some effort toward different classes. Regarding the second point,
our analysis allows for asymmetric equilibria, such as the ones where competing agents
specialize in different subjects.

7.2 Organizational Economics

Baron and Kreps (1999) present three possible classifications of jobs. "Star" jobs are occu-
pations in which the low type is not that bad, but the high type brings much revenue for
a company; "guardian" jobs are occupations in which the high type is satisfactory but the
low type results in significant losses for the company; "foot-soldier" jobs, in which the high
and the low types are not that different. Relating our results to the three types of jobs,
specialization is efficient for the star jobs. In contrast, experimentation is efficient for the
guardians and foot soldiers (see Proposition 1 for the necessary and sufficient conditions).
Intuitively, in a star job, such as producing knowledge and innovation, firms are looking
for groundbreaking results. For example, a pharmaceutical company benefits tremendously
from a successful vaccine that captures the market. Experimentation generates more dis-
persed posterior beliefs about the expected productivity. As a result, experimentation is
riskier from the company’s point of view than specialization. In the case of a star job, the
company would like to lower the chances of hiring the low type. Therefore, specialization is
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efficient. In the case of guardian jobs, such as commercial airline pilots, the low type might
lead to a disaster outcome, such as an airplane crash. Experimentation is riskier for the
applicant since he has a chance of failing more than once. Such an outcome, however, allows
the company to rule out the low type with a higher probability. Therefore, experimentation
is efficient. In the case of foot soldiers, the expected productivity after a failure does not
decrease significantly. As a result, experimentation, although riskier, increases the expected
productivity.

Consider the domestic market, where all the job applicants are from the same system.
According to Corollary 1, experimentation (specialization) is less (more) likely in the environ-
ment with higher applicant bargaining power. Therefore, stars over -experiment unless they
have all the bargaining power. In contrast, the guardians and foot soldiers under -experiment
unless they have all the bargaining power. Similarly, competition within the domestic mar-
ket leads to inefficiencies since specialization is more likely (see Lemma 1). Consequently,
stars over -specialize, and the guardians and foot soldiers under -experiment due to domestic
competition.

Our results indicate that competition in the international market might rule out special-
ization. The reason is that the externality from the Rigid system is so strong that the only
equilibrium is one where all applicants experiment. Therefore, stars might over-experiment
to hedge themselves against international competition. Table 1 below summarizes the key
distortions.

Job Efficient to

↓ Applicant’s
Bargaining

Power leads to

Domestic
Competition

leads to

International
Competition

leads to

star specialize under
specialization

over
specialization

under
specialization

guardian,
foot

soldier
experiment

over
experimentation

under
experimentation

over
experimentation

Table 1: Distortions due to bargaining power, domestic and international competition.

Given the distortion in the efficient effort allocation, applicants either do not specialize
enough or specialize too often. Hiring companies would like to alleviate these inefficiencies,
for instance, such companies might perform additional training or set up a probation period
for the applicants. Specifically, in many companies, employees devote some time to duties
not related to their future tasks during the probation period. For example, some airline
companies in the U.S. require all newly hired flight attendants to complete community service
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during the probation period.24 In private banks, it is common for those on probation period
to be assigned tasks not explicitly related to future duties (for example, a salesperson might
spend some time in the accounting department).25 At the same time, there are jobs where
the probation period is devoted to tasks perfectly correlated with future duties. Examples
are residency for future doctors and the Comprehensive Judicial Orientation Program for
newly appointed judges in the US.

We propose two ways to interpret these differences in the probation period approach.
First, suppose the probation period is the main channel for companies to learn about ap-
plicant productivity. For example, this is the case for low-skilled jobs where applicants’
experience and education are irrelevant. The environment where job applicants must devote
some effort to auxiliary tasks during the probation period is captured by the Rigid system
in our model. Our results suggest that workers might be damaged by this constraint. For
instance, this is the case when workers differ sufficiently in their productivity. Moreover, this
inefficiency is exacerbated if workers have sufficient bargaining power vis-á-vis the employer.

Second, the probation period might be an attempt by the employer to alleviate ineffi-
ciencies summarized in Table 1. For example, consider the airline companies hiring flight
attendants and pilots (i.e., guardians) in the domestic market. For these jobs, experimen-
tation is efficient. However, our model predicts that domestic competition leads to under-
experimentation (see the fourth column in Table 1). Thus, the optimal probation policy is
to force the applicants to experiment. Thus, our economic intuition is consistent with some
airline companies asking workers to perform tasks, such as community work, not explicitly
related to their future duties during the probation period.

Similarly, a probation period in a private bank when a salesperson (i.e., a foot soldier)
hired domestically performs accounting tasks is a way to force experimentation. In contrast,
for highly skilled surgeons (i.e., guardians) hired internationally, it is optimal to specialize
during the probation period. We summarize the optimal probation training for domestic and
international markets in Table 2.

7.3 Additional Applications

Financing Investment Projects. Our model could be also seen as representing a financ-
ing relationship between an inventor or entrepreneur who has a project of uncertain quality.
Financiers are willing to finance only good projects yielding positive NPV. Inventors can run
a set of independent tests to provide certificates of their projects’ quality to financiers who

24See https://liveandletsfly.com/flight-attendants-community-service/ for a discussion.
25See also https://www.wsj.com/articles/SB10001424052970204571404577257533620536076 for the

discussion of job rotation during trainee programs in companies like General Electric.
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Job Optimal Probation
(Domestic Market)

Optimal Probation
(International Market)

star specialization specialization

guardian,
foot soldier experimentation specialization

Table 2: The optimal probation policies.

may ask for all possible tests to be run (rigid system) or leave the choice of how many tests
to run to the inventor himself (flexible system). If the project is financed and developed,
the inventor and investors share the surplus it generates; such expected surplus would drive
inventors’ effort choice.

Drug Development. Experimentation is a crucial aspect of drug development processes.
Our model can be applied to this framework too. Consider the case of a pharmaceutical com-
pany developing a new drug. Drug authorities may be more or less flexible across countries
relative to the required types and amounts of tests to be run before the drug can be sold.
Certain pharmaceutical companies may find it optimal to undergo as many tests as possi-
ble, while others prefer to focus on a certain type of tests only. Heterogeneous institutional
environments may imply different choices by pharmaceutical companies.

8 Conclusions

In economic environments characterized by uncertainty about agents’ productivity, it may
be efficient for them to engage in several experimentation activities to convey signals about
their productivity to their counterparts. However, in some scenarios, such experimentation
may be constrained by institutions. For instance, pupils may be forced to attend several
classes in different disciplines instead of focusing on a single topic, or companies’ interns
may be asked to perform several tasks to signal their match with the firm.

We present a simple model of experimentation in which agents can signal their type to
prospective principals by exerting costly effort on two tasks. They can choose whether to
specialize (i.e., devoting all of their efforts to one task only) or to experiment (i.e., devoting
some effort to both tasks). We study this decision in two different institutional setups: a
rigid system in which agents must exert some positive effort on both tasks and a flexible one,
in which they have full discretion on how much effort to devote to each task.

Absent competition between agents, in a flexible system, specialization is more likely

28



when the worker has sufficient bargaining power vis-á−vis the principal, as she is entitled to a
larger share of the surplus generated, which is then larger in expectation, with specialization.
Indeed, when the agent devotes all of her effort to a single task, the posterior beliefs about
her ability are more volatile (entailing higher variance, as well as higher expected value).
In a rigid system, instead, specialization is not feasible, which, per se, constrains agents’
optimal strategies, as well as social efficiency.

If several agents compete against each other while signaling their ability, more inefficien-
cies may arise. When competing agents are subject to the same institutional constraints
(i.e., they are from the same system) specialization is less likely, as experimentation reduces
volatility in the expected payoffs for agents as it increases the probabilities of producing
better posterior beliefs than opponents. In a framework where agents are homogeneous, this
induces symmetric equilibria. A new equilibrium arises in this setup: agents may mimic
each other’s effort. However, when agents are subject to different systems, i.e., they come
respectively from a rigid and a flexible institutional system, then the mimicking equilibrium
is less likely to be realized as the pressure of competition induces the agent from the flexible
system to adapt to the choices made by the agent from the rigid system, namely, to spe-
cialize less and experiment more often, thus implying a further source of inefficiencies in the
economy.

The main prediction is that inefficient institutional rigidities may hamper also flexible sys-
tems, in open economic setups in which agents with heterogeneous institutional backgrounds
compete against each other for scarce resources.

29



References

Ali, S. N., N. Haghpanah, X. Lin, and R. Siegel (2022). How to sell hard information. The
Quarterly Journal of Economics 137 (1), 619–678.

Altonji, J. G., E. Blom, and C. Meghir (2012). Heterogeneity in human capital investments:
High school curriculum, college major, and careers. Annu. Rev. Econ. 4 (1), 185–223.

Bar-Isaac, H. and R. Lévy (2022). Motivating employees through career paths. Journal of
Labor Economics 40 (1), 95–131.

Baron, J. and D. Kreps (1999). Strategic Human Resources: Frameworks for General Man-
agers. John Wiley.

Berggren, A. and L. Jeppsson (2021). The impact of upper secondary school flexibility on
sorting and educational outcomes. Economics of Education Review 81, 102080.

Betts, J. R. and H. Rose (2001). Math matters: The links between high school curriculum,
college graduation, and earnings.

Bonatti, A. and J. Hörner (2017). Career concerns with exponential learning. Theoretical
Economics 12 (1), 425–475.

Brunner, T., G. Friebel, R. Holden, and S. Prasad (2021). Incentives to discover talent. The
Journal of Law, Economics, and Organization 38 (2), 309–344.

Canidio, A. and P. Legros (2023). Task discretion, labor-market frictions, and entrepreneur-
ship. The Journal of Law, Economics, and Organization 39 (2), 420–455.

Del Rossi, A. F. and J. Hersch (2008). Double your major, double your return? Economics
of Education Review 27 (4), 375–386.

Del Rossi, A. F. and J. Hersch (2016). The private and social benefits of double majors.
Journal of Benefit-Cost Analysis 7 (2), 292–325.

DeMarzo, P. M., I. Kremer, and A. Skrzypacz (2019). Test design and minimum standards.
American Economic Review 109 (6), 2173–2207.

Dur, U., Y.-C. Kao, and S. Paiement (2022). Market design of college-major switches for
reducing student-major mismatch.

Gibbons, R. and M. Waldman (1999a). Careers in organizations: Theory and evidence.
Handbook of labor economics 3, 2373–2437.

30



Gibbons, R. and M. Waldman (1999b). A theory of wage and promotion dynamics inside
firms. The Quarterly Journal of Economics 114 (4), 1321–1358.

Goodman, J. (2019). The labor of division: Returns to compulsory high school math course-
work. Journal of Labor Economics 37 (4), 1141–1182.

Görlitz, K. and C. Gravert (2018). The effects of a high school curriculum reform on uni-
versity enrollment and the choice of college major. Education Economics 26 (3), 321–336.

Grossman, G. M. and G. Maggi (2000). Diversity and trade. American Economic Re-
view 90 (5), 1255–1275.

Hanks, A. S., S. Jiang, X. Qian, B. Wang, and B. A. Weinberg (2024). Do double majors
face less risk? an analysis of human capital diversification. Technical report, National
Bureau of Economic Research.

Hermalin, B. E. (1993). Managerial preferences concerning risky projects. The Journal of
Law, Economics, and Organization 9 (1), 127–135.

Hirshleifer, D. and A. V. Thakor (1992). Managerial conservatism, project choice, and debt.
The Review of Financial Studies 5 (3), 437–470.

Holmström, B. (1999). Managerial incentive problems: A dynamic perspective. The review
of Economic studies 66 (1), 169–182.

Jia, N. (2021). Do stricter high school math requirements raise college stem attainment?
Economics of Education Review 83, 102140.

Kamenica, E. and M. Gentzkow (2011). Bayesian persuasion. American Economic Re-
view 101 (6), 2590–2615.

Khalil, F., J. Lawarree, and A. Rodivilov (2020). Learning from failures: Optimal contracts
for experimentation and production. Journal of Economic Theory 190, 105107.

Kimhi, O., B. Shahar, and T. Harel (2019). Higher education: Too much of a (potentially)
good thing. Wake Forest L. Rev. 54, 761.

Kurino, M. and Y. Kurokawa (2023). Job rotation or specialization? a dynamic matching
model analysis. Review of Economic Design, 1–31.

Leuven, E. and H. Oosterbeek (2011). Overeducation and mismatch in the labor market.
Handbook of the Economics of Education 4, 283–326.

31



Levine, P. B. and D. J. Zimmerman (1995). The benefit of additional high-school math
and science classes for young men and women. Journal of Business & Economic Statis-
tics 13 (2), 137–149.

Lizzeri, A. (1999). Information revelation and certification intermediaries. The RAND
Journal of Economics , 214–231.

Malamud, O. (2010). Breadth versus depth: the timing of specialization in higher education.
Labour 24 (4), 359–390.

Malamud, O. (2011). Discovering one’s talent: learning from academic specialization. ILR
Review 64 (2), 375–405.

Milbourn, T. T., R. L. Shockley, and A. V. Thakor (2001). Managerial career concerns and
investments in information. RAND Journal of Economics , 334–351.

Pagano, M. and L. Picariello (2023). Talent discovery, layoff risk and unemployment insur-
ance. European Economic Review 154, 104406.

Picariello, L. (2020). Organizational design with portable skills. Available at SSRN 2901951 .

Rodina, D. and J. Farragut (2016). Inducing effort through grades. Technical report, Tech.
rep., Working paper.

Rodivilov, A., D. Shin, and X. Zhao (2022). Overachieving and obsessive behavior as sig-
naling devices under career concern. Journal of Institutional and Theoretical Economics
(JITE) 178 (4), 311331.

Rose, H. and J. R. Betts (2004). The effect of high school courses on earnings. Review of
economics and statistics 86 (2), 497–513.

Zafar, B. (2012). Double majors: One for me, one for the parents? Economic Inquiry 50 (2),
287–308.

32



9 Appendix A. Proof of Proposition 1.

The social planner solves the following problem:

maxeA,eB
∑

µm>µ̂ τ(µm)

[
µmf(θH) + (1− µm)f(θL)

]
− C(eA, eB)

subject to eA, eB > 0 and eA + eB = 1.

To simplify notation, we denote eA = e and eB = 1− e, respectively.
The social planner’s optimization problem then can be rewritten as

max
06e61

∑
µm>µ̂

τ(µm)

[
µmf(θH) + (1− µm)f(θL)

]
− C(e, 1− e). (24)

To simplify the objective function, we rewrite the expected output as

∑
µm>µ̂

τ(µm)

[
µmf(θH) + (1− µm)f(θL)

]
=
∑
µm>µ̂

τ(µm)
[
µm(y + k)− k

]
=(y + k)

∑
µm>µ̂

τ(µm)µm − k
∑
µm>µ̂

τ(µm).
(25)

Next, given that the expected posterior is equal to the prior (the Bayes’ rule),∑
µm>µ̂

τ(µm)µm = µ0 −
∑
µm<µ̂

τ(µm)µm, (26)

and the probabilities of obtaining signals sum up to one:∑
µm>µ̂

τ(µm) = 1−
∑
µm<µ̂

τ(µm). (27)

Using (25) the objective function can be rewritten as

(y + k)

[
µ0 −

∑
µm<µ̂

τ(µm)µm

]
− k
[
1−

∑
µm<µ̂

τ(µm)

]
− C(e, 1− e). (28)

To find the optimal solution, we proceed in two steps. First, we assume that the solution
is interior, i.e., e ∈ (0, 1). In this case, the agent cannot generate signal ∅ on any task.
Therefore, the only beliefs µm that are lower than the lower bound µ̂ are µ(F,F ). This
simplifies the agent’s objective function. We then derive conditions that guarantee that the
objective function is concave in the effort level e and, consequently, the interior solution
is a global maximum. Second, we derive conditions under which the objective function is
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convex in e and, consequently, the interior solution is not a global maximum. In this case,
the optimal solution is a corner one, i.e., e ∈ {0, 1}.

Interior solution e ∈ (0, 1). We now assume that the social planner is choosing an effort
e ∈ (0, 1) and, therefore, the objective function can be rewritten as

(y + k)
[
µ0 − τ(µ(F,F )]µ(F,F )

]
− k
[
1− τ(µ(F,F ))

]
− C(e, 1− e), (29)

where we used the fact that the only beliefs that are lower than the lower bound µ̂ are µ(F,F ).
Given that

τ(µ(F,F )) = g((F, F )|θH)µ0 + g((F, F )|θL)(1− µ0), (30)

and
τ(µ(F,F ))µ(F,F ) = τ(µ(F,F ))

g((F, F )|θH)µ0

τ(µ(F,F ))
= g((F, F )|θH)µ0, (31)

the objective function can be rewritten as

(y+k)

[
µ0−g((F, F )|θH)µ0

]
−k
[
1−g((F, F )|θH)µ0−g((F, F )|θL)(1−µ0)

]
−C(e, 1−e). (32)

Finally, given that

g((F, F )|θ) =
[
1− θe

][
1− θ(1− e)

]
for θ = {θL, θH}, (33)

the objective function simplifies to

(y + k)

[
µ0 − g((F, F )|θH)µ0

]
− k
[
1− g((F, F )|θH)µ0 − g((F, F )|θL)(1− µ0)

]
− C(e, 1− e)

=(y + k)µ0

[
1−

[
1− θHe

][
1− θH(1− e)

]]
− k
[
1− µ0

[
1− θHe

][
1− θH(1− e)

]
− (1− µ0)

[
1− θLe

][
1− θL(1− e)

]]
− C(e, 1− e).

(34)
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Taking the first-order derivative with respect to the effort level e we obtain:

− µ0(y + k)

[
− θH(1− θH(1− e)) + (1− θHe)θH

]
− k
[
− µ0

[
(1− θHe)θH − θH(1− θH(1− e))

]
− (1− µ0)

[
(1− θLe)θL − θL(1− θL(1− e))

]]
− (2e− 1)

=− µ0(y + k)θ2H(1− 2e)− k
[
− µ0θ

2
H(1− 2e)− (1− µ0)θ

2
L(1− 2e)

]
− (2e− 1)

=(1− 2e)

[
− µ0(y + k)θ2H + kµ0θ

2
H + k(1− µ0)θ

2
L + 1

]
=(1− 2e)

[
k(1− µ0)θ

2
L − yµ0θ

2
H + 1

]
= 0.

Thus, the First Order Condition is

(1− 2e)

[
1−

[
yµ0θ

2
H − k(1− µ0)θ

2
L

]]
= 0. (35)

Global maximum. To guarantee that the solution given by the (35) above is a global
maximum, the following Second Order Condition must be satisfied as well:

− 2

[
1−

[
yµ0θ

2
H − k(1− µ0)θ

2
L

]]
< 0. (36)

Therefore, if yµ0θ
2
H − k(1− µ0)θ

2
L < 1, then we have an interior solution

e∗ =
1

2
. (37)

However, if yµ0θ
2
H − k(1− µ0)θ

2
L > 1, then we have a corner solution

e∗ ∈ {0, 1}. (38)

This completes the proof of Proposition 1. Q.E.D.

10 Appendix B. Proof of Proposition 2.

The agent solves the following program:

[P F ] maxeA,eB
∑

µm>µ̂ τ(µm)w(µm)− C(eA, eB)

subject to eA, eB > 0 and eA + eB = 1.
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To simplify notation, we denote eA = e and eB = 1− e, respectively.
The agent’s optimization problem then can be rewritten as

max
06e61

∑
µm>µ̂

τ(µm)w(µm)− C(e, 1− e). (39)

To simplify the objective function, we rewrite the expected wage using (14) as∑
µm>µ̂

τ(µm)w(µm) =
∑
µm>µ̂

τ(µm)γ
[
µm(y + k)− k

]
= γ

[
(y + k)

∑
µm>µ̂

τ(µm)µm − k
∑
µm>µ̂

τ(µm)

]
.

(40)

Next, given that the expected posterior is equal to the prior (the Bayes’ rule):∑
µm>µ̂

τ(µm)µm = µ0 −
∑
µm<µ̂

τ(µm)µm, (41)

and the probabilities of obtaining all the possible signals sum up to one:∑
µm>µ̂

τ(µm) = 1−
∑
µm<µ̂

τ(µm), (42)

the expression in (40) can be rewritten as

∑
µm>µ̂

τ(µm)w(µm) = γ

[
(y + k)

(
µ0 −

∑
µm<µ̂

τ(µm)µm

)
− k
(

1−
∑
µm<µ̂

τ(µm)

)]
. (43)

The objective function then can be rewritten as∑
µm>µ̂ τ(µm)w(µm)− C(e, 1− e)

= γ

[
(y + k)

(
µ0 −

∑
µm<µ̂

τ(µm)µm

)
− k
(

1−
∑
µm<µ̂

τ(µm)

)]
− C(e, 1− e). (44)

To find the optimal solution, we proceed in two steps. First, we assume that the solution
is interior, i.e., e ∈ (0, 1). In this case, the agent cannot generate signal ∅ on any task.
Therefore, the only beliefs µm that are lower than the lower bound µ̂ are µ(F,F ). This allows
for the simplification of the agent’s objective function. Then, we derive conditions that
guarantee the objective function is concave in e and, consequently, the interior solution is a
global maximum. Second, we derive conditions under which the objective function is convex
in e and, consequently, the interior solution is not a global maximum. In this case, the
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optimal solution is a corner one, i.e., e ∈ {0, 1}.

Interior solution e ∈ (0, 1). We now assume that the agent is choosing an effort e ∈ (0, 1)

and, therefore, the objective function can be rewritten as

γ

[
(y + k)

[
µ0 − τ(µ(F,F ))µ(F,F )

]
− k
[
1− τ(µ(F,F ))

]]
− C(e, 1− e). (45)

Given that
τ(µ(F,F )) = g((F, F )|θH)µ0 + g((F, F )|θL)(1− µ0), (46)

and
τ(µ(F,F ))µ(F,F ) = τ(µ(F,F ))

g((F, F )|θH)µ0

τ(µ(F,F ))
= g((F, F )|θH)µ0, (47)

the objective function becomes

γ

[
(y+k)

[
µ0−g((F, F )|θH)µ0

]
−k
[
1−g((F, F )|θH)µ0−g((F, F )|θL)(1−µ0)

]]
−C(e, 1− e).

(48)
Finally, given that

g((F, F )|θ) =
[
1− θe

][
1− θ(1− e)

]
for θ = θL, θH , (49)

the objective function simplifies to

γ(y + k)µ0

[
1−

[
1− θHe

][
1− θH(1− e)

]]
−γk

[
1− µ0

[
1− θHe

][
1− θH(1− e)

]
− (1− µ0)

[
1− θLe

][
1− θL(1− e)

]]
− C(e, 1− e).

The first-order condition with respect to the effort level e is as follows:

− γµ0(y + k)

[
− θH(1− θH(1− e)) + (1− θHe)θH

]
γk

[
µ0

[
− θH(1− θH(1− e)) + (1− θHe)θH

]
(1− µ0)

[
− θL(1− θL(1− e)) + (1− θLe)θL

]]
=− γµ0(y + k)θ2H(1− 2e)− γk

(
− µ0θ

2
H(1− 2e)− (1− µ0)θ

2
L(1− 2e)

)
=γ(1− 2e)

(
− µ0(y + k)θ2H + kµ0θ

2
H + k(1− µ0)θ

2
L

)
=γ(1− 2e)

(
k(1− µ0)θ

2
L − yµ0θ

2
H

)
= 2e− 1.

V M
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The First Order Condition can be rewritten as

(1− 2e)

[
1− γ

[
yµ0θ

2
H − k(1− µ0)θ

2
L

]]
= 0. (50)

Global maximum. To guarantee that the solution given by the (50) above is a global
maximum, the following Second Order Condition must be satisfied as well:

− 2

[
1− γ

[
yµ0θ

2
H − k(1− µ0)θ

2
L

]]
< 0. (51)

Therefore, if γ
[
yµ0θ

2
H − k(1− µ0)θ

2
L

]
< 1, then we have an interior solution

e∗ =
1

2
. (52)

However, if γ
[
yµ0θ

2
H − k(1− µ0)θ

2
L

]
> 1, then we have a corner solution

e∗ ∈ {0, 1}. (53)

This completes the proof of Proposition 2. Q.E.D.

11 Appendix C. Within Competition Analysis.

Outline of the proof: We characterize the equilibrium in four steps. In Step 1, we char-
acterize and simplify the agent’s objective function. In Step 2, we characterize four relevant
cases (depending on the value of the agent’s objective function) for the analysis. In Step 3,
we prove Lemma 1. In Step 4, we prove Lemma 2.

Step 1. Deriving the expected utility function. Given that agents spend their entire
unit of effort (esA + esB = 1) in equilibrium, to simplify notation, we denote esA = es and
esB = 1− es for s = {F,R}.

Since the agent is hired with necessity only if he succeeds at least in one task, three
outcomes are relevant for determining the agent’s expected utility. First, with probability
τ
(
µF(S,S)

)
, the agent succeeds in both tasks. He then receives 1

2
w(µF(S,S)) if his rival produces

the same signal (with probability τ(µR(S,S))) and receives w(µF(S,S)) if his rival produces any
other signal than (S, S) (with probability 1−τ(µR(S,S))). Second, in case the agent succeeds in
one task only, he is paid 1

2
w(µF(S,F )) if his rival generates identical posterior which happens in

two cases: either the rival produces the same signal (S, F ) with exactly the same effort choice
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(eR = eF ) or the rival succeeds on the other task (F, S) with symmetric effort allocation
(eR = 1− eF ). In addition, when the agent succeeds only once ((S, F )), he is paid w(µF(S,F ))

if the second agent generates lower posterior beliefs regarding his type, which happens with
probability 1 − τ

(
µR(S,S)

)
− τ

(
µR(S,F )

)
1eR<eF − τ

(
µR(F,S)

)
1eR>1−eF . Third, similarly to the

previous case, the agent can succeed in task B only and generate signal (F, S).
The agent’s objective function is26

τ
(
µF(S,S)

)[1

2
τ(µR(S,S))w(µF(S,S)) + (1− τ(µR(S,S)))w(µF(S,S))

]
+τ
(
µF(S,F )

)
w(µF(S,F ))

[
1− τ

(
µR(S,S)

)
− τ
(
µR(S,F )

)
1eR<eF − τ

(
µR(F,S)

)
1eR>1−eF

]
+

1

2
τ
(
µF(S,F )

)
w(µF(S,F ))

[
τ
(
µR(S,F )

)
1eR=eF + τ

(
µR(F,S)

)
1eR=1−eF

]
+τ
(
µF(F,S)

)
w(µF(F,S))

[
1− τ

(
µR(S,S)

)
− τ
(
µR(F,S)

)
1eR>eF − τ

(
µR(S,F )

)
1eR<1−eF

]
+

1

2
τ
(
µF(F,S)

)
w(µF(F,S))

[
τ
(
µR(F,S)

)
1eR=eF + τ

(
µR(S,F )

)
1eR=1−eF

]
−C(eF , 1− eF ).

(54)

To simplify the objective function in (54), we rewrite the distributions over the posterior
beliefs τ (for a given ej) as:

τ(µj(S,S))

=g((S, S)|θH)µ0 + g((S, S)|θL)(1− µ0) = θHe
jθH(1− ej)µ0 + θLe

jθL(1− ej)(1− µ0)

=ej(1− ej)
(
θ2Hµ0 + θ2L(1− µ0)

)
= ej(1− ej)E[θ2];

(55)

τ(µj(S,F ))

=g((S, F )|θH)µ0 + g((S, F )|θL)(1− µ0)

=θHe
j[1− θH(1− ej)]µ0 + θLe

j[1− θL(1− ej)](1− µ0)

=ej
(
θH [1− θH(1− ej)]µ0 + θL[1− θL(1− ej)](1− µ0)

)
= ejE[θ(1− θ(1− ej))];

(56)

26A characteristic function 1t∈T is defined as 1t∈T =

{
1, t ∈ T
0, t /∈ T

.
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τ(µj(F,S))

=g((F, S)|θH)µ0 + g((F, S)|θL)(1− µ0)

=[1− θHej]θH(1− ej)µ0 + [1− θLej]θL(1− ej)(1− µ0)

=(1− ej)
(
[1− θHej]θHµ0 + [1− θLej]θL(1− µ0)

)
= (1− ej)E[θ(1− θej)].

(57)

Next, we rewrite the wage functions w(µjm) as:

w(µj(S,S))

=γ

[
µj(S,S)(y + k)− k

]
= γ

[
g((S, S)|θH)µ0

τ(µj(S,S))
(y + k)− k

]
=γ

[
µ0θ

2
He

j(1− ej)
ej(1− ej)E[θ2]

(y + k)− k
]

= γ

[
µ0θ

2
H

E[θ2]
(y + k)− k

]
;

(58)

w(µj(S,F ))

=γ

[
µj(S,F )(y + k)− k

]
= γ

[
g((S, F )|θH)µ0

τ(µj(S,F ))
(y + k)− k

]
=γ

[
θHe

j[1− θH(1− ej)]µ0

ejE[θ(1− θ(1− ej))]
(y + k)− k

]
= γ

[
θH [1− θH(1− ej)]µ0

E[θ(1− θ(1− ej))]
(y + k)− k

]
;

(59)

w(µj(F,S))

=γ

[
µj(F,S)(y + k)− k

]
= γ

[
g((F, S)|θH)µ0

τ(µj(F,S))
(y + k)− k

]
=γ

[
[1− θHej]θH(1− ej)µ0

(1− ej)E[θ(1− θej)]
(y + k)− k

]
= γ

[
[1− θHej]θHµ0

E[θ(1− θej)]
(y + k)− k

]
.

(60)
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Plugging the expression for τ and w into (54), the agent’s objective function becomes:

eF (1− eF )γ

(
µ0θ

2
H(y + k)− kE[θ2]

)[
1− eR(1− eR)E[θ2]

2

]
+eFγ

(
θH [1− θH(1− eF )]µ0(y + k)− kE

[
θ(1− θ(1− eF ))

])
×[

1− eR(1− eR)E[θ2]− eRE[θ(1− θ(1− eR))]1eR<eF − (1− eR)E[θ(1− θeR)]1eR>1−eF

+
eRE[θ(1− θ(1− eR))]

2
1eR=eF +

(1− eR)E[θ(1− θeR)]

2
1eR=1−eF

]
+(1− eF )γ

(
(1− θHeF )θHµ0(y + k)− kE[θ(1− θeF )]

)
×[

1− eR(1− eR)E[θ2]− (1− eR)E[θ(1− θeR)]1eR>eF − eRE[θ(1− θ(1− eR))]1eR<1−eF

+
(1− eR)E[θ(1− θeR)]

2
1eR=eF +

eRE[θ(1− θ(1− eR))]

2
1eR=1−eF

]
− C(eF , 1− eF )

=eF (1− eF )γ

(
µ0θ

2
Hy − (1− µ0)kθ

2
L

)[
1− eR(1− eR)E[θ2]

2

]
+eFγ

(
µ0θHy − (1− µ0)kθL + (1− eF )

(
k(1− µ0)θ

2
L − µ0yθ

2
H

))
×[

1− eR(1− eR)E[θ2]− eRE[θ(1− θ(1− eR))]1eR<eF − (1− eR)E[θ(1− θeR)]1eR>1−eF

+
eRE[θ(1− θ(1− eR))]

2
1eR=eF +

(1− eR)E[θ(1− θeR)]

2
1eR=1−eF

]
+(1− eF )γ

(
µ0θHy − (1− µ0)kθL + eF

(
k(1− µ0)θ

2
L − µ0yθ

2
H

))
×[

1− eR(1− eR)E[θ2]− (1− eR)E[θ(1− θeR)]1eR>eF − eRE[θ(1− θ(1− eR))]1eR<1−eF

+
(1− eR)E[θ(1− θeR)]

2
1eR=eF +

eRE[θ(1− θ(1− eR))]

2
1eR=1−eF

]
− C(eF , 1− eF ).

(61)
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To simplify the objective function further, we define the following three functions

J1 = 1− eR(1− eR)E[θ2]

2
;

J2 = 1− eR(1− eR)E[θ2]− eRE[θ(1− θ(1− eR))]1eR<eF − (1− eR)E[θ(1− θeR)]1eR>1−eF

+
eRE[θ(1− θ(1− eR))]

2
1eR=eF +

(1− eR)E[θ(1− θeR)]

2
1eR=1−eF ;

J3 = 1− eR(1− eR)E[θ2]− (1− eR)E[θ(1− θeR)]1eR>eF − eRE[θ(1− θ(1− eR))]1eR<1−eF

+
(1− eR)E[θ(1− θeR)]

2
1eR=eF +

eRE[θ(1− θ(1− eR))]

2
1eR=1−eF .

(62)

Using (62), the agent’s objective function becomes:

U(eF , eR) :=eF (1− eF )γ

(
µ0θ

2
Hy − (1− µ0)kθ

2
L

)
J1

+eFγ

(
µ0θHy − (1− µ0)kθL + (1− eF )

(
k(1− µ0)θ

2
L − µ0yθ

2
H

))
J2

+(1− eF )γ

(
µ0θHy − (1− µ0)kθL + eF

(
k(1− µ0)θ

2
L − µ0yθ

2
H

))
J3

−C(eF , 1− eF )

=eF (1− eF )γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
J1 − J2 − J3

)
+γ

[
µ0θHy − (1− µ0)kθL

](
J2e

F + J3(1− eF )

)
− C(eF , 1− eF ).

(63)

Step 2. The best response correspondences. To characterize all possible equilibria,
we need to determine the best response correspondence, eF (eR). We first note that the
agent’s utility function satisfies the following property:

U(eF , eR) = U(eF , 1− eR) = U(1− eF , eR) = U(1− eF , 1− eR). (64)

This property significantly simplifies analysis as it allows us to determine the best response
correspondence eF (eR) ∈ [0, 1

2
] for 0 6 eR 6 1

2
only.

We next determine the values of J1 − J2 − J3 and J2e
F + J3(1 − eF ) for all possible

combinations of the effort levels eF ∈ [0, 1
2
] and eR ∈ [0, 1

2
].

1) Case 1: eR < eF 6 1
2
:
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J1 − J2 − J3

=1− eR(1− eR)E[θ2]

2

−1 + eR(1− eR)E[θ2] + eRE[θ(1− θ(1− eR))]

−1 + eR(1− eR)E[θ2] + eRE[θ(1− θ(1− eR))]

=2eRE[θ]− eR(1− eR)

2
E[θ2]− 1.

(65)

J2e
F + J3(1− eF )

=

(
1 + eR(1− eR)E[θ2] + eRE[θ(1− θ(1− eR))]

)
eF

+

(
1 + eR(1− eR)E[θ2] + eRE[θ(1− θ(1− eR))]

)
(1− eF )

=1 + eR(1− eR)E[θ2] + eRE[θ(1− θ(1− eR))] = 1 + eRE[θ].

(66)

Substituting (65) and (66) in (63), the agent’s objective function becomes:
U(eF , eR)

=eF (1− eF )γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ

[
µ0θHy − (1− µ0)kθL

](
1 + eRE[θ]

)
− C(eF , 1− eF ).

(67)

Consider the value of U(eF , eR) in (67):

U(eF , eR) =eF (1− eF )γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ

[
µ0θHy − (1− µ0)kθL

](
1 + eRE[θ]

)
−
(

(eF )2

2
+

(1− eF )2

2

) (68)

=γ

[
µ0θHy − (1− µ0)kθL

](
1 + eRE[θ]

)
+

1

2

+eF
(
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+ 1

)
−(eF )2

(
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+ 1

)
,

(69)

that is a monotonic function of eF . To see the reason for monotonicity, note that the first-
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order derivative with respect to eF ∈ [0, 1
2
] is:

(1− 2eF )

(
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+ 1

)
. (70)

Thus, if

γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+ 1 > 0, (71)

then U(eF , eR) in Case 1 is increasing in eF ∈ [0, 1
2
], and it is decreasing otherwise. Therefore,

U(eF , eR) in Case 1 achieves maximum at eF = 1
2
if γ
[
µ0θ

2
Hy − (1 − µ0)kθ

2
L

](
2eRE[θ] −

eR(1−eR)
2

E[θ2]− 1
)

+ 1 > 0, and achieves maximum at eF = eR + ε for small ε > 0 otherwise.
2) Case 2: eF < eR 6 1

2
:

J1 − J2 − J3

=1− eR(1− eR)E[θ2]

2

−1 + eR(1− eR)E[θ2]

−1 + eR(1− eR)E[θ2] + (1− eR)E[θ(1− θeR)] + eRE[θ(1− θ(1− eR))]

=E[θ]− eR(1− eR)

2
E[θ2]− 1.

(72)

J2e
F + J3(1− eF )

=

(
1− eR(1− eR)E[θ2]

)
eF

+

(
1− eR(1− eR)E[θ2]− (1− eR)E[θ(1− θeR)]− eRE[θ(1− θ(1− eR))]

)
(1− eF )

=1− eR(1− eR)E[θ2]−
(
E[θ]− 2eR(1− eR)E[θ2]

)
(1− eF ).

(73)

Substituting (72) and (73) in (63), the agent’s objective function becomes:
U(eF , eR)

=eF (1− eF )γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ

[
µ0θHy − (1− µ0)kθL

](
1− eR(1− eR)E[θ2]−

(
E[θ]− 2eR(1− eR)E[θ2]

)
(1− eF )

)
−C(eF , 1− eF ).

(74)
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Consider the value of U(eF , eR) in (74):

U(eF , eR) =eF (1− eF )γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ

[
µ0θHy − (1− µ0)kθL

](
1− eR(1− eR)E[θ2]−

(
E[θ]− 2eR(1− eR)E[θ2]

)
(1− eF )

)
−
(

(eF )2

2
+

(1− eF )2

2

)

=γ
[
µ0θHy − (1− µ0)kθL

](
1− eR(1− eR)E[θ2]−

(
E[θ]− 2eR(1− eR)E[θ2]

))
+eF

(
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− eR(1− eR)

2
E[θ2]− 1

)
+ γ
[
µ0θHy − (1− µ0)kθL

](
E[θ]− 2eR(1− eR)E[θ2]

)
+ 1

)
−(eF )2

(
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− eR(1− eR)

2
E[θ2]− 1

)
+ 1

)
,

(75)

that is an increasing function of eF . To see the reason for monotonicity, note that the
first-order derivative with respect to eF ∈ [0, 1

2
] is:

γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ
[
µ0θHy − (1− µ0)kθL

](
E[θ]− 2eR(1− eR)E[θ2]

)
+ 1

−2eF
(
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− eR(1− eR)

2
E[θ2]− 1

)
+ 1

)
.

(76)

Given that µ0θ
2
Hy − (1− µ0)kθ

2
L < µ0θHy − (1− µ0)kθL, the derivative is greater than:

γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− 2eR(1− eR)E[θ2]

)
+ 1− 2eF > 0, (77)

which is positive since E[θ]− 2eR(1− eR)E[θ2] for eR ∈ [0, 1
2
] and 1− 2eF > 0 for eF ∈ [0, 1

2
].

Therefore, U(eF , eR) in Case 2 achieves maximum at eF = eR − ε.
3) Case 3: eR = eF 6= 1

2
:
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J1 − J2 − J3

=1− eR(1− eR)E[θ2]

2

−1 + eR(1− eR)E[θ2]− eRE[θ(1− θ(1− eR))]

2

−1 + eR(1− eR)E[θ2]− (1− eR)E[θ(1− θeR)]

2

=
5

2
eR(1− eR)E[θ2]− E[θ]

2
− 1.

(78)

J2e
F + J3(1− eF )

=

(
1− eR(1− eR)E[θ2] +

eRE[θ(1− θ(1− eR))]

2

)
eF

+

(
1− eR(1− eR)E[θ2] +

(1− eR)E[θ(1− θeR)]

2

)
(1− eF )

=1 +
(1− eR)

2
E[θ]− 3eR(1− eR)

2
E[θ2] +

eF

2
(2eR − 1)E[θ].

(79)

Substituting (78) and (79) in (63), the agent’s objective function becomes:
U(eF , eR)

=eF (1− eF )γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
5

2
eR(1− eR)E[θ2]− E[θ]

2
− 1

)
+γ

[
µ0θHy − (1− µ0)kθL

](
1 +

(1− eR)

2
E[θ]− 3eR(1− eR)

2
E[θ2] +

eF

2
(2eR − 1)E[θ]

)
−C(eF , 1− eF ).

(80)

4) Case 4: eR = eF = 1
2
:

J1 − J2 − J3

=1− eR(1− eR)E[θ2]

2

−1 + eR(1− eR)E[θ2]− eRE[θ(1− θ(1− eR))]

2
− (1− eR)E[θ(1− θeR)]

2

−1 + eR(1− eR)E[θ2]− (1− eR)E[θ(1− θeR)]

2
− eRE[θ(1− θ(1− eR))]

2

=
7

2
eR(1− eR)E[θ2]−E[θ]− 1.

(81)
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J2e
F + J3(1− eF )

=

(
1− eR(1− eR)E[θ2] +

eRE[θ(1− θ(1− eR))]

2
+

(1− eR)E[θ(1− θeR)]

2

)
eF

+

(
1− eR(1− eR)E[θ2] +

(1− eR)E[θ(1− θeR)]

2
+
eRE[θ(1− θ(1− eR))]

2

)
(1− eF )

=1 +
E[θ]

2
− 2eR(1− eR)E[θ2].

(82)

Substituting eR = eF = 1
2
, (81) and (82) in (63), the agent’s objective function becomes:

U(eF , eR)

=
1

4
γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
7

8
E[θ2]−E[θ]− 1

)
+γ

[
µ0θHy − (1− µ0)kθL

](
1 +

E[θ]

2
− 1

2
E[θ2]

)
− 1

4
.

(83)

To summarize the four cases, for a given eR ∈ [0, 1
2
] chosen by the rival, the agent is

choosing eF ∈ [0, 1
2
] to maximize the following objective function:

U(eF , eR) = γeF (1− eF )

[
µ0yθ

2
H − (1− µ0)kθ

2
L

](
J1 − J2 − J3

)

+ γ

[
µ0yθH − (1− µ0)kθL

](
J2e

F + J3(1− eF )

)
− C(eF , 1− eF ), (84)

where the values of J2 + J3 − J1 and J3 − J2 are as follows:

J2 + J3 − J1 =



1− 2eRE[θ] + 1
2
eR(1− eR)E[θ2], eR < eF < 1− eR

1−E[θ] + 1
2
eR(1− eR)E[θ2], 1− eF < eR < eF

1−E[θ] + 1
2
eR(1− eR)E[θ2], eF < eR < 1− eF

1− 2(1− eR)E[θ] + 1
2
eR(1− eR)E[θ2], 1− eR < eF < eR

1 + 1
2
E[θ]− 5

2
eR(1− eR)E[θ2], eR = eF 6= 1

2
; eR = 1− eF 6= 1

2

1 +E[θ]− 7
8
E[θ2], eR = eF = 1− eF = 1

2

.
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J3 − J2 =



0, eR < eF < 1− eR

E[θ]− 2eR(1− eR)E[θ2], 1− eF < eR < eF

−E[θ] + 2eR(1− 2eR)E[θ2], eF < eR < 1− eF

0, 1− eR < eF < eR

1
2
(1− 2eR)E[θ], eR = eF 6= 1

2

1
2
(2eR − 1)E[θ], eR = 1− eF 6= 1

2

0, eR = eF = 1− eF = 1
2

.

Step 3. Proof of Lemma 1. To characterize necessary and sufficient conditions for
the specialization equilibrium, we determine the best response function to eR = 0. Thus,
we compare the value of U(eF , 0) in Case 1 given by (67) and the value of U(0, 0) in Case 3
given by (80). Recalling analysis of Case 1 at Step 2, U(eF , eR) in Case 1 achieves maximum
at eF = 1

2
if γ
[
µ0θ

2
Hy − (1 − µ0)kθ

2
L

](
2eRE[θ] − eR(1−eR)

2
E[θ2] − 1

)
+ 1 > 0 (see condition

(71)), and achieves maximum at eF = eR + ε for small ε > 0 otherwise.
Evaluating the condition (71) at eR = 0, U(eF , eR) in Case 1 achieves maximum value ofγ
[
µ0θHy − (1− µ0)kθL

]
− 1

4
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
− 1

4
if γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
< 1;

γ
[
µ0θHy − (1− µ0)kθL

]
− ε(1− ε)γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
− ( ε

2

2
+ (1−ε)2

2
) otherwise.

The value of the utility function in Case 3 is U(0, 0) = γ
[
µ0θHy−(1−µ0)kθL

](
1+E[θ]

2

)
− 1

2
.

Therefore, there are two possibilities depending on which utility function is greater:
The best response to a specializing agent is to specialize as well, eF (0) = 0, if
(Scenario 1 ) either γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
< 1 and

γ
[
µ0θHy−(1−µ0)kθL

]
− 1

4
γ
[
µ0θ

2
Hy−(1−µ0)kθ

2
L

]
− 1

4
< γ

[
µ0θHy−(1−µ0)kθL

](
1+

E[θ]

2

)
− 1

2
;

(85)
(Scenario 2 ) or γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
> 1 and

γ
[
µ0θHy − (1− µ0)kθL

]
− ε(1− ε)γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
− (

ε2

2
+

(1− ε)2

2
)

< γ
[
µ0θHy − (1− µ0)kθL

](
1 +

E[θ]

2

)
− 1

2
.

(86)

Note first that condition (85) can be rewritten as

1− 2E[θ]γ
[
µ0θHy − (1− µ0)kθL

]
< γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
. (87)
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Thus, combining the two conditions in Scenario 1, the best response to a specializing agent
is to specialize as well, eF (0) = 0, if

1− 2E[θ]γ
[
µ0θHy − (1− µ0)kθL

]
< γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
< 1. (88)

Note second that condition (86) is automatically satisfied for small ε > 0. Therefore, in
Scenario 2, the only relevant condition is

γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
> 1. (89)

Combining (88) and (89), we conclude that the best response to a specializing agent is
to specialize as well, eF (0) = 0, if

1− 2E[θ]γ
[
µ0θHy − (1− µ0)kθL

]
< γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
. (90)

This completes the proof of Lemma 1. Q.E.D.

Step 4. Proof of Lemma 2. To prove Lemma 2, we compare the value of U(eF , eR)

in Case 1 given by (67), the value of U(eF , eR) in Case 2 given by (74), and the value of
U(eF , eR) in Case 3 given by (80). We first compare the three values and establish that the
value of U(eF , eR) in Case 2 is smaller than the value of U(eF , eR) in Case 3. Then, we derive
conditions for the value of U(eF , eR) in Case 3 to be greater than in Case 1.

(Case 1 ) Recalling analysis of Case 1 at Step 2, U(eF , eR) in Case 1 achieves maximum
at eF = 1

2
if γ
[
µ0θ

2
Hy − (1 − µ0)kθ

2
L

](
2eRE[θ] − eR(1−eR)

2
E[θ2] − 1

)
+ 1 > 0 (see condition

(71)),

U(
1

2
, eR) =

1

4
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ
[
µ0θHy − (1− µ0)kθL

](
1 + eRE[θ]

)
− 1

4
.

(91)

and achieves maximum at eF = eR + ε for small ε > 0 otherwise,
U(eR + ε, eR)

=(eR + ε))
(
1− (eR + ε))

)
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ
[
µ0θHy − (1− µ0)kθL

](
1 + eRE[θ]

)
−
(

(eR + ε)2

2
+

(1− eR − ε)2

2

)
.

(92)
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(Case 2 ) Recalling analysis of Case 2 at Step 2, U(eF , eR) given by (74) achieves maximum
at eF = eR − ε,

U(eR − ε, eR)

=(eR − ε))
(
1− (eR − ε))

)
γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ

[
µ0θHy − (1− µ0)kθL

](
1− eR(1− eR)E[θ2]−

(
E[θ]− 2eR(1− eR)E[θ2]

)
(1− (eR − ε)))

)
−
(

(eR − ε)2

2
+

(1− (eR − ε)))2

2

)
.

(93)

(Case 3 ) Evaluating the value of (80) at eF = eR, the utility function in Case 3 is:
U(eR, eR)

=eR(1− eR)γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](5

2
eR(1− eR)E[θ2]− E[θ]

2
− 1

)
+γ
[
µ0θHy − (1− µ0)kθL

](
1 +

(1− 2eR + 2(eR)2)

2
E[θ]− 3eR(1− eR)

2
E[θ2]

)
−
(

(eR)2

2
+

(1− eR)2

2

)
.

(94)

We prove that the value of U(eF , eR) in Case 2 is smaller than the value in Case 3. Since
eR(1 − eR) is an increasing function of eR on [0, 1

2
], the sufficient condition for the value in

(93) to be smaller than the value in (94) can be written as:

eR(1− eR)γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
E[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ
[
µ0θHy − (1− µ0)kθL

](
1− eR(1− eR)E[θ2]−

(
E[θ]− 2eR(1− eR)E[θ2]

)
(1− eR)

)
<eR(1− eR)γ

[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](5

2
eR(1− eR)E[θ2]− E[θ]

2
− 1

)
+γ
[
µ0θHy − (1− µ0)kθL

](
1 +

(1− 2eR + 2(eR)2)

2
E[θ]− 3eR(1− eR)

2
E[θ2]

)
.

(95)

50



We then simplify the condition (95) above as

eR(1− eR)γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]3
2

(
E[θ]− 2eR(1− eR)E[θ2]

)
<γ
[
µ0θHy − (1− µ0)kθL

]1
2

(
(3− 4eR + 2(eR)2)E[θ]− eR(1− eR)(3− 2eR)E[θ2]

)
,

(96)

which can be rewritten after substituting eR(1− eR) with 1
4
on the left-hand side (to achieve

the highest value) as:

1

4
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]3
2

(
E[θ]− 2eR(1− eR)E[θ2]

)
<γ
[
µ0θHy − (1− µ0)kθL

]1
2

(
(3− 4eR + 2(eR)2)E[θ]− eR(1− eR)(3− 2eR)E[θ2]

)
,

(97)

γE[θ]

([
µ0θHy − (1− µ0)kθL

]
2

(3− 4eR + 2(eR)2)−
3
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
8

)
>

γE[θ2]eR(1− eR)

(
3
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
4

−
[
µ0θHy − (1− µ0)kθL

]
(3− 2eR)

2

)
,

(98)

which holds since
[
µ0θHy − (1− µ0)kθL

]
>
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

]
and eR(1− eR) 6 1

4
.

In Lemma 1, we established that, if (71) holds at eR = 0, then utility in Case 3 is grater
than in Case 1. Since both the utilities in Case 1 and Case 3 are continuous, there exists a
value of eR called eM , such that utility in Case 3 is grater than in Case 1 for eR 6 eM :

1

4
γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](
2eRE[θ]− eR(1− eR)

2
E[θ2]− 1

)
+γ
[
µ0θHy − (1− µ0)kθL

](
1 + eRE[θ]

)
− 1

4

<eR(1− eR)γ
[
µ0θ

2
Hy − (1− µ0)kθ

2
L

](5

2
eR(1− eR)E[θ2]− E[θ]

2
− 1

)
+γ
[
µ0θHy − (1− µ0)kθL

](
1 +

(1− 2eR + 2(eR)2)

2
E[θ]− 3eR(1− eR)

2
E[θ2]

)
−
(

(eR)2

2
+

(1− eR)2

2

)
.

(99)

This completes the proof of Lemma 2. Q.E.D.
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