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Abstract. I fully characterize the outcomes of a wide class of Q-value based

model-free reinforcement learning algorithms, such as Q-learning, in a prisoner’s

dilemma. Learning is shown to always converge to one of the two states. Whether

the players learn to cooperate or defect can be determined in a closed form from

the relationship between the learning rate and the payoffs of the game. The results

generalize to asymmetric learners and many experimentation rules.

1. Introduction

While a wide classes of learning rules have been studied with relation to the pris-

oner’s dilemma, reinforcement learning algorithms, such as Q-learning, are rarely

considered outside of simulation studies due to their large state complexity. In this

paper I fill this gap by offering a complete closed-form characterization that removes

the necessity for simulations.

This paper studies all algorithms in a class that is a generalization of the so-called

Q-learning algorithm. A Q-learning agent maintains a vector of Q-values that encode

her expected payoff from taking the corresponding action. She then usually takes

an action with the highest Q-value, but sometimes experiments with other actions

according to some predetermined rule.
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Part of the attractiveness of reinforcement learning as a model for behavior lies with

the minimal assumptions imposed by such algorithms on the players’ understanding

of the game. In the economics literature the dynamics of such learning processes are

often called “completely uncoupled” (Hart and Mas-Colell, 2003; Foster and Young,

2006; Nax, 2019) or asynchronous (Asker et al., 2021) as the players themselves use

only their prior experience to play, having no knowledge of the game structure. It

is therefore not surprising that the predictions derived from our model are in stark

contrast with the predictions of other adaptive dynamics, such as best-response1, or

conventional analysis of repeated games through subgame-perfect equilibria and folk

theorems. I further outline these differences in the conclusion, having the expression

for the relevant payoff information at hand.

Unlike some of the similar studies of learning in a prisoner’s dilemma (Mengel,

2014; Calvano et al., 2020), I do not consider “memory”, i.e. actions cannot be condi-

tioned on past play. This is intentional, the Q-learning algorithm, while being a very

simple technique, proves capable of maintaining enough information in the Q-values

to guarantee convergence to non-Nash outcomes even without relying on conditional

strategies. In fact, this exact property has gained attention for the algorithm as a

proof-of-concept technique for showing the possibility of algorithmic collusion in de-

ceptively benign environments where neither the algorithm nor its designers observe

anything beyond their own payoffs (Calvano et al., 2020; Klein, 2021).

The most closely related studies (Waltman and Kaymak, 2007, 2008) pursue the

same goal as us and have partially characterized the convergence in the prisoner’s

dilemma game for high learning rates. In particular, when one experimentation step

is enough for a switch from a noncooperative state to a cooperative state and vice-

versa, our analysis can be simplified by considering only the minimum cost paths.

1Best-responses will converge to Nash equilibrium as well as many other learning dynamics that rely
on weak acyclicity of the game, see for example Marden et al. (2009).
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In many applications however (Calvano et al., 2020, e.g.), the learning rate may

be expected to be low to ensure enough experimentation over a short period and

full traversal of the state space. Neither is it clear whether the high learning rate

assumption would be restrictive for human subjects.

Unlike Waltman and Kaymak (2007, 2008), I follow the evolutionary game theory

approach of characterizing stochastically stable sets through spanning trees (Young,

1993). This approach has been applied to the prisoner’s dilemma in particular to

characterize learning rules based on sampling from past history Mengel (2014). The

Q-learning algorithm instead maintains an “expectation” of the payoff from choosing

actions in the state of the learning process.

Another set of closely related learning rules is adaptive dynamics (Milgrom and

Roberts, 1990), which can be shown to always converge to Nash equilibria in su-

permodular games and thus also in a prisoner’s dilemma. However, Q-learning is

not in this class and will be shown to converge to non-equilibrium actions for some

combinations of parameters and payoffs.

Finally, the proof uses techniques introduced by Newton and Sawa (2015) for learn-

ing in matching games. They show that in the class of games that they consider a

minimum cost path always exists from any state to a state that is most robust to

one-shot deviations. In the prisoner’s dilemma this is not always the case, so the

results do not apply directly. However the same idea can be used to construct a path

to a certain “central” state, which narrows down the possible minimal spanning trees

and ultimately leads to a characterization.

The rest of the paper is organized as follows. I begin by introducing the game

and learning rules in the next section, then I characterize the stable (absorbing)

sets of states of the unperturbed process without experimentation, refine them to

stochastically stable states of the process with experimentation, and finally apply the
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results to the prisoner’s dilemma game under two common learning rules. I conclude

by discussing possible extensions and comparing the results to other learning rules.

2. Preliminaries

Let π(a, x) denote the payoff of playing a when the opponent plays x. The two

possible actions of each player comprise the set A = {C,N}. The four possible payoff

values are πCC , πCN , πNC , πNN with πNC > πCC > πNN > πCN . Under the last

condition, the game is a prisoner’s dilemma, C stands for cooperative action and N

– for non-cooperative or Nash action.

Every state g can be identified with a pair of Q-vectors, g = (Q1, Q2), each Q-vector

in turn being a pair of two Q-values, i.e. Qi = (QN
i , Q

C
i ) for both i ∈ {1, 2}. The set

of all possible states, i.e. pairs of valid Q-vectors will be denoted G.

In order to stay true to practical implementations of reinforcement learning and

to avoid unnecessary continuity arguments while staying formal, I assume G to be

a fine grid with ε > 0 between consecutive Q-values, i.e. G ⊆ {(Q1, Q2) : Qi ∈

D}, where D = {q = zε for some z ∈ Z}, Z denoting some compact subset of

Z. Naturally πCC , πCN , πNC , πNN ∈ D. Whenever the Q-value does not conform

to this grid, it is rounded to the closest grid point (this will be formalized below).

This specification represents machine precision, a computer running a reinforcement

learning algorithm would eventually reach the limit for the machine representation

of a decimal number. All paths through the state space in our proofs are therefore

finite, but this formulation will require additional steps to capture behavior at the

boundary.

2.1. Unperturbed dynamics. The unperturbed dynamic is denoted P0. It corre-

sponds to some reinforcement learning rule (e.g. Q-learning) without experimentation.

Cast in terms of a stochastic Markov process, it means that players always choose the

action with the higher Q, obtain πt,i, and then each update the Q-vector as follows:
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(1)
for a = at : Qa

t+1,i ∈ (Qa
t,i, πt,i] ∩D if Qa

t,i 6= πt,i and Qa
t+1,i = πt,i otherwise,

for a 6= at : Qa
t+1,i = Qa

t,i.

In other words, it does not matter how the Q-values are updated, as long as they get

strictly closer to the obtained payoff, i.e. the player updates her expectation towards

the realized payoff in full or in part. If the player continues to obtain the same payoff

π, I assume that she approaches this value in the limit of some convergent sequence,

i.e. limtQ
a
t = π.

The process that is usually called Q-learning is a particular kind of such updat-

ing rule when the speed of updating is captured by a single parameter α that is

independent of the current Q-value:

(2) Qa
t+1,i =

 max arg minz∈Z |zε−
(
(1− αi)Qa

t,i + αiπt,i
)
| if a = at

Qa
t,i otherwise,

where 1 ≥ αi > 0 is the learning parameter for player i. Note that this parameter

can be different between players, and that the process is mapped to a finite grid by

taking the closest value in D to (1 − αi)Q
a
t,i + αiπt,i. The main results are for the

general setup in (1), and I will later discuss (2) as an illustration.

These updates thus move the process to the new state g′ = (Qt+1,1, Qt+1,2). For

convenience I will introduce the functions Fa1,a2(·), which for any state g = (Qt,1, Qt,2)

return the new state g′ that results from updating the previous values Qt,i for the two

players after playing some action profile (a1, a2) once.

I will refer to the actions with the higher Q as the action profile “played on path”,

i.e. the actions in {a : Qa
t,i = maxbQ

b
t,i} for each player i. If there is more than one

such action, I further assume that the player randomizes over the full support of this
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set, i.e. all actions with the maximum Q-value have some positive probability to be

taken.

In terms of the unperturbed dynamic I will be interested in the set of stable states.

The set of such states is denoted C, and it is a set of all states that are reentered with

probability 1 in the unperturbed process, i.e. C = {g ∈ G : P t
0(g, g) = 1} for some t.

2.2. Perturbed dynamics. Let {Pβ}β∈(0,β̄) be the family of perturbed dynamics

indexed by the experimentation parameter β. In particular, Pβ(g, g′) denotes the

probability of transition from state g to state g′. It is assumed to satisfy the following

conditions expanded from the list in Newton and Sawa (2015):

Assumption 1. (Conditions on the perturbed dynamic).

(i) Pβ
β→0−→ P0, where P0 are the transition probabilities for some unperturbed dy-

namic as described above.

(ii) For β > 0, the chain induced by Pβ is irreducible.

(iii) Pβ vary continuously in β.

(iv) If, for g 6= g′, P0 (g, g′) = 0, Pβ̂ (g, g′) > 0 for some β̂ > 0, then limβ→0−β logPβ (g, g′) =

c for some c > 0.

(v) For any β ≥ 0, Pβ (g, g′) > 0 implies g′ = Fa1,a2(g) for some a1, a2 ∈ A.

(vi) For any β > 0, Pβ (g, g′) > Pβ (g, ĝ), for any g with (a1, a2) played on path and

any g′ = Fa1,b2(g) or g′ = F b1,a2(g), and ĝ = F b1,b2(g), where b1 6= a1, and

b2 6= a2.

(vii) For any β > 0 and states g = (Q1, Q2), g′ = (Q′1, Q
′
2), such that (a1, a2) is

played on path in both g and g′, if Qai
i ≥ Q′aii and Qbi

i < Q′bii for some i ∈ {1, 2},

where b1 6= a1, b2 6= a2, then Pβ(g, ĝ) ≤ Pβ(g′, ĝ′) for ĝ = F bi,a−i(g) and ĝ′ =

F bi,a−i(g′).
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The first four conditions are borrowed directly from Newton and Sawa (2015). They

connect perturbed and unperturbed processes and restrict the perturbed process to

be “weakly regular” (Sandholm, 2010).

Condition (v) states that every transition is a valid Q-learning update, possibly

an update on the profile that resulted from experimentation. Note that while the

dynamics are parametrized by a single variable β, this condition admits different

experimentation rules for players with different probabilities of experimentation or

different processes altogether, as long as the probability of experimentation decreases

in β for all players and the other conditions are satisfied.

The remaining two conditions impose mild restrictions stemming from the interpre-

tation of the Q-vector as an imperfect estimate of the value function. In general, if the

two players are experimenting independently of each other, and the state with prob-

ability that is lower for the actions with Q-values that are further from the on-path

payoff, then both of the remaining conditions are satisfied. Condition (vi) requires

that only one player experimenting be more likely than two players experimenting

simultaneously, keeping their actions fixed. Importantly however, this does not im-

ply that a two-player experimentation for some state cannot be less costly than a

single-player experimentation from another state. In particular, this is not true if the

former state has no single-player experimentation that eventually leads to another

stable state. Condition (vii) states that if for some player the Q-value for the action

on path is the same or lower, and the action off-path is higher in one of the two

states, then she is at least as likely to experiment in this state as in the other state.

In particular, (vii) is true if the probability of experimentation is increasing in the

Q-value of the corresponding action.

Overall, these conditions are quite permissive, and the logit choice rule (also called

the Boltzmann softmax function) described in (Waltman and Kaymak, 2007, 2008)

can be shown to satisfy these conditions as well as experimenting uniformly, probit,
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etc. The results do not depend on the choice of perturbations as long as they satisfy

these regularity assumptions.

Let GPD be the set of states, s.t. Qa
i ∈ [minX π(a1, a2),maxa2(π(a1, a2))] for any

a ∈ A and both i ∈ {1, 2}.2 The initial seed for the process has to be chosen from

GPD since the other states are not reachable from within the set. This follows from

the regularity conditions in Assumption 1 because any state g2 reachable from g1 has

to be a valid update, i.e. g2 = Fa1,a2(g1) for some profile (a1, a2). However, from the

definition of F in (1) it follows that there are no states g1 ∈ GPD and g2 /∈ GPD such

that Fa1,a2(g2) = g1 for any a1, a2 ∈ A. Therefore there can be no path from any

state in the set GPD to any state not in the set GPD and Pβ(g, g′) = 0 for any β.

In the actual computer implementation of the algorithm, the restriction is irrelevant

as the learning process on a finite grid will eventually reach GPD. Thus, the designer

does not need to have prior knowledge of the payoffs or other information about the

game to set up the initial conditions, provided there is sufficient experimentation.

As was mentioned in the introduction, the proof relies on the machinery of the

“one-shot deviation principle” introduced in Newton and Sawa (2015) for matching

games and uses the spanning trees approach from Young (1993). The definitions

below are taken from these papers.

Definition 1. The 1-step cost of the process moving from g to g′ is defined as:

c (g, g′) := lim
β→0
−β logPβ (g, g′) ,

adopting the convention that − log 0 =∞.

The 1-step cost c (g, g′) is the exponential decay rate of the probability of transition

from g to g′. The rarer a transition, the higher its cost. Impossible transitions have

2Note that this is the set where all actions are within bounds unlike the region in Lemma 1 below
that is only referring to the actions on path.
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infinite cost. Note that for g /∈ C, there is a zero cost transition from g. This is because

there is some g′ 6= g, such that Pβ (g, g′) does not approach zero as β → 0. We will also

need the overall cost of moving between g and g′, even if many steps are required. Let

the t-step transition probabilities be given by P t
β (g, g′) ≡ P (gt = g′ | g0 = g, Pβ(., .))

Definition 2. The overall cost of the process moving from g to g′ is defined as:

C (g, g′) := min
t∈N

lim
β→0
−β logP t

β (g, g′)

A spanning tree rooted at ĝ ∈ C is a directed graph over the set C such that every

g ∈ C other than ĝ has exactly one exiting edge, and the graph has no cycles (implying

that ĝ has no exiting edges). The cost of a spanning tree is the sum of the costs of

its edges given by C(., .). A minimum cost spanning tree is a spanning tree whose

cost is lower than or equal to the cost of any other spanning tree. A state ĝ ∈ C is

stochastically stable only if there exists a minimum cost spanning tree rooted at ĝ. I

will use cost(ĝ) to denote the cost of a minimal spanning tree among all trees rooted

in ĝ.

I call a transition g → g′ from g ∈ G the least cost transition from g if it has the

lowest cost of all possible 1-step transitions from g. This is either the regular update

of Q-values after the on-path action profile is played or an update after the most

likely experimentation.

Definition 3. Denote the set of possible least cost transitions from g ∈ G by:

L(g) := arg min
g′ 6=g

c (g, g′)

cL(g) will be used to denote the cost of the least cost transition from g.

cL(g) := min
g′ 6=g

c (g, g′) .

Define OS, the set of states which are most robust to one-shot deviation:
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OS =

{
g ∈ G : cL(g) = max

g′∈G
cL (g′)

}
.

As cL(g) is strictly positive only for g ∈ C, it must be that OS ⊆ C.

3. General results

3.1. Recurrent classes (unperturbed process). As usual for the study of sto-

chastic stability, the first step is based on the fact that the stochastically stable states

belong to the recurrent classes (absorbing states or repeating sequences of states) of

the unperturbed process (Young, 1993).

I will show that the process is always absorbed by a single state and cannot get

“stuck” in a recurring cycle.

Let Ai(G) ⊆ A be the set of actions that are played by i on path in a recurrent

class G. That is, any action a ∈ A is in Ai(G) if and only if there is g = (Q1, Q2) ∈ G,

s.t. Qa
i ≥ Qb

i , for any b ∈ A \ a.

I first show that the Q-values are bounded by the lowest and highest payoffs that

can happen on path. I can also get the same results by considering the limiting

distribution.

Lemma 1. For any recurring class G, any state ĝ ∈ G, ĝ = (Q̂1, Q2), and any action

ai that is played by i in this or any other state in G, maxa−i∈A−i(G)(π(ai, a−i)) ≥

Q̂ai
i ≥ mina−i∈A−i(G)(π(ai, a−i)).

Proof. By construction in (1),

Qai
i ∈ [min

a−i

(π(ai, a−i)),max
a−i

(π(ai, a−i))]

for both players and any action ai played on path.

From any state g = (Q1, Q2) ∈ G, the process transitions to a new state g′ =

Fa1,a2(g) = (Q′t,1, Q
′
t,2), s.t.:
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(i) if ai is played and

• maxa−i∈A−i(G)(π(ai, a−i)) < Qai
i then

Q′ai −maxa−i∈A−i(G)(π(ai, a−i)) < Qai
i −maxa−i∈A−i(G)(π(ai, a−i)),

• mina−i∈A−i(G)(π(ai, a−i)) > Qai
i then

mina−i∈A−i(G)(π(ai, a−i))−Q′aii < mina−i∈A−i(G)(π(ai, a−i))−Qai
i ,

• otherwise Q′aii ∈ [mina−i∈A−i(G)(π(ai, a−i)),maxa−i∈A−i(G)(π(ai, a−i))],

(ii) if ai is not played then Q′aii = Qai
i .

From this I know that any state ĝ for which Q̂ai
i > maxa−i∈A−i(G)(π(ai, a−i)) or

Qai
i < mina−i∈A−i(G)(π(ai, a−i)) is transient and therefore ĝ /∈ G. �

I can now characterize the absorbing states.

Lemma 2. A state g = (Q1, Q2) is absorbing in the unperturbed process, i.e. g ∈ C

if and only if:

(1) Qa1
1 = πa1a2 > Qb1

1 , and

(2) Qa2
2 = πa2a1 > Qb2

2

for some a1, a2, b1, b2 ∈ A, a1 6= b1, a2 6= b2. Moreover, these states are the only

recurrent classes, i.e. there are no recurrent classes that are not singletons.

Proof. I start with the “if” part. Each of the players is taking the action with the

higher Q-value, a1 and a2 respectively in the unperturbed process. Since the pay-

offs from this profile are exactly πa1a2 and πa2a1 , the new Q-vectors are unchanged,

Fa1,a2(g) = g. Thus the process stays in g.

For the “only if” part, suppose there is a recurring class with possibly more than

one state G. Suppose first that only one profile is played in G, i.e. A1(G) = a1,

A2(G) = a2 for some pair of actions a1, a2 ∈ A. For the action profile played on path,

the Q values should equal the expected value of playing these actions by Lemma 1.

That is maxx∈A(G)−i
(π(ai, x)) = π(ai, a−i) ≥ Qai

i ≥ minx∈A(G)(π(ai, x)) = π(ai, a−i)
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and thus Qai
i = π(ai, a−i) and similarly for the other player. Moreover, if Qai

i ≤ Qbi
i

for some i and some action bi ∈ A, bi 6= ai then a different action profile is played,

which is a contradiction. Therefore there are no other recurrent classes where only

one action profile is played, and in particular there are no other singleton absorbing

states.

It remains to show that there are no non-singleton recurrent classes. Note first

that from any state where π(ai, a−i) > Qbi
i for each i ∈ {1, 2}, bi ∈ A \ ai, and

any (a1, a2) played on path, i.e. Qbi
i < Qai

i for each i ∈ {1, 2}, and bi ∈ A \ ai, the

process is eventually absorbed into a singleton absorbing state. This is because in any

state that follows (ai, a−i) is played again and |Qai
i − π(ai, a−i)| > |Q̂ai

i − π(ai, a−i)|

with strict inequality (unless already Qai
i = π(ai, a−i)) by construction in (1). Thus

either the new state is absorbing or, again, π(ai, a−i) > Qai
i and Qai

i > Qbi
i for both

i ∈ {1, 2} and any bi ∈ A \ ai. Since |Qai
i − π(ai, a−i)| is bounded by 0 the process

either eventually ends.

Suppose now that (C,C) is played in some state g ∈ G. Then QC
i ≥ QN

i ≥ πCC

for at least one of i ∈ {1, 2}, the first inequality is because (C,C) is played, and

the second because otherwise by the above remark the process is absorbed into a

singleton state. But by Lemma 1 QC
i ≤ πCC . Moreover the inequality is strict; the

equality only holds if the same maximual payoff was obtained by i in the previous

period, which, since all payoffs are distinct, is only possible if the same profile was

played in the previous period by construction in (1). Therefore since at least some

other profile is also recurring, QC
i < πCC . This is a contradiction and therefore (C,C)

is not played in G.

Then by Lemma 1, QC
i = πCN because in all profiles where i plays C the opponent

plays N . At the same time since QN
i ≥ πNN > πCN = QC

i , C cannot be played in any

state in G. Thus only (N,N) can be played on path, which is again a contradiction.

�
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3.2. Stochastically stable states (perturbed process). Using this characteriza-

tion, the absorbing states can now be refined to stochastically stable states.

The following two lemmas will allow us to generalize the approach from Newton

and Sawa (2015). Instead of showing that all states have a minimum cost path to the

OS set, which is not true in the present case, I will use the fact that all states have

such paths to some “central” state, not necessarily in the OS. If there are minimum

cost paths to some state gc that is not in OS, it is still possible to say that the minimal

trees are of a particular form. The next lemma says that if there is such state gc, then

every minimal spanning tree rooted in some state ĝ can only have non-minimum-cost

arcs from the states on the path from gc to the root ĝ.

Lemma 3. If for any g ∈ C there is a path g = g1, ..., g
L = gc, s.t. C(gl, gl+1) = cL(gl)

for any l ∈ {1, ...L−1} then in any minimal spanning tree rooted in ĝ for any g′ ∈ C,

either the outgoing arc from g′ has the cost cL(g′) or there is a path from gc to g′.

Proof. Suppose to the contrary that there is a state g′ ∈ C with the cost of the

outgoing arc greater than cL(g′) and there is no path from gc to g′. Since the graph

is a spanning tree, there is then a path from g′ to gc and it is not minimal. Replacing

this arc with a minimum cost arc then yields a tree with a lower cost. �

If gc ∈ OS then, by the result in Newton and Sawa (2015), SS = OS. However the

lemma also allows for the case when g /∈ OS, which is used in the next proposition.

Proposition 1. The minimal trees are rooted in states that minimize

cost(ĝ) =


cost(gc)− cL(ĝ) + C(gc, ĝ) if ĝ 6= gc,

cost(gc) if ĝ = gc

among all possible roots ĝ ∈ C.
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Proof. By Lemma 3 any minimal spanning tree has all minimal cost outgoing arcs

except for the path between gc and ĝ. The difference with the minimal tree rooted in

ĝ is then the cost of this path and the least cost transition from gc. The cost of the

tree rooted in ĝ is then cost(gc)− cL(ĝ) + C(gc, ĝ). �

4. Prisoner’s Dilemma

I will introduce two stable states, g∗ and g∗∗, in C. Depending on the choice

rule, one of these two states will be shown to be the unique state in SS. The first

state g∗ = (Q∗t,1, Q
∗
t,2) has defection on path with Q∗Ni = πNN , Q

∗C
i = πCN for both

i ∈ {1, 2}. The second state g∗∗ = (Q∗∗Ct,1 , Q∗∗Ct,2 ) has cooperation on path with Q∗∗Ni =

πNN , Q
∗∗C
i = πCC for both i ∈ {1, 2}.

To be able to use Proposition 1, I will show that indeed a variant of a “getting

closer” lemma holds, but instead of approaching the OS set, the process will be

approaching the stable state g∗ with Nash equilibrium actions on path. In other

words, gc = g∗ in the Lemma 3.

Before stating the lemma let me formalize what “closer” will mean. I define the

distance D(g, g′) as follows:

(3) D(g, g′) =
∑

i∈{1,2},A∈{C,N}

|Qa
i − Q̄a

i (g)|,

where the Q-vectors Q̄(g) are constructed based on what is played on path in g as

follows. If ai is played on path in g by each player i ∈ {1, 2}, then Q̄ai
i (g) = π(ai, a−i)

and Q̄bi
i (g) = π(bi, a−i) for bi 6= ai for i ∈ {1, 2}. That is, the Q̄-values for the “on

path” action profile equal the respective payoffs for the two players, i.e. π(a1, a2)

and π(a2, a1), and the values for the “off-path” actions are the payoffs of the action



REINFORCEMENT LEARNING IN A PRISONER’S DILEMMA 15

profile resulting from a single-player experimentation, i.e. π(b1, a2), and π(b2, a1)3,

and therefore single player experimentation does not change the Q-vector.

I also introduce 0 ≥ m(g, g′) ≥ 2 as the number of actions that differ on path in g

and g′. This is used for the situations when precisely one player cooperates.

Finally I introduce the values d̄(g) and d(g), the probabilities of experimentation

for the player who is more likely to experiment and for the player who is less likely

to experiment.

(4) d̄(g) = max
i∈{1,2}

Pβ̂(g, gi) d(g) = min
i∈{1,2}

Pβ̂(g, gi),

where gi is the state after i experiments from g and β̂ is any strictly positive value.

These values will be used for states where both players cooperate.

I will say that a state g2 is “closer” to g∗ than g1, written g2 ≺ g1, if:

m(g∗, g2) < m(g∗, g1)

m(g∗, g2) = m(g∗, g1) = 1 and D(g∗, g2) < D(g∗, g1)

m(g∗, g2) = m(g∗, g1) = 2 and d(g2) < d(g1)

m(g∗, g2) = m(g∗, g1) = 2 and d(g2) = d(g1) and d̄(g2) > d̄(g1)

That is, m(·, ·) is lexicographically more important than D(·, ·) when at least one

player defects on path, and decreasing d is more important than increasing d̄ when

both players cooperate.

The next lemma uses the fact that experimentation by two players is less likely

than experimentation by one player (Assumption 1, vi) to show that a single-player

experimentation from any state, possibly followed by zero-cost deviations, will get

the process closer to the state g∗ from which only a two-player experimentation can

lead to a new state.

3I will only use the values of N for states in C, so only the singletons played on path need to be
considered.
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Lemma 4 (Getting closer to g∗). Suppose g ∈ C \ g∗. Let g1 ∈ L(g). Then there is

g′ ∈ C and t ∈ N+, s.t. g′ ≺ g and P t
0(g1, g

′) > 0.

Proof. Let g = (Q1, Q2), g′ = (Q′1, Q
′
2), g1 = (Q1,1, Q1,2), g2 = (Q2,1, Q2,2) and so on.

Take any state g ∈ C \ g∗ with (a1, a2) played on path and bi 6= ai for i ∈ {1, 2}.

Neither (N,C) nor (C,N) can be played on path in g ∈ C because then QN
i <

QC
i = πCN = minx π(C, x) for one of the players and g /∈ G.

The remaining proof is by cases.

(1) Suppose (N,N) is played on path. Then QC
i 6= π(C,N) for one of the players

i ∈ {1, 2} in order for g 6= g∗. If the non-equality holds for both players,

suppose without loss of generality that the least cost transition is by player i.

Then in all cases experimentation leads i to play C. By Lemma 2 since g ∈ C,

QN
i = QN

−i = πNN and QN
i > QC

i , QN
−i > QC

−i. The player i then obtains

πCN < πNN in g1 and QC
1,i < QN

1,i = πNN . The player −i obtains πNC > πNN

in g1 and since QN
−i = πNN , QN

1,−i > QN
−i. Therefore in g1 again QN

i > QC
i ,

QN
−i > QC

−i and (N,N) is played again. Then, with positive probability and

zero cost in the states g2, g3, ...g
′ that follow g1, QN

2,i = QN
3,i... = πNN continues

to hold and |QN
2,−i − πNN |, |QN

3,−i − πNN |, ... decreases until Q′N−i = πNN again

for some g′. Thus, in the new absorbing state Q′Ni = Q′N−i = πNN , Q′C−i = QC
−i,

but |Q∗Ci −Q′Ci | = |πCN −Q′Ci | < |πCN −QC
i |, i.e. the distance has decreased

and thus D(g∗, g′) < D(g∗, g), while m(g∗, g′) = m(g∗, g) = 2 so g′ ≺ g as

required.

(2) Suppose (C,C) is played on path. Then experimentation leads i to play N .

By Lemma 2 since g ∈ C, QC
i = QC

−i = πCC and QC
i > QN

i , QC
−i > QN

−i. The

player i then obtains πNC > πCC in g1 and thus QN
1,i > QN

i . The player −i

then obtains πCN < πCC in g1 and thus QC
1,−i < QC

−i. If the process converges

to a state where at least one player defects, then 2 = m(g∗, g′) > m(g∗, g) = 1,
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and g′ ≺ g as required. So suppose instead that eventually a stable state with

(C,C) on path is reached. Two subcases are possible.

(a) Both QC
1,i > QN

1,i, Q
C
1,−i > QN

1,−i continue to hold in g1 and (C,C) is

played again. Then, with positive probability and zero cost in the states

g2, g3, ...g
′ that follow QC

2i = QC
3i = ... = πCC continues to hold and

|QC
2,−i− πCC |, |QC

3,−i− πCC |, ..., decreases until Q′C−i = πCC again for some

g′. Thus, in the new absorbing state Q′Ci = πCC , Q′C−i = πCC , Q′N−i = QN
−i,

but Q′Ni > QN
i . Moreover, since i was the experimenting player in g,

player i is also at least as likely to experiment in g′ as the other player

by condition (vii) in Assumption 1. Then d(g) = d(g′) and d̄(g) < d̄(g′)

and g′ ≺ g as required.

(b) In all remaining cases eventually Q̂C
−i < QN

−i and will not increase unless

(C,C) is played again. If QC
1,−i < QN

1,−i and (C,N), or (N,N) is played

next, this is true immediately in g1. If instead QC
1,−i > QN

1,−i continues to

hold, but QC
1,i < QN

1,i, then (N,C) is played. The payoff of player i is the

highest possible, and the payoff of the other player is the lowest possible,

so the Q-values of their actions increase and decrease respectively. Then

eventually (N,N) is played and again Q̂C
−i < QN

−i in some ĝ and will not

increase unless (C,C) is played again. Once (C,C) is played again, the

game continues with (C,C) until convergence to a stable state. Since

eventually (C,C) is reached, at some future state QN
−i > Q̂C

−i > Q′N−i.

Moreover since i experimented in g, one of the following must occur:

either −i is also less likely to experiment than i in g′ and then again by

condition (vii) in Assumption 1 and because QN
−i > Q′N−i, d(g) > d(g′), or i

is at least as likely to experiment as −i in g′ but P−i(g) > P−i(g
′) ≥ Pi(g

′)

and again d(g) > d(g′). Thus g′ ≺ g as required.
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�

Since states with (C,N), (N,C) or mixed actions on path cannot be stable in

C ⊆ GPD, one only needs to consider trees rooted in states with (N,N) and (C,C)

on path.

At the same time, a tree rooted in some state ĝ 6= g∗ with (N,N) on path cannot

be minimal. This can be stated as a corollary of Proposition 1:

Corollary 1. A minimal cost spanning tree has to be rooted in a state ĝ such that

cL(ĝ) ≥ cL(g∗).

Proof. By Proposition 1 for any minimal spanning tree cost(g∗) − cL(ĝ) + C(g∗, ĝ),

where ĝ is the root. By definition, C(g∗, ĝ) ≥ cL(g∗) and therefore cL(ĝ) < cL(g∗) ≤

C(g∗, ĝ) would imply that cost(g∗)− cL(ĝ) + C(g∗, ĝ) > cost(g∗). Then the minimal

tree rooted in g∗ has smaller cost, which is a contradiction. �

The cost of leaving any state ĝ 6= g∗ with (N,N) on path is at the most cL(ĝ) =

πNN−πCN , while the minimal cost of leaving g∗ is strictly greater than πCN−πNN by

regularity conditions in Assumption 1 (vi) because both players have to experiment

simultaneously. Therefore the cost of a minimal tree rooted at g∗ is strictly lower.

This leaves only the state g∗ and states in C with (C,C) on path as candidates for

stochastic stability. One can further refine the possibilities by the following corollary:

Corollary 2. If a minimal cost spanning tree is rooted in a state ĝ 6= g∗∗ and (C,C)

is played on path in ĝ then there is also a minimal cost spanning tree rooted in g∗∗.

Proof. From any state with (N,C) or (C,N) on path there is a zero-cost path to a

state in (N,N). Therefore in any minimum cost path to g∗∗ any state with (C,C) has

to follow another state with (C,C) or a state with (N,N). Take the first state with

(C,C) then there is a state with (N,N) before it. But then in this state QN
i = πNN



REINFORCEMENT LEARNING IN A PRISONER’S DILEMMA 19

for both i ∈ {1, 2} and this state is therefore g∗∗. So any minimum cost path from g∗

to a state with (C,C) passes through g∗∗ and has the cost no less than C(g∗, g∗∗). At

the same time, cL(ĝ) ≤ cL(g∗∗) for any state ĝ with (C,C) by regularity conditions in

Assumption 1 (vii) because Q̂N
i ≥ πNN = Q∗∗Ni and Q̂C

i = Q∗∗Ci = πCC for i ∈ {1, 2}.

Then cost(gc)−cL(ĝ)+C(gc, ĝ) ≥ cost(gc)−cL(g∗∗)+C(gc, g∗∗) and by Proposition

1 the result follows. �

Thus, to argue about the action profiles on path in the limit, one only needs to

consider g∗ and g∗∗. This leads to a characterization:

Corollary 3. (i) If C(g∗, g∗∗) < cL(g∗∗) then g∗∗ ∈ SS and players always converge

to cooperation in any state in SS. 4

(ii) If C(g∗, g∗∗) > cL(g∗∗) then SS = {g∗} and players always converge to defection.

(iii) If C(g∗, g∗∗) = cL(g∗∗) for one or more states, both defection and cooperation

may occur in the limit with positive probability.

Proof. Follows directly from Proposition 1 and from Corollaries 1, 2 by the remark

above. �

I now apply these concepts to particular experimentation rules: ε-greedy (which I

call β-greedy in my notation) and logit (also called softmax or Boltzmann) rules.

Under the β-greedy rule with probability (1−kiβ) player i chooses the actions with

highest Q-values (with ties resolved uniformly), and with probability kiβ the action

is chosen by randomizing uniformly. Formally in our definitions, Prgreedyi (a|g) =

1

|{a:Qa
i =maxa′ Q

a′
i }|

(1−kiβ)+ 1
2
kiβ if a is played by i on path in g and Prgreedyi (a|g) = 1

2
kiβ

otherwise. The denominator in the former case only divides the amount among all

4The C(g∗, g∗∗) < cL(g∗∗) is a stronger requirement than c(g∗, g∗∗) < cL(g∗∗) used in Waltman and
Kaymak (2008) due to high learning rate assumption. This is sufficient in Waltman and Kaymak
(2008) because the cooperative state g∗∗ is reachable by a single least cost transition from g∗, while
in the general case the path has to go through other states, where the least cost transition does not
approach g∗∗ and costlier arcs need to be taken, which leads to C(g, g∗∗).
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actions played on path if there is more than one. The chosen experimentation function

βi(β) = (kiβ) ensures that the probability of experimentation is decreasing in β for

any choice of the constants ki > 0 as required by condition (i) in Assumption 1. For

this rule, the starting value of β has to be taken so that kiβ is less than 1 to ensure that

the resulting probability of experimentation is well-defined. If k1 = k2 = 1, I obtain

the simpler case with symmetric experimentation probabilities β1(β) = β2(β) = β.

Under the logit choice rule instead

Prlogiti (a|g) =
eQ

a
i /(kiβ)∑

a′∈{C,N} e
Qa′

i /(kiβ)
,

with no restriction on ki and β as long as they are positive. The βi(β) = kiβ is

sometimes called the temperature, with higher values of β, experimentation becomes

more likely and less dependent on Q-values. When β, and therefore also βi(β), ap-

proach zero, the actions with the highest Q-value are always chosen and the process

approaches the unperturbed dynamic P0. For the symmetric setup in the limit with

β1(β) = β2(β) = β approaching infinity, the actions are chosen with equal probability.

In both cases then Pβ(g, g′) is the product of these probabilities,
∏

i∈{1,2} Pr
greedy
i (ai|g)

or
∏

i∈{1,2} Pr
logit
i (ai|g) for g′ = Fai,a−i(g).

For β-greedy choice rule experimentation by 2 players in any state is less likely

than experimentation by 1 player in any state, which will be shown to always lead to

players converging to defection.

The logit rule case on the other hand can lead to cooperation, depending on the

values of parameters. A commonly used property of the logit choice rule is that the

transitions probabilities in the limit β → 0 are determined by the absolute difference

in payoffs between the states. Let zlogiti be the smallest integer equal or greater than

log(1−αi)
πNN−πCC

πCN−πCC
, which is the necessary number of updates on the profile (C,C) for

the player i to get from g∗ to a state where i cooperates on path under the logit
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rule. The expression can be obtained by rewriting the recursive equations Qt+1,i =

(1− αi)Qt,i + αiπCC ≥ πNN , i ∈ {1, 2}, Q0 = πCN for the first t where Qt+1,i ≥ πNN .

These equations describe the minimum cost path from g∗ to g∗∗ because the only

possible updates that increase Q-values for C are the updates on the profile (C,C),

i.e. Fai,a−i(g) = g′ can only hold if ai = C for both i ∈ {1, 2} if g′ has a higher

Q-value for C than g. This is proven in the following lemma:

Lemma 5. The path g∗ = g1, ...gL = g∗∗, where (C,C) is played in every state gl, is

the lowest cost path between g∗ and g∗∗.

Proof. Let gl = (Ql,1, Ql,2) and suppose there is a lower cost path g∗ = g′1, ...g
′
L′ = g∗∗,

g′l = (Q′l,1, Q
′
l,2) with at least one defection on path. Let g′C,Cl be the state (if any)

on this path where (C,C) is played for the l-th time after l − 1 (not necessarily

consecutive) plays of (C,C) on this path. That is, the next state on the path after

g′C,Cl is FC,C(g′C,Cl ).

By the regularity condition vii in Assumption 1, c(gl, gl+1) is the lowest 1-step cost

c(g, ĝ) among all pairs of states g, ĝ ∈ C, g = (Q1, Q2) and ĝ = FCC(g) = (Q̂1, Q̂2),

such that QC
i ≤ QC

l,i for both i ∈ {1, 2} and (N,N) is played on path. Moreover, for

any such pair of states, Q̂C
i ≤ QC

l+1,i by construction in (1).

At the same time, any profile where at least one player defects cannot increase the

Q-value of cooperation for either player, i.e. Q′Cl+1,i ≤ Q′Cl,i if (C,N), (N,C), or (N,N)

is played in g′l. Then for every pair of states gl and g′C,Cl on their respective paths for

any l ∈ 1..L, Q′Cl,i ≤ QC
l,i for both i ∈ {1, 2}. Moreover, L′ > L as there is at least one

state with defection that does not increase the Q-value of cooperation. But then the

cost at every (g′C,Cl ) is at least as high as the cost c(gl, gl+1) on the other path. Since

there are no other states on the cooperative path g∗ = g1, ...gL = g∗∗, its cost is the

same or lower.

�
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Further, let qCl,i = πCC + (1− αi)l−1(πCN − πCC). These are the Q-values of coop-

eration for each player on the minimum-cost path in Lemma 5 from g∗ to g∗∗ under

the logit rule. Then the characterization for the two rules is as follows:

Proposition 2. For the asymmetric Q-learners the SS set depends on the choice

rule:

(i) SS = g∗ under β-greedy choice rule

(ii) Under the logit choice rule:

• SS = {g∗} and N is played if∑zlogit1
l=1

1
k1

(πNN − qCl,1) +
∑zlogit2

l=1
1
k2

(πNN − qCl,2) > mini∈{1,2}
1
ki

(πCC − πNN),

• g∗∗ ∈ SS and C is played in all states in SS if∑zlogit1
l=1

1
k1

(πNN − qCl,1) +
∑zlogit2

l=1
1
k2

(πNN − qCl,2) < mini∈{1,2}
1
ki

(πCC − πNN)

• g∗∗, g∗ ∈ SS if∑zlogit1
l=1

1
k1

(πNN − qCl,1) +
∑zlogit2

l=1
1
k2

(πNN − qCl,2) = mini∈{1,2}
1
ki

(πCC − πNN)

Proof. (i) Under β-greedy rule, a two-player simultaneous experimentation has the

probability β1(β) × β2(β) = k1k2β
2, while a single-player experimentation has the

probability at most maxi βi(β) = max{k1, k2}β. By construction, leaving g∗ requires

a two-player simultaneous experimentation, while a least cost transition from any

state ĝ ∈ C with (C,C) on path requires only a single-player experimentation. Then

C(g∗, ĝ) ≥ c1(g∗, ĝ) ≥ cL(g∗) > cL(ĝ)

and by Corollary 1 SS = {g∗}.

(ii) For C(g∗, g∗∗) on the minimum-cost path where all players cooperate (by Lemma

5), the cost of transitions is 1
k1β

(πNN − qCl,1) + 1
k2β

(πNN − qCl,2) while both players

have N on path (both players have to experiment), i.e. for l = 1 to mini z
logit
i .

For l = mini z
logit
i to maxi z

logit
i only the player who still has N on path has to

experiment. Then C(g∗, g∗∗) =
∑zlogit1

l=1
1
k1β

(πNN − qCl,1) +
∑zlogit2

l=1
1
k2β

(πNN − qCl,2) and
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cL(g∗∗) = mini∈{1,2}
1
kiβ

(πCC −πNN). The result then follows by applying Proposition

1.

�

In particular, the previous proposition implies that there is always a low-enough

α = min{α1, α2} for any πNN such that defect-defect (the g∗ state played repeatedly)

is the unique action profile in the limit. In other words, one of the learners can always

preclude cooperation if her learning parameter is low enough.

Corollary 4. There is always a low-enough α > 0 for any πNN such that {g∗} = SS

under either rule.

Proof. zlogiti increases without bound as αi approaches 1. Then
∑zlogiti

l=1 2(πNN − qCl )

also increases without bound and by Proposition 2 {g∗} = SS. �

The characterization is simpler for the symmetric case where α1 = α2 = α, β1(β) =

β2(β) = β, and therefore C(g∗, g∗∗) =
∑zlogit

l=1 2(πNN − qCl ) and cL(g∗∗) = πCC − πNN

with zlogit = zlogit1 = zlogit2 . Substituting, the corollary follows immediately:

Corollary 5. If α1 = α2 and β1(β) = β2(β) = β then:

(i) SS = g∗ under β-greedy choice rule

(ii) Under the logit choice rule:

• SS = {g∗} if
∑zlogit

l=1 2(πNN − qCl ) > πCC − πNN ,

• g∗∗ ∈ SS and C is played in all states in SS if
∑zlogit

l=1 2(πNN − qCl ) <

πCC − πNN

• g∗∗, g∗ ∈ SS if
∑zlogit

l=1 2(πNN − qCl ) = πCC − πNN

I illustrate the regions with cooperation and defection for symmetric learners with

a two-dimensional graph because the only relevant factors are the learning rate α and

the position of the πNN payoff between πCN and πCC . Therefore I fix πCC = 1 and
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πCN = 0 without loss of generality – the shape of the regions is preserved for other

values of the three payoffs πCN , πNC , and πCC . Instead I will equivalently use the

value πNN−πCN

πCC−πCN
, which captures the relative position of πNN between πCN and πCC .

The regions are shown in the Figure 1. The boundary of the regions consists of the

only values where both cooperation and defection is possible in the limit. The area

to the up and left of the red dashed line is the region covered by the theoretical part

of (Waltman and Kaymak, 2008).

Figure 1. Trade-off between learning rate α and relative punishment
payoff πNN−πCN

πCC−πCN
for symmetric learners. The blue region has (C,C) in

the limit, the light region has (N,N) in the limit.

It is illustrative to also consider a supergame of choosing a learning algorithm

against an opponent. In a supergame of choosing the parameters αi and ki, since

the algorithms can only converge to (N,N) or (C,C) on path, low values of αi are

dominated. In other words, setting αi = 1 is never a bad strategy. For experimen-

tation parameter ki it is best for the player in the supergame to try to match the

oppponent’s value of k−i. This can be seen by moving the cost of the player with the
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higher ki to the right side in the expression in Proposition 2. In sum, it is always

best to remember only the immediately previous payoff, disregarding prior history of

play, while trying to experiment about as often as the opponent. The shapes of the

regions for the asymmetric case are similar and can be seen in Figure 2.

It is easy to extend the analysis to other learning and experimentation rules, so long

as the regularity conditions are satisfied. The difference in learning parameters will

only affect the regions through the changing costs C(g∗, g∗∗) and cL(g∗), so Corollary

3 can again be used to obtain the characterization.

5. Conclusion

The textbook approach to repeated games focuses on the existence of cooperative

equilibria in terms of the discount rate δ and three of the four payoffs of the game.

Namely, the cooperative equilibrium will exist if δ ≥ πNC−πCC

πNC−πNN
. One can perhaps

think of this as an alternative learning concept (parametrized by δ) that relies on

players understanding the repeated nature of the game. This expression differs from

the payoff information relevant for cooperation of reinforcement learners, πNN−πCN

πCC−πCN
.

In fact, the payoff πCN is completely irrelevant in the former, and the temptation

payoff πNC in the latter. Blonski et al. (2011) argue in favor of a third view, that

all four payoffs should matter axiomatically with extremely low and extremely high

πCN corresponding to Nash and cooperative outcomes respectively, provided that the

discount is high enough to support cooperation in the first place.

Characterization of learning equilibria in this paper thus addresses two issues. With

the results that differ from predictions of other learning processes, Q-learning becomes

a testable theory given enough variation in payoffs – whether subjects think in terms of

adjusting their best-responses, or instead keep a mental model of expected valuations

of different actions, the Q-vector, has implications for observable behavior. The

potential of the reinforcement learning models is supported by previous studies such
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as Roth and Erev (1995) and Erev and Roth (1998), which combined simulations with

experiments to show that reinforcement learning models have better predictive and

descriptive power than standard equilibrium analysis. At the same time, in this paper

reinforcement learning is only a long-term equilibrium selection concept, instead of

a description of the medium-term dynamics studied in these papers, which may be

more relevant for discerning learning algorithms in human behavior.

Another, more direct target of this research is the field of algorithmic pricing.

Due to their simplicity, Q-learning algorithms are a natural candidate for building

reinforcement learning into automated pricing systems. However even these simple

algorithms have been shown empirically to be able to learn to support supracom-

petitive prices. I confirm these simulation results theoretically and, moreover, show

that there is an optimal set of parameters that will always be chosen by a rational

designer of the algorithm to maximize the chance of collusion, namely the highest

learning rate and an attempt to match the experimentation rate of the opponent.

The most natural extension of this analysis is to expand the scope from a two-action

game to a discretized Bertrand competition or a similar game. Unfortunately, not

all results extend in a straightforward manner, most importantly, in a differentiated

Bertrand competition a minimum cost path to a central state g∗ no longer has to

exist.
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Figure 2. Trade-off between learning rates α1, α2, ratio of experimen-
tation probabilities k1/k2 and relative punishment payoff πNN−πCN

πCC−πCN
for

asymmetric learners.
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