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Abstract 
Choice mistakes may be consequential. While we have plentiful evidence on adult behaviour, 
children’s choices are much less studied, yet not only may they shed light on adult behaviour, 
but they are themselves important, as potentially leading to low educational attainment, 
unhealthy food choices, and risky behaviours. In this paper, we study experimentally how 
children’s choice consistency and ability to avoid mistakes change with age. We study choice 
by primary school children in two (ubiquitous) domains: riskless and risky choice. We elicit 
complete choice functions over deterministic choices, while for lotteries we introduce a novel 
experimental design, documenting as a particular type of framing effect, consistent with 
correlation neglect, so far only studied in adults. With plentiful evidence of choice errors in 
adults, unsurprisingly choice errors and inconsistencies abound in children - strikingly though, 
in some cases already by age 10-11 children display error rates which are close to those 
observed in adults. Our results are well captured by a model of limited, stochastic 
consideration. Our experiment is rich enough to highlight the shape that potential interventions 
could take, aiming at increasing children’s consideration capacity. Different socioeconomic 
backgrounds seem to matter, though, reassuringly, the gap does tend to close over time. 
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1 Introduction

Rationality is a cornerstone assumption in economics. While by and large economic
policies are drawn with the assumption of “rational agents” in mind, increasing evid-
ence to the contrary shows that people’s response to incentives may be influenced by
a wide range of cognitive biases. In this paper, we focus on rationality in decision-
making intended as choice consistency and error avoidance in young children of differ-
ent ages. Being able to assess the extent of choice mistakes is important in general,
as e.g. depending on the type of mistake, individuals may end up with lower over-
all welfare as compared to their starting point, from ending up in the ‘wrong’ occu-
pation to being money-pumped, for example. While we have plentiful evidence on
adults, focusing on children is important, as childhood development may shed light on
adult behaviour, uncovering whether (bounded) rationality persists from childhood or
evolves with age/schooling, and at what stage it converges to that observed in adults.
Moreover studying error avoidance in children is important on its own, as the role of
children and adolescents as economic agents is being increasingly recognised, and so is
understanding what mechanisms drive economically relevant behaviour.

In this paper we study how this key form of (ir)rationality varies with age and so-
cioeconomic background, looking at primary school children’s ability to avoid mistakes
in simple settings in two (ubiquitous) domains: riskless and risky choice. To study er-
ror avoidance in riskless choice, we ask children to pick their favourite from a menu
of options: by eliciting choices from a variety of subsets of the same universal set of
items we are able to investigate children’s consistency in choice (or lack of it). To study
error avoidance in risky choice, we design a novel elicitation method to investigate chil-
dren’s ability to recognise first order stochastic dominance as well as a particular type of
framing effect, which is consistent with correlation neglect (i.e. overvaluing the probab-
ility of the union of two events by discounting their common source/correlation). Our
experimental subjects are primary school children enrolled in four state schools in an
urban context that differ by the socioeconomic characteristics of their catchment areas.
By taking a snapshot of the same task performed by children of various ages and across
schools with heterogeneous catchment areas, we are able to see how children’s choice
errors vary, if at all, with age and socioeconomic background across risky and riskless
domains.

Our contribution.

While we defer a full discussion of how our paper relates to the extant literature, in a
nutshell, the novelty of our contribution can be summed up as follows:

1. unlike previous studies, for the case of riskless choice we go beyond binary com-
parisons by eliciting the full choice function; this enables us to study consistency in
choice in the simplest of setups (i.e. we do not need to employ budget sets);

2. we document a theoretical choice ‘anomaly’, correlation neglect, as yet not stud-
ied in children, implementing a novel experimental setup;
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3. we provide and estimate a structural model of children’s choice behaviour;

4. while we do not claim to have a balanced sample reflecting the general income
distribution of the population, our subject pool is heterogeneous, consisting of
children in primary state schools from across catchment areas from varying so-
cioeconomic backgrounds.

We find that errors are pervasive, with 50% of the children failing the standard tenets
of rationality in economics, and doing so across domains, but that errors in the older
children (10-11 year olds) are already comparable to those seen in adults.1 Error rates
fall as age increases and as socioeconomic status (as proxied by the school’s location)
and parental educational attainment improve. We then show that, on the one hand,
the gap in error rates between children from more and less privileged backgrounds
reduces with age. On the other hand, however, when considering tests of so-called
’fluid intelligence’, namely children’s performances in Raven matrices, we find that the
performances diverge with age: children start off performing equally badly, but then
those in schools located in wealthier neighbourhoods improve their Raven scores more
than children attending schools in more deprived areas. This evidence aligns with the
existing literature on early educational intervention (?) which shows that the window
of opportunity to intervene is relatively narrow;2 and on the short-term effect of moving
to wealthier neighbourhoods (?). Our data do not allow us to investigate how these
gaps persist over subsequent years of compulsory schooling, or even more in the long-
term. This is a point worth exploring in the future, but outside the scope of this paper,
and it would contribute to existing evidence on long-term (educational) gaps (?, ?, ?).

What could explain these differences? The decision-theoretic approach we take is
that children may fail to appraise all alternatives available. We model children’s choices
using the ‘stochastic consideration set’ model (see ?), according to which each item in
a menu is not necessarily considered for sure, but with some probability captured by
a consideration parameter. The consideration parameter can be taken as a proxy for
(an index for) rationality, as in the presence of stable, unvarying preferences, a fully ra-
tional agent can be represented as having full consideration (consideration parameter
approximating unity), while someone choosing uniformly can be represented as not
considering anything (consideration parameter approximating zero). We follow ? to
estimate the consideration parameters in the corresponding structural model and find
that in all domains this parameter mirrors the error rates: consideration improves with
age; is higher in pupils from the most well-off schools; and the gap in consideration

1This is partly based on existing results in the literature, partly on a small incentivised test of correlation
neglect and violations of First Order Stochastic Dominance in a subpopulation of adults - more details in
section 5 in the paper.

2? find evidence that additional years of schooling (in a natural experiment where the compulsory
school age in England was raised from 15 to 16) have no significant effect on the quality of decision-
making (while having significant positive effects on qualifications obtained and future earnings). If error
avoidance in children as young as 11, as in our experiment, approximates that of adults, then possibly this
confirms that any intervention on children should be early. (see ?).
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parameter across schools reduces over ‘simple’ domains but persists in the case of ‘dif-
ficult choices’ (i.e. in tests of correlation neglect).

1.1 Related literature

Our paper fits the recent small but expanding literature on experiments with children.
Recent comprehensive reviews are ? and ? - the papers closest to our study are ? and
(?. The latter investigates rationality in children intended as consistency in choice out
of discretised budget sets. A total of 74 children of different ages (either around 7 or
around 11 year olds) were presented with 11 choices of either three or seven bundles
consisting each of bags of crisps and fruit juice cartons. They investigate violations of
the Generalised Axiom of Revealed Preferences (loosely speaking, it rules out prefer-
ence reversals in chains of choices, or equivalently violations of transitivity), and con-
sistent with our findings, uncover that rationality improves with age, with the response
from older children being quite similar to that of adults (undergraduate students in
this case). While the bundles offered to the children were taken from/consistent with
budget sets, understandably the choice menu was not framed as a budget (i.e. no men-
tion of prices and of income); on the other hand, given the intention to approximate
budgets, there isn’t a grand set including all bundles (which would have been a pretty
complex set to choose from, as it would have to include 28 bundles), and more import-
antly, as noted in ?, GARP is an indirect test of transitivity, as children are not asked
to make direct binary comparisons and thereby reveal their base preference. Binary
choices are indeed the object of study in ? (in riskless and risky choices as well as so-
cial/group choices). However, these do not allow checking for the presence of menu
effects, as we do (while we do not cover the social preference dimension). Hence we
view our contribution as complementary to these important papers.3

As noted, in our paper we also investigate violations of first-order stochastic dom-
inance (FOSD) and the correlation neglect phenomenon,4 hence our study is also re-
lated to the experimental literature on FOSD violations and correlation neglect, though
none of the extant papers explores these issues with children, Virtually all the literature
documenting FOSD violations relies on covert implementation, with questions framed
so that the FOSD relation isn’t apparent - two notable exceptions are ? and ?.5 In-
terestingly, both papers find violations of FOSD in university students to be low, and
much lower than in our findings for children. The experimental literature on correla-
tion neglect (see e.g. ?, ?, ?), is also focused entirely on the adult population, which is
unsurprising given the intrinsic complexity of the notion of correlation. The simplest

3Another paper studying risk preferences in children is ?. This experiment too has children choosing
from binary sets, with subjects being older children (average age 13.78) than our experimental cohort.
Another recent study of risk preferences in children is ?, which also focuses on binary choices in the lottery
domains, and enriches the analysis by also investigating personality traits.

4Our setup is such that more sophisticated forms of misperception of correlation do not apply. For
instance, our experimental subjects violate the Weak Monotonicity axiom in ?.

5In ? terminology, our presentation is such that the best strategy is ‘obviously dominant’.
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setup, which is closest to ours, is that used in ?, who consider the case of school choice.6

They simulate in the lab the case of applicants to university places, where the same
test mark is used to process applications. Applicants have to select two universities,
with different entry requirements. If the top two schools differ only slightly in entry
requirements, risk neutral and risk averse applicants should select the top school and
the safe choice, yet ? document that a large percentage of experimental subjects ignore
correlation and apply to the top two schools. Indeed roughly half of their participants
display correlation neglect, with only a handful picking the dominated strategy and
roughly half selecting. This is very similar to the choice behaviour we observe in our
older children, as we show below.

The paper is organized as follows. In section 2, we introduce our two experimental
designs. In section 3, we present our stochastic consideration model, provide identifica-
tion results, and describe the estimation technique. In section 4, we describe our dataset
with information about the experimental procedure and the different sample sizes. In
section 5, we present our results for both parts of our experiment. Finally, in section 7
and 8, we conclude with some discussion on potential further research. The Appendix
contains omitted proofs, several further results, robustness checks, and a description of
the experiment using screen-shots and instructions. Finally, in the Online Appendix,
we include a different estimation approach and more robustness checks.

2 Experimental design

As noted, in our experiment we wished to explore three types of choice mistakes: fail-
ure of choice consistency in riskless choice, and failures of dominance and correlation
neglect in risky choice. We describe our approach to testing each of these below.

2.1 Errors in riskless choice.

First of all, we look at the simplest possible setup for choice: pick one from a menu
of (equally valued) items. In such a setting rationality takes the form of a particular
type of consistency, which is equivalent to each subject being able to rank all items
from best to worst, and pick consistently the best available item from each choice prob-
lem; that is, subjects choose the preference maximising item. Whenever this fails, an
error is produced. Error-free choice patterns are those that satisfy the Weak Axiom of
Revealed Preferences (WARP). This is a consistency property requiring that if an altern-
ative, call it x, is picked out of a menu, it can never be the case that one of the unchosen
items is picked in another menu that also contains x. When choices satisfy WARP, as
noted choice behaviour can be described as if a preference is being maximised. When
WARP fails, then failures of rationality can be attributed to one of only two possible

6Other early experimental papers documenting correlation neglect in economics are ?, on portfolio
choice, allocating ‘wealth’ to financial assets with differing, state-dependent returns; and on belief forma-
tion in the sense of predicting from correlated signals in the case of ?.
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forms of non rational behaviour: cyclical choice or menu effects.7 Cyclical choices are
problematic as they can turn any decision maker into a money pump; menu effects are
problematic as the decision maker can in principle be manipulated into choosing what
the designer of the menu prefers.

More in detail, each child had to pick one item out of each of the 11 possible subsets
of a grand set of four alternatives. There were two sets of such tasks (pens and pencils,
see Figure 1), so in total 22 choices were elicited.8 The questions were presented in
random order,9 with a distractor task10 between each choice.

After both sets of 11 questions, we elicited preference intensities for each item on a
Likert scale from 1 to 5.11 Lastly, subjects answered eight Raven’s Coloured Progressive
Matrices (RCPM), presented in increasing difficulty order.12 At the end of this stage, one
of the choice screens was drawn at random for each set of choices, and the choice on that
screen was assigned as the prize (hence each child won a pencil and a pen). Screenshots
for all the tasks are reported in the Appendix. We will refer to this deterministic choice
task as the pens/pencils task.

Figure 1: Sets of pencils and pens.

2.2 Errors in risky choice - testing for failures of first order stochastic dom-
inance and for correlation neglect.

Secondly, we look at the simplest possible setup to investigate children’s ability to avoid
mistakes when outcomes are stochastic, that is, they take the form of lotteries. Lotteries
are arguably harder objects to evaluate than deterministic prizes; to make the notion
of a risky prospect accessible to children, we introduce a novel design in the form of a

7See ? for this taxonomy of errors.
8This part of the experiment was conducted through tablet computers. The game was delivered on a

website created specifically for the experiment and hosted on a local server. In the beginning, a teacher
inserted the demographic data about the pupil in the tablet to ensure the correct identification of each
pupil. After this preparatory phase, the pupils were instructed, and then upon receiving the tablet, they
started the experiment. The code is available here: https://github.com/DCaliari/RationalityInChildren.git

9We randomized whether the pupil would face the questions regarding pencils or pens first, and within
each set of questions, we also randomised their order and the positions of the alternatives on the screen.

10A short nature video (about 10 seconds) was played after each choice question.
11This task is similar to the “ranking task” (?), where in addition we allow for indifferences. This way we

are able to devise a preference intensity index, as we describe more in detail in section 5 and in appendix
B.2.

12These matrices were chosen from the set of RCPMs after piloting to guarantee that the answers were
better than random for 1st-grade pupils, and different from perfect accuracy for 5th-grade pupils.
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coin drop game that induces a uniform distribution over the outcomes. More precisely,
a token (‘coin’) is dropped from the top of a sloping wooden board with pins placed
in such a way that the coin has an equal probability of ending up in each of the eight
pockets at the bottom.13 A lottery takes the form of a strip of eight squares, either white
or yellow, placed below the pockets, see Figure 2.

Figure 2: The coin drop game: the FOSD test lotteries are on the left, the correlation neglect test lotteries
are on the right.

A win occurs only if the coin falls in a pocket above a yellow square for the chosen
strip/lottery - hence the setup provides an arguably clear visualisation of how a ran-
dom event maps to outcomes. The lotteries we used to investigate FOSD violations
are those in the left panel in Figure 2, which have either the five, six or seven leftmost
squares in yellow and the remaining in white. The top lottery is the least likely to result
in a win, while the bottom lottery is the most likely to result in a win (in this setup we
have statewise dominance between the lotteries, to make it more easily recognisable).14

For reasons that will become more apparent in a moment we refer to this set of three
lotteries as ‘independent’, and to the task as ‘independent coin drop game’. Children
performed their choice on a piece of paper reporting the three lotteries, as in the left
panel in Figure 3. The ‘1’ and ‘0’ reinforced that 1 prize (a sheet of stickers) would be
won in correspondence of the yellow squares, and no prize otherwise.15

The right panel in Figure 2 displays the lotteries that we used to test for correla-
tion neglect. Correlation neglect is the failure to react “correctly” to the correlation of

13The pin placement follows ?.
14Most FOSD tests are non transparent, with a notable exception being ?, who test FOSD failures in

university students. They find violations of FOSD in university students to be low, and much lower than
in our findings, which we report in section 5.3.

15The answers were collected by pen and paper and the overall experiment was performed with the
help of specifically trained research assistants. After the instructions (see Appendix) children recorded
their choices on answer sheets (see Figure 3; actual answer sheets did not have the “independent” and
“correlated” labels).
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two events. Suppose for instance that university admission relies on the final mark
received by an applicant in a state exam and that applications have to be made ahead
of the results being known.16 Suppose also that each applicant can only apply to two
universities. Then there is little point in only applying to elite universities (with strin-
gent entry requirements), since missing the grade for one likely means also missing the
grade for the other: unless an applicant is very risk loving, such applicant’s behaviour
would be disregarding the fact that correlation between the two events (being admitted
to either university) depends on the same mark.

To test for correlation neglect in children, we used the lotteries depicted in the right
panel in Figure 2 and in Figure 3, which we refer to as ‘correlated’. Now children had to
pick two out of three lotteries, with a win realising if any of the yellow squares across
the two chosen lotteries corresponded to the pocket with the dropped coin. As can be
seen in the picture, one strip/lottery had the four leftmost squares in yellow, and the
other four in white; one had the five leftmost squares in yellow, the three rightmost
ones in white; and one had the two rightmost squares in yellow, and the rest in white.
Here picking the two lotteries with the four or five leftmost squares in yellow evidences
correlation neglect, for conditional on picking the lottery with the highest probability
of a win (the one with five yellow squares), adding the second best (with four yellow
squares) brought no additional benefit.

Note that each pair of lotteries in the correlated set maps into the same probability
of winning as a corresponding lottery in the independent set. For instance, the top
two lotteries in the correlated set produce a win in 5 out of 8 cases, as does the top
independent lottery. Similarly, the bottom two lotteries in the correlated set produce
a win in 7 out of 8 cases, as does the bottom lottery in the independent set; and the
extreme lotteries in the correlated set produce a win in 6 out of 8 cases, as does the
middle lottery in the independent set. Put differently, the two lottery choice problems
provide different frames for essentially the same possible outcomes. Hence we should
expect rational agents to choose the same, FOSD dominant lottery in both tasks (the
bottom lottery in the independent task, and the bottom two lotteries in the correlated
task).

16We borrow this example from ?.
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Figure 3: The answer sheets in the two tasks.

We run the independent task prior to the correlated task; note that the independent
task is also a test of first order stochastic dominance (and also doubles as a compre-
hension test). Finally, all three lotteries were played out, and prizes were assigned
accordingly.

3 Modelling errors in choice - stochastic consideration set

In this section, we describe the theoretical foundations of our experimental design and
our subsequent analysis. Our experimental setup concerns mostly discrete choice prob-
lems, in which each subject has to select one element out of a menu of alternatives.
Given a generic finite set A of choice alternatives, we denote by Ai a generic subset,
and by A the collection of all possible subsets. A (deterministic) choice function C is a
map that associates to each menu an element of that menu, with the interpretation that
C (A) is the alternative chosen in set A. Stochastic choice functions allow for variab-
ility in choice: a stochastic choice function is a probability distribution over choices:
p : A ×A 7→ [0, 1] such that ∑a∈A p (a, A) = 1.

We model discrete choice using the Stochastic Consideration Set (SCS) model intro-
duced in ?, following ?’s conditional version.17 While in the standard choice model,
a rational agent picks the alternative that ranks highest in her preference, in the SCS
model an agent may fail to consider some alternatives, hence she picks the most pre-
ferred alternative among those considered. More precisely, in this model, the decision
maker considers each feasible alternative a in (finite) menu A with probability γa ∈
(0, 1], which is independent of the probability of considering other alternatives, and
then selects the most preferred one according to the asymmetric, complete and trans-
itive preference ≻. We will refer to ≻ as the agent’s type, as in ?, and let P denote the
collection of all possible types. Then the probability that type ≻ chooses alternative a

17In its original formulation, the SCS model allows for non choice, while ?’s version rules it out, hence
it is more suited to model limited consideration in an experiment with forced choice as ours.
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from menu A , which we denote by p≻ (a, A), is expressed by:

p≻ (a, A) =

γa ∏
b∈A:b≻a

(1 − γb)

1 − ∏
b∈A

(1 − γb)
(1)

where at the numerator the first term is the probability that a is considered, while the
second term is the probability that no alternative better than a is considered (for in
that case a would never be chosen). At the denominator, we have the probability that
some alternative is considered (where ∏

b∈A
(1 − γb) is the probability that no alternative

is considered in set A). We now turn to showing how this general setup applies to the
three experimental tasks. It is going to be convenient to start from the coin drop games,
as each task involves a single choice, and then move to the pen/pencil choice task.

3.1 The coin drop game - independent lotteries task

This is the simplest setup in which to model choice behaviour: it is natural to assume
homogeneity in preferences, i.e. that larger win probabilities are preferred to lower win
probabilities. Then we can drop the preference superscript without risk of confusion.
We denote by ℓI

z a lottery with z winning outcomes, and by LI the set of independent
lotteries (that is LI =

{
ℓI

5, ℓI
6, ℓI

7
}

).
For a standard rational agent, the three lotteries are ordered by first order stochastic

dominance: the dominant lottery ℓI
7 should be chosen with probability 1. Hence as a

preliminary test of rationality, we have:

Implication 0. If the model holds with γI
n = γI = 1 for all n, then p

(
ℓI

7, LI) = 1 and
p
(
ℓI

6, LI) = 0 = p
(
ℓI

5, LI).
The analysis changes in the presence of limited consideration. Letting γI

n denote the
consideration probability for the lottery with n winning outcomes in this treatment, we
have:

p
(
ℓI

5, LI
)
=

γI
5
(
1 − γI

6
) (

1 − γI
7
)

1 −
(
1 − γI

5

) (
1 − γI

6

) (
1 − γI

7

) (2)

p
(
ℓI

6, LI
)
=

γI
6
(
1 − γI

7
)

1 −
(
1 − γI

5

) (
1 − γI

6

) (
1 − γI

7

) (3)

p
(
ℓI

7, LI
)
=

γI
7

1 −
(
1 − γI

5

) (
1 − γI

6

) (
1 − γI

7

) (4)

Since we have two independent equations in three unknown, the model with alternative-
dependent consideration parameters is under-identified. However we can achieve
identification in the case of lottery independent consideration parameter: given the ob-
served probabilities of choice of each lotteries, any of these equations suffice to identify
the unobserved consideration parameter γI . Then the following condition is necessary
for the model, hence a testable prediction:
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Implication 1. If the model holds with γI
n = γI for all n, then:18

p
(
ℓI

7, LI)
p
(
ℓI

6, LI
) =

p
(
ℓI

6, LI)
p
(
ℓI

5, LI
) (5)

Implication 2. If the model holds and consideration is monotonically non decreasing in n, then

p
(
ℓI

7, LI
)
> p

(
ℓI

6, LI
)
> p

(
ℓI

5, LI
)

(6)

3.2 The coin drop game - correlated lotteries task

In the correlated lotteries task subjects pick two lotteries. Quite irrespective of the
model, in the absence of framing effects we would expect participants to choose in
exactly the same way in the two tasks:

Implication 0’. In the absence of framing effects p
(
ℓC

n , LC) = p
(
ℓI

n, LI) for all n.

However if each lottery in a pair is appraised separately from the other, a pair of lot-
teries will be selected only if both “component” lotteries are considered and either these
are the best combination, or no lottery forming a better combination is considered.19 We
let LC denote the set of correlated lotteries, that i LC = {ℓ2, ℓ4, ℓ5}, and denote each pair
of lotteries with the overall winning probability, that is ℓC

5 = {ℓ4, ℓ5}, ℓC
6 = {ℓ4, ℓ2} and

ℓC
7 = {ℓ5, ℓ2}. With γC

n denoting the consideration probability for lottery with n win-
ning entries in this treatment, under the assumption of independent consideration the
choice probabilities are:

p
(
ℓC

5 , LC
)

=
γC

4 γC
5

(
1 − γC

2

)
γC

2 γC
4 + γC

2 γC
5 + γC

4 γC
5 − 2γC

2 γC
4 γC

5
(7)

p
(
ℓC

6 , LC
)

=
γC

2 γC
4

(
1 − γC

5

)
γC

2 γC
4 + γC

2 γC
5 + γC

4 γC
5 − 2γC

2 γC
4 γC

5
(8)

p
(
ℓC

7 , LC
)

=
γC

2 γC
5

γC
2 γC

4 + γC
2 γC

5 + γC
4 γC

5 − 2γC
2 γC

4 γC
5

(9)

where the first two lines derive from observing the two lotteries that combine subop-
timally without observing the third, while the third line is the probability of considering
the two lotteries that combine optimally, regardless of whether or not the third is also
considered.20

18This is verified by setting γI
n = γI for all n in equations (2)-(4) where

p(ℓI
7,LI)

p(ℓI
6,LI)

= 1
1−γ =

p(ℓI
6,LI)

p(ℓI
5,LI)

19This differs from the setup in ?, where the focus is on misunderstanding the integration of separate
problems, the usual issue addressed in choice bracketing.

20Note that the probability of not choosing anything is the probability of considering at most one lottery,
which is given by

1−
(

γC
2

(
1 − γC

4

) (
1 − γC

5

)
+ γC

4

(
1 − γC

2

) (
1 − γC

5

)
+ γC

5

(
1 − γC

4

) (
1 − γC

2

)
+
(

1 − γC
2

) (
1 − γC

4

) (
1 − γC

5

))
which reduces to the expression at the denominator.
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From the above it is clear that any given choice probability for the payoff maxim-
ising pair ℓC

7 = {ℓ2, ℓ5} is compatible with very different choice probabilities of the
suboptimal pairs; in particular for low values of γC

2 and high values of γ5, probability
“transfers” to the “correlation neglect” pair ℓC

5 = {ℓ4, ℓ5}. So the magnitude of γC
2 is a

proxy for correlation neglect - however within the setup we can’t estimate alternative
dependent consideration parameters - so it may be convenient to provide a measure of
correlation neglect that does not depend on the unobservables.

An agent immune to correlation neglect would have p
(
ℓC

7 , LC) = 1, while someone
succumbing to correlation neglect entirely would have p

(
ℓC

5 , LC) = 1; this suggests a
simple correlation neglect index ι defined as

ι=
p
(
ℓC

7 , LC)− p
(
ℓC

5 , LC)
p
(
ℓC

7 , LC
)
+ p

(
ℓC

5 , LC
) ∈ [−1, 1] (10)

In addition, we are able to test the following hypotheses, which are necessary condi-
tions for the model to hold:

Implication 1’. If the model holds with γC
n = γ the probability of choosing ℓC

6 = {ℓ4, ℓ2} is
the same as the probability of choosing ℓC

5 = {ℓ4, ℓ5}, and both are smaller than the probability
of choosing ℓC

7 = {ℓ5, ℓ2}, that is:

p
(
ℓC

5 , LC)
p
(
ℓC

6 , LC
) = 1 and

p
(
ℓC

7 , LC)
p
(
ℓC

i , LC
) > 1, i = 5, 6 (11)

Implication 2’. If the model holds and consideration is monotonically non decreasing in n,
then lottery ℓC

6 = {ℓ2, ℓ4} is the least likely to be chosen,21 that is:

p
(
ℓC

5 , LC)
p
(
ℓC

6 , LC
) > 1 and

p
(
ℓC

7 , LC)
p
(
ℓC

6 , LC
) > 1 (12)

To test the implication of our model, we estimate it as follows. Let γ be a triple of
consideration parameters and Yn the number of subjects choosing lottery ℓn then the
maximum-likelihood problem becomes:

max
γ

logL (γ; Y) = ∑
ℓn∈A

Yn log(p(ℓn, A)) (13)

We now turn to the formal analysis of the riskless choice task.

3.3 Stochastic consideration and choice from multiple sets

The pens/pencils task involved for each subject the elicitation of choices from a collec-
tion of sets: for each domain (either pens or pencils) we asked each subject to perform

21This holds in the since on the one hand γC
5 ≥ γC

2 =⇒ γC
5

1−γC
5
>

γC
2

1−γC
2

so that p
(
ℓC

5 , LC) > p
(
ℓC

6 , LC);
and on the other hand γC

5 ≥ γC
4 =⇒ γC

5
1−γC

5
> γC

4 , so that p
(
ℓC

7 , LC) > p
(
ℓC

6 , LC).
13



11 choices, selecting the preferred item from each of 11 possible sets. For each exper-
imental subject we have a specific realisation of such choices. Let C denote a generic
realisation (i.e. a choice function), and let C denote the collection of all possible choice
functions. A Mixture Choice Function22 µ is a probability distribution over C; i.e., a
µ : C → [0, 1] such that ∑c∈C µ (C) = 1.

Under the assumption that choices at each menu are independent, the probability
µ (C) of observing a given subject making choices according to C can be expressed as
the product of all the individual choices at each menu, that is

µ (C) = ∏
A∈A

p (C (A) , A)

In our setup we observe the choice function of a population of experimental sub-
jects. We capture heterogeneity by postulating that each subject is of a specific (prefer-
ence) type ≻ from a collection P of admissible types, and we postulate that their choice
behaviour is driven by some hypothesised model. Let p≻(a, A) denote the type condi-
tional probability that a subject of type ≻ selects a from menu A; then the probability
of any given choice function C can be written as the mixture

µ (C) = ∑
≻∈P

π (≻) ∏
A∈A

p≻ (C (A) , A)

More in general the mixture choice function can be expressed as

µ = Zπ, (14)

where µ =
[
µ (C1) , µ (C2) , ..., µ

(
C|C|

)]′, is the vector form of µ, Z is the matrix of
type conditional probabilities according to the postulated model describing choice be-
haviour (with each column inputing the demand by a different preference type ≻), and
π =

[
π (≻1) , µ (≻2) , ..., µ

(
≻|P|

)]′ is the vector form of the (unknown) type distribu-
tion.23 The specific form that the type conditional probabilities take depend on the
model postulated.

3.3.1 Identification of the preference and cognitive parameters

Our dataset consists of a finite sample (y1, y2, . . . , yI) of observed choices made by I
experimental subjects; sample units are heterogeneous pupils each choosing from the
same set of menu choices, that is, for each pupil we observe two choice functions, which

22See ?.
23Equation (14) can be written more extensively as

Z =


∏A∈A p≻1 (C1 (A) , A) ∏A∈A p≻2 (C1 (A) , A) · · · ∏A∈A p≻|P| (C1 (A) , A)
∏A∈A p≻1 (C2 (A) , A) ∏A∈A p≻2 (C2 (A) , A) · · · ∏A∈A p≻|P| (C2 (A) , A)

...
...

. . .
...

∏A∈A p≻1

(
C|C| (A) , A

)
∏A∈A p≻2

(
C|C| (A) , A

)
· · · ∏A∈A p≻|P|

(
C|C| (A) , A

)
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we analyse separately. With four alternatives we have 24 possible preference orderings.
We wish to identify the type distribution π (≻) and the type conditional choice prob-
abilities p≻. First of all, we establish that the model is generically identified:

Proposition 1. Let γa = γ for all a ∈ A. Then the distribution of preference types and
the (type-dependent) consideration parameters in the Conditional Stochastic Consideration Set
model are generically identified from our mixture choice data.

Here we outline the logic for our proof, relegating details to Appendix A. It relies
on arguments in ? (henceforth AMR), who prove the generic identifiability of a gen-
eral class of latent class models (of which ours is a special case) when parameters are
unrestricted. We cannot invoke their result directly because imposing a choice model
means restricting the range in which parameters can change, which could result in a
singularity. This point applies to one specific step of the proof in AMR, which requires
showing the generic invertibility of some matrices. We prove such invertibility in the
case of our model, which then ensures that the rest of the proof by AMR also holds for
our case.

Then since the theoretical model is identified from the collection of binary and tern-
ary sets (see ?), we know that we can use the type conditional probabilities identified
in the previous “step” to retrieve the model’s “deep parameters” (preference and con-
sideration parameters) for each type from our dataset/mixture choice function.

Next, we move to the estimation of our model.

3.3.2 Estimation: Finite Mixture Model

To begin with, we estimate our model (type distribution π(≻) and consideration para-
meter γ) from the deterministic choice dataset by maximum likelihood, following an
iterated two-step procedure as in ?: at each step we proceed to maximise the likelihood
with respect to one unknown conditional on the estimated values of the other (with an
arbitrary imputation to kick off the process), iterating until convergence. The outcome
of the maximisation problem is, therefore, an optima consideration parameter γ∗ and
the estimated population distribution π̂(ω).

In our i.i.d realised sample (y1, y2, . . . , yI), each yi is a multinomial random vector of
the choices made by the i-th subject at all choice menus, that is yi=

(
yiA1 , yiA2 , ...yiA|A|

)
.24

The individual likelihood that observation yi could have been generated by type ≻ is
given by:

Li (≻; yi) = p (yi) = ∏
A∈A

p (yiA) (15)

24Each subject i makes a single choice from each of the eleven choice menus in each of the pen or pencils
domains (six binary choices, four ternary choices, and the choice from the grand set), hence with 26 · 34 ·
4 = 20, 736 possible choice functions, yi will be a 26 · 34 · 4× 1 vector having 1 in the element corresponding
to the observed choice function, and zeros elsewhere. More in general, if there are n options, subject i is of
type ω, and choices are independent conditional on type, the 2(

n
2) × 3(

n
3) × · · · × n)-dimensional vector yi is

distributed as a single draw from a multinomial distribution with probability given by the corresponding
entry in the ω-th column of Z (as defined in footnote 17).
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where the last equality follows from the independence assumption. Given that types
are unobservable for the researcher, each individual likelihood can be written as a finite
mixture

Li (≻; yi) = ∑
≻∈P

π (≻)

[
∏

A∈A
p≻ (yiA)

]
. (16)

When the model is identified (that it, we can recover uniquely the type distribution
and the consideration parameter from the available data), estimation can be obtained
by maximising the log-likelihood of the whole sample subject to the model restrictions,
namely that p≻ is as in equation (1)):

max logL (π, γ; (≻; y)) =
|I|

∑
i=1

log

(
∑
≻∈P

π (≻) ∏
A∈A

p≻ (yi)

)
. (17)

4 Data

Our sample consists of 676 primary school children from four state primary schools in
different districts of a large city in Italy, Naples. It comprises classes across all years
for which we obtained consent to conduct the experiments from the school president,
the school board, and the teachers.25 The schools differ in catchment areas, providing
a good degree of socio-economic variability.26. Our analysis focuses on the two schools
among the four that are at the two extremes of the sampled socioeconomic spectrum,
which we denote as School L and School H (for lowest and highest socioeconomic
status), where we collected the majority of our data. The remaining two schools will be
used for robustness checks and the analysis will be replicated comprehensively in Ap-
pendix C. As a proxy for socioeconomic status, Figure 4 displays self-reported parental
educational achievements in our sample, with the distribution of educational attain-
ment by parents in School H dominating the one for School L.

25Compulsory education in Italy covers all children up to age 16. It comprises five stages, which are
nursery, primary school (normally 6-11 years old), lower secondary school (normally 11-14 years old),
upper secondary school (normally 14 to 19 years old) and university. Written consent was secured from
the parents, and oral consent was obtained from the children. The children were given a brief explanation
of the activities and were informed that they could withdraw from the study at any time, though none
chose to do so. The experiment was personally administered by Carla Guerriero, along with a team of
trained interviewers selected for their extensive experience in conducting scientific research with children.
These interviewers were all educated to degree level and were aged between 30 and 46 years.

26School L is located in one of the census areas in Naples with the lowest per capita income, with 37% un-
employment rate and only 32% of adults having a high school or bachelor’s degree. The other three schools
are located in different parts of Pozzuoli, a town within the wider metropolitan area around Naples. One,
which we will refer to as School H, is in a privileged area of Pozzuoli.
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sample size % male Year 1 Year 2 Year 3 Year 4 Year 5 parental ed.
coverage

School L 255 49.02 28.24 11.37 16.08 21.57 22.75 77.25
School 2 64 53.13 20.31 21.88 0.00 34.38 23.44 84.38
School 3 113 53.10 17.70 18.58 15.04 19.47 29.20 81.42
School H 244 50 14.75 20.08 20.90 23.36 20.90 84.84

total 676 50.44 20.86 16.72 16.12 23.08 23.22 81.36
L+H 499 49.50 21.64 15.63 18.44 22.44 21.84 80.96

Table 1: Sample size, gender, grades, and survey coverage.

Figure 4: Cumulative distributions of parental education

The pen/pencil task was administered in October-November 2022, while the coin
drop tasks were administered in March-April 2023. Due to the intrinsic complexity of
the lottery tasks, we administered it only to children in years 3-5 inclusive.27

27Our complete dataset comprises 732 primary school children. Due to COVID-19, the data collection
for the pen/pencils task began in May 2022 (8%) and was completed in October-November 2022 (92%).
Only 27 pupils repeated this part both in May 2022 and October-November 2022. In our main dataset, we
consider only the data collected in October-November 2022 but re-run the analysis considering the first
choices of the pupils who repeated the experiment confirming all results (see Online Appendix).
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5 Results

5.1 Overview of the results

Recall that, in our take, error avoidance translates into choice consistency in the pen/pencils
task, and in choosing the dominant lottery in the coin drop tasks. We find that consist-
ency increases with age in both tasks, as can be seen in Figure 5, where the left-hand
panel plots the percentage of children whose choices in the pen/pencil task are com-
patible with the maximisation of a preference, and the right-hand panel plots the pro-
portion of children who picked the dominant lottery in the two coin drop tasks.

In the pen/pencil task difference in proportions between the youngest and oldest
children is almost fourfold, from 14% to 47%, and is statistically significant (p-value
< 0.01). In the independent coin drop task the difference is surprisingly small, from
59% to 65% (p-value > 0.1) while in the correlated coin drop task the difference is again
large, from 32% to 56%, and significant (p-value < 0.01).
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Figure 5: Percentage of rational pupils in the two experiments

5.2 Errors in the Pen/Pencils task

We report our results distinguishing by domain, i.e. pencils and pens. In light of Pro-
position 1, we estimated a unique consideration parameter in each domain (either pens
or pencils), distinguishing by grade and school. Our results are collected in Table 2, and
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plotted in Figures 6 and 7. Figure 6 reports the distribution of the preference types at
the school level showing an overall similarity of preferences across schools. The head-
ing ‘ABCD’ is a shorthand for the preference ranking A first, then B, then C then D.
The letters in the table are the initials of either the eraser on top of each pencil (Duck,
Ladybug, Frog, and Shark) or the pen colour (Yellow, Red, Blue, and Green).
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Figure 6: Distribution of the preference types by school.

In Table 2 we report the estimates of the consideration parameter, both at the level
of each subpopulation (by grade) and overall in each school.

Pencils Pens Pencils Pens
1st Grade 0.67 0.63 0.83 0.77 1st Grade
2nd Grade 0.78 0.72 0.81 0.77 2nd Grade
3rd Grade 0.77 0.72 0.90 0.85 3rd Grade
4th Grade 0.90 0.88 0.91 0.87 4th Grade
5th Grade 0.92 0.86 0.95 0.90 5th Grade
School 0.81 0.76 0.88 0.84 School

School L School H

Table 2: Estimated values of γ, pen/pencils tasks

These are plotted in Figure 7, where from left to right the estimates regard the
choices between (i) pencils, and (ii) pens.

As can be seen, the estimated consideration parameter is larger the older the chil-
dren and this applies to both schools. Since in our model, a less preferred alternative
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can only be chosen if the better one(s) is not considered, the consideration parameter
acts as a proxy for the ability to avoid errors; our estimates show that this is much more
pronounced in School H than in School L, with this difference being statistically signi-
ficant for both pencils and pens (t-test, p-value < 0.01). The distribution of the estimated
consideration parameter across grades in School L first-order stochastically dominates
the corresponding distribution in School H - however, there is a composition effect, as
while the difference in the consideration parameter between youngest and oldest chil-
dren (1st and 5th grade) is considerable in both schools (p-value < 0.01 in both schools),
by the time children reach fifth grade the differences between schools that are signific-
ation in the 1st grade (p-value < 0.01) are no more statistically significant (p-value >
0.1).28
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Figure 7: Consideration parameter γ by school and grade

5.3 Errors in the coin drop games

The results of our coin-drop tasks are reported in Figure 8, which displays the joint dis-
tribution of choices in the Correlated and Independent tasks, across grades and schools
(recall that these tasks were only carried out with children in third to fifth grade).

28Finally we note that the ability to avoid error is similar across genders (while preferences are distinct),
full details in appendix B.1.
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Figure 8: Joint distribution of the "risky choices" by school and grade

While there are stark differences between grades and schools, there are is also con-
siderable commonality in patterns, which we now explore.

5.3.1 The Independent Coin Drop task

Because the Independent coin drop task is also a transparent test of first order stochastic
dominance, it constitutes a stark test of rationality. Very clearly, Implication 0 is dis-
proved: the overall fraction of children that picked the dominant lottery is only 55.3%
(supporting our focusing on older children). Disaggregating by school and grade we
see quite clearly that the ability to avoid errors improves with age, and is larger in
School H than in School L. With very few exceptions such transparent tests of first or-
der stochastic dominance are rare; after all, it is deemed a basic tenet of rationality. As
mentioned in the introduction, ? is a notable exception. As part of a wider experiment
carried out with university students, they found that in a choice between two lotteries
paying the same prize ($2) but one with probability 5

9 and the other with probability
6
9 , about 9% of their subjects chose the dominated lottery. In our case we can see that,
focusing on the oldest children (5th grade), 54% of respondents in School L and 66% of
respondents in School H picked the dominant lottery. We replicated the questions in
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an online survey with a population of adult (average self-declared age: 58 years old)
female participants from a craft private Italian Facebook group (presenting the ques-
tions as in Figure 3). Surprisingly to us, in this non-student sample, the error rate is
even higher than in our school children: only 20 out of 54 respondents answered cor-
rectly (37%). Our data show a difference in the ability to avoid errors between ages and
schools, which is statistically greater in School H than in School L. In all cases however
our Implication 2, i.e. p

(
ℓI

7, LI) > p
(
ℓI

6, LI) > p
(
ℓI

5, LI), is confirmed.
As we noted, the consideration parameter is uniquely identified only under the

assumption that it does not vary across lotteries. Table 3 reports the results of the (like-
lihood ratio) test of Implication 1: as we can see the implication isn’t rejected, but there
is considerable variation both across schools and within schools, revealing substantial
composition effects.

School L - Independent lotteries task
Grade 3rd 4th 5th Aggregate
LRT (p-value) 0.0714 0.2667 0.3782 0.9035
Relative frequencies
of choosing ℓ5 0.33 0.17 0.11 0.20
of choosing ℓ6 0.20 0.39 0.34 0.32
of choosing ℓ7 0.47 0.44 0.55 0.48
N 36 46 44 126

School H - Independent lotteries task
Grade 3rd 4th 5th Aggregate
LRT (p-value) 0.9674 0.1246 0.4859 0.2193
Observed frequencies
of choosing ℓ5 0.13 0.10 0.06 0.10
of choosing ℓ6 0.27 0.38 0.27 0.31
of choosing ℓ7 0.60 0.52 0.67 0.59
N 48 50 48 146

Table 3: Likelihood ratio tests (γI
n = γ), independent lottery task

In view of Table 3, the estimates of the uniquely estimated consideration parameter
are reported in Figure 9. T-tests comparing our estimates report significant differences
in the aggregate between schools (p-value < 0.05), and in the 3rd grade (p-value < 0.05),
while as in the riskless choice, differences in the 5th grade are not statistically signific-
ant.
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Figure 9: Estimated consideration parameter in the Independent Coin drop task

5.3.2 The Correlated Coin Drop task

As clear from Figure 8, there is a substantial amount of correlation neglect: the choice
patterns in this task are very different than in the Independent choice task, and Implic-
ation 0’ fails in all cases (chi-square tests have p-values < 0.01), with one exception: the
majority of oldest children (5th Grade) choose the dominant lottery, and for school H
children who fail to do so distribute evenly between the two choice errors (choosing ℓ5
and choosing ℓ6), a behaviour already quite close to that documented in ?. 29 In this
latter sub-sample, Implication 0’ is not rejected (chi-square test, p-value = 0.098). The
limited consideration model is compatible with correlation neglect, hence we now turn
to Implications 1’ and 2’.

Table 4 reports the results of the likelihood ratio test for Implication 1’, which re-
quired the choice probabilities for lotteries ℓC

5 = {ℓ4, ℓ5} and ℓC
6 = {ℓ4, ℓ2} should be

the same, and both lower than the probability of choosing ℓC
7 = {ℓ5, ℓ2}. This Implica-

tion is generally rejected - notably though we are unable to reject it for the case of oldest
group of children, in 5th grade, in School H.30

29? find that averaging over a number of scenarios with a similar structure to our correlated Coin Drop
Task, 43.5% of their adult participants (university students) display correlation neglect, with just over a
third (36.2%) making the rational choice (see Figure 2 in ?).

30In light of this observation, for this sub-sample we can estimate a unique consideration parameter.
Interestingly, we find that γ = 0.66 in the Independent task and γ = 0.67 in the Correlated task.
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School L - Correlated lotteries Task
Grade Aggregate
LRT (p-value) 0.0000 0.0423 0.0138 0.0000
Observed probabilities
of choosing ℓ5 0.67 0.48 0.37 0.49
of choosing ℓ6 0.11 0.26 0.11 0.17
of choosing ℓ7 0.22 0.26 0.52 0.34
ιιι -0.5 -0.29 0.18 -0.18
N 36 46 44 126

School H - Correlated lotteries Task
Grade Aggregate
LRT (p-value) 0.0000 0.0007 0.8185 0.0000
Observed frequencies
of choosing ℓ5 0.54 0.44 0.21 0.40
of choosing ℓ6 0.08 0.1 0.19 0.12
of choosing ℓ7 0.38 0.46 0.60 0.48
ιιι -0.18 0.02 0.49 0.09
N 48 50 48 146

Table 4: Likelihood ratio test (γC
n = γ) and index of correlation neglect.

Implication 2’ requiring ℓC
6 = {ℓ2, ℓ4} to be the least likely to be chosen, is confirmed

in all cases, similarly to the Independent task, providing some support for the assump-
tion that the consideration parameter is non decreasing in the number of states in which
a prize is won.

In summary then the limited consideration model can account both for the ‘cor-
relation neglect’ lottery ℓC

5 being chosen with larger frequency than its independent
version ℓI

5, and also for lottery ℓC
6 = {ℓ2, ℓ4} being the least likely to be chosen, as

long as consideration is monotonically non decreasing in the prize. Finally, we plot the
correlation neglect proxy, ι, in our sub-samples. T-tests comparing the indexes report
significant differences in the aggregate between schools (p-value < 0.05), and in both
schools between 3rd and 5th Grade (p-values < 0.01) signaling a clear development in
rationality by age. On the other hand, when controlling for grades, differences across
schools are never statistically significant.
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Figure 10: Index of correlation neglect ι

6 The determinants of the consideration parameter

In this section we study how the covariates we have available might influence the con-
sideration parameter γ in the various tasks, focusing on individual-level estimates.31

6.1 Riskless choice

For the analysis in this section, we estimate a consideration parameter γ̂i,s for each par-
ticipant i enrolled in school s, and we average across the pen and pencil tasks.32 Since
γ̂i,s is an estimated variable at the individual level we will account for the resulting het-
eroskedasticity using robust standard errors clustered at the level of the experimental
session.

We run an OLS regression for γ̂i,s on the available independent variables collected
in the vector Xi,s, and using a vector Zi,s of control variables.33 The independent vari-
ables are the Raven scores of each child, the highest educational attainment by either
parent and the grade year the child is in, while the controls include gender, and prefer-
ence intensity, measured on a Likert scale as mentioned in section 2.1.34 We also include

31Individual estimates are recovered by maximizing the likelihood in equation 16 which is achievable
since we have multiple observations for each pupil. While Proposition 1 establishes identification in the
pen/pencils task, these individual estimates may be noisy due to the small sample size. In the Online
Appendix, we replicate our results by obtaining individual estimates via the application of Bayes’ theorem
to the estimates resulting from the maximum likelihood in equation 17 applied to our sub-samples (by
schools and grades) and presented in Figure 6, 7, and Table 2. The results are everywhere robust and, if
anything, correlations are greater.

32We aggregate the two tasks for reasons of parsimony and because the results when separating the two
are very similar. We report these results in the Online Appendix.

33Since γ̂i,s takes values between 0 and 1, in the Online Appendix, we replicate the results using a beta
regression with logistic transformation. The results are robust.

34See the appendix B.2 for descriptive statistics on preference intensity and its calculation.
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a school fixed effect, denoted by ρs is the school fixed effect. The distinction between
variables in Xi,s and Zi,s is readily seen. Our objective is to explore potential determ-
inants of choice errors conditional on pupil’s preferences. Both gender and preference
intensity35 allow us to control for any residual effect of the pupil’s preferences that is
not captured by the model. The equation we estimate is:

γ̂i,s = α + β1Xi,s + β2Zi,s + ρs + ε i,s (18)

Results are presented in Table 5 where the covariates are coded such that the con-
stant represents the consideration parameter of a pupil who is male, has both parents
with the lowest educational attainment, has scored the lowest in the Raven test, is at-
tending the 1st grade in School L, and is indifferent between all alternatives. Specifica-
tions that contain parental education have a smaller sample size due to frictions in our
survey as reported in Table 1.

35Preference intensity is a particularly important control variable. Preferences enter our model ordinally
and, therefore, do not account for different degrees of preference intensity. However, it is reasonable to
think that children may develop their preferences with age and that as preferences become clearer the
errors will decrease.
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 0.190*** 0.0753 0.175*** 0.0659

(0.0399) (0.0450) (0.0406) (0.0471)

2nd Grade 0.0678** 0.0669* 0.0524* 0.0601*

(0.0318) (0.0345) (0.0311) (0.0356)

3rd Grade 0.0928*** 0.0669* 0.0817*** 0.0630*

(0.0335) (0.0380) (0.0277) (0.0353)

4th Grade 0.150*** 0.128*** 0.142*** 0.126***

(0.0241) (0.0289) (0.0237) (0.0284)

5th Grade 0.182*** 0.154*** 0.175*** 0.152***

(0.0223) (0.0260) (0.0199) (0.0260)

Parental education 0.0230** 0.0196** 0.0138 0.0134*

(0.00951) (0.00732) (0.00902) (0.00753)

Preference Intensity 0.107*** 0.108*** 0.112*** 0.112*** 0.101*** 0.101*** 0.106*** 0.107***

(0.0242) (0.0216) (0.0292) (0.0230) (0.0254) (0.0228) (0.0294) (0.0236)

Gender -0.0243 -0.0131 -0.0252 -0.00702 -0.0251* -0.0139 -0.0268 -0.00838

(0.0148) (0.0144) (0.0165) (0.0138) (0.0145) (0.0138) (0.0160) (0.0134)

School Fixed Effect 0.0368 0.0487*** 0.0439 0.0315*

(0.0230) (0.0163) (0.0263) (0.0187)

Constant 0.664*** 0.670*** 0.691*** 0.574*** 0.659*** 0.654*** 0.704*** 0.587***

(0.0342) (0.0226) (0.0466) (0.0432) (0.0340) (0.0210) (0.0452) (0.0455)

Observations 499 499 404 404 499 499 404 404

R-squared 0.128 0.180 0.090 0.206 0.137 0.196 0.100 0.211

Table 5: Consideration, age, parental education, and cognitive abilities.

The dependent variable is γ̂i being the average between the estimated consideration parameters using
the questions about pencils and pens. The covariates are coded such that the constant represents the
consideration parameter of a pupil who is male, has both parents with the lowest educational attainment,
has scored the lowest in the Raven test, is attending the 1st grade in School L, and is indifferent between all
alternatives. Parental education is coded from 1 to 6 following the categories in Figure 4. The coefficient of
Raven’s scores is the difference between the highest and lowest-scoring pupils. Since the pupils answered
8 matrices, the coefficient can be divided by eight to obtain the effect of each correct answer. The regression
models are estimated in Stata (Robust clustered standard errors at the experimental session level). ***
<0.01, ** <0.05, *<0.1. .

Results confirm that grade, which is a proxy for age, strongly influences the con-
sideration parameter. Performance in the Raven test and parental education are also
large and significant determinants of consideration. Specifications (1)-(3) and (5)-(7)
report the unconditional correlations with and without school fixed effect, and condi-
tional on preference intensity, which is, as expected, significantly correlated with the
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consideration parameter; and gender, which instead does not affect the consideration
parameter.36 Since our independent variables are highly correlated with each other,
i.e. the correlation between Raven’s scores and Grade is +0.48 (p < 0.01), while between
Raven’s scores and Parental education is +0.18 (p < 0.01), in specifications (4) and (8), we
show the conditional correlations to better identify their individual roles. Specification
(4) shows that each additional year of schooling has an average effect of 0.0376 (p-value
< 0.01) which is equivalent to two additional brackets in parental educational attain-
ment; while the effect of the performance in the Raven test becomes non-significant
and its magnitude reduces considerably. The analysis of individual grades shows a
more or less linear development with improvements that are included between 0.0678
(1st to 2nd grade) and 0.025 (2nd to 3rd grade). Finally, specification (8) shows that
parental educational attainment has a smaller (roughly a third of the effect of a year of
schooling) and less significant effect once accounting for the school-fixed effect. In this
respect, even if we cannot disentangle the effect of schools, i.e. peer effects, teachers’
quality, neighbourhood quality, etc...; we find that overall it is comparable to approx-
imately one school grade.

6.2 Risky choice

As noted, it is not possible to identify the consideration parameter in the correlated
coin drop tasks; however, we can study a proxy for it. In the independent task, we are
interested mostly in failures of first order stochastic dominance - hence it seems appro-
priate to study the ratio between the probability of choosing (correctly) the dominant
lottery vis a vis the probability of making a different choice, as shown by the logistic
regression in equation 19. In the correlated task, what is more interesting is the ratio
between the probability of choosing the dominant lottery vis a vis the probability of
choosing the ’correlation neglect’ lottery (see results on Implication 2’ in the previous
section) - hence we focus only on the regression in equation 20 and not on the choices
of ℓC

6 which regarded only 15% of the pupils.
We use the same set of independent variables as in the pen/pencils task, apart from

dropping preference intensities (not available for this task due to its different nature)
and introducing, in equation 20, a dummy that takes value one if the pupil has chosen
the dominant lottery in the independent task. This variable is, as expected, positively
related to choosing optimally in the correlated task.

log
(

p(ℓI
7|Xi,s, Zi,s, ρs)

p(ℓI
6 + ℓI

5|Xi,s, Zi,s, ρs)

)
= α + β1Xi,s + β2Zi,s + ρs + ε i,s (19)

log
(

p(ℓC
7 |Xi,s, Zi,s, ρs)

p(ℓC
5 |Xi,s, Zi,s, ρs)

)
= α + β1Xi,s + β2Zi,s + ρs + ε i,s (20)

36In the Appendix, we further analyse the relationship between gender and our estimates showing that
despite boys and girls have substantially different preferences, their error rates develop similarly.
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Results are reported in Tables 6 and 7. In both regressions, once the school fixed
effect is included (specification 8), only the coefficient related to the child’s fifth grade
is significant (p-value < 0.1 in Table 6 and p-value < 0.01 in Table 7). The magnitude
of these coefficients is large with the odds ratio increasing about fourfold between pu-
pils of third and fifth grade. As mentioned in section 2, the independent task being a
transparent test of FOSD also serves as a comprehension test. The odds ratio doubles
for pupils who successfully answer the independent task.37 Finally, in Table 7, we doc-
ument the only significant correlation between gender and one of our measures. The
odds ratio is about 50% lower for girls, an effect that can be speculatively connected to
differences in risk preferences influencing the probability of considering ℓ2

C.38

(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 1.117 -0.135 0.754 -0.418

(0.720) (0.971) (0.693) (1.027)

Fourth Grade 0.322 0.285 0.387 0.341

(0.584) (0.500) (0.556) (0.493)

Fifth Grade 1.015 1.044* 1.094* 1.111*

(0.632) (0.575) (0.590) (0.601)

Parental education 0.386* 0.445** 0.256 0.312

(0.204) (0.223) (0.235) (0.248)

Gender 0.00810 0.0941 0.0826 0.167 -0.0306 0.0662 0.0601 0.167

(0.398) (0.379) (0.402) (0.400) (0.412) (0.383) (0.418) (0.419)

School Fixed Effect 0.862* 0.989** 0.668 0.730

(0.456) (0.472) (0.500) (0.512)

Constant 0.608 0.898** 0.0917 -0.426 0.452 0.398 0.184 -0.219

(0.539) (0.434) (0.656) (0.978) (0.581) (0.540) (0.662) (0.945)

Observations 272 272 217 217 272 272 217 217

Log-likelihood -262.46 -259.59 -206.27 -202.12 -259.82 -256.02 -205.12 -200.90

AIC 536.91 535.18 424.53 428.23 535.63 532.05 426.24 429.79

BIC 558.55 564.03 444.81 468.79 564.48 568.10 453.28 477.11

Table 6: Independent task, age, parental education, and cognitive abilities.
We estimate a binomial Logit in which the dependent variable is a dummy that takes value 1 if the pupils
chose ℓI

7 and 0 otherwise. The independent variables are the same as in Table 5 apart from preference
intensity. The regression models are estimated in Stata using the function logit. *** <0.01, ** <0.05, *<0.1.

37See appendix C for the analysis when including the two other schools; there the regression coefficients
are larger and more significant, pointing to the fact that the weaker results in this sub-sample might de-
pend on its smaller size. In the Online Appendix, we also run the same regression excluding pupils who
failed the independent task and find similar correlation patterns.

38In the appendix B.2, we document a significant difference in risk preferences between boys and girls
similar to previous studies, both using the standard bomb-like task ? and the coin-drop task).
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 1.320** 1.064* 1.127** 0.885

(0.572) (0.549) (0.567) (0.574)

Fourth Grade 0.498 0.516 0.539 0.553

(0.433) (0.422) (0.409) (0.412)

Fifth Grade 1.302*** 1.357*** 1.358*** 1.399***

(0.437) (0.442) (0.413) (0.424)

Parental education 0.148 0.188 0.0563 0.105

(0.138) (0.145) (0.139) (0.141)

Gender -0.543* -0.461 -0.655** -0.571* -0.574** -0.514* -0.691** -0.597*

(0.296) (0.303) (0.320) (0.328) (0.283) (0.291) (0.310) (0.321)

Succ. Ind. Task 0.820*** 0.834*** 0.892*** 0.874*** 0.792*** 0.787*** 0.856*** 0.844***

(0.274) (0.257) (0.293) (0.313) (0.288) (0.272) (0.302) (0.321)

School Fixed Effect 0.427 0.611* 0.493 0.462

(0.394) (0.344) (0.435) (0.352)

Constant -1.188** -0.960** -0.818 -2.283*** -1.266** -1.282*** -0.748 -2.145***

(0.465) (0.384) (0.520) (0.731) (0.507) (0.492) (0.511) (0.703)

Observations 272 272 217 217 272 272 217 217

Log-likelihood -255.45 -249.50 -201.60 -191.67 -254.22 -247.03 -200.19 -190.21

AIC 526.91 519.00 419.20 411.35 528.43 518.05 420.39 412.43

BIC 555.76 555.06 446.24 458.67 564.49 561.32 454.19 466.50

Table 7: Correlation neglect, age, parental education, and cognitive abilities.
We estimate a multinomial Logit in which the dependent variable represents the pupil’s choices in the
Correlated task. The baseline is represented by the pupils who choose ℓC

5 and we only report the coeffi-
cients related to equation 20. The independent variables are the same as in Table 5 apart from preference
intensity and Success Ind. Task. This latter is a dummy that takes the value 1 if the pupil chooses the best
lottery in the Independent task. The regression models are estimated in Stata using the function mlogit. ***
<0.01, ** <0.05, *<0.1.

7 Raven scores and rationality

Our analysis highlights that children’s ability to make consistent choices and avoid
mistakes improves with years of schooling, regardless of school location, and that the
gap between children attending schools in neighbourhoods of different socioeconomic
status narrows. This isn’t the case for performance in the Raven tests. Figure 11 depicts
the Raven score by grade, normalised to the [0,1] interval. In the 1st grade, children’s
scores are statistically the same across schools, while the Raven score for 5th-grade chil-
dren in School H is 20% higher than in School L, with this difference being statistically
significant (unpaired t-test, p-value < 0.01). We also document a more non-linear devel-
opment by grade with the majority of the effect happening between 2nd and 3rd grade.
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Finally, the effect of the parental educational attainment, similar to previous results,
is significant but with a smaller size than in previous results, i.e. after controlling for
school fixed effect, one-fourth of a year of schooling. On the other hand, the role of the
school seems crucial for the development of fluid intelligence with an effect that is very
significant and larger than a year of schooling. This result mirrors the divergent path
reported in Figure 11.

1st grade 2nd grade 3rd grade 4th grade 5th grade Aggregate
0.3
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0.6
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0.8

0.9

School L
School H

Figure 11: Normalized Raven’s scores by grades and schools.
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(1) (2) (3) (4) (5) (6)

2nd Grade 0.0958*** 0.0922** 0.0670** 0.0743**

(0.0313) (0.0344) (0.0264) (0.0335)

3rd Grade 0.235*** 0.240*** 0.213*** 0.225***

(0.0312) (0.0327) (0.0333) (0.0364)

4th Grade 0.271*** 0.269*** 0.254*** 0.260***

(0.0331) (0.0366) (0.0292) (0.0357)

5th Grade 0.335*** 0.345*** 0.322*** 0.335***

(0.0330) (0.0314) (0.0278) (0.0335)

Parental education 0.0383*** 0.0373*** 0.0191* 0.0211**

(0.0130) (0.00981) (0.0110) (0.0101)

Gender -0.000966 -0.0370 -0.00161 -0.00267 -0.0406 -0.00506

(0.0219) (0.0273) (0.0207) (0.0199) (0.0263) (0.0198)

School Fixed Effect 0.0963*** 0.0904** 0.0764***

(0.0174) (0.0432) (0.0208)

Constant 0.383*** 0.452*** 0.262*** 0.340*** 0.470*** 0.280***

(0.0229) (0.0544) (0.0429) (0.0239) (0.0499) (0.0426)

Observations 499 404 404 499 404 404

R-squared 0.233 0.037 0.268 0.269 0.061 0.285

Table 8: Raven’s scores, age, and parental education.

The dependent variable is normalized - in [0,1] - Raven’s scores. The covariates are coded such that the
constant represents the consideration parameter of a pupil who is male, has both parents with the lowest
educational attainment, has scored the lowest in the Raven test, is attending the 1st grade in School L, and
is indifferent between all alternatives. The coefficient of parental education is the effect of the improvement
of the degree of at least one of the parents. Grade can be interpreted as one-year age-effect. The only
control here is Gender which is uncorrelated with Raven’s scores. The regression models are estimated
in Stata (Robust clustered standard errors at the session level). *** <0.01, ** <0.05, *<0.1. The dependent
variable is normalized - in [0,1] - Raven’s scores. The independent variables are normalized such that
the constant represents the consideration parameter of a male pupil whose parents have no education,
who is in the 1st grade, and who is in School L. The coefficient of parental education is the effect of the
improvement of the degree of at least one of the parents. Grade can be interpreted as one-year age-effect.
The only control here is Gender which is uncorrelated with Raven’s scores. The regression models are
estimated in Stata (Robust clustered standard errors at the session level). *** <0.01, ** <0.05, *<0.1.

8 Concluding remarks

In this paper, we have described a novel experiment exploring economic rationality, in-
tended as the ability to avoid errors, in primary school-age children, and how this abil-
ity develops with age. To do this we go beyond binary choices in two domains, eliciting
the full choice function over deterministic choices, and studying choice behaviour over
lotteries. The latter requires the introduction of a new design to document for children
a phenomenon, correlation neglect, so far only studied in adults. With plentiful evid-
ence of choice errors in adults, it comes as no surprise that choice errors abound in
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children - what is striking though is that already by age 10-11 children overall display
error rates which are close to those observed in adults. Our results are well captured
by a model of stochastic consideration for these children: their mistakes are compatible
with limited consideration, that is failure to consider all the available options. - how-
ever, our experiment is rich enough to highlight the shape that potential interventions
could take, operating both on increasing children’s consideration capacity. Different so-
cioeconomic backgrounds seem to also impact the ability to avoid errors significantly,
though the gap between children does tend to close over time - whether this is due to
schooling or growing is not possible to ascertain, from our data, but warrants further
investigation.
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A Proof of Proposition 1

Following AMR (?), we construct three sub-collections A1, A2 and A3 comprising, re-
spectively, the grand set, the collection of all binary sets, and the collection of all ternary
sets. These enable us to identify all 24 types.39 For each collection we construct the mat-
rix of type conditional choice probabilities restricted to that collection and show that
each has full Kruskal rank, where the Kruskal rank of a matrix is the largest k such that
any set of k columns from such matrix are linearly independent. To prove this, from
each such matrix, we extract a 24 × 24 minor that has non zero determinant. Since the
determinant is a polynomial function, and since a polynomial function is either identic-
ally zero or non zero almost everywhere (see Caron and Traynor, 2005), by exhibiting
one parameter value that sets the determinant different from zero, we show that the
matrix is generically invertible. In turn, by appealing to ARM, we are able to establish
the generic identifiability of the model.

More formally, let A1 = {X}, A2 = {A ⊂ X : |A| = 2}, and A3 = {A ⊂ X : |A| = 2},
and correspondingly construct the restriction of each type conditional mixture choice
function to the collection Ai, with i = 1, 2, 3. For collection A1 first, the restriction col-
lapses to the four possible choice functions corresponding to C (X), hence at most the
Kruskal40 rank is at most 4. Relabel the four alternatives as xi with i = 1, .., 4. Then we
can select a minor consisting of the four types ≻j each with xi ≻j xi+1 modulo 4 and
with j = 1, .., 4 and xj ≻j x for all x ̸= xj. This way we can arrange orders to obtain the
circulant minor 

a ab ab2 ab3

ab ab2 ab3 a
ab2 ab3 a ab
ab3 a ab ab2

 (21)

where
a =

γ

1 − (1 − γ)4 ; b = 1 − γ

That is, b is the ratio in type conditional choice probabilities between two consecutively
ranked alternatives. Exploiting the properties of the rank of circulant matrices, that
establish that the rank is given by the difference between the number of rows and the
degree of the matrix (see e.g. ?), it follows that minor (21) has a full rank, hence full
Kruskal rank.

41 Next consider A2, which collects all binary sets, and construct the 24 × 24 minor
selecting, for each type, the unique row corresponding to the choice functions selecting

39Let κi = ∏A∈Ai
|A|. Corollary 3 in AMR states that r types can be identified, up to label swapping, as

long as ∑3
i=1 min {κi, r} ≥ 2r + 2.

40The Kruskal a matrix is the largest number k such that every set of k rows is linearly independent.
41For a circulant matrix with first row [a0, a1, ...an−1] the associated polynomial is the function ∑n−1

i=0 aixi.
The degree of the circulant matrix is the number of common zeros between the associated polynomial and
1—xn. The associated polynomial of matrix (21) is

γ

1 − (1 − γ)4

(
1 + (1 − γ) x + (1 − γ)2 x2 + (1 − γ)3 x3

)
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the top alternatives in all 6 sets according to that type. Note that the type conditional
probability for choice functions restricted to this collection when they maximise an or-
der is (

γ

1 − (1 − γ)2

)6

which is therefore the largest value achievable in a given row. By collecting this term
outside of the matrix, we can permute rows so as to obtain a square minor with 1 on the
main diagonal, with all other values less than 1. Now setting (1 − γ) = 1

24 the minor is
a diagonally dominant matrix, which is invertible. Hence the determinant is non zero,
and since the determinant of this minor is a polynomial function, it is different from
zero almost everywhere, hence the minor is generically invertible, and as a consequence
has full Kruskal rank. For the third and final collection we proceed similarly, only this
time for each type we select the choice function that, for each preference type, selects
the top alternative from the first three sets, and the bottom alternative from the fourth
set. The type conditional probability in correspondence of the matching preference type
is (

γ

1 − (1 − γ)3

)4

(1 − γ)2

with all other terms being smaller. Hence we can collect this term, and again permute
this minor so as to obtain a matrix with 1 on the main diagonal. Again setting (1 − γ) =
1
24 the minor is a diagonally dominant matrix, which is invertible, and we can proceed
as above.

B Additional results

B.1 Preference distribution and consideration parameters by gender

Here we report the estimates disaggregated by grade and gender in Figure B.1, together
with the distribution of preferences, where again we estimate the consideration para-
meter separately by class and gender. The top-left and bottom-left panels display the
estimates regarding the choices between pencils and pens. A similar procedure as for
Figure 7 has been followed to estimate the standard errors. The top-right and bottom-
right panels display the estimates of the preference distribution for pencils and pens.

We show that in none of the grades we find a significant difference in the considera-
tion parameter between females and males with both displaying a similar development
path. However, on the right panels, we show the distribution of the preferences from
the sub-populations of females and males aggregated by grades. Preferences on the
x-axis are shortened such that, for instance, D ≻ L ≻ F ≻ S reads DLFS. Although

Since the only real root is − 1
1−γ ̸= ±1, the degree of this circulant minor is zero, hence the minor has full

rank.
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females and males have similar consideration parameters, they display completely dif-
ferent preferences with the former showing more interest in the Ladybug, Duck pencils
and the Yellow, Red pens while the latter showing more interest in the Shark pencil and
the Blue pen.
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Figure 12: Estimated consideration parameter and preference distribution by grade and gender. Pencils at the topSchool H at the top
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B.2 Preference intensity

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Consideration parameter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Development of the consideration parameter

1° Grade
2° Grade
3° Grade
4° Grade
5° Grade

0 0.5 1 1.5 2
Coefficient of variation in the stated preferences

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Development of preference intensity

1° Grade
2° Grade
3° Grade
4° Grade
5° Grade

Figure 13: Evolution of the Consideration Parameter and Preference Intensity.

Notes: The left panel shows the cumulative distributions of γ̂ from 1st to 5th grade. The right figure
shows the cumulative distributions of preference intensity measured as the coefficient of variation
of the stated preferences summed between pencils and pens from 1st to 5th grade. The empirical
cumulative distributions are estimated using the Matlab function "ecdf" with confidence bounds at
the default level of 5%.

In the left panel of Figure 13, we plot the cumulative distribution of the estimated indi-
vidual consideration parameter γ̂ by age. The distributions of γ̂ show a clear order of
stochastic dominance. In the right panel of Figure 13, we plot the cumulative distribu-
tions of our measure of preference intensity. Every pupil assigned to each alternative a
value vi(a) ∈ {1, 2, 3, 4, 5} with the possibility to assign the same value to two different
alternatives. Our measure of preference intensity is the coefficient of variation of the
stated values, namely cvi =

σ(v)
v̄ where σ(v) is the standard deviation and v̄ is the mean

of v. We then report the sum between the coefficient of variation measured for pencils
and pens. We show that there is virtually no difference by age. Both the mean and
median cv are unchanged from 1st (mean = 0.75, median = 0.70) to 5th grade (mean
= 0.69, median = 0.64). However, the distributions are different with higher variance
among younger pupils. The standard deviation drops from 0.54 in the 1st grade to 0.36
in the 5th grade, and the difference is statistically significant, F-test of equal variance, p
< 0.001. Note that, for instance, only rarely do older pupils like all goods equally (3.7%
in the 5th grade), while this behaviour is widespread among younger pupils (13.9% in
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the 1st grade).

B.3 Risk Preferences

After answering the choices over the lotteries, but before being paid, the pupils answered
a bomb-like task to measure their risk preferences (?). This task was performed using
eight cards (see Figure 14), seven representing sheep and one representing a wolf. The
instructions are simple: when cards are turned, if the wolf is one of the cards turned
the pupil wins nothing, otherwise the pupil wins many goods equal to the number of
cards turned. The pupils reported their choices on a paper. They could choose to turn
0 to 8 cards, i.e. we did not exclude the dominated options 0 and 8, however only 5.5%
of the pupils chose one of these options. In this task, 4 represents risk neutrality, 1-3
represents risk aversion, and 5-7 represents risk-seeking behaviour.42

Figure 14: Cards for the Bomb task to measure risk preferences.

Figure 15 shows that females are significantly more risk-averse than males (Wil-
coxon rank-sum test, p-value < 0.01). The distributions are also well-behaved with
reasonable inter-quantile ranges and overall pupils are mildly risk-averse. These res-
ults are in line with previous evidence from the literature (?, ?).43 Apart from gender,
we do not find any significant correlation between risk preferences and other variables
such as parental education, age, cognitive abilities, or school.

42We also collected data on the risk preferences of the pupils in Fall 2022. Since in the first wave, the
research assistants paid the lottery game before the elicitation of the risk preferences, we opted to re-elicit
the risk preferences in Spring 2023.

43The correlation between the risk preferences collected in Fall 2022 and Spring 2023, even under the
protocol failure in Fall 2022, is +0.14 (p-value < 0.01). The distributions are very similar both in aggreg-
ate and by gender (Chi-squared tests, and t-tests all have p-values > 0.1), and also in Fall 2022, we find
differences between genders (Wilcoxon rank-sum test, p-value < 0.05).
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Figure 15: Risk by gender.

B.4 Coin-drop task with undominated lotteries

In Fall 2022, we collected data on a more complex version of the coin-drop task (see
Figure 16). The lotteries are now defined on a different outcome space, i.e. {0, 1, 2, 3}.
In the Independent coin drop task, each pupil chooses one lottery out of the following:
ℓI

1 = (3, 3/8; 2, 1/8; 0, 4/8), ℓI
2 = (3, 3/8; 1, 4/8; 0, 1/8), and ℓI

3 = (2, 4/8; 1, 3/8; 0, 1/8).
Note that these lotteries are not ranked by FOSD. In the Correlated coin drop task, each
pupil chooses two of the following: ℓ3 = (3, 3/8), ℓ2 = (2, 4/8), and ℓ1 = (1, 7/8). As
in section 3.2, we denote ℓC

1 = {ℓ3, ℓ2}, ℓC
2 = {ℓ3, ℓ1}, and ℓC

3 = {ℓ2, ℓ1}. Similarly to
the risky choices described in section 2, combining every two correlated lotteries yields
exactly the independent ones.

Figure 16: The answer sheet in the two tasks.

We randomized the pupils into the two tasks (between-subject design). Figure 17
shows clear signs of correlation neglect. In the Independent task, the majority of pupils
choose ℓI

2, while in the Correlated task, the three lotteries have similar proportions of
choices. The two distributions are significantly different (chi-square test, p-value <
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0.01).
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Figure 17: Distribution of choices among the three lotteries in the independent and correlated tasks.

Notes: The left panel shows the proportion of pupils choosing ℓI
1, ℓC

1 , the middle panel those choosing
ℓI

2, ℓC
2 , and the right panel those choosing ℓI

3, ℓC
3 .

We now investigate whether we can rationalize the choices of the pupils using the
risk preferences measured by the Bomb card game six months later.44 This exercise
is a validation of the coin-drop game as an experimental design for choices between
lotteries. In the first panel of Figure 18, we show that the pupils who choose ℓI

1 are
significantly more risk-loving than the remaining pupils (Wilcoxon rank-sum test, p-
value < 0.03 and p-value < 0.05, w.r.t to pupils who choose ℓI

2 and ℓI
3 resp.) indicating

that the coin-drop game is indeed an effective tool and the pupils had understood the
task. In the second panel, we focus on the correlated lotteries task and find that the
correlation with risk preferences is attenuated. However, the pupils who choose ℓC

1 are
still more risk-loving than the remaining pupils (Wilcoxon rank-sum test, p-value > 0.1
and p-value < 0.05, w.r.t to pupils who choose ℓC

2 and ℓC
3 resp.).

Finally, we confirm the differences in risk preferences between genders of Figure 15
in the Independent task with 33.5% of males choosing ℓI

1 while only 26.4% of females
doing so. This difference is not due to lower comprehension among female participants
as we find no significant differences in the correct answers to a comprehension ques-
tion both in Fall 2022 (63% vs 64% for males and females resp.) and Spring 2023 (60%
vs 56%). Even focusing only on pupils who answered the comprehension question
correctly, 30% of males chose ℓI

1 while only 22% of females did so.
44The results are robust if we use the risk preferences measured in the first wave, however, we think it

is cleaner to use the risk preferences measured in the second wave.
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Figure 18: Number of cards chosen broken down by the choices in the coin-drop task.

C Replication using the entire set of schools

We replicate Figures 6, 7, 8, 9, 10, 11, and Tables 5, 7 including all schools. To achieve a
critical mass of children we aggregate the remaining two schools as Schools M.
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Figure 19: Consideration parameter γ by school and grade

Notes: Estimates of γ in sub-populations characterized by grades and schools. The estimates regarding
the choices between pencils and pens are from left to right. The γ∗ are estimated using MATLAB function

fmincon.
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Figure 20: Joint distribution of the "risky choices" by school and grade

Notes: This figure reports the joint distribution of choices in the Correlated and Independent Tasks. In
the Independent task, the pupil should choose 7 regardless of correlation neglect. In the Correlated
task, the pupil chooses 5 with correlation neglect and 7 without. The top row regards School H,
grades 3rd to 5th from left to right. The middle row regards Schools M, grades 3rd to 5th from left
to right. The bottom row regards School L, grades 3rd to 5th from left to right.
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Figure 21: Development of the consideration parameter in choice with risk.

Notes: On the left, we report the estimates of the unique consideration parameter by grades and in
the aggregate for School L, Schools M, and School H. On the right, we report the index of correlation
neglect.
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Figure 22: Normalized Raven’s scores by grades and schools.
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 0.209*** 0.0690* 0.196*** 0.0581

(0.0351) (0.0385) (0.0362) (0.0395)

Grade 0.0497*** 0.0418*** 0.0488*** 0.0422***

(0.00461) (0.00492) (0.00447) (0.00477)

Parental education 0.0248*** 0.0211*** 0.0178** 0.0166**

(0.00834) (0.00632) (0.00820) (0.00647)

Constant 0.677*** 0.684*** 0.719*** 0.591*** 0.667*** 0.661*** 0.716*** 0.593***

(0.0304) (0.0196) (0.0375) (0.0357) (0.0306) (0.0178) (0.0385) (0.0366)

Controls        

School FE        

Observations 676 676 550 550 676 676 550 550

R-squared 0.113 0.184 0.062 0.207 0.119 0.195 0.073 0.211

Table 9: Consideration parameter, age, parental education, and cognitive abilities.

Notes: The dependent variable is the estimated consideration parameter γ. The covariates are coded
such that the constant represents the consideration parameter of a pupil who is male, has both parents
with the lowest educational attainment, has scored the lowest in the Raven test, is attending the 1st
grade in School L, and is indifferent between all alternatives. The coefficient of parental education is
the effect of the improvement of the degree of at least one of the parents. The coefficient of Raven’s
scores is the difference between the highest and lowest-scoring pupil. Grade can be interpreted as
one-year age-effect. Preference intensity takes values between 0 and 2. Gender is 0 for male and 1
for female. School is 0 for School L and 1 for School H. The regression models are estimated in Stata
(Robust clustered standard errors at the session level). *** <0.01, ** <0.05, *<0.1.
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 1.560*** 1.434*** 1.394*** 1.293**

(0.526) (0.505) (0.520) (0.527)

Grade 0.580*** 0.512*** 0.581*** 0.515***

(0.178) (0.178) (0.169) (0.176)

Parental education 0.10 0.12 0.03 0.07

(0.106) (0.112) (0.105) (0.109)

Constant -1.246*** -0.864*** -0.539 -2.141*** -1.317*** -1.125*** -0.583 -2.083***

(0.423) (0.314) (0.404) (0.567) (0.468) (0.410) (0.421) (0.551)

Controls        

School FE        

Observations 363 363 293 293 363 363 293 293

Log-likelihood -361.25 -339.58 -276.75 -267.16 -342.05 -337.55 -275.27 -266.26

AIC 701.97 695.17 569.49 558.32 704.11 695.11 570.53 560.51

BIC 733.13 726.32 598.94 602.49 743.05 734.05 607.34 612.04

Table 10: Correlation neglect, age, parental education, and cognitive abilities.

Notes: We estimate a multinomial Logit in which the dependent variable represents the pupil’s
choices in the Correlated task. The baseline is represented by the pupils who choose ℓC

5 and we only
report the coefficients related to equation 20. The independent variables are the same as in Table 5
apart from preference intensity and Success Ind. Task. This latter is a dummy that takes the value 1
if the pupil chooses the best lottery in the Independent task. The regression models are estimated in
Stata using the function mlogit. *** <0.01, ** <0.05, *<0.1.
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D Screenshots and Instructions

Figure 23: Screenshot for the problem in which all the pencils were available.

Figure 24: Screenshot for the problem in which all the pens were available.
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Figure 25: Screenshot for the Likert-scale task for pencils.
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Figure 26: Screenshot for the Likert-scale task for pens.

49



Figure 27: Screenshot for one of the Raven question.
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Italiano 

 

Per noi, ricercatori della Facoltà di Economia, è importante capire le preferenze di voi bambini, per 

poi analizzare gli spostamenti dei soldi legati alle vostre scelte. Quindi oggi ci darete una mano 

partecipando a questo esperimento e avrete delle scelte da compiere. 

 

Durante l’esperimento vedrete un breve filmato della durata di pochi secondi, in cui appariranno 

animali di ogni sorta, come oche e galline. Vedrete che il video dura pochi secondi. Una volta 

terminato, comparirà una scelta da fare. 

 

Vedrete due, tre o quattro penne di colori diversi, e il vostro compito sarà scegliere la penna che più 

vi piace, puntando il dito su di essa. Anche se vi verrà presentata più volte la stessa domanda, 

dovrete sempre indicare la penna del colore che preferite. Alla fine del gioco, avrete maggiori 

probabilità di ricevere la penna che avete scelto più spesso. Questi sono i colori delle penne 

disponibili. 

 

Dopo le penne, avrete le matite, con un piccolo pupazzetto sulla parte superiore (per esempio una 

coccinella, una rana, ecc.). Anche in questo caso, dovrete puntare il dito sulla matita che vi piace di 

più, seguendo lo stesso criterio utilizzato per le penne. 

 

Inglese 

For us, researchers at the Faculty of Economics, it is important to understand the preferences of you 

children, to then analyze the movements of money related to your choices. So today you will give 

us a hand by participating in this experiment and you will have choices to make.  

During the experiment you will see a short film lasting a few seconds, in which all sorts of animals 

will appear, such as geese and chickens. You will see that the video lasts a few seconds. Once it is 

finished, a choice to make will appear. 

You will see two, three or four pens of different colors, and your task will be to choose the pen that 

you like the most, by pointing your finger at it. Even if you are asked the same question several 

times, you must always indicate the pen of the color you prefer. At the end of the game, you will 

have a greater chance of receiving the pen that you have chosen most often. These are the colors of 

the available pens.  

After the pens, you will have the pencils, with a little doll on the top (for example a ladybug, a frog, 

etc.). Again, you will have to point your finger at the pencil that you like the most, following the 

same criteria used for the pens. 

 
Figure 28: Instruction (read aloud) for the pencils/pens task.
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Italiano: 

Questo gioco consiste nel lanciare una biglia in quello che vedete qui, chiamato Pachinko, molto 

simile a quello che voi conoscete come flipper. La biglia cade in un imbuto e rimbalza su dei pioli, 

con la possibilità di finire in uno degli otto slot sottostanti. 

Dovete scegliere tra le tre righe davanti a voi, la riga con cui volete partecipare, sapendo che se la 

biglia finisce in uno slot corrispondente a un riquadro giallo, vincerete una matita. Se finisce in un 

riquadro bianco, non vincerete nulla. La probabilità che la biglia vada in uno degli otto slot è uguale 

(somministratore indica gli slot). 

A questo punto, segnate la vostra scelta mettendo una “X” nel cerchio corrispondente alla riga con 

cui volete partecipare. L'amministratore vi mostrerà i tre cerchi. 

Adesso faremo un secondo gioco simile al primo, ma questa volta parteciperete con due righe 

invece di una. Avrete sempre la possibilità di vincere una matita. Potete scegliere combinazioni 

come la prima e la seconda riga, la prima e la terza, o la seconda e la terza. Ricordate: se la biglia 

finisce in un riquadro giallo di una delle righe selezionate, vincerete una matita; se finisce in 

corrispondenza di un riquadro bianco, non vincerete nulla; il quadrato giallo può essere quello della 

prima o della seconda riga che avete selezionato, non ha importanza.  

 

Inglese:  

This game involves launching a marble into what you see here, called Pachinko, which is very 

similar to what you know as a pinball machine. The marble falls into a funnel and bounces off pegs, 

with the possibility of landing in one of the eight slots below. 

You need to choose from the three rows in front of you, the row you want to participate with, 

knowing that if the marble lands in a slot corresponding to a yellow square, you will win a pencil. If 

it lands in a white square, you will not win anything. The probability of the marble landing in one of 

the eight slots is equal (the administrator indicates the slots). 

At this point, mark your choice by putting an "X" in the circle corresponding to the row you wish to 

participate with. The administrator will show you the three circles. 

Now we will play a second game similar to the first, but this time you will participate with two 

rows instead of one. You will still have the chance to win a pencil. You can choose combinations 

like the first and second rows, the first and third, or the second and third. Remember: if the marble 

lands in a yellow square from either of the selected rows, you will win a pencil; if it lands in a white 

square, you won't win anything. The yellow square can be from either the first or the second row 

you selected; it doesn't matter. 

 

 
Figure 29: Instruction (read aloud) for the coin-drop game.
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E Online Appendix

E.1 Robustness check [1]: relaxing the uniqueness of γ.

In this section, we explore a different estimation approach. We discretize the type space
Ω by letting γ take two, three, and four possible values. Hence with 24 possible or-
derings and three values of the consideration parameter, the type space has cardinal-
ity |Ω| = {48, 72, 96}. Again, we estimate the type distribution π(ω) and the type
conditional choice probabilities pω. The estimation approach is equivalent to the one
described in section 3 but now the outcome of the maximization is a vector of consid-
eration parameters γ̂ and the estimated population distribution π̂(ω).

In Figure 30, we replicate Figure 7 for all model specifications. We find that the
patterns are remarkably similar with only a change in scaling with a slightly higher
estimate in the case of unique γ. In Tables 11 and 12, we report the estimated mean
value E(γ̂), the log-likelihood, and the Akaike, Bayesian Information Criteria (AIC and
BIC) for our 12 sub-populations: five grades in School L and School H, and the two
aggregate estimations for each school.
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Figure 30: Consideration parameter γ by school and grade for all model specifications

Notes: Estimates of E(γ̂) in sub-populations characterized by grades and schools for all model-specifications. From left to right, the
estimates regard the choices between (i) pencils and (ii) pens. The γ∗ are estimated using MATLAB function fmincon. In the legend,

"(j)" identifies the model specification with j values of γ.
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One value of γ Two values of γ
E(γ) logL AIC BIC E(γ) logL AIC BIC

School L - 1st grade 0.67 -616.91 1283.81 1340.73 0.59 -577.81 1255.62 1369.46
School L - 2nd grade 0.78 -221.51 493.02 527.21 0.77 -200.06 500.12 568.48
School L - 3rd grade 0.77 -325.36 700.73 743.57 0.73 -293.41 686.83 772.51
School L - 4th grade 0.90 -318.70 687.40 737.58 0.89 -292.76 685.53 785.89
School L - 5th grade 0.92 -294.14 638.27 689.78 0.91 -258.08 616.16 719.18
School L - aggregate 0.81 -1882.03 3814.06 3902.60 0.77 -1711.11 3522.21 3699.28
School H - 1st grade 0.83 -244.54 539.07 578.66 0.82 -218.45 536.89 616.07
School H - 2nd grade 0.81 -350.17 750.33 797.63 0.80 -324.61 749.23 843.82
School H - 3rd grade 0.90 -281.58 613.15 661.45 0.90 -257.07 614.14 710.73
School H - 4th grade 0.91 -326.01 702.01 753.09 0.90 -296.43 692.85 795.01
School H - 5th grade 0.95 -226.48 502.96 551.26 0.95 -207.08 514.16 610.75
School H - aggregate 0.88 -1497.64 3045.28 3132.71 0.81 -1392.36 2884.72 3059.58

Three values of γ Four values of γ
E(γ) logL AIC BIC E(γ) logL AIC BIC

School L - 1st grade 0.58 -577.42 1304.85 1475.60 0.58 -577.42 1354.84 1582.51
School L - 2nd grade 0.76 -195.13 540.25 642.80 0.76 -195.13 590.25 726.98
School L - 3rd grade 0.71 -289.77 729.53 858.05 0.72 -289.77 779.53 950.89
School L - 4th grade 0.89 -287.61 725.21 875.76 0.89 -286.19 772.37 973.10
School L - 5th grade 0.91 -253.95 657.89 812.42 0.91 -253.54 707.09 913.13
School L - aggregate 0.75 -1690.64 3531.29 3796.88 0.75 -1690.42 3580.83 3934.96
School H - 1st grade 0.81 -214.63 579.27 698.03 0.81 -214.01 628.02 786.37
School H - 2nd grade 0.79 -321.77 793.55 935.43 0.79 -319.87 839.73 1028.92
School H - 3rd grade 0.90 -252.18 654.36 799.24 0.90 -252.16 704.33 897.51
School H - 4th grade 0.90 -290.59 731.17 884.40 0.90 -290.55 781.10 985.40
School H - 5th grade 0.95 -201.70 553.40 698.28 0.95 -201.68 603.36 796.54
School H - aggregate 0.86 -1366.42 2882.83 3145.12 0.85 -1363.32 2926.64 3276.36

Table 11: Model selection for different specifications of the model in the pencils questions.
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One value of γ Two values of γ
E(γ) logL AIC BIC E(γ) logL AIC BIC

School L - 1st grade 0.63 -644.52 1339.04 1395.96 0.58 -616.86 1333.71 1447.55
School L - 2nd grade 0.72 -236.46 522.92 557.10 0.67 -223.84 547.69 616.05
School L - 3rd grade 0.72 -334.13 718.26 761.10 0.70 -310.61 721.23 806.91
School L - 4th grade 0.88 -344.25 738.49 788.68 0.87 -321.09 742.17 842.54
School L - 5th grade 0.86 -361.62 773.25 824.76 0.85 -334.96 769.93 872.95
School L - aggregate 0.76 -2022.58 4095.16 4183.69 0.71 -1905.44 3910.88 4087.94
School H - 1st grade 0.77 -280.79 611.58 651.16 0.71 -255.87 611.73 690.91
School H - 2nd grade 0.77 -376.86 803.72 851.01 0.74 -347.94 795.88 890.47
School H - 3rd grade 0.85 -335.88 721.77 770.06 0.84 -298.36 696.72 793.32
School H - 4th grade 0.87 -356.49 762.97 814.05 0.86 -327.45 754.91 857.06
School H - 5th grade 0.90 -293.21 636.41 684.71 0.90 -273.19 646.39 742.98
School H - aggregate 0.84 -1719.38 3488.75 3576.18 0.81 -1593.35 3286.70 3461.56

Three values of γ Four values of γ
E(γ) logL AIC BIC E(γ) logL AIC BIC

School L - 1st grade 0.53 -611.05 1372.09 1542.84 0.54 -610.03 1420.05 1647.72
School L - 2nd grade 0.67 -223.84 597.69 700.24 0.68 -218.45 636.89 773.62
School L - 3rd grade 0.70 -310.61 771.23 899.75 0.69 -308.82 817.64 988.99
School L - 4th grade 0.87 -315.91 781.83 932.38 0.86 -314.07 828.13 1028.87
School L - 5th grade 0.84 -327.45 804.90 959.43 0.84 -326.42 852.84 1058.89
School L - aggregate 0.70 -1894.80 3939.61 4205.20 0.70 -1892.51 3985.03 4339.15
School H - 1st grade 0.71 -249.26 648.51 767.28 0.71 -249.23 698.46 856.82
School H - 2nd grade 0.73 -343.31 836.61 978.50 0.73 -342.11 884.23 1073.41
School H - 3rd grade 0.83 -294.84 739.68 884.56 0.83 -294.50 789.00 982.19
School H - 4th grade 0.85 -322.79 795.59 948.81 0.85 -322.67 845.34 1049.65
School H - 5th grade 0.90 -271.45 692.90 837.79 0.90 -269.05 738.10 931.28
School H - aggregate 0.80 -1581.06 3312.13 3574.42 0.80 -1578.31 3356.63 3706.35

Table 12: Model selection for different specifications of the model in the pens questions.

E.2 Robustness check [2]: individual estimates via Bayes’ Theorem

In section 5, we have estimated individual consideration parameters individually. This
approach may have drawbacks related to the limited sample employed and the excess-
ive variability within the individual maximum likelihood estimator. Here, we propose
a robustness check based on the application of Bayes’ theorem to our population estim-
ates.

We first estimate the population in 10 sub-populations defined by schools and grades
using three values of the consideration parameter to allow variation at the individual
level. Tables 11 and 12 show that three values, denote them {L, M, H} seem to provide a
fairly substantial increase in the log-likelihood while a fourth value does not add much
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to it. Using the resulting estimate π̂(ω) as the prior distribution we then use Bayes’
Theorem to obtain the posterior distribution for each pupil π̂i(ω) as shown in equation
22.

π̂i(ω) =
pω

i (Ci)π̂(ω)

∑
ω

pω
i (Ci)π̂(ω)

(22)

Then as point-estimate of the individual consideration parameter, γ̂i, we take its ex-
pectation as shown in equation 23.

γ̂i = ∑ j∈{L,M,H}

(
∑
≻

γ̂jπ̂i (ω)

)
(23)

We replicate Table 5 in Section 5 with very similar results.

(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 0.236*** 0.0464 0.208*** 0.0289

(0.0521) (0.0528) (0.0487) (0.0543)

Grade 0.0655*** 0.0648*** 0.0639*** 0.0653***

(0.00936) (0.00937) (0.00751) (0.00857)

Parental education 0.0229* 0.0203** 0.00787 0.00878

(0.0128) (0.00922) (0.0113) (0.00946)

Constant 0.511*** 0.497*** 0.566*** 0.402*** 0.503*** 0.472*** 0.587*** 0.425***

(0.0461) (0.0332) (0.0684) (0.0614) (0.0465) (0.0319) (0.0636) (0.0603)

Controls ü ü ü ü ü ü ü ü

School FE û û û û ü ü ü ü

Observations 499 499 404 404 499 499 404 404

R-squared 0.125 0.224 0.074 0.252 0.144 0.252 0.092 0.264

Table 13: Consideration, age, parental education, and cognitive abilities.

Notes: The dependent variable is γ̂i estimated as in equation 23 being the average between the estim-
ated consideration parameters using the questions about pencils and pens. The covariates are coded
such that the constant represents the consideration parameter of a pupil who is male, has both par-
ents with the lowest educational attainment, has scored the lowest in the Raven test, is attending the
1st grade in School L, and is indifferent between all alternatives. Parental education is coded from 1
to 6 following the categories in Figure 4. The coefficient of Raven’s scores is the difference between
the highest and lowest-scoring pupils. Since the pupils answered 8 matrices, the coefficient can be
divided by eight to obtain the effect of each correct answer. Grade can be interpreted as a one-year
age effect. Specifications that contain parental education have a smaller sample size due to frictions
in our survey as reported in Table ??. The regression models are estimated in Stata (Robust clustered
standard errors at the session level). *** <0.01, ** <0.05, *<0.1.
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E.3 Robustness check [3]: beta-regression on the consideration parameter.

Given that the domain of γ̂i is the open interval (0,1), we replicate our results based on
OLS regressions using a beta-regression with a logistic transformation and find very
similar correlations.

(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 1.125*** 0.520** 1.044*** 0.420

(0.196) (0.257) (0.200) (0.260)

Grade 0.232*** 0.183*** 0.233*** 0.194***

(0.0339) (0.0445) (0.0336) (0.0445)

Parental education 0.0946** 0.0869* 0.0310 0.0294

(0.0465) (0.0476) (0.0544) (0.0548)

Constant 0.953*** 1.027*** 1.215*** 0.591*** 0.926*** 0.925*** 1.320*** 0.714***

(0.152) (0.134) (0.202) (0.220) (0.152) (0.136) (0.207) (0.227)

Controls ü ü ü ü ü ü ü ü

School FE û û û û ü ü ü ü

Observations 499 499 404 404 499 499 404 404

Table 14: Consideration, age, parental education, and cognitive abilities (Beta-regression).

Notes: The dependent variable is γ̂i estimated as in equation 23 being the average between the es-
timated consideration parameters using the questions about pencils and pens. The covariates are
coded such that the constant represents the consideration parameter of a pupil who is male, has both
parents with the lowest educational attainment, has scored the lowest in the Raven test, is attending
the 1st grade in School L, and is indifferent between all alternatives. The controls are gender and
preference intensity. Parental education is coded from 1 to 6 following the categories in Figure 4. The
coefficient of Raven’s scores is the difference between the highest and lowest-scoring pupils. Since
the pupils answered 8 matrices, the coefficient can be divided by eight to obtain the effect of each
correct answer. Grade can be interpreted as a one-year age effect. Specifications that contain parental
education have a smaller sample size due to frictions in our survey as reported in Table ??. The re-
gression models are estimated in Stata using the command betareg with a logistic transformation. ***
<0.01, ** <0.05, *<0.1.

E.4 Robustness check [4]: considering data from May 2022.

As discussed in section 4, we started collecting our data on the pens/pencils task in May
2022 but the collection had to be stopped due to COVID regulations. Consequently,
when we returned to the schools 27 pupils repeated the task. Our main specification
considers only the data collected in the Autumn of 2022. We find even stronger correl-
ations, including data from Spring 2022 and excluding the repeated observations from
these 27 pupils.
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 0.236*** 0.112*** 0.212*** 0.104**

(0.0325) (0.0382) (0.0329) (0.0407)

Grade 0.0511*** 0.0403*** 0.0482*** 0.0394***

(0.00569) (0.00733) (0.00535) (0.00729)

Parental education 0.0323*** 0.0245*** 0.0184** 0.0170**

(0.00975) (0.00765) (0.00858) (0.00715)

Constant 0.611*** 0.637*** 0.626*** 0.507*** 0.606*** 0.624*** 0.648*** 0.524***

(0.0291) (0.0218) (0.0481) (0.0331) (0.0282) (0.0207) (0.0455) (0.0349)

Controls ü ü ü ü ü ü ü ü

School FE û û û û ü ü ü ü

Observations 528 528 427 427 528 528 427 427

R-squared 0.167 0.223 0.122 0.271 0.186 0.243 0.142 0.277

Table 15: Consideration, age, parental education, and cognitive abilities (including May 2022).

Notes: The dependent variable is γ̂i estimated as in equation 23 being the average between the estim-
ated consideration parameters using the questions about pencils and pens. The covariates are coded
such that the constant represents the consideration parameter of a pupil who is male, has both par-
ents with the lowest educational attainment, has scored the lowest in the Raven test, is attending the
1st grade in School L, and is indifferent between all alternatives. Parental education is coded from 1
to 6 following the categories in Figure 4. The coefficient of Raven’s scores is the difference between
the highest and lowest-scoring pupils. Since the pupils answered 8 matrices, the coefficient can be
divided by eight to obtain the effect of each correct answer. Grade can be interpreted as a one-year
age effect. Specifications that contain parental education have a smaller sample size due to frictions
in our survey as reported in Table ??. The regression models are estimated in Stata (Robust clustered
standard errors at the session level). *** <0.01, ** <0.05, *<0.1.

E.5 Robustness check [5]: splitting pencils and pens.

In our main specification (section 5), we consider the mean consideration parameter
estimated using choices among pencils and pens. Here, we run the same regressions
separating the two domains.
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 0.207*** 0.0965** 0.190*** 0.0873*

(0.0408) (0.0470) (0.0404) (0.0488)

Grade 0.0452*** 0.0353*** 0.0442*** 0.0356***

(0.00571) (0.00691) (0.00530) (0.00695)

Parental education 0.0265** 0.0226** 0.0171 0.0162*

(0.0102) (0.00853) (0.0106) (0.00927)

Constant 0.675*** 0.691*** 0.699*** 0.582*** 0.669*** 0.673*** 0.713*** 0.595***

(0.0366) (0.0244) (0.0451) (0.0475) (0.0366) (0.0234) (0.0442) (0.0500)

Controls ü ü ü ü ü ü ü ü

School FE û û û û ü ü ü ü

Observations 499 499 404 404 499 499 404 404

R-squared 0.120 0.156 0.078 0.180 0.129 0.173 0.087 0.184

Table 16: Consideration, age, parental education, and cognitive abilities (pencils).

Notes: The dependent variable is γ̂i estimated as in equation 23 being the average between the estim-
ated consideration parameters using the questions about pencils and pens. The independent vari-
ables are normalized such that the constant represents the attention parameter of a male pupil whose
parents have no education, who has scored the lowest in the Raven’s test, who is in the 1st grade,
who is indifferent between all alternatives, and who is in School L. The controls are gender and pref-
erence intensity only for pencils. Parental education is coded from 1 to 6 following the categories in
Figure 4. The coefficient of Raven’s scores is the difference between the highest and lowest-scoring
pupils. Since the pupils answered 8 matrices, the coefficient can be divided by eight to obtain the
effect of each correct answer. Grade can be interpreted as a one-year age effect. Specifications that
contain parental education have a smaller sample size due to frictions in our survey as reported in
Table ??. The regression models are estimated in Stata (Robust clustered standard errors at the ses-
sion level). *** <0.01, ** <0.05, *<0.1.
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 0.176*** 0.0574 0.160*** 0.0467

(0.0434) (0.0517) (0.0450) (0.0539)

Grade 0.0451*** 0.0398*** 0.0441*** 0.0401***

(0.00658) (0.00731) (0.00617) (0.00706)

Parental education 0.0201* 0.0173** 0.0105 0.0105

(0.0103) (0.00813) (0.00978) (0.00866)

Constant 0.670*** 0.667*** 0.699*** 0.582*** 0.664*** 0.650*** 0.711*** 0.595***

(0.0344) (0.0239) (0.0507) (0.0458) (0.0343) (0.0227) (0.0492) (0.0478)

Controls ü ü ü ü ü ü ü ü

School FE û û û û ü ü ü ü

Observations 499 499 404 404 499 499 404 404

R-squared 0.094 0.143 0.070 0.161 0.101 0.154 0.079 0.165

Table 17: Consideration, age, parental education, and cognitive abilities (pens).

Notes: The dependent variable is γ̂i estimated as in equation 23 being the average between the estim-
ated consideration parameters using the questions about pencils and pens. The covariates are coded
such that the constant represents the consideration parameter of a pupil who is male, has both par-
ents with the lowest educational attainment, has scored the lowest in the Raven test, is attending the
1st grade in School L, and is indifferent between all alternatives. The controls are gender and prefer-
ence intensity only for pens. Parental education is coded from 1 to 6 following the categories in Figure
4. The coefficient of Raven’s scores is the difference between the highest and lowest-scoring pupils.
Since the pupils answered 8 matrices, the coefficient can be divided by eight to obtain the effect of
each correct answer. Grade can be interpreted as a one-year age effect. Specifications that contain
parental education have a smaller sample size due to frictions in our survey as reported in Table ??.
The regression models are estimated in Stata (Robust clustered standard errors at the session level).
*** <0.01, ** <0.05, *<0.1.

E.6 Robustness check [6]: linear probability model for the coin-drop game.

Here, we replicate our results based on a logit specification with a linear probability
model. To do so, the dependent variables are dummies that take value 1 if ℓI

7 (inde-
pendent task) and ℓ25 (correlated task) are chosen and zero otherwise.
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 0.248* 0.0852 0.206* 0.0505

(0.122) (0.175) (0.119) (0.175)

Grade 0.0310 0.0159 0.0336 0.0190

(0.0617) (0.0556) (0.0596) (0.0573)

Parental education 0.0609* 0.0603* 0.0420 0.0432

(0.0302) (0.0314) (0.0357) (0.0355)

Constant 0.399*** 0.525*** 0.361*** 0.289** 0.379*** 0.463*** 0.371*** 0.316**

(0.0821) (0.0735) (0.117) (0.133) (0.0891) (0.0970) (0.111) (0.124)

Controls ü ü ü ü ü ü ü ü

School FE û û û û ü ü ü ü

Observations 272 272 217 217 272 272 217 217

R-squared 0.015 0.004 0.021 0.024 0.023 0.017 0.029 0.031

Table 18: Independent task, age, parental education, and cognitive abilities.
The dependent variable is a dummy that takes the value 1 if the pupils chose ℓI

7 and 0 otherwise. The
independent variables are the same as in Table 5 apart from preference intensity. The regression models
are estimated in Stata (Robust clustered standard errors at the session level). *** <0.01, ** <0.05, *<0.1.

(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 0.294** 0.250** 0.253** 0.229**

(0.109) (0.101) (0.109) (0.106)

Grade 0.118*** 0.116** 0.121*** 0.118**

(0.0420) (0.0432) (0.0395) (0.0425)

Parental education 0.0396 0.0436 0.0254 0.0332

(0.0283) (0.0283) (0.0292) (0.0282)

Constant 0.138 0.197** 0.190* -0.106 0.121 0.137 0.200** -0.0883

(0.0848) (0.0710) (0.0948) (0.126) (0.0907) (0.0825) (0.0917) (0.121)

Controls ü ü ü ü ü ü ü ü

School FE û û û û ü ü ü ü

Observations 272 272 217 217 272 272 217 217

R-squared 0.098 0.115 0.108 0.165 0.106 0.131 0.112 0.168

Table 19: Correlation neglect, age, parental education, and cognitive abilities.
The dependent variable is a dummy that takes the value 1 if the pupils chose ℓC

7 and 0 otherwise. The
independent variables are the same as in Table 5 apart from preference intensity and Success Ind. Task.
This latter is a dummy that takes the value 1 if the pupil chooses the best lottery in the Independent task.
The regression models are estimated in Stata (Robust clustered standard errors at the session level). ***
<0.01, ** <0.05, *<0.1.
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E.7 Robustness check [7]: correlation neglect excluding pupils who failed
the independent task.

(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 1.511** 1.538** 1.191* 1.109

(0.594) (0.738) (0.635) (0.811)

Fourth Grade 0.516 0.403 0.601 0.494

(0.510) (0.502) (0.417) (0.406)

Fifth Grade 1.487*** 1.480*** 1.594*** 1.597***

(0.519) (0.573) (0.443) (0.487)

Parental education 0.144 0.192 -0.0144 0.0501

(0.163) (0.182) (0.153) (0.174)

Gender -0.699* -0.559 -0.816** -0.564 -0.811** -0.699* -0.977*** -0.705*

(0.389) (0.384) (0.364) (0.393) (0.377) (0.394) (0.368) (0.403)

School Fixed Effect 0.704 0.940** 1.030** 0.999**

(0.478) (0.401) (0.503) (0.435)

Constant -0.431 -0.135 0.157 -1.723* -0.574 -0.682 0.157 -1.551*

(0.450) (0.413) (0.743) (0.980) (0.530) (0.448) (0.694) (0.896)

Observations 148 148 120 120 148 148 120 120

Table 20: Correlation neglect, age, parental education, and cognitive abilities.
We estimate a multinomial Logit in which the dependent variable represents the pupil’s choices in the
Correlated task. The baseline is represented by the pupils who choose ℓC

5 and we only report the coeffi-
cients related to equation 20. The independent variables are the same as in Table 5 but we exclude pupils
who failed the independent task. The regression models are estimated in Stata using the function mlogit.
*** <0.01, ** <0.05, *<0.1.
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(1) (2) (3) (4) (5) (6) (7) (8)

Raven's scores 1.532*** 1.539*** 1.321** 1.304**

(0.559) (0.592) (0.606) (0.660)

Fourth Grade 0.262 0.291 0.269 0.316

(0.423) (0.415) (0.373) (0.379)

Fifth Grade 1.031** 0.883** 1.032*** 0.887**

(0.415) (0.433) (0.387) (0.416)

Parental education 0.101 0.128 0.0253 0.0764

(0.123) (0.133) (0.120) (0.126)

Gender -0.535* -0.476* -0.590** -0.479* -0.593** -0.555** -0.677** -0.544*

(0.295) (0.288) (0.293) (0.288) (0.277) (0.276) (0.286) (0.278)

School Fixed Effect 0.412 0.559 0.696 0.502

(0.461) (0.390) (0.481) (0.461)

Constant -0.609 -0.0565 0.135 -1.501** -0.726 -0.417 -0.0679 -1.503**

(0.442) (0.344) (0.547) (0.710) (0.522) (0.457) (0.599) (0.675)

Observations 211 211 174 174 211 211 174 174

Table 21: Correlation neglect, age, parental education, and cognitive abilities in all
schools.
We estimate a multinomial Logit in which the dependent variable represents the pupil’s choices in the
Correlated task. The baseline is represented by the pupils who choose ℓC

5 and we only report the coeffi-
cients related to equation 20. The independent variables are the same as in Table 5 but we exclude pupils
who failed the independent task. The regression models are estimated in Stata using the function mlogit.
*** <0.01, ** <0.05, *<0.1.
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