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1 Introduction

Part of a ship’s cargo is voluntarily jettisoned in order to save the vessel and the remaining

cargo from imminent peril. How should the loss be shared among the cargo owners?

The law of general average, an ancient principle of the general maritime law of nations,

prescribes that the owners share the loss in proportion to the respective values of their cargo.

Its roots can be traced back to a provision of Roman law, Digest XIV.2.1, which cites the

Rhodian law of jettison: “The Rhodian law provides that if cargo has been jettisoned in

order to lighten a ship, the sacrifice for the common good must be made good by common

contribution” (Watson 1998, p. 419). Modern courts have interpreted this maxim to require

pro rata contribution.1 A contemporary statement of the law of general average, which is

also known simply as general average, is set forth in Zim Israel Navigation Co., Ltd. v. 3-D

Imports, Inc., 29 F. Supp. 2d 186, 190 (S.D.N.Y. 1998) (citations omitted):

“General Average is an ancient doctrine, referring to rules apportioning loss

suffered by cargo owners whose goods are sacrificed in a maritime adventure. . . .

[W]hen one partner in the adventure sacrifices its cargo or incurs expenses for

the general safety of the ship and other cargo, the loss is assessed against all

participants in proportion to their respective share in the adventure. Today,

contribution in General Average is recognized by all major maritime nations.”

Prior work by Landes and Posner (1978, pp. 106-108) showed that the law of general

average has important efficiency properties. Their model, however, assumed cargo values

are public information, whereas they often are private information. Consequently, Landes

and Posner analyzed only the incentives provided by the law of general average for the ship

master’s decisions regarding which and how much cargo to jettison. They showed that the

general average principle gives the master the incentive to minimize the collective loss “by

selecting the lowest-valued (per lb.) goods to jettison.” But they did not consider the

incentives it provides owners for truthful reporting of cargo values.

Epstein (1993, pp. 582-584) recognized that the “secret” to making the general average

mechanism “work,” in the sense of enabling the master to minimize the collective loss, is

to get truthful reporting of cargo values.2 (In fact, truthful reporting is sufficient, but not

necessary, to enable the master to minimize the collective loss. What’s necessary is truthful

ordering, i.e., the owners’ declared values must be in the same rank order as their true values.)

1See, e.g., Cia. Atlantica Pacifica, S.A. v. Humble Oil & Refining Co., 274 F. Supp. 884, 891 (D. Md. 1967)
(“The principle embodied in this maxim [is] that loss for the common benefit which is incurred by one who
partakes in a maritime venture should be shared ratably by all who participate in the venture. . . .”). See
also Empire Stevedoring Co. v. Oceanic Adjusters, Ltd., 315 F. Supp. 921, 927 (S.D.N.Y. 1970).

2See also Gregory, Kalven, and Epstein (1977, pp. 35-36).
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Epstein offered intuition for why the law of general average gives owners the right incentives

for truthful reporting. However, he did not provide a formal game-theoretic treatment or

welfare analysis of the general average mechanism.

We model the general average game and analyze whether the law of general average

is a truthful and efficient mechanism. That is, we investigate whether the law of general

average induces truthful reporting of cargo values and yields a Pareto efficient allocation

in equilibrium. We show that truthful reporting is not a Bayesian Nash equilibrium of the

general average game if owners have heterogeneous expected utility preferences, but that

truthful reporting is the unique Nash equilibrium if owners have maxmin utility preferences.

We further show that in the expected utility case, (i) the law of general average does not yield

a Pareto efficient allocation in equilibrium because it does not induce truthful ordering (let

alone truthful reporting) in equilibrium,3 and (ii) even with truthful reporting, an allocation

prescribed by the law of general average, which ipso facto entails proportional loss sharing,

is Pareto efficient if and only if owners have identical (up to a positive scalar) CRRA utility

functions.4 In the maxmin utility case, by contrast, the law of general average not only

induces truthful reporting, it also (mechanically) yields a Pareto efficient allocation.5

In addition to contributing to the niche literature on the economics of general average,

our paper makes contributions to two broader literatures in economics and law.

The first is the economics of mutual insurance. The paper most closely related to ours

is Cabrales, Calvó-Armengol, and Jackson (2003) which analyzes a mutual fire insurance

mechanism in Andorra called La Crema. In the La Crema game, each homeowner reports

the value of his house. In case of a fire, one or more houses burn down, where nature

determines which and how many houses burn. Each owner of a burned house receives his

reported value, which is paid by all homeowners (including himself) in proportion to their

reported values. The general average game is similar. Each cargo owner declares the value

of her cargo. In an emergency, cargo is jettisoned in ascending order of declared value,

where nature determines how much cargo must be jettisoned. Each owner of jettisoned

cargo receives her declared value, which is paid by all cargo owners (including herself) in

proportion to their declared values. The key difference between the two games is that in

the La Crema game whether an owner’s house burns down is independent of the reported

values, whereas in the general average game whether an owner’s cargo is jettisoned depends

on all the declared values including her own.

3Without truthful ordering, the master cannot minimize the collective loss.
4The acronym CRRA stands for constant relative risk aversion.
5We say “mechanically” because there is no risk sharing in the maxmin case; there is only one utility-

relevant state (the worst-case state) and the law of general average exhausts all resources in every state.
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The second broader literature to which we contribute is the economics of ancient law.

A prime example is Aumann and Maschler (1985) which presents a game-theoretic analysis

of a bankruptcy problem in the Babylonian Talmud and shows that the Talmudic solution

coincides with the nucleolus of the corresponding coalitional game. The principle underlying

the Talmudic solution is not proportional division. Still, the Talmudic bankruptcy problem

and the general average problem are similar in that the core question is how to divide a

residual among claimants whose claims sum to more than the total value of the residual.

Miller (2010) collects two dozen contributions to this literature which cover a wide range of

topics including ancient liability systems, family law, land law, and criminal law.

The remainder of the paper proceeds as follows. Section 2 is a brief primer on the law

of general average. Section 3 describes the general average game. Sections 4 and 5 present

our equilibrium results for the cases where cargo owners have expected utility preferences

(the Bayesian game) and where owners have maxmin utility preferences (the maxmin game),

respectively. Section 6 presents our efficiency results for both cases. Section 7 concludes the

paper with a discussion in which we compare and contrast our results with those of Cabrales,

Calvó-Armengol, and Jackson (2003), suggest why maxmin behavior may be reasonable in

the general average context, and point to directions for future research. The appendix collects

selected proofs.

2 The Law of General Average

In maritime law, the term “average” means damage or loss (Shoenbaum 2011, p. 253). It is an

anglicization of the French nautical term avarie, which in turn derives from the Arabic word

‘awār through the Latin (and later Italian) avaria (Healy and Sharpe 1999, p. 760; Khalilieh

2006, p. 150). The term “general average” refers to a collective loss. It is the loss incurred

when, for the benefit of all parties with a financial interest in the voyage, part of a ship or its

cargo is voluntarily sacrificed to avoid a common imminent peril (Chamberlain 1940, p. 89).

Under the law of general average, the parties share the collective loss in proportion to the

values of their respective interests (Healy and Sharpe 1999, p. 761; Khalilieh 2006, p. 151).6

The principle embodied in the law of general average dates back to antiquity.7 The

Babylonian Talmud, Bava Kamma 116b, articulates the principle in the context of land

caravans: “If a caravan was traveling through the wilderness and a band of robbers threatened

to plunder it, the apportionment [for buying them off] will have to be made according with

6See also, e.g., Rose (1997, p. 2); Robertson, Friedell, and Stuckey (2001, p. 426).
7Some commentators suggest that general average may go back to the Phoencians (circa 1200-800 BCE),

the Babylonians (circa 2000 BCE), or even earlier. See, e.g., Orient Mid-East Lines, Inc. v. Shipment of
Rice on Board S.S. Orient Transporter, 496 F.2d 1032, 1034 (5th Cir. 1974); Kruit (2017, pp. 23-24).
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the [value] of possessions [in the caravan]” (Friedell 1996, p. 656). A snippet of Roman law,

Digest XIV.2.1, which references the Rhodian law of jettison, is the earliest statement of

the principle in the maritime context: “The Rhodian law provides that if cargo has been

jettisoned in order to lighten a ship, the sacrifice for the common good must be made good by

common contribution” (Watson 1998, p. 419). The principle was incorporated into Islamic

legal codes from the eighth century (Khalilieh 2006, p. 160). Later statements appear in

medieval European maritime codes such as the Rolls of Oleron and the Laws of Wisby,

and also in early modern European maritime codes such as the Guidon de la Mer and the

Ordonnance de la Marine (Barclay 1891; Lowndes, de Hart, and Rudolf 1912, pp. 4-16).

By the turn of the nineteenth century, the law of general average had been incorporated

into the English common law (Lowndes, de Hart, and Rudolf 1912, pp. 18 & 21). Justice

Lawrence of the King’s Bench gave the following definition in Birkley v. Presgrave, [1801]

1 East 220, 228: “All loss which arises in consequence of extraordinary sacrifices made or

expenses incurred for the preservation of the ship and cargo comes within general average,

and must be borne proportionably by all who are interested” (Lowndes, de Hart, and Rudolf

1912, p. 21).8

In McAndrews v. Thatcher, 70 U.S. 347, 366 (1865), the United States Supreme Court

defined the law of general average as follows:

“[W]here two or more parties are in a common sea risk, and one of them makes

a sacrifice or incurs extraordinary expenses for the general safety, the loss or

expenses so incurred shall be assessed upon all in proportion to the share of each

in the adventure; or, in other words, the owners of the other shares are bound to

make contribution in the proportion of the value of their several interests.”9

Three requirements must be met for a loss to qualify for general average contribution: “First,

that the ship and cargo should be placed in a common imminent peril; secondly, that there

8See also The Copenhagen, [1799] 1 Chr. Rob. 289, in which Lord Stowell of the Admiralty Court wrote:
“General average is for a loss incurred, towards which the whole concern is bound to contribute pro rata,
because it was undergone for the general benefit and preservation of the whole” (Lowndes, de Hart, and
Rudolf 1912, p. 18).

9See also Star of Hope, 76 U.S. 203, 228 (1869); Fowler v. Rathbones, 79 U.S. 102, 114 (1870); Hobson
v. Lord, 92 U.S. 397, 404 (1875); Ralli v. Troop, 157 U.S. 386, 395 (1895). The earliest general average
cases in the U.S. Supreme Court were Columbian Ins. Co. v. Ashby, 38 U.S. 331, 338 (1839), and Barnard
v. Adams, 51 U.S. 270 (1850). The first reported general average case in an American court was Brown
v. Cornwell, 1 Root (Conn.) 60 (1773). The vessel in that case sprung a leak during storm on Christmas
Eve while sailing to St. Croix. Five horses stowed on deck were thrown overboard in order to save the ship
and the cargo stowed below. The court held that the owner of the jettisoned horses was entitled to general
average contribution from the owners of the saved cargo.
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should be a voluntary sacrifice of property to avert that peril; and, thirdly, that by that

sacrifice the safety of the other property should be presently and successfully attained.”10

The archetypal general average case involves the jettison of cargo.11 The following are a

handful of examples from reported cases in American courts:12

• The steamship Allianca declared general average after jettisoning 100 cases of turpen-

tine during her voyage from New York to Rio de Janeiro in June 1889.13

• The schooner Ernestina, which sailed from San Juan, Puerto Rico in November 1917

laden with general cargo of merchandise, declared general average after jettisoning a

portion of the cargo to refloat the ship after it sprung a leak during a violent storm.14

• The vessel Odysseus III, while on a voyage from Cuba to Tampa, Florida in 1946,

jettisoned part of its cargo of pineapples in order to the save the ship during a storm.

The owner of the jettisoned cargo sued the vessel for general average contribution.15

• The vessel William G. Osment, while transporting lumber from Nicaragua to Curaçao

in June 1951, jettisoned its deck cargo to save the ship and other cargo from total loss.

The owner of the deck cargo sued the vessel for general average contribution.16

• The steamship Columbia Brewer declared general average on June 24, 1970 after jetti-

soning part of its cargo of bulk sugar in order to lighten the vessel after running aground

on a shoal off Old Providence Island while en route from Hawaii to New Orleans.17

Although the jettison of cargo is the classic example, the law of general average applies to

other losses as well,18 including sacrifices of part of the vessel such as the cutting away of

the mast,19 and extraordinary expenses incurred for the joint benefit of the vessel and cargo

10Columbian Ins. Co. v. Ashby, 38 U.S. 331, 338 (1839). See also, e.g., Barnard v. Adams, 51 U.S. 270
(1850); Ralli v. Troop, 157 U.S. 386 (1895).

11See Ralli v. Troop, 157 U.S. 386, 393 (1895); Rose (1997, p. 5); Kruit (2017, p. 23).
12Another example is Brown v. Cornwell, 1 Root (Conn.) 60 (1773), discussed supra note 9.
13See Commercial Union Ins. Co. v. Proceeds of the Allianca, 64 F. 871 (S.D.N.Y. 1894).
14See Bravo v. St. Paul Fire & Marine Ins. Co., 259 F. 772 (1st Cir. 1919).
15See The Odysseus III, 77 F. Supp. 297 (S.D. Fla. 1948).
16See Nicaraguan Long Leaf Pine Lumber Co. v. Moody, 211 F.2d 715 (5th Cir. 1954). A similar case is

The Hettie Ellis, 20 F. 393 (E.D. La. 1884), aff’d, 20 F. 507 (C.C.E.D. La. 1884).
17See California & Hawaiian Sugar Co. v. Columbia Steamship Co., Inc., 391 F. Supp. 894 (E.D. La. 1972),

aff’d, 510 F.2d 542 (5th Cir. 1975).
18For a non-exhaustive list, see Rose (1997, p. 5).
19See Ralli v. Troop, 157 U.S. 386, 393 (1895).
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such as those sustained in freeing the ship from the strand of a river,20 capture by pirates,21

or the wreckage of a collapsed bridge.22

While the law of general average is part of the general maritime law of nations, interna-

tional maritime interests have created a set of rules to harmonize general average practice

around the world (Robertson, Friedell, and Stuckey 2001, p. 426). The first version of these

rules was known as the Glasgow Resolutions 1860 (Lowndes, de Hart, and Rudolf 1912,

pp. 41-44). The current version is known as the York-Antwerp Rules 2016. These rules have

never been adopted by treaty and do not have the force of law; however, they are widely

incorporated in bills of lading and courts generally enforce them as binding terms of contract

between the parties (Gilmore and Black 1975, pp. 252-253; Robertson, Friedell, and Stuckey

2001, p. 426; Shoenbaum 2011, pp. 256-257).23

General average is recognized by marine commentators as a “risk spreading or burden

sharing mechanism. One could even say that it is a kind of mutual insurance for the parties

interested in the maritime adventure, which already existed before the insurance concept

as we know it today was introduced” (Kruit 2017, p. 22).24 Marine insurance proper was

first developed in the thirteenth and fourteenth centuries (Wilson and Cooke 1997, p. 683).

Notwithstanding the development of modern marine insurance, the law of general average

continues to operate today. Moreover, general average rights and obligations exist and are

determined independently of any marine insurance held by the parties. As Justice Gorell

Barnes stated in The Brigella, [1893] P. 189, 195-196: “[T]he obligation to contribute in

general average exists between the parties to the adventure, whether they are insured or not.

20See Navigazione Generale Italiana v. Spencer Kellogg & Sons, 92 F.2d 41 (2d Cir. 1937).
21See Mitsui & Co. Ltd. v. Beteiligungsgesellschaft LPG Tankerflotte MBH & Co. KG, [2017] UKSC 68.
22The cargo ship Dali declared general average on April 17, 2024 after knocking down the Francis Scott

Key Bridge in Baltimore three weeks prior (Gardner 2024).
23The York-Antwerp Rules 2016 are available at comitemaritime.org. They have three parts. Two prefa-

tory rules form the first part. The second part comprises seven rules lettered A through G that specify
basic principles. The third part contains 23 rules numbered I through XXIII that cover specific types of
losses. Because our general average game features the jettison of cargo, we highlight two rules pertaining to
cargo lost by sacrifice. First, Rules XVI(a)(i) & XVII(a)(i) together provide that the amount to be allowed
as general average, and the contribution to a general average, shall be based on the value at the time of
shipment, unless there is a commercial invoice rendered to the receiver, in which case it shall be based on
the value at the time of discharge. Second, Rule XIX(b) provides that “[w]here goods have been wrongfully
declared at the time of shipment at a value which is lower than their real value, any general average loss
or damage shall be allowed on the basis of their declared value, but such goods shall contribute on the
basis of their actual value.” In our general average game, we consider the situation where the true values
are the cargo owners’ private information, and hence we posit that recovery amounts for jettisoned cargo,
and contribution amounts for all cargo, are based on the declared values at the time of shipment. This is
consistent with Rules XVI(a)(i) & XVII(a)(i), but seemingly inconsistent with Rule XIX(b); however, when
cargo values are private information, Rule XIX(b) is facially inoperable.

24See also Wilson and Cooke (1997, p. 683).
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The circumstance of a party being insured can have no influence upon the adjustment of

general average, the rules of which . . . are entirely independent of insurance.”25

3 The General Average Game

There is a set N = {1, . . . , N} of N > 2 cargo owners. Each owner i ∈ N ships one cargo box

with unit weight on the same vessel. Without loss of generality, we normalize each owner’s

initial wealth to zero, apart from her cargo box. Each owner i has a utility function Ui that is

strictly increasing, strictly concave, and twice differentiable. To capture heterogeneity in risk

preferences, we assume that none of the owners’ utility functions are cardinally equivalent.

That is, we assume Ui is not a positive affine transformation of Uj for all i, j ∈ N , i ̸= j.26

The true value of owner i’s cargo box is ti ∈ [0, t] where t > 0. The true value ti is

owner i’s private information. The true values are independent and identically distributed

according to a positive probability density function ft with support [0, t]. Consequently,

with probability one, there are no ties among the true values. Let t = (t1, . . . , tN) denote

the vector of true values and T =
∑N

i=1 ti denote the total true value of the cargo boxes. For

the vector of true values, we sometimes use the notation t = (ti, t−i) where t−i ∈ [0, t]N−1 is

the subvector of true values other than ti.

At the outset of the venture, the owners privately declare the values of their cargo boxes

to the master of the vessel. We assume that the master subsequently publishes the declared

values. This assumption is without loss of generality, however, because no further strategic

decisions are made in the game. Other than the true values, which are the owners’ private

information, we assume that all other aspects of the game are common knowledge.

Let vi ∈ [0, t] denote the declared value of owner i’s cargo box, v = (v1, . . . , vN) denote

the vector of declared values, and V =
∑N

i=1 vi denote the total declared value of the cargo

25See also Shaver Transp. Co. v. Travelers Indem., 481 F. Supp. 892, 897 (D. Or. 1979) (“General average
contribution exists independently of marine insurance and is owed even in the absence of cargo insurance.”);
Parks (1987, p. 620) (“[G]eneral average is not part of the law of marine insurance; . . . rights to contribution
are not affected by the presence or absence of marine insurance coverage.”). Nowadays, cargo owners typically
insure themselves against liability for general average contribution and loss from general average sacrifice of
their cargo (in which case the insurer is subrogated to the owner’s right to general average contribution).
See generally Parks (1987, pp. 620-628); Wilson and Cooke (1997, sec. 7); Rose (1997, ch. 7). See also Young
et al. (1995, sec. 66). We abstract from cargo insurance in the model; however, we do not believe that adding
it would change the basic insights provided that insurers have the same information as owners.

26This assumption is actually stronger than we need. For purposes of our results, it would suffice to assume
that at least one owner’s utility function is cardinally unique from the rest. The case of heterogeneity is
arguably the interesting case, as there is ample evidence of heterogeneity in risk preferences in insurance
settings (see, e.g., Cohen and Einav 2007; Einav et al. 2012; Barseghyan, Prince, and Teitelbaum 2011;
Barseghyan et al. 2013; Barseghyan, Molinari, and Teitelbaum 2016; Barseghyan et al. 2021), including in
mutual insurance settings (e.g., Mazzocco and Saini 2012; Chiappori et al. 2014).
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boxes. For the vector of declared values, we sometimes use the notation v = (vi, v−i) where

v−i ∈ [0, t]N−1 is the subvector of declared values other than vi.

The owners’ declarations—and the realization of a random tie-breaking rule r applied

to break any ties among them—induce a strict ordering of the cargo boxes. Assume r is

distributed according to a probability mass function fr with support Ψ(N ), where Ψ(N )

denotes the set of all permutations of N . A realization of r is a randomly selected ordering

of the cargo owners.27 Thus, for any and all sets of tied declarations, a realization of r can

be applied to strictly order such declarations. Let ni(v, r) denote the place of owner i’s cargo

box in the ascending order of declared values. (For the avoidance of doubt, all references to

“the ascending order of declared values” or “in ascending order of declared value” refer to

such order with any ties broken.) We assume that the master labels each cargo box with its

owner’s identity, declared value, and place in the ascending order of declared values.

In an emergency, the master jettisons cargo boxes in ascending order of declared value.

Let Θ = {0, . . . , N} and θ ∈ Θ denote the number of cargo boxes that must be jettisoned

in order to save the vessel and the remaining cargo. Assume θ is distributed according to

a probability mass function fθ with support Θ. Owner i’s cargo box is jettisoned if and

only if ni(v, r) ≤ θ. Let Jv(v, θ) denote the total declared value of the cargo boxes that

are jettisoned (i.e., the sum of their declared values) and Pv(v, θ) = Jv(v, θ)/V denote the

proportion of the total declared value that is jettisoned. Similarly, let Jt(t, v, r, θ) denote the

total true value of the cargo boxes that are jettisoned (i.e., the sum of their true values) and

Pt(t, v, r, θ) = Jt(t, v, r, θ)/T denote the proportion of the total true value that is jettisoned.28

Note that while Pv(v, θ) is common knowledge, Pt(t, v, r, θ) is unknown to all.

Under the law of general average, which prescribes proportional sharing of the collective

loss, owner i’s final wealth equals vi−viPv(v, θ) if her cargo box is jettisoned and ti−viPv(v, θ)

if her cargo box is not jettisoned. That is, owner i’s payoff is

ci =

{
vi − viPv(v, θ) if ni(v, r) ≤ θ

ti − viPv(v, θ) if ni(v, r) > θ
. (1)

In what follows, we sometimes refer to the first component of owner i’s payoff, vi or ti (as the

case may be), as her recovery, and to the second component, viPv(v, θ), as her contribution.

Observe that the law of general average is a strongly budget-balanced mechanism. Accord-

27The only requirement that fr must satisfy is that all permutations must have positive probability.
28Note that the total declared value of the cargo boxes that are jettisoned does not depend on r because

it only affects the ordering of cargo boxes with equal declared values. By contrast, the total true value of
the cargo boxes that are jettisoned does depend on r because, with probability one, cargo boxes with equal
declared values have unequal true values.

8



ingly, summing the payoffs across all owners for any given θ, we obtain (1−Pt(t, v, r, θ))T .
29

Thus, the outcome of the general average game is an allocation among the owners of the

total true value of the cargo boxes that are not jettisoned.

4 Equilibrium of the Bayesian Game

Assume cargo owners have expected utility preferences. In this case the general average

game is a standard Bayesian game. Each owner i ∈ N knows the true value of her cargo box

ti ∈ [0, t] (and all other aspects of the game other than t−i). Her declaration, therefore, is a

function bi : [0, t] → [0, t]. The declaration function bi is effectively owner i’s strategy. Let

b = (b1, . . . , bN) denote the vector of declaration functions. We sometimes use the notation

b = (bi, b−i) where b−i refers to the subvector of all declaration functions other than bi, and

we sometimes write bi as bi(·) to emphasize that it is a function.30 In equilibrium, for every

owner i ∈ N , (I) it is as if she knows the declaration functions b−i(·) of the other owners,

and hence knows their declarations v−i = b−i(t−i) conditional on any t−i ∈ [0, t]N−1, and

(II) her declaration vi = bi(ti) must maximize her expected payoff given b−i(·).
As we note in section 1, truthful reporting, i.e., bi(ti) = ti for all i ∈ N and ti ∈ [0, t],

is sufficient, but not necessary, to enable the master to minimize the owners’ collective loss.

What’s necessary is truthful ordering, i.e., the owners’ declared values must be in the same

rank order as their true values.

Definition 1 The cargo owners’ declared values have a truthful order if and only if

ti < tj ⇐⇒ bi(ti) < bj(tj) (2)

for all i, j ∈ N and ti, tj ∈ [0, t].

The following lemma, the formal proof of which is set forth in section A.2 of the appendix,

establishes that if the declared values have a truthful order, then every owner must have the

same declaration function.

Lemma 1 If the declared values have a truthful order, then bi(·) = bj(·) for all i, j ∈ N .

Moreover, bi(·) is a strictly increasing function for all i ∈ N .

We now can state the following result.

29See section A.1 in the appendix.
30For the same reason, we sometimes write other functions in this way as well—e.g., Ui(·).
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Proposition 1 If cargo owners have expected utility preferences, then there does not exist a

Bayesian Nash equilibrium of the general average game in which the owners’ declared values

have a truthful order.

Observe that truthful reporting implies truthful ordering (but not vice versa). Hence, if we

do not have truthful ordering in equilibrium, then we do not have truthful reporting either.

Corollary 1 If cargo owners have expected utility preferences, then there does not exist a

Bayesian Nash equilibrium of the general average game in which all owners truthfully declare

the values of their cargo boxes.

The proof of proposition 1 is set forth in section A.3 of the appendix. The following is

a sketch of the argument. Assume the owners’ declared values have a truthful order. With

probability one, therefore, there are no ties among the declared values (which renders moot

the tie-breaking rule r). Take any owner i ∈ N and any declaration functions b−i(·) for the
other owners. Owner i’s declaration problem is

max
vi∈[0,t]

Πi(vi, ti) = E
t−i,θ

[Ui(ci(vi, ti, b−i(t−i), θ))] (3)

where we now write owner i’s payoff ci as ci(vi, ti, b−i(t−i), θ) to make explicit the variables

on which it depends and to reflect that the other owners’ declared values v−i depend on their

true values t−i via their declaration functions b−i(·):

ci(vi, ti, b−i(t−i), θ) =

{
vi − viPv(vi, b−i(t−i), θ) if ni(vi, v−i) ≤ θ

ti − viPv(vi, b−i(t−i), θ) if ni(vi, v−i) > θ
. (4)

Observe that owner i can compute her expected payoff Πi(vi, ti) for any declaration vi as she

knows the distributions of t−i and θ. The solution to problem (3) is v∗i = b∗i (ti) and must

satisfy a set of first-order conditions.31 However, because Ui is not cardinally equivalent to

Uj for any other owner j ∈ N , the solution for another owner j ∈ N is v∗j = b∗j(tj) where

b∗j(·) ̸= b∗i (·), which contradicts lemma 1. Hence, the owners’ declared values cannot have a

truthful order in equilibrium, and so we do not have truthful reporting in equilibrium either.

Remark Proposition 1 continues to hold when the number of cargo owners is “large,”

provided there is still heterogeneity is risk preferences. (This is clear from the proof as well

as in the intuition above.) In a large society, all that is needed is a positive measure of

owners with utility functions that are cardinally unique from the rest.

31See equation (A.2) in the appendix.
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5 Equilibrium of the Maxmin Game

In the previous section, we showed that there does not exist a truthful equilibrium of the

general average game if cargo owners have expected utility preferences. In this section, by

contrast, we establish the following result.

Proposition 2 If cargo owners have maxmin utility preferences, then truthful declarations

by all owners is the unique Nash equilibrium of the general average game.

Assume owners have maxmin utility preferences. Given any declarations v−i by the other

owners, owner i’s declaration problem is

max
vi∈[0,t]

min
v−i∈[0,t]N−1

r∈Ψ(N )
θ∈Θ

{
Ui(vi − viPv(vi, v−i, θ)) if ni(vi, v−i, r) ≤ θ

Ui(ti − viPv(vi, v−i, θ)) if ni(vi, v−i, r) > θ
.

In other words, the owner chooses her declaration vi to maximize her payoff assuming the

worst-case combination of the declarations by the other owners v−i, the realization of the

tie-breaking rule r, and the number of cargo boxes that are jettisoned θ.

Observe that if θ ∈ {0, N}, the owner’s payoff does not depend on her declaration vi.

After all, if no cargo boxes are jettisoned then her payoff is ti, and if all cargo boxes are

jettisoned then her payoff is zero.32 Thus, defining Θ = {1, . . . , N − 1}, the owner’s non-

degenerate problem is

max
vi∈[0,t]

min
v−i∈[0,t]N−1

r∈Ψ(N )

θ∈Θ

{
Ui(vi − viPv(vi, v−i, θ)) if ni(vi, v−i, r) ≤ θ

Ui(ti − viPv(vi, v−i, θ)) if ni(vi, v−i, r) > θ
. (5)

Looking at problem (5), we can see that, given vi, whether or not owner i’s cargo box

is jettisoned, the worst-case combination of v−i and θ is the combination that yields the

maximum value of P (vi, v−i, θ). The following lemma establishes that this value is (N−1)/N .

Lemma 2 Take any vi ∈ [0, t]. Suppose v−i ∈ [0, t]N−1, r ∈ Ψ(N ), and θ ∈ Θ. Then the

maximum value that Pv(vi, v−i, θ) can achieve is (N−1)/N . This value is achieved by setting

vj = vi for all j ∈ N , j ̸= i, and θ = N − 1.

The proof of lemma 2 is set forth in section A.4 in the appendix.

32Formally, if θ = 0 then Pv(vi, v−i, θ) = 0 and hence ti − viPv(vi, v−i, θ) = ti, and if θ = N then
Pv(vi, v−i, θ) = 1 and hence vi − viPv(vi, v−i, θ) = 0.
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In what follows, we consider two collectively exhaustive cases, vi ≥ ti and vi ≤ ti, and

apply lemma 2 to show that in each case the solution to problem (5) is v∗i = ti.

First, suppose the owner declares vi ≥ ti. For any given combination of vi and θ, this

implies vi − viPv(vi, v−i, θ) ≥ ti − viPv(vi, v−i, θ). It follows that the worst-case combination

of vi, r, and θ is the combination that yields Pv(vi, v−i, θ) = (N−1)/N and ni(vi, v−i, r) > θ.

In this case, problem (5) amounts to

max
vi∈[ti,t]

Ui

(
ti − vi

N − 1

N

)
.

Observe that ti−vi[(N−1)/N ] is strictly decreasing in vi. Because Ui(·) is strictly increasing,

this implies that the solution to the owner’s problem in this case is v∗i = ti.

Next, suppose the owner declares vi ≤ ti. For any given combination of vi and θ, this

implies vi − viPv(vi, v−i, θ) ≤ ti − viPv(vi, v−i, θ). It follows that the worst-case combination

of vi, r, and θ is the combination that yields Pv(vi, v−i, θ) = (N−1)/N and ni(vi, v−i, r) ≤ θ.

In this case, problem (5) amounts to

max
vi∈[0,ti]

Ui

(
vi − vi

N − 1

N

)
.

Observe that vi−vi[(N−1)/N ] is strictly increasing in vi. Because Ui(·) is strictly increasing,

this implies that the solution to the owner’s problem in this case is also v∗i = ti.

The foregoing establishes that making a truthful declaration is the unique solution to

problem (5), assuming owner i has maxmin utility preferences. Because owner i is arbitrary,

this implies that if cargo owners have maxmin utility preferences, then truthful declarations

by all owners is the unique Nash equilibrium of the general average game.

Remark The key to understanding owner i’s maxmin behavior lies in her “conjecture” that

whatever declaration vi she chooses, the other owners and nature will “conspire” to minimize

her payoff. This entails them choosing v−i and θ to maximize Pv(vi, v−i, θ), which increases

her contribution, viPv(vi, v−i, θ), all else equal. By lemma 2, these values are v−i = vi and

θ = (N − 1)/N . Moreover, owner i conjectures that (i) if she overdeclares then the tie-

breaking rule will result in her cargo box not being jettisoned, in which case she receives

her true value minus her contribution (i.e., she is denied the benefit of her overdeclaration

(overrecovery) but suffers the cost (higher contribution)), and (ii) if she underdeclares then

the tie-breaking rule will result in her cargo box being jettisoned, in which case she receives

her declared value minus her contribution (i.e., she suffers the cost of her underdeclaration

(underrecovery) which exceeds the benefit (lower contribution)). In the former case she
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gains by decreasing her declaration to her true value (which does not affect her recovery but

decreases her contribution), and in the latter case she gains by increasing her declaration to

her true value (which increases her recovery by more than it increases her contribution).

6 Pareto Efficiency

Recall that the outcome of the general average game is an allocation among the cargo owners

of the total true value of the cargo boxes that are not jettisoned, (1−Pt(t, v, r, θ))T . In this

section, we investigate the conditions under which an allocation prescribed by the law of

general average, to which we refer as a general average allocation, is Pareto efficient.

As a threshold matter, Pareto efficiency requires that the proportion of the total true

value that is jettisoned, Pt(t, v, r, θ), is the minimum necessary to save the vessel and the

remaining cargo. We refer to this requirement as resource efficiency. Given that cargo boxes

are jettisoned in ascending order of declared value, resource efficiency is attained if and only

if the declared values have a truthful order.

6.1 Expected Utility Preferences

Suppose cargo owners have expected utility preferences. Recall that in this case there does

not exist a Bayesian Nash equilibrium of the general average game in which the declared

values have a truthful order. An immediate implication is that the law of general average

does not yield a Pareto efficient allocation in equilibrium, because without truthful ordering

(let alone truthful reporting) resource efficiency cannot be attained. Even with truthful

reporting, however, a general average allocation, which ipso facto entails proportional loss

sharing, is Pareto efficient if and only if owners have identical (up to a positive scalar) CRRA

utility functions. We prove this claim in section A.5 of the appendix.

The following proposition recaps the foregoing.

Proposition 3 If cargo owners have expected utility preferences, then the law of general

average does not yield a Pareto efficient allocation in equilibrium. This is because there is no

Bayesian Nash equilibrium of the general average game in which there is a truthful ordering of

declared values (let alone truthful reporting), and hence resource efficiency is not attained in

equilibrium. Even assuming truthful reporting, a general average allocation is Pareto efficient

if and only if owners have identical (up to a positive scalar) CRRA utility functions.
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6.2 Maxmin Utility Preferences

Now suppose cargo owners have maxmin utility preferences. Recall that in this case truth-

ful reporting is the unique Nash equilibrium of the general average game. In equilibrium,

therefore, the law of general average yields the following allocation as a function of θ:

ci(θ) = (1− Pt(t, v, r, θ))ti ∀ i ∈ N , ∀ θ ∈ Θ.

Call this allocation c∗ and denote its components by c∗i (θ).

With maxmin utility preferences, the utility that owner i derives from any allocation c

is the utility assuming the worse-case state, minθ∈Θ Ui(ci(θ)). Let θ denote the worse-case

state in the non-degenerate problem.33 Then owner i’s utility from allocation c is Ui(ci(θ)).

Given resource efficiency, which is implied by truthful reporting, an allocation is Pareto

efficient if and only if there does not exist a reallocation of resources that makes at least one

owner better off without making at least one other owner worse off. Take allocation c∗. The

only utility-relevant components of c∗ are the payoffs in state θ,

c∗i (θ) = (1− Pt(t, v, r, θ))ti ∀ i ∈ N ,

and the only relevant resource constraint is the one pertaining to state θ,

N∑
i=1

c∗i (θ) = (1− Pt(t, v, r, θ))T.

Because c∗ exhausts all available resources in each state,34 it follows that any reallocation

c′ which increases the payoff in state θ to owner i, c′i(θ) > c∗i (θ), necessarily decreases

the payoff in state θ to some other owner j, c′j(θ) < c∗j(θ), in order to obey the resource

constraint for state θ. Because Ui(·) is strictly increasing, this implies that there does not

exist a reallocation of resources that makes at least one owner better off without making at

least one other owner worse off. Hence, allocation c∗ is Pareto efficient. To recap:

Proposition 4 If cargo owners have maxmin utility preferences, then the law of general

average yields a Pareto efficient allocation in equilibrium.

33Lemma 2 establishes that θ = N − 1. The argument that follows, however, applies given any value of θ.
34For all θ ∈ Θ,

∑N
i=1 c

∗
i (θ) =

∑N
i=1(1− Pt(t, v, r, θ))ti = (1− Pt(t, v, r, θ))T .
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7 Discussion

We have shown that the law of general average does not induce truthful ordering (let alone

truthful reporting) in equilibrium, and consequently does not yield a Pareto efficient alloca-

tion in equilibrium, if cargo owners are expected utility maximizers and there is heterogeneity

in owners’ risk preferences. However, we have also shown that if cargo owners choose their

declarations according to the maxmin criterion, then the law of general average both induces

truthful reporting in equilibrium and yields a Pareto efficient allocation in equilibrium.

To help situate our results and contributions in the literature, it is useful to compare

and contrast the properties of the general average game with those of the La Crema game

in Cabrales, Calvó-Armengol, and Jackson (2003). In both the La Crema game and the

general average game, nature determines how much property is destroyed—i.e., the number

of houses burned (k) or cargo boxes jettisoned (θ), as the case may be—and the owners

share the collective loss in proportion to the declared values of their property. In each game,

therefore, the owners’ conditional payoffs (i.e., their payoffs conditional on their property

being destroyed or not destroyed) are affected by their declarations (and in precisely the

same way).35 The key difference is that in the La Crema game nature randomly determines

which houses are burned (given k, nature uniformly randomly selects k houses), whereas in

the general average game the master determines which cargo boxes are jettisoned based on

the declared values (given θ, the master selects θ boxes in ascending order of declared value).

Thus, in the general average game, but not in La Crema game, the owners’ declarations affect

not only their conditional payoffs but also the probability that their property is destroyed.

The general average game would reduce to the La Crema game if the true values were

common knowledge, the tie-breaking rule were uniformly distributed, and the master were

to disregard the declared values and solely apply the tie-breaking rule to select which cargo

boxes to jettison.

The similarities between the general average game and the La Crema game lead to some

convergent results. Most notably, neither game has an equilibrium in which the owners report

the true values of their property, assuming that owners have expected utility preferences

and there is relevant heterogeneity among them,36 and consequently neither game yields

a Pareto efficient allocation in equilibrium. At the same time, the key difference between

the two games leads to an important divergence when the number of owners is “large.”

35Generally speaking, if they overdeclare they will overrecover if their property is destroyed but overcon-
tribute if their property is not destroyed, and if they underdeclare they will underrecover if their property is
destroyed but undercontribute if their property is not destroyed.

36The general average game relies on heterogeneity in risk preferences while the La Crema game relies on
heterogeneity in property values.
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In sufficiently large societies, the (nondegenerate) Nash equilibria of the La Crema game

are nearly truthful and approximately Pareto efficient. By contrast, the truth-telling and

efficiency properties of the general average game continue to hold in large societies.

What do we take away from our analysis of the law of general average? On the one hand,

we might conclude, based on our expected utility results, that the law of general average is

inefficient and should be abandoned. This is the usual move in law and economics—if a law is

found to be inefficient under standard assumptions (such as expected utility maximization),

the analyst calls for the law to be reformed.

On the other hand, we might conclude, given the survival of the law of general average

across time and cultures, that perhaps our maxmin utility results suggest that maxmin

behavior may be reasonable in the general average context.37 Sea voyages are subject to

numerous risks, including but not limited to those related to weather, carrier error (e.g.,

overloading, structural failure, navigation error), international politics, and violence (e.g.,

piracy, terrorism, war). Maximization of expected utility may be reasonable when a decision

maker has a credible basis for placing a prior probability distribution on the unknown features

of her decision problem. However, when the decision maker faces Knightian uncertainty

(ambiguity)—which very well may be the case in the general average context, where each

voyage and its risks may be idiosyncratic, singular, or otherwise hard to know or quantify—

she may feel that she lacks a credible basis for forming a prior. In these circumstances, the

decision maker may reasonably evaluate her alternatives by the worst utility that they may

yield and choose an alternative that yields the best worst utility.38

The maxmin criterion is a deeply rooted idea in social science. Wald (1950) developed it as

a solution of a statistical decision problem when a prior probability distribution is unknown.

Rawls (1971) famously invoked it as part of a normative theory of justice. More to the point,

Gilboa and Schmeidler (1989) proposed it as a model of choice under uncertainty when the

decision maker has too little information to form a single prior and is uncertainty averse. In

their model, known as maxmin expected utility (MMEU), uncertainty is captured by a set

of priors, and the decision maker evaluates alternatives according to the minimal expected

utility over the priors in the set. At one extreme, when the set contains a single prior, the

MMEU model corresponds to the expected utility model. At the other extreme, when the set

contains all possible priors, the MMEU model corresponds to the maxmin utility model.39

37That is, instead of economics informing the law, perhaps the law can inform economics—in this case,
about the correct model of decision making under uncertainty.

38Our argument here echoes that of Manski (2013, p. 122-123).
39Because it selects alternatives that perform best in worst-case scenarios, the maxmin criterion is also

central to theories of robust control (Hansen and Sargent 2008), robust optimization (Ben-Tal, El Ghaoui,
and Nemirovski 2009), and robust contracting and mechanism design (Carroll 2019).
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In the end, maxmin behavior may make quite a bit of sense for a cargo owner who must

decide what to declare under a veil of ignorance about nature’s true distribution.

As a final observation, we reiterate that one can view the general average problem as a

bankruptcy problem—i.e., the problem of how to divide a residual among claimants whose

total claims exceed the value of the residual. Numerous rules other than proportional divi-

sion have been proposed and studied as solutions to the bankruptcy problem (see generally

Thompson 2003, 2015), including the Talmudic rule studied in Aumann and Maschler (1985).

In future work it would interesting to explore the truth-telling and efficiency properties of

rules other than proportional division for sharing a general average loss.

Appendix

A.1 Summation of Payoffs

Take any θ ∈ Θ. Let J (θ) ⊆ N denote the set of owners whose cargo boxes are jettisoned.

The law of general average is a strongly budget-balanced mechanism: the total transfers

paid to owners whose cargo boxes are jettisoned,∑
i∈J (θ)

vi − viPv(v, θ) =
∑

i∈J (θ)

vi −
∑

i∈J (θ)

viPv(v, θ) = (1− Pv(v, θ))Jv(v, θ),

are equal the total transfers paid by owners who cargo boxes are not jettisoned,∑
i∈N\J (θ)

viPv(v, θ) = (V − Jv(v, θ))Pv(v, θ) = (1− Pv(v, θ))Jv(v, θ).

Accordingly, summing the payoffs in equation (1) across all owners, we have∑
i∈J (θ)

vi − viPv(v, θ) +
∑

i∈N\J (θ)

ti − viPv(v, θ) =
∑

i∈N\J (θ)

ti = (1− Pt(t, v, r, θ))T.

Hence, the outcome of the general average game is an allocation among the owners of the

total true value of the cargo boxes that are not jettisoned.

A.2 Proof of Lemma 1

We proceed by contradiction for both claims. Assume that the declared values have a truthful

order. That is, assume condition (2) holds.
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First, suppose that for some i, j ∈ N there exists some t0 ∈ [0, t] such that bi(t0) ̸= bj(t0).

Without loss of generality, suppose bi(t0) < bj(t0). By condition (2), this implies t0 < t0,

which is impossible. Hence, there cannot exist any t0 ∈ [0, t] such that bi(t0) ̸= bj(t0). It

follows that bi(·) = bj(·) for all i, j ∈ N .

Now let b0(·) = bi(·) = bj(·) for all i, j ∈ N but suppose that b0(·) is not strictly increasing.
Then there must exist some ti, tj ∈ [0, t] such that ti > tj and b0(ti) ≤ b0(tj). This, however,

contracts condition (2), under which ti > tj implies b0(ti) > b0(tj). Hence, b0(·) must be

strictly increasing. It follows that bi(·) is a strictly increasing function for all i ∈ N .

A.3 Proof of Proposition 1

By way of contradiction, suppose that the declaration functions b∗1(·), . . . , b∗N(·) constitute a

truthful order equilibrium of the Bayesian game.

By lemma 1, we know that for some b∗0(·) we have that b∗0(·) = b∗i (·) = b∗j(·) for all

i, j ∈ N and that b∗0(·) is strictly increasing. By standard results, because it is monotone

over an interval, b∗0(·) is differentiable almost everywhere on its domain.

Because ties among the true values have probability zero, lemma 1 implies that ties

among the declared values have probability zero in a truthful order equilibrium. Hence, we

can safely ignore ties in what follows and drop the tie-breaking rule r from the notation.

Now consider a cargo owner i ∈ N whose cargo box has true value ti ∈ [0, t] and who

takes as given that all other owners make declarations according to b∗0(·). Given ti, owner i

chooses her declaration vi ∈ [0, t] to maximize her expected payoff as in problem (3), where

b−i(t−i) is now given by b∗−i(t−i) = (b∗0(t1), . . . , b
∗
0(ti−1), b

∗
0(ti+1), . . . , b

∗
0(tN)).

Take any vi ∈ [0, t]. Let B(vi) = {j ∈ N , j ̸= i : b∗0(tj) < vi} denote the set of other cargo

owners whose declarations are below vi, and let |B(vi)| denote the cardinality of the set B(vi).
Given any θ ∈ Θ, let

T (vi, θ) =
{
t−i ∈ [0, t]N−1 : |B(vi)| ≥ θ

}
denote the set of other true value vectors t−i such that at least θ other owners declare values

below vi. Hence, given vi and θ, the probability that owner i’s cargo box remains on board

(i.e., is not jettisoned) is given by

R(vi, θ) =

∫
t−i∈T (vi,θ)

ft−i
(t−i) dt−i
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where, with a slight abuse of notation, ft−i
(·) denotes the joint density of t−i.

40

We can now write the expected payoff to cargo owner i of declaring value vi given her

true value ti and the hypothetical truthful order equilibrium characterized by b∗0(·):

Πi(vi, ti) =
N∑
θ=0

{
(1−R(vi, θ))Et−i

[
Ui(vi − viPv(vi, b

∗
−i(t−i), θ)) | t−i /∈ T (vi, θ)

]
+ R(vi, θ)Et−i

[
Ui(ti − viPv(vi, b

∗
−i(t−i), θ)) | t−i ∈ T (vi, θ)

]}
fθ(θ).

(A.1)

Our contradiction hypothesis that b∗0(·) constitutes a truthful order equilibrium now says

that for every given ti it must be that b∗0(ti) maximizes owner i’s expected payoff Πi(vi, ti).

Because b∗0(·) is strictly increasing, if ti is interior then so is b∗0(ti). Observe that ti is

interior almost surely and that b∗0(·) is differentiable almost everywhere. Hence we can limit

our attention to examining the first-order condition necessary for a maximum of Πi(vi, ti) at

any interior ti where b∗0(·) is differentiable.
To keep notation the notation simple, let Π′

i(vi, ti) denote the partial derivative of Πi(vi, ti)

with respect to vi. At any interior ti where b
∗
0(·) is differentiable, our contradiction hypothesis

implies that for owner i and every other owner j ∈ N ,

Π′
i(b

∗
0(ti), ti) = 0 and Π′

j(b
∗
0(ti), ti) = 0. (A.2)

However, because Ui(·) is not cardinally equivalent to Uj(·) for any j ∈ N , j ̸= i, condition

(A.2) does not hold in general. Substantiating this claim in its most comprehensive meaning

would involve abstract arguments from differential topology.41 Instead, we present a simple

(but generalizable) argument that relies on linear perturbations of utility that form a field

of cardinally unique utility functions.42 Using the notation we establish in equation (4), pick

a small α > 0 and define

Ũi(ci(vi, ti, b−i(t−i), θ)) = Ui(ci(vi, ti, b−i(t−i), θ)) + αvi.

Note that Ui(·) and Ũi(·) are not cardinally equivalent but that as α becomes arbitrarily

small they become arbitrarily close (in the sup norm). Using equation (A.1), define the

40Because the true values are independent and identically distributed according to ft(·), we have that
ft−i(·) = ft(·)× · · · × ft(·)︸ ︷︷ ︸

N−1

.

41Two key references are Guillemin and Pollack (1974) and Mas-Colell (1985).
42It is standard practice to use linear perturbations of utility to prove (or disprove) genericity and stability

results with respect to optima. See, e.g., Mas-Colell (1985, ch. 8); Mas-Colell, Whinston, and Green (1995,
ch. 17.D).
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expected payoffs given Ui(·) and Ũi(·) by Πi(vi, ti) and Π̃i(vi, ti), respectively. We then have

Π̃′
i(b

∗
0(ti), ti) = Π′

i(b
∗
0(ti), ti) + α. (A.3)

From equation (A.3) it is immediate that if Π′
i(b

∗
0(ti), ti) = 0 then Π̃′

i(b
∗
0(ti), ti) ̸= 0.
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A.4 Proof of Lemma 2

Take any vi ∈ [0, t]. Suppose v−i ∈ [0, t]N−1, r ∈ Ψ(N ), and θ ∈ Θ are such that owner

i’s cargo box is jettisoned. Let J (θ) ⊆ N denote the set of owners whose cargo boxes are

jettisoned. Note that i ∈ J (θ). Then

Pv(vi, v−i, θ) =

vi +
∑

j∈J (θ),j ̸=i

vj

vi +
∑

j∈N ,j ̸=i

vj
. (A.4)

Observe that the numerator of equation (A.4) is strictly increasing in θ while the denominator

is independent of θ. Hence, to maximize equation (A.4), we must set θ = N − 1. Given this,

equation (A.4) becomes

Pv(vi, v−i, θ) =

vi +
∑

j∈J (θ),j ̸=i,j ̸=N

vj

vi + vN +
∑

j∈N ,j ̸=i,j ̸=N

vj
. (A.5)

Note that equation (A.5) is strictly increasing in the summation term in the numerator.

Thus, to maximize (A.5), we must set each declared value in the summation equal to t,

which implies that we also must set vN equal to t (because vN is the highest declared value),

and we conclude that the maximum value of Pv(vi, v−i, θ) in this case is

Pv(vi, v−i, θ) =
vi + (N − 2)t

vi + (N − 1)t
. (A.6)

Take the same vi ∈ [0, t]. But now suppose v−i ∈ [0, t]N−1, r ∈ Ψ(N ), and θ ∈ Θ are such

that owner i’s cargo box is not jettisoned. Let J (θ) ⊆ N denote the set of owners whose

cargo boxes are jettisoned. Note that now i /∈ J (θ). Then

Pv(vi, v−i, θ) =

vi +
∑

j∈J (θ)

vj

vi +
∑

j∈N ,j ̸=i

vj
. (A.7)

Observe that the numerator of equation (A.7) is strictly increasing in θ while the denominator

is independent of θ. Hence, to maximize equation (A.7), we must set θ = N − 1. Given this,

the summations in the numerator and denominator are both the summation of all declared

values other than vi. Thus, to maximize equation (A.7), we must set these declared values as
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high as possible without violating the condition ni(vi, v−i, r) > θ. We can do this by setting

them all equal to vi. (With all declared values equal, the tie-breaking rule can be set such

that owner i’s cargo box is the only one not jettisoned.) We therefore conclude that the

maximum value of Pv(vi, v−i, θ) in this case is

Pv(vi, v−i, θ) =

∑
j∈N ,j ̸=i

vj

vi +
∑

j∈N ,j ̸=i

vj
=

(N − 1)vi
vi + (N − 1)vi

=
(N − 1)

N
. (A.8)

Note that because the maximum value of Pv(vi, v−i, θ) set forth in equation (A.8), namely

(N−1)/N , is achieved with all declared values being equal, it follows that it can be achieved

with the tie-breaking rule yielding either that owner i’s cargo box is not the one jettisoned

or that owner i’s cargo box is the one jettisoned. Therefore, to conclude the proof, it is

sufficient to show that (N −1)/N is weakly greater than the maximum value of Pv(vi, v−i, θ)

set forth in equation (A.6). Indeed, this is immediate by noting that equation (A.6) is strictly

increasing in vi and, in fact, is equal to (N − 1)/N when vi = t.

A.5 Proof of Claim in Section 6.1

In this section we prove the claim, made in section 6.1, that if cargo owners have expected

utility preferences, then even with truthful reporting, a general average allocation is Pareto

efficient if and only if owners have identical (up to a positive scalar) CRRA utility functions.

Assume cargo owners have expected utility preferences. Let ci(θ) denote the payoff to

owner i in state θ. An allocation is an array c = [ci(θ)]i∈N ,θ∈Θ of payoffs to all owners

i ∈ N in all states θ ∈ Θ. With truthful reporting, the law of general average prescribes the

following allocation:

ci(θ) = (1− Pt(t, v, r, θ))ti ∀ i ∈ N , ∀ θ ∈ Θ.

Thus, a truthful general average allocation is characterized by

cj(θ)

ci(θ)
=

tj
ti

∀ i, j ∈ N , ∀ θ ∈ Θ, (A.9)

ci(θ
′′)

ci(θ′)
=

1− Pt(t, v, r, θ
′′)

1− Pt(t, v, r, θ′)
∀ i ∈ N , ∀ θ′, θ′′ ∈ Θ. (A.10)
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Give the assumptions on Ui, the interior of the set of Pareto efficient allocations coincides

with the solutions to the planner’s problem with positive Pareto weights:

max
c

N∑
i=1

N∑
θ=0

αi [Ui(ci(θ))µ(θ)] , α1, . . . , αN > 0,

subject to the resource constraints

N∑
i=1

ci(θ) = (1− Pt(t, v, r, θ))T ∀ θ ∈ Θ,

which are satisfied here. The necessary and sufficient first-order conditions are

U ′
i(ci(θ)) =

λθ

µ(θ)αi

∀ i ∈ N , ∀ θ ∈ Θ,

where λθ denotes the Lagrange multiplier pertaining to the θ-constraint. It follows that the

set of Pareto efficient allocations is characterized by

U ′
i(ci(θ))

U ′
j(cj(θ))

=
αj

αi

∀ i, j ∈ N , ∀ θ ∈ Θ, (A.11)

U ′
i(ci(θ

′))

U ′
i(ci(θ

′′))
=

λθ′µ(θ
′′)

λθ′′µ(θ′)
∀ i ∈ N , ∀ θ′, θ′′ ∈ Θ. (A.12)

Suppose owners have identical (up to a positive scalar) CRRA utility functions. That is,

Ui(x) =

{
βi

x1−η

1−η
if η ̸= 1

βi ln(x) if η = 1
∀ i ∈ N ,

where βi > 0 and η ≥ 0. Then conditions (A.11) and (A.12) become

cj(θ)

ci(θ)
=

[
αj

αi

] 1
η

∀ i, j ∈ N , ∀ θ ∈ Θ, (A.13)

ci(θ
′′)

ci(θ′)
=

[
λθ′µ(θ

′′)

λθ′′µ(θ′)

] 1
η

∀ i ∈ N , ∀ θ′, θ′′ ∈ Θ. (A.14)

Comparing conditions (A.9)-(A.10) and conditions (A.13)-(A.14), we can see that there

exist positive Pareto weights and Lagrange multipliers such that the two pairs of conditions

are equivalent. Moreover, this is not the case for utility functions outside the CRRA family,

because only CRRA utility implies that payoff ratios across owners depend only on relative

wealth levels and that payoff ratios across states depend only on relative shadow prices.
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Chiappori, Pierre-André, Krislert Samphantharak, Sam Schulhofer-Wohl, and Robert M.

Townsend. 2014. “Heterogeneity and Risk Sharing in Village Economies.” Quantitative

Economics 5 (1):1–27.

Cohen, Alma and Liran Einav. 2007. “Estimating Risk Preferences from Deductible Choice.”

American Economic Review 97 (3):745–788.

Einav, Liran, Amy Finkelstein, Iuliana Pascu, and Mark R. Cullen. 2012. “How General are

Risk Preferences? Choice under Uncertainty in Different Domains.” American Economic

Review 102 (6):2606–2638.

24



Epstein, Richard A. 1993. “Holdouts, Externalities, and the Single Owner: One More Salute

to Ronald Coase.” Journal of Law and Economics 36 (1):553–586.

Friedell, Steven F. 1996. “Admiralty and the Sea of Jewish Law.” Journal of Maritime Law

and Commerce 27 (4):647–660.

Gardner, Hayes. 2024. “Dali’s Owner Declares ‘General Average’ in Key Bridge

Disaster.” Baltimore Sun. https://www.baltimoresun.com/2024/04/17/

key-bridge-dali-general-average.

Gilboa, Itzhak and David Schmeidler. 1989. “Maxmin Expected Utility with Non-unique

Prior.” Journal of Mathematical Economics 18 (2):141–153.

Gilmore, Grant and Charles L. Black. 1975. The Law of Admiralty. 2d ed. Mineola, NY:

Foundation Press.

Gregory, Charles O., Harry Kalven, and Richard A. Epstein. 1977. Cases and Materials on

Torts. 3d ed. Boston, MA: Little Brown.

Guillemin, Victor and Alan Pollack. 1974. Differential Topology. Englewood Cliffs, NJ:

Prentice Hall.

Hansen, Lars Peter and Thomas J. Sargent. 2008. Robustness. Princeton, NJ: Princeton

University Press.

Healy, Nicholas J. and David J. Sharpe. 1999. Cases and Materials on Admiralty. 3d ed.

St. Paul, MN: West.

Khalilieh, Hassan S. 2006. Admiralty and Maritime Laws in the Mediterranean Sea (ca. 800-

1050). Leiden: Brill.

Kruit, Jolien. 2017. General Average, Legal Basis and Applicable Law. Zutphen: Paris Legal

Publishers.

Landes, William M. and Richard A. Posner. 1978. “Salvors, Finders, Good Samaritans, and

Other Rescuers: An Economic Study of Law and Altruism.” Journal of Legal Studies

7 (1):83–128.

Lowndes, Richard, Edward L. de Hart, and George Rupert Rudolf. 1912. The Law of General

Average: English and Foreign. 5th ed. London: Stevens & Sons.

Manski, Charles F. 2013. Public Policy in an Uncertain World: Analysis and Decisions.

Cambridge, MA: Harvard University Press.

25

https://www.baltimoresun.com/2024/04/17/key-bridge-dali-general-average
https://www.baltimoresun.com/2024/04/17/key-bridge-dali-general-average


Mas-Colell, Andreu. 1985. The Theory of General Economic Equilibrium: A Differentiable

Approach. Cambridge: Cambridge University Press.

Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green. 1995. Microeconomic Theory.

New York: Oxford University Press.

Mazzocco, Maurizio and Shiv Saini. 2012. “Testing Efficient Risk Sharing with Heterogeneous

Risk Preferences.” American Economic Review 102 (1):428–468.

Miller, Geoffrey P. 2010. Economics of Ancient Law. Cheltenham: Edward Elgar.

Parks, Alex L. 1987. The Law and Practice of Marine Insurance and Average, Vol. 1.

Centreville, MD: Cornell Maritime Press.

Rawls, John. 1971. A Theory of Justice. Cambridge, MA: Belknap Press of Harvard Uni-

versity Press.

Robertson, David W., Steven F. Friedell, and Michael E. Stuckey. 2001. Admiralty and

Maritime Law in the United States. Durham, NC: Carolina Academic Press.

Rose, F. D. 1997. General Average: Law and Practice. London: LLP.

Shoenbaum, Thomas J. 2011. Admiralty and Maritime Law, Vol. 2. 5th ed. St. Paul, MN:

West.

Thompson, William. 2003. “Axiomatic and Game-theoretic Analysis of Bankruptcy and

Taxation Problems: A Survey.” Mathematical Social Sciences 45 (3):249–297.

———. 2015. “Axiomatic and Game-theoretic Analysis of Bankruptcy and Taxation Prob-

lems: An Update.” Mathematical Social Sciences 74:41–59.

Wald, Abraham. 1950. Statistical Decision Functions. New York: John Wiley.

Watson, Alan. 1998. The Digest of Justinian, Vol. 1. Philadelphia, PA: University of Penn-

sylvania Press.

Wilson, D. J. and J. H. S. Cooke. 1997. Lowndes and Rudlof: The Law of General Average

and the York-Antwerp Rules. 12th ed. London: Sweet & Maxwell.

Young, Christopher, Shannon S. Sanfilippo, James F. Moseley, Jr., Douglas M. Muller,

Susan R. Bogart, Stephen C. Smith, and Robert Bocko. 1995. “A Comparison of United

States Law to the Marine Insurance Act of 1906.” Tulane Maritime Law Journal 20 (1):5–

103.

26


	wp725 fronte
	Working Paper no. 725
	June 2024
	CSEF - Centre for Studies in Economics and Finance 
	Department of Economics and Statistics – University of Naples Federico II
	Working Paper no. 725

	General Average

