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1 Introduction

Economics is often concerned with estimating the relationship between a depen-
dent variable and a set of covariates. One tool to properly characterize this re-
lationship is the conditional distribution of the dependent variable with respect
to the covariates. In particular, characterizing the full conditional distribution,
rather than only estimating the effect of the covariates on the average dependent
variable, can give important insights into the mechanisms at play in the relation-
ship and how they vary across different values of the covariates. Examples in
which conditional distributions have been used include distribution of earnings
in Geweke and Keane (2007), estimation of health expenditures in Keane and
Stavrunova (2011), or the examples considered in Norets and Pelenis (2014).

There are, in fact, several studies on the estimation of conditional distributions
both in classical nonparametrics and in Bayesian nonparametrics. The Bayesian
approach to the estimation of conditional distributions has several attractive prop-
erties, one of which is the natural way to quantify the uncertainty of the condi-
tional distribution through the posterior distribution, and it has also been shown
to perform well in out-of-sample predictions.

In order to conduct nonparametric estimation, a suitable set of basis functions
needs to be chosen. In this work, we choose to focus on orthogonal polynomials.
In particular, every function can be represented as an infinite sum of weighted
orthogonal polynomials once a set of orthogonal polynomials has been chosen.
There are several reasons why orthogonal polynomials are appropriate in our
setting.

First of all, they provide flexibility which is not always found in other ap-
proaches. In fact, a very common choice of basis is the B-spline. Such basis,
though, forces the econometrician to fix a maximum level of smoothness of the
function and then commit to that choice of basis. Orthogonal polynomials do not
need these additional assumptions on the shape of the function to be approxi-
mated, they can easily be precomputed up to any degree and new degrees can be
added to the expansion if the algorithm finds it optimal to do so, without chang-
ing any of the previous calculations. This implies that we can have a variable
number of terms throughout the simulations, we take advantage of this possibil-
ity by adding a retrospective sampling step (Papaspiliopoulos and Roberts 2008).
In particular, we will also use the optimality result obtained by Norets (2021) to
improve the acceptance probability of the algorithm. Furthermore, the orthogo-
nality properties of the polynomials imply that adding new terms does not change
substantially the meaning of the terms included so far. This is not necessarily true
in approaches like the mixture of normals.

Secondly, in the context of conditional densities, it is important that the es-
timator considered can be integrated analytically. Orthogonal polynomials have
useful properties in this case for two reasons: being polynomials they are easy to
integrate analytically and secondly, their orthogonality properties imply that such
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calculations are even easier. Specifically, in the case of Legendre polynomials, the
weight function w(x) = 1 further eases the calculations.

Something to keep in mind is that in order to apply a Bayesian framework
we must ensure non-negativity of the likelihood function at all times. In order
to do this, we will square the sum of polynomials, which allows us to maintain
differentiability and ensures non-negativity. One of the reasons why we want
differentiability of the model is because, when performing posterior simulations,
we are going to use Hamiltonian Monte Carlo (HMC). HMC is a gradient-based
algorithm which we describe in some more detail in Section 3, a more detailed
analysis can be found in Betancourt (2017).

As of now, this paper places a specific focus on Legendre polynomials, but the
framework we aim at developing is more general and encompasses a large set of
orthogonal polynomials, e.g. Chebyshev polynomials. We choose Legendre poly-
nomials because of their weight function, which makes several of the calculations
easier from an analytical point of view and somewhat more intuitive as well.

In this paper, we provide both results concerning frequentist properties of
Bayesian nonparametric procedures and an algorithm which allows for a variable
number of terms in the considered series expansion. The frequentist properties of
Bayesian nonparametric procedures have important consequences. In particular,
notice that for nonparametric Bayesian functions the term prior refers to the prior
put on a space of functions, often infinite-dimensional, and it is therefore crucial
to understand the properties of such prior in order for it not to be dogmatic in
its choice and furthermore they allow to understand the rate at which the model
contracts to the distribution generating the data. Several studies have obtained
adaptive posterior convergence rates for models concerning densities estimation,
Huang (2004), Scricciolo (2006), Van Der Vaart and Van Zanten (2009), and some
other have been concerned specifically with multivariate joint densities which
then imply convergence rates for conditional densities, Van Der Vaart and Van
Zanten (2008) and Shen, Tokdar, and Ghosal (2013), Norets and Pati (2017).

In our setting we do not model the marginal distributions of the covariates but
we instead put a prior directly on the conditional distribution hence sidestepping
the concerns raised by Wade et al. (2014) on the fact that, when using mixtures,
some components may tend to provide a good fit for the marginal distributions
but worsen the fit of the conditional.

The paper is structured as follows. Section 2 presents the main theoretical
results of the paper. Section 3 describes the used algorithm, Section 4 contains
some results of Monte Carlo simulations. Section 5 concludes. The Appendix
includes some useful results on Legendre polynomials.
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2 Theoretical Results

2.1 Notation

Let Y ⊂ [−1, 1] be the response space, X ⊂ [−1, 1]dx be the covariate space, and
Z = Y ×X . Let then F denote the space of conditional densities with respect to
the Lebesgue measure

F =

{
f : Y ×X → (0, ∞)− Borel measurable,

∫
f (y|x)dy = 1 ∀x ∈ X

}
We then assume that we have a random sample (Yn, Xn) from the joint density
f0g0 available to us. In particular, we have f0 ∈ F and g0 is a density on X
with respect to the Lebesgue measure. Let us define then the Hellinger distance
for conditional distributions, which will be useful for the derivation of the main
results

dh ( f1, f2) =

(∫ (√
f1(y|x)−

√
f2(y|x)

)2

g0(x)dydx

)1/2

The operator ≲ denotes less or equal up to a multiplicative constant. N(ϵ, B, ρ)
denotes the ϵ−packing number of the set B with respect to the metric ρ. The
ϵ−packing number is defined as the maximum cardinality of an ϵ- dispersed
subset of B with respect to the distance ρ. In other words the maximum number
of points in B such that they are at least ϵ apart using the distance ρ, intuitively
this number gives a sense of how “big” the space that we are considering is.

We also define a class of locally Hölder functions Cβ,L,τ0 as functions f : Rd →
R such that for k = (k1, . . . , kd) we have that k1 + · · ·+ kd ≤ ⌊β⌋, the mixed partial
order derivative of order k, Dk f is finite and for ∆z ∈ Z∣∣∣Dk f (z + ∆z)− Dk f (z)

∣∣∣ ≤ L(z)∥∆z∥β−⌊β⌋eτ0∥∆z∥2

Finally, we define the generalized Kullback-Leibler neighborhood as

K ( f0, ϵ) =

{
f :
∫

f0g0 log ( f0/ f ) < ϵ2,
∫

f0g0 [log ( f0/ f )]2 < ϵ2
}

2.2 Assumptions on DGP

We assume that that X = [−1, 1]d, or that the covariates have been rescaled to
be such that this is true. This assumption comes naturally from the fact that we
will be using Legendre polynomials for our calculations, Legendre polynomials
are in fact orthogonal in this space. In the more general setting of orthogonal
polynomials the covariate space can be chosen appropriately depending on the
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space on which the orthogonal polynomials are defined.
We choose g0 to be the uniform distribution over [−1, 1], which implies that

the joint distribution has the same smoothness as f0, the conditional distribution.
We assume f0 ∈ Cβ,L,τ0 and also that f0(y|x) ∈ (0, ∞). The main reason for this

assumption is that it allows for an equivalence between Hellinger distance and
Kullback-Leibler divergence, such equivalence will be useful for the derivation of
the main result.

It is known, from theKhasminskii (1979), the minimax rate for a d + 1 di-
mensional density belonging to a β−Hölder class is (n/log(n))−β/(2β+d+1), with
respect to the sup-norm.

2.3 Assumptions on the prior

We make some general assumptions and we verify them with Legendre polyno-
mials.

We consider a prior Π on F defined by a mixture of orthogonal polynomials1.
We model the joint density as

f g =

 ∑
j:||j||∞=m

ajPj(y, x)

2

and consequently the conditional density is

f (y|x, θ, m) = f =

(
∑j:||j||∞=m ajPj(y, x)

)2

∫ (
∑j:||j||∞=m ajPj(y, x)

)2
dy

like in Shen and Ghosal (2015) we make the following assumptions on the priors
of the coefficients

• For some b1, b2, b3 > 0 and 0 ≤ t2 ≤ t1 ≤ 1, we have Π (∥a − a0∥2 ≤ ϵ) ≥
exp {−b1 J log(1/ϵ)} and that Π(m) ∈

[
exp

{
−b2m logt1 m

}
, exp

{
−b3m logt2 m

}]
In the application we consider in the simulations we put independent Normal
priors on the coefficients and and a discrete exponential prior on the number of
terms used, both of these priors satisfy the conditions above.

If we where to consider univariate polynomials there would be no confusion
on whether m represents the number of polynomials of the degree of the polyno-
mials considered. When it comes to the multivariate setting some clarifications
become necessary. We consider m to be the number of terms used also in the mul-
tivariate setting. In application it may be necessary to decide an order in which

1Notice that we will be using normalized orthogonal polynomials, such that
∀j
∫ 1
−1 Pj(x)Pj(x)dx = 1.
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to add the polynomials to the series expansion as it is not necessarily obvious in
which dimension it is best to increase the degree of the polynomial considered.
Alternatively, it can be left to be chosen at random among a set of polynomials,
this is in fact done in the simulations results of Section 4.

In order to be able to use an equivalence result between the Kullback-Leibler
divergence and the Hellinger distance we will assume that ∑m

j=1 ajPj(y, x) is bounded
away from 0. Future developments of this paper will look at a more explicit con-
dition to define a set of parameters aj j = 1, . . . , m, in which this is true. It is
worth noting though that this set exists in the case of Legendre polynomials as
the zeros of these polynomials are different for each degree and therefore there is
no x nor y that can make the sum equal to 0 for any aj .

Finally, we assume that
∞

∑
j=m+1

a2
0j ≲ m−2β/d

we know this sort of result to be true for several orthogonal polynomials, includ-
ing Legendre polynomials both from Shen and Ghosal (2015) and Theorem 6.1
of Hesthaven, S. Gottlieb, and D. Gottlieb (2007) reported in the appendix. The
generalization to multidimensional polynomials should be straightforward. Fur-

thermore the fact that we are considering
(

∑j:||j||∞=m ajPj(y, x)
)2

rather than the
classical Legendre series expansion,∑j:||j||∞=m âjPj(y, x), should also not constitute
a problem as it is natural to view it as just the squared approximation of

√
f0g0.

2.4 Results

We want to find the posterior contraction rate of our prior to the density f0 that
generated our sample. As said above, we are in a similar setting to the one
considered by Shen and Ghosal (2015) and therefore we follow the lines of their
Theorems 1 and 2 considering our specific choice of prior and the fact that we are
in the setting of conditional densities. Since the proof of theorems similar to this
is widespread in the literature we do not report the proof here.

Theorem 1. Suppose we observe independent observations {Yi, Xi} i = 1, . . . , n, fol-
lowing some joint density f0g0. Let ϵn and ϵ̃n bet positive sequences such that ϵ̃n ≤ ϵn
with ϵn → 0 and nϵ̃2

n → ∞. Suppose Fn ⊂ F is a sieve defined as

Fn =

 f =

(
∑j:||j||∞=m ajPj(y, x)

)2

∫ (
∑j:||j||∞=m ajPj(y, x)

)2
dy

: m ≤ Mn, ∥a∥∞ ≤ An
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for which the following conditions are satisfied

log N(ϵn,Fn, dh) ≤ c1nϵ2
n (1)

Π (F c
n) ≤ c3exp

{
−c2nϵ̃2

n

}
(2)

Π (K ( f0, ϵ̃n)) ≥ c4exp
{
−c5nϵ̃2

n

}
(3)

Then there exist an M > 0 such that

Π ( f : dh ( f , f0) > Mϵn|Yn, Xn)
Pn

0−→ 0

where P0 is the probability measure corresponding to f0g0.

Let us now discuss the intuition of the assumptions. The main idea behind
this kind of results is that asymptotically we want our model to tend to the true
DGP of the data. The question is then at what speed such approximation takes
place and this is exactly the contraction rate ϵn we are looking for.

We focus on the two main conditions: Equation 3 which we call KL condi-
tion and Equation 1 which we call entropy bounds. We notice that in condition
1 the left hand side increases as the ϵn decreases and vice-versa for the right
hand side. This condition ensures the existence of a test ϕn of f = f0 against
{ f ∈ Fn : ρ ( f , f0) > Mϵn} with decreasing error of both types.

The KL condition is concerned with prior thickness, we want the prior to put
enough mass to the Kullback-Leibler neighborhoods of the true density, to do this
we need to be able to define a measure of closeness between the true density and
the estimated density which we do through the Kullback-Leibler neighborhoods.
The proofs of the results will then rely on being able to state equivalently this
condition as closeness of the estimated parameters.

These two conditions together then define the best contraction rate that can
be obtained as proved in the seminal work of Ghosal, Ghosh, and Van Der Vaart
(2000) and in several papers after for different models.

Theorem 2. Let ϵn and ϵ̃n bet positive sequences such that ϵ̃n ≤ ϵn with ϵn → 0 and
nϵ̃2

n → ∞. Assume there exist sequences of positive numbers M̄n, Mn and An. Let
c1, . . . , c10 be positive constants with c10 > 1 and let the following assumptions hold:

Mn (log Mn + log An + 2C log n) ≤ nϵ2
n

d2
H( f0u, f g) ≤ ∥a0 − a∥2

2 ≤ ∑∞
j=m+1 a2

0j ≤ C1m−2β/d ≤ ϵ̃2
n

c9Mn logt1 Mn + c8Mn log
(
2c7
(

Mn
)

/ϵ̃n
)
≤ c6nϵ̃2

n

nϵ̃2
n ≤ C2Mn logt2 Mn for any constant C2, Mn exp

{
−C2At3

n

}
≤ (c10 − 1) exp

{
−nϵ̃2

n
}

Under the assumptions of Sections 2.2 and 2.3 the conditions of Theorem 1 hold with

ϵn = n− β/d
2β/d (log n)

β/d
2β/d
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We note that several of the assumptions rely on the same idea as Shen and
Ghosal (2015). The proof has several steps that we construct in the following
propositions

As a first step to obtain the results we bound the Hellinger distance between
conditionals by the distance between joint, in the same spirit as Norets and Pati
(2017) by using their Lemma 9.2. In particular

d2
h( f0, f ) ≲ d2

H( f0u, f g)

for an arbitrary f and g.
We can then use the properties of orthogonal polynomials to bound the squared

Hellinger distance between polynomials.
In particular for our choice of prior the following result holds

Proposition 1. Let f0u and f g be as previously defined, we then have that

d2
H( f0u, f g) ≤ ∥a0 − a∥2

2 (4)

Proof. Recall the definition of squared Hellinger distance

d2
H( f0u, f g) =

∫ ∫ 
√√√√( ∞

∑
j=0

a0jPj(y, x)

)2

−

√√√√√ ∑
j:||j||∞=m

ajPj(y, x)

2


2

dydx

Notice that we can write any function like this because the Legendre polynomial
constitute and orthonormal basis. This can then be rewritten as

= 2

[
1 −

∫ √(
∑∞

j=0 a0jPj(y, x)
)2 (

∑m
j=0 ajPj(y, x)

)2
dydx

]
= 2

[
1 −

∫
|
(

∑∞
j=0 a0jPj(y, x)

) (
∑m

j=0 ajPj(y, x)
)
|dydx

]
⩽ 2

[
1 − |

∫ (
∑∞

j=0 a0jPj(y, x)
) (

∑m
j=0 ajPj(y, x)

)
dydx|

]
⩽ 2

[
1 −

∫ (
∑∞

j=0 a0jPj(y, x)
) (

∑m
j=0 ajPj(y, x)

)
dydx

]
= 2

[
1 −

(
∑∞

j=0 a0jaj

)]
where the last equality follows from the properties of normalized orthogonal

polynomials. Note that we can write 2
[
1 −

(
∑∞

j=0 a0jaj

)]
because we assume that

∀j > m aj = 0.
We then note that ∑∞

j=0 a2
0j = ∑∞

j=0 a2
j = 1 as proven in the Appendix and hence

we can rewrite the last expression as

= ∥a − a0∥2
2
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as we wanted to show. Notice that ∥a − a0∥2
2 = ∑∞

j=m+1 a2
0j as we wanted.

Notice we focus on using the Hellinger distance even though the conditions
use KL-divergence. We can do this as there exist an equivalence relation between
the Hellinger distance and the Kullback-Leibler divergence as long as the ratio
of the two distributions is bounded above and away from zero.2 In this case,
the relevant ratio between distributions that allows the equivalence between the
Hellinger distance and the KL-divergence is

∑∞
j=0 a0jPj(y, x)

∑j:||j||∞=m ajPj(y, x)

but we recall we assumed the that the denominator is bounded away from zero
in section 2.3. Recall we also assumed the true joint density is also bounded.

We are now interested in computing the entropy bounds

log N (ϵn,Fn, d) ≤ nϵ2
n

Using the definition of packing number and Equation 4 we have that

log N (ϵn,Fn, d) ≤ log

{
Mn

∑
j=1

N
(

n−2C,
{

a ∈ Rj, ∥a∥∞ ≤ An

}
, ∥ · ∥2

)}

≤ log
{

Mn

{√
Mn Ann2C

}Mn
}

≤ Mn (log Mn + log An + 2C log n)

≤ nϵ2
n

where the first inequality follows by the fact that ϵn is lower bounded by n−1

by assumption.
Next we verify Condition 2

Π (F c
n) ≤ Π(m > Mn) +

Mn

∑
j=1

Π
(

a /∈ [−An, An]
j
)

Π(m = j)

≤ exp
(
−b′2Mn logt2 Mn

)
+ Mn exp

{
−CAt3

n

}
≤ a1 exp

{
−nϵ2

n

}
this condition follows by just applying the assumptions stated above, which

in fact mirror the idea of the KL-condition, we assume that the prior puts suffi-
ciently small probability on the part of the space that is outside the sieve. This

2See also Lemma B.1 in Ghosal and Vaart (2017).
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condition plays a more important role for results concerning consistency, which
is not addressed in this paper as of now.

Finally, we verify the KL-condition, we notice though that binding the distance
between the prior and the true distribution by the distance between the parame-
ters allows us to state the condition directly on the parameters which are much
easier to verify using our assumptions.

Π { f : dh ( f0, f ) ≤ 2ϵ̃n} ≥ Π (m = M̄n)Π (∥a − a0∥2 ≤ ϵ̃n)

≥ exp
{
−c1M̄n logt1 M̄n

}
exp

{
−c3M̄n log

(
1
ϵ̃n

)}
where d is the Hellinger distance.

Then we can apply the result of Theorems 1 and 2 of Shen and Ghosal (2015)
follows and the contraction rate is the one stated in Theorem 2.

3 Algorithm

In this section we explain the steps of the algorithm we propose and use in the
simulations of the next section.

Note that, in the applications, when specifying the degree of the polynomials
used, we do not use the tensor product of polynomials in order to try to reduce
the curse of dimensionality that often arises in these cases when using orthogonal
polynomials, the degree of the polynomials instead is the maximum total degree
of the polynomials considered. The use of total degree polynomials is not new to
economics, in fact they were introduced by Gaspar and L. Judd (1997) under the
name of complete polynomials. Another possible scheme adopted in the approx-
imation theory literature is called the euclidean degree, in which the polynomials
are chosen depending on the Euclidean norm of their degrees, this approach is
shown to have interesting properties in Trefethen (2017). Notice that for a given
maximum degree m using complete polynomials rather than the tensor product
of the polynomials reduces the number of terms is just ∑m

j=1 (
j+d−1

j ).
Furthermore within each of the iterations for which we allow a change in

dimensions we apply Hamiltonian Monte Carlo method to extract the parameters
of interest. We present below the main ideas of the algorithm.

3.1 Hamiltonian Monte Carlo

The HMC is a Monte Carlo method that makes use of the gradient of the distribu-
tion in order to simulate a chain of values from the distribution considered. Two
of the aspects that make this algorithm very useful are: the fact that the distribu-
tion considered does not need to be normalized and the speed at which it is able
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to extract samples. As the name suggests the algorithm relies on the Hamiltonian
dynamics of the distribution and the gradient allows it to follow precisely the
curvature of the function considered.

We describe the main functioning with a physical analogy, the main mathe-
matical concepts underlying the HMC are grounded in differential geometry and
for a more extensive analysis of the algorithm we refer the reader to Betancourt
(2017). The physical analogy is to imagine a hockey puck which is kicked in a
random direction on a surface, which is in our case the negative of the posterior
distribution, and it is then stopped after a random amount of time. The sample
is extracted in the point in which the puck stops. Clearly, in order to be able to
calculate in which direction the puck will be going after the first kick the slope
of the surface is needed as it will influence the direction in which it is moving
and this is where the gradient of the function considered is used. Notice that the
normalization constant of the posterior is not needed for this to work.

It is very easy to differentiate orthogonal polynomials and therefore an imple-
mentation of our model in the HMC can be achieved without major intricacies

3.2 Cross-dimensional move

We allow for a varying number of components in our Legendre series expansion
and therefore include this step in the algorithm. Notice that this implies that
the dimension of the parameter space varies from one iteration to the other. We
therefore apply the techniques developed in Norets (2021) in order to obtain the
maximum probability of acceptance for cross-dimensional moves.

In oder to apply such techniques we need to be able to approximate as well as
possible a the posterior distribution of the additional parameter, be it to be added
or removed, but we also need to be able to calculate the normalization constant
of such distribution in order to extract a random sample from it. To do this we
apply techniques similar to the adaptive rejection sampling introduced by Gilks,
Best, and Tan (1995) The main idea is to consider a grid of possible values for the
parameter to be extracted and for each of these points on the grid we calculate the
exact value of the unnormalized log-posterior. We then linearly approximate the
log-posterior within the grid and assume an exponential decay outside such grid.
The linear approximation makes it easy to calculate the normalization constant
of this piecewise function and we then use the inverse CDF method in order
to extract the random sample. The acceptance probability for this draw, and
therefore the change in number of components considered is then
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α (m∗, m) =
p (Y|m∗, a1m∗ , X)Π (a1m∗ |m∗)Π (m∗)

p (Y|m, a1m, X)Π (a1m|m)Π(m)

·
(

1 {m∗ = m + 1}
π̃m (am+1|a1m, Y, X)

+ 1 {m∗ = m − 1} π̃m−1 (am|a1m−1, Y, X)

)
(5)

wherem∗is the proposed new number of terms and π̃m is defined as

π̃m (am+1|a1m, Y, X) = p (am+1|Y, m + 1, a1m, X)

∝ p (Y|m + 1, a1m+1, X)Π (a1m+1|m + 1)

3.3 Main steps of the algorithm

We report here the main steps of the algorithm. First of all we notice that the
model we are considering is identified up to a constant. Hence we need to fix
one parameter to be able to properly identify the other parameters of the series
expansion. In application we do this by fixing the first parameter a0,...,0 = 0.5,
clearly any number can be chosen.

1. Precompute the multivariate orthogonal polynomials for every value of the
random sample up to a given degree, decided by the econometrician. This
may be an time-expensive operation but only needs to be done once.

2. Run one iteration of the Hamiltonian Monte Carlo sampler, possibly using as
starting point the Maximum-a-Posteriori of the log probability density. The
surface can become irregular, especially when a high degree of polynomial
is considered or the dimension is large, hence the efficiency is improved
when a good starting point is chosen

3. Propose a change in the number of terms of the used series expansion. We
now have two cases

(a) an increase in the number of terms is proposed

i. Compute the corresponding orthogonal polynomial if not done so
before the start of the iterations.

ii. Construct a grid of possible values of the parameter to be extracted
and evaluate the posterior at each of points of the grid, keeping
constant the other parameters

iii. Construct a linear approximation of the log density that using the
values computed in the points of the grid and compute the corre-
sponding normalizing constant

iv. Extract a random sample from the approximation and compute the
value it takes within the approximation

12



v. Compute the acceptance probability according to Equation 5 and
consequently decide whether to accept the draw

(b) a decrease in the number of terms is proposed

i. Construct a grid around the parameter to be removed and evaluate
the posterior at each of the point

ii. Calculate the linear approximation of the log density given the grid,
the normalization constant and the corresponding value that the
parameter takes in this approximation

iii. Compute the acceptance probability according to Equation 5 and
consequently decide whether to accept the draw

4. Run an iteration of the HMC starting from the parameter values extracted
from step 3 with a simulation length chosen by the econometrician. Go to
step 3 until the desired number of iterations has been done.

4 Simulations

In this section we present some numerical results of the Monte Carlo simulations
on finite samples that we ran following a known Data Generating Process.

At this stage of the paper we do not yet have a fully working version of the
code which allows to change for a cross-dimensional move, we present some
preliminary numerical results in a dedicated subsection below.

4.1 Fixed maximum total degree

We use different maximum total degrees m = 5, 10, 15 and 20 and also different
sample sizes n = 500, 1000, 2000. In order to evaluate the performance of the
estimator we report mean absolute error and root mean squared error

MAE =
∑

Ny
i=1 ∑Nx

j=1

∣∣∣ f̂ (yi|xj
)
− f0

(
yi|xj

)∣∣∣
NyNx

RMSE =

√√√√√∑
Ny
i=1 ∑Nx

j=1

(
f̂
(
yi|xj

)
− f0

(
yi|xj

))2

NyNx

We report the MAE and RMSE for a set of covariates xi = [−0.9,−0.5,−0.1, 0.1, 0.5, 0.9]
and a grid of equally spaced yi and observe how the approximation changes for
different combinations of maximum total degree and sample size.
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We consider the following DGP

yi =
sin (πxi) + ϵi

2

wherexi and ϵi are i.i.d random variables with density1− |x| on [−1, 1], which
is the same DGP as considered in Norets and Pelenis (2014), rescaled for our
purposes. The coefficients were given a Normal(0, 1) prior.

MAE m = 5 m = 10 m = 15 m = 20
n = 500 0.2484 0.1018 0.1957 0.3384
n = 1000 0.2061 0.0748 0.1283 0.2287
n = 2000 0.1939 0.0538 0.0656 0.1194

RMSE m = 5 m = 10 m = 15 m = 20
n = 500 0.3364 0.1376 0.2797 0.4568
n = 1000 0.2873 0.1057 0.1832 0.3513
n = 2000 0.2756 0.0776 0.0907 0.1723

We notice that the fit improves with the number of observations ant it also
seem to improve with the maximum total degree of the polynomials used. When
reaching though m = 20 and also somewhat with m = 15 we have a worsening of
the fit, probably because of the increase in the number of parameters, which with
total degree increase by a binomial coefficient factor (m+d−1

m ).
We also plot the mean of the approximations corresponding to the MCMC

draws together with the true value of the distributions at a some specific values
of the covariate x. We plot them for different values of m = 5, 10, 15 just to show
how the approximation level changes increasing the degree of the polynomials. In
particular, we plot the simulations for n = 1000 and we plot the mean conditional
likelihood estimated from 1000 MCMC draws with a burn-in of 500. The solid line
represents the true value of the conditional densities for the covariate specified,
while the dotted line represent the degrees m = 5, 10, 15 in dark blue, orange and
green respectively. We can see that the best fit is obtained by m = 10 while m = 15
includes too many fluctuations and is probably overfitting the distribution.

14



Figure 1: Simulations for m = 5, 10, 15

4.2 Flexible number of terms

In this subsection we present some preliminary, but promising, results of our
algorithm when it is allowed to change the total number of terms in the series
expansion, considering a penalty for the number of terms. The DGP used and
the statistics reported are the same as the previous section. We report them for
sample sizes n = 1000 and n = 5000.

The way the polynomials are chosen in this case is by pre-computing a number
of polynomials up to a total degree of 15. The algorithm as described in Section 3
is run and which polynomial is added or removed is chosen at random between
all the precomputed polynomials. The only polynomial which is not allowed to
be removed is the first one, which is necessary for the normalization.

The prior on the number of components is

Π(m) =
eH − 1

e−H e−Hm
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with a hyper-parameter H = 1, in order to make sure the algorithm works cor-
rectly we have also performed a Joint Distribution Test, as proposed by Geweke
(2004). The t-statistics, after 20, 000 simulations were all not statistically signifi-
cant.

MAE RMSE
n = 1000 0.1816 0.2459
n = 5000 0.0491 0.0728

In the figure the solid line represents the true value of the conditional densities
for the specified covariate while the dotted purple and orange line represent the
mean conditional density given 1000 MCMC draws for n = 1000 and n = 5000
respectively. As we can see the values are comparable to, or better of, some of the
values for a fixed total degree of polynomials considered even though here we
allow for much more flexibility and therefore also verifying which components
have been selected can give some additional insights on the behavior of the true
DGP.

Figure 2: Simulations for n = 1000 and n = 5000
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5 Conclusions

We have showed that orthogonal polynomials series expansions have attractive
properties when used as basis for the nonparametric estimation of conditional
densities. In particular an adaptive contraction rate can be found given the con-
jectures on approximation error of multivariate orthogonal polynomials, which
are likely to hold. This has been shown in the special case of Legendre poly-
nomials. The flexibility of these series furthermore imply they are the optimal
tool to approximate functions of unknown smoothness as they can be easily com-
puted and no prior assumption on the maximum level of smoothness is needed.
In application the structure of orthogonal polynomials should allow for a faster
convergence to the optimal number of polynomials given the penalty on number
of terms.

Future work will be on proving the conjecture on the approximation error,
solidifying the numerical results for a varying number of terms in the expansion
and for different families of orthogonal polynomials.
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Appendix

Legendre Polynomials

Useful results

The following is a useful fact for the derivation of some of the results of the main

text. If f (x) is a pdf and f =
(

∑m
j=1 ajPj(x)

)2
then ∑m

j=1 a2
j . The result holds also

for x being a vector but we prove it for the univariate case to avoid cumbersome
notation that does not add intuition.

Note that if

f =

(
m

∑
j=1

ajPj(x)

)2

then

f =

(
m

∑
j=1

ajPj(x)

)2

=
m

∑
j=1

(
ajPj(x)

)2
+ 2

m

∑
j<i

ajPj(x)aiPi(x)

we can then take the integral on the left and right hand side and get

∫
f (x)dx =

∫ ( m

∑
j=1

(
ajPj(x)

)2
+ 2

m

∑
j<i

ajPj(x)aiPi(x)

)
dx

=
m

∑
j=1

∫ (
ajPj(x)

)2 dx + 2
m

∑
j<i

∫
ajPj(x)aiPi(x)dx

and hence, by the definition of Legendre polynomials

∫
f (x)dx =

m

∑
j=1

(
aj
)2

= 1

as we wanted to show.
The following result can be found in Hesthaven, S. Gottlieb, and D. Gottlieb

(2007) and proves that the condition we are interested in on the approximation
rate of the orthogonal polynomials is true

∥u −PNu∥L2
w[−1,1] ≤ CN−p∥u∥Hp

w[−1,1]

the result should be generalizable along the same lines to a multivariate setting
without any particular complications.
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Derivation of univariate Legendre series coefficients

We know we can represent any function f (x) as

f (x) =
∞

∑
i=1

aiPi(x)

we are then interested in what form these coefficients ai take and to do this we
notice we can do the following.

We multiply each side by Pj and integrate between -1 and 1 getting hence∫ 1

−1
Pj(x) f (x)dx =

∫ 1

−1
Pj(x)

∞

∑
i=1

aiPi(x)dx

Thanks to the Fubini- Tonelli theorem we can the order of summation and
integration. We then have∫ 1

−1
Pj(x) f (x)dx =

∞

∑
i=1

ai

∫ 1

−1
Pj(x)Pi(x)dx

and hence ∫ 1

−1
Pj(x) f (x)dx = aj

2
2j + 1

therefore we get that

aj =
2j + 1

2

∫ 1

−1
Pj(x) f (x)dx

Notice that if we assume that the polynomial is normalized

aj =
∫ 1

−1
Pj(x) f (x)dx

which implies that if f (x) is a density a0 = 1 and a1 = E [x].

Derivation of multivariate Legendre series coefficients

We know that we can represent any multivariate function f (x) as

f (x) =
∞

∑
k

ak

d

∏
j=1

Pk(xj)

with k = (k1, . . . , kd) . Let us now retrace the same steps as the univariate case.
We multiply by ∏d

j=1 Pl(xj) with l being a specific combination of degrees l =

(l1, ..., ld) and integrate by [−1, 1]d and I believe I should get something like
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∫ 1

−1
...
∫ 1

−1

d

∏
j=1

Pl(xj) f (x)dx1...dxd =
∫ 1

−1
...
∫ 1

−1

d

∏
j=1

Pl(xj)
∞

∑
k

ak

d

∏
j=1

Pk(xj)dx1...dxd

We apply Fubini-Tonelli and again get

∫ 1

−1
...
∫ 1

−1

d

∏
j=1

Pl(xj) f (x)dx1...dxd =
∞

∑
k

ak

∫ 1

−1
...
∫ 1

−1

d

∏
j=1

Pl(xj)
d

∏
j=1

Pk(xj)dx1...dxd

and therefore

ak =

(
d

∏
j=1

2lj + 1
2

) ∫ 1

−1
...
∫ 1

−1

d

∏
j=1

Pl(xj) f (x)dx1...dxd

Clearly these coefficients are computationally intensive to calculate actually
above a certain number of dimension but this expression should allow for bound-
ing as in the results presented previously.
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