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1 Introduction

The dissemination of up-to-date knowledge is key for innovation and economic growth (Jones,

2005; Goldin and Katz, 2010; Jones, 2009). Higher education (HE) plays a central role in this process.

Through the teaching of their curricula, HE programs facilitate human capital accumulation and

nurture future innovators (Biasi, Deming, and Moser, 2020). These programs might differ, however,

in their ability to equip students with up-to-date knowledge.1 These differences can have important

implications for labor market outcomes, education choices, and technological progress. Yet, they

have so far remained unexplored; very little is known on how the content of HE varies across and

within schools, how it is shaped, and how it relates to students’ outcomes.

This paper brings together new data and a novel methodology to measure the extent to which

HE courses cover frontier, i.e., recently produced, knowledge. Applying natural language process-

ing (NLP) techniques to textual information contained in course syllabi (the content of HE courses)

and academic publications (the frontier of knowledge), we build a novel metric: the education-

innovation gap, designed to capture the distance between education content and the knowledge

frontier. Specifically, we define the gap as the ratio of the similarity between a course’s content and

knowledge from older vintages (covered by articles published decades ago) and the similarity be-

tween the course’s content and new, frontier knowledge (covered by the most recent articles). For

example, a Computer Science course that teaches Visual Basic (a relatively obsolete programming

language) in 2020 would have a larger gap than a course that teaches Julia (a more recent program-

ming language), because Visual Basic is mostly covered by old articles and Julia is mostly covered

by recent articles.2

Using the education-innovation gap, we study the content of HE courses and discover four

findings. First, HE courses differ greatly in their coverage of frontier knowledge, even conditioning

on discipline and course level. Second, instructors play a big role in shaping the content of their

courses, and research-active instructors teach more frontier knowledge, suggesting complementar-

ities between teaching and research activities. Third, more selective and better funded institutions

offer courses with lower gaps. These schools also enroll fewer disadvantaged students (Chetty
1Differences in HE programs attended have been associated with differences in earnings (Hoxby, 2020; Mountjoy and

Hickman, 2020) and rates of invention (Bell et al., 2019).
2First released in 1991, Visual Basic is still supported by Microsoft in recent software frameworks, but

it was discontinued in 2020 (https://visualstudiomagazine.com/articles/2020/03/12/vb-in-net-5.aspx, retrieved
9/30/2020). Julia is a general-purpose language initially developed in 2009. Constantly updated, it is
among the best for numerical analyses and computational science and is used at over 1,500 universities
(https://juliacomputing.com/blog/2021/08/newsletter-august/, retrieved 9/30/2021).

1



et al., 2020), which implies that access to frontier knowledge is highly unequal. Lastly, the dissem-

ination of frontier knowledge through HE courses is strongly and positively related to students’

labor market outcomes and their ability to innovate in the future.

Our empirical analysis uses a novel source of information: the text of a sample of 1.7 million

college and university syllabi, including about 540,000 courses taught at 800 four-year US institu-

tions between 1998 and 2018. This sample represents about 5% of all courses taught in this time

window, and it covers nearly all fields. While the sample over-represents courses from very selec-

tive schools, it is representative of the population in terms of fields, course levels (basic, advanced

undergraduate, and graduate), and a broad set of school characteristics.

To construct the education-innovation gap, we start by calculating measures of textual similar-

ity between each syllabus and the title, abstract, and keywords of over 20 million academic articles

published in top academic journals since the journals’ creation.3 Calculating pair-wise textual sim-

ilarities involves three steps. First, we represent each document (a syllabus or an article) as a term

frequency vector, projecting the text of the document on a comprehensive list of terms that refer to

knowledge items. Each vector element is the frequency of a given term in the document, divided

by the length of the document. Second, we use the “term-frequency-backward-inverse-document-

frequency” (TFBIDF) approach (Kelly et al., 2021) to increase the importance of terms that are more

informative of a document’s content. This approach gives higher weights to more informative terms

and de-emphasizes terms more commonly used across all documents at a certain point in time.

Third, we use these reweighted term frequency vectors to compute the cosine similarity between

each syllabus and each article.

Armed with these cosine similarities, we construct the education-innovation gap of a given

syllabus as the ratio of its average similarities with (a) older knowledge vintages, i.e., all articles

published 13-15 years prior to the syllabus’s date and (b) frontier knowledge, i.e., all articles pub-

lished 1-3 years prior.4 Naturally, the gap is higher for syllabi that cover more knowledge that is

older (rather than newer). By virtue of being constructed as a ratio of similarities, the gap is not

affected by idiosyncratic attributes of a syllabus (such as length, structure, or writing style), which

could introduce noise in cosine similarities as measures of content but would cancel out in a ratio

measure.

The goal of our measure is to capture a syllabus’s “true” knowledge content, and implementing
3Previous works have used academic publications to capture the research frontier (for example, see Angrist et al.,

2017, for economics research).
4Our estimates are robust to small variations in the timing definition of old and new knowledge vintages.
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the TFBIDF-adjustment helps us ensure that this is the case. First, this adjustment implies that the

gap does not penalize syllabi for covering “classic” or “fundamental” knowledge. Although they

belong to older knowledge vintages, terms related to classic topics are still widely taught. Therefore,

they appear across many documents and receive a low weight. Similarly, the TFBIDF-adjustment

minimizes the impact of academic “buzzwords,” which are also widely used and receive a low

weight. To demonstrate empirically that our measure captures “real” knowledge content, we show

that the education-innovation gap for courses in STEM fields is very similar when we use patents

(instead of academic publications) to capture the knowledge frontier.

A few empirical regularities confirm the ability of our measure to capture the distance between

course content and the knowledge frontier. First, the gap is lower for syllabi that reference more

recent articles and books in their lists of recommended readings. Second, the gap varies reason-

ably across course levels: It is the largest for basic undergraduate courses (taught in the first two

years of a bachelor’s degree and more likely to cover the fundamentals of a discipline) and smallest

for graduate-level courses (master’s and PhD). Third, using a simulation exercise, we show that

gradually replacing “older” knowledge in a syllabus with “newer” knowledge (i.e., words most

frequently appearing in old and new articles, respectively) progressively reduces the gap.

We begin our analysis by documenting significant differences in the gap across syllabi. To move

a syllabus from the 25th to the 75th percentile of the gap distribution, approximately half of its

content would have to be replaced with newer knowledge. A small share of this variation can be

attributed to differences across fields and course levels. To account for these differences, the rest

of our analysis compares syllabi within each field, course level, and year. Most of the observed

variation in the education-innovation gap (about a quarter) occurs within schools, across courses

taught by different instructors. The impact of instructors can also be seen from the fact that the gap

of the typical course remains stable over time, but it declines significantly when the instructor of a

course changes.

Most higher education instructors split their time and effort between teaching and research, re-

flecting the dual mission of universities to produce and disseminate knowledge. As time is scarce,

these tasks are often seen as competing (Hattie and Marsh, 1996; Courant and Turner, 2020). The

nature of higher education, though, could also create complementarities between the two (Becker

and Kennedy, 2005; Arnold, 2008). Our findings support the latter hypothesis. The education-

innovation gap is significantly lower for courses taught by instructors who are more active in pro-

ducing research (i.e., they publish more, are cited more, and receive more grants). The gap is in-
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stead higher for non-ladder faculty who specialize in teaching. The gap is also lower when the

instructor’s own research is closer to the topics of the course. These findings highlight that a proper

deployment of faculty across courses can bring the content of education closer to the knowledge

frontier. They also suggest that investments in faculty research (both public, in the form of gov-

ernment grants, and made by each institution) can generate additional returns in the form of more

updated instruction.

Next, we explore differences in the gap across schools. Although explaining a small fraction of

the total variance, these differences are useful for understanding how the content of higher educa-

tion is shaped and how the access to frontier knowledge varies across students from different socio-

economic backgrounds. The gap is smaller in schools with a stronger focus on research (ranked

as R1 in the Carnegie classification) and with more resources (higher endowment and spending

on instruction and research). The gap is also smaller in more selective schools (for example the

”Ivy-Plus,” including the eight Ivy League colleges plus Stanford, MIT, Duke, and the University

of Chicago) compared to non-selective schools. The magnitude of this difference is such that, in

order to make the average syllabus in a non-selective school comparable to the average syllabus in

an Ivy-Plus school, 8 percent of its content would have to be replaced with newer knowledge.

Importantly, differences across schools translate into disparities in access to up-to-date knowl-

edge across students with different backgrounds. Since wealthier and more selective schools enroll

more socio-economically advantaged students (Chetty et al., 2020), the education-innovation gap

is significantly higher in schools enrolling students with lower median parental income and those

with a higher share of Black or Hispanic students.

In principle, part of these differences could be due to a “vertical differentiation” of educational

content across schools. If students with greater ability enroll in more selective or better funded

schools and are more capable of absorbing up-to-date content, cross-school differences in the gap

might simply reflect schools’ efforts to provide students with better tailored educational content.

We do not find evidence supporting this hypothesis: The negative correlation between the gap and

parental income remains when we control for student ability by using the SAT and ACT scores of

admitted students.

Our results so far unveil differences in the coverage of frontier knowledge across HE courses.

Do these differences matter for the production of innovation and for students’ outcomes? To an-

swer this question, the ideal experiment would randomly allocate students to courses with different

gaps and measure differences in outcomes. In the absence of this random variation, we settle on the
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more modest goal of characterizing the empirical relationship between the education-innovation

gap and students’ graduation rates, incomes, and measures of innovation, measured at the school

level. In an attempt to account for students’ selection into each school and other determinants of

student outcomes related to instruction, we control for a large set of school observables such as

institutional characteristics, expenditures, instructional characteristics, enrollment by demographic

groups and major, selectivity, and parental background. We find that students in schools that of-

fer courses with a lower gap are more likely to complete a doctoral degree, produce more patents,

and earn more after graduation. They are also more likely to graduate from college; a possible

explanation is that taking more up-to-date courses makes students more motivated and thus more

likely to complete their education program. Although our approach is silent on what the “optimal”

education-innovation gap for a certain type of school or students should be, these correlations sug-

gest that, on average, exposure to frontier knowledge are associated with better student outcomes.

The education-innovation gap measures the academic content of each course. The richness of the

information included in the syllabi allows us to go beyond academic content and explore the skills

students develop in each course. Recent works have highlighted the increasing importance of soft

skills—non-cognitive attributes that shape the way people interact with others—for students’ suc-

cess (Deming, 2017; Deming and Kahn, 2018). We measure the “soft-skills intensity” of each course

as the extent to which evaluations are based on activities such as group projects, presentations,

and surveys, which train soft skills. We find that courses with a lower education-innovation gap

also tend to have a higher soft-skills intensity. More selective schools, those with more resources,

and those serving more socio-economically advantaged students teach more soft-skills intensive

courses. Within schools, research-active instructors are most likely to teach soft-skills intensive

courses. Lastly, soft-skills intensity is strongly positively associated with student outcomes.

In the final part of the paper, we probe the robustness of our results to the use of alternative mea-

sures of frontier knowledge coverage. We consider three of them: the share of all “new” knowledge

contained in a syllabus, designed not to penalize a syllabus that contains old and new knowledge

compared with one that only contains new knowledge; a measure of “tail” knowledge, aimed at

capturing the presence of the most recent content; and the education-innovation gap obtained us-

ing patent filings as a measure of frontier knowledge. All these alternative measures are strongly

correlated with the education-innovation gap, and our main results are qualitatively unchanged

when we use them in lieu of the gap.

The main contribution of our paper is to document differences in the coverage of frontier knowl-
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edge across HE programs, a new and important dimension of heterogeneity. Analyzing the education-

innovation gap, we shed new light on some of the most central questions related to innovation and

higher education.

Several studies have characterized heterogeneity in the production of human capital, focusing

on differences in the returns to educational attainment (Hanushek and Woessmann, 2012), majors

(Altonji et al., 2012; Deming and Noray, 2020), college selectivity (Hoxby, 1998; Dale and Krueger,

2014), and the skill content of college majors (Hemelt et al., 2021; Li et al., 2021). Here, we take a

novel approach: We directly examine curricula and educational content, among the most central

components of higher education. With this approach, we document significant differences in the

knowledge covered by each course, which could have important implications for students.

Our study is also related to the literature on education and the production of frontier knowl-

edge and innovation. Earlier works (Nelson and Phelps, 1966; Benhabib and Spiegel, 2005) and

more recent ones (Akcigit et al., 2020; Bloom et al., 2021) have highlighted an important role for hu-

man capital and education—and education programs in particular—for the diffusion of ideas and

technological advancements. Other studies have emphasized the importance of specific fields, such

as STEM (Baumol, 2005; Toivanen and Väänänen, 2016; Bianchi and Giorcelli, 2019).5 Our findings

highlight differences in the ability of HE programs to equip students with the knowledge necessary

to innovate, which originate from heterogeneous course content. Importantly, these differences con-

firm a “lack of democratization” in access to valuable knowledge. US inventors have been shown

to come from a small set of schools, enrolling very few low-income students (Bell et al., 2019). We

find that these schools provide the most up-to-date educational content, which in turn suggests that

access to frontier knowledge is highly unequal.

Lastly, we provide direct evidence on the importance of instructors in shaping the content of

higher education. While some studies have found important effects on student outcomes (Hoffman

and Oreopoulos, 2009; Carrell and West, 2010; Braga et al., 2016; Feld et al., 2020), much less is

known on why and how instructors impact students (De Vlieger et al., 2020). We study instructors’

contributions to the production of educational content and carefully characterize differences across

instructor types. Crucially, our findings highlight complementarities between teaching and research

activities.
5The literature on the effects of education on innovation encompasses studies of the effects of the land grant college

system (Kantor and Whalley, 2019; Andrews, 2017) and, more generally, of the establishment of research universities
(Valero and Van Reenen, 2019) on patenting and economic activity. Educational institutions also play a crucial role in
fostering entrepreneurship (Tartari and Stern, 2021).

6



2 Data

Our empirical analysis combines data from multiple sources. These include the text of course syl-

labi; the abstract of academic publications; job titles, publications, and grants of each instructor;

characteristics of US higher education institutions; and labor market outcomes and innovation ac-

tivities of the students at these institutions. More detail on the construction of our final data set can

be found in Appendix B.

2.1 College and University Course Syllabi

We obtained the raw text of a large sample of college and university syllabi from Open Syllabus

(OSP), a non-profit organization that collects these data by crawling publicly accessible univer-

sity and faculty websites to support educational research and its applications. The initial sample

contains more than seven million English-language syllabi of courses taught in over 80 countries

between 1990 and 2018.

Most syllabi share a standard structure. The standard syllabus begins with basic details of the

course (such as title, code, and the name of the instructor). It proceeds with a short description of

its content, followed by a more detailed list of topics and required or recommended readings for

each class session. Most syllabi contain information on evaluation criteria, such as assignments and

exams; some also include general policies regarding grading, absences, lateness, and misconduct.

Following this general structure, we parse each syllabus and extract four sets of information, which

we describe in detail below: (i) basic course details, (ii) the course’s content, (iii) the list of required

and recommended readings, and (iv) a description of evaluation methods.6

Basic course details These include the name of the institution, the title and code of the course,

the name of the instructor, the quarter or semester, and the academic year in which the course is

taught. Course titles and codes allow us to classify each syllabus into one of three course levels:

basic undergraduate, advanced undergraduate, or graduate. OSP assigns each syllabus to one of 69

detailed fields. We use this classification throughout the paper. For some tests, we further aggregate

fields into four macro-fields: STEM, Humanities, Social Sciences, and Business.7

6Angrist and Pischke (2017) use hand-coded syllabi of undergraduate econometrics classes from 38 universities to
study the evolution of econometrics education, leveraging the usefulness of syllabi as a data source for educational
content.

7The field taxonomy used by OSP draws extensively from the 2010 Classification of Instructional Programs of the
Integrated Postsecondary Education Data System, available at https://nces.ed.gov/ipeds/cipcode/default.aspx?y=55.
Appendix Table BV lists all 69 fields and shows the correspondence between fields and macro-fields.
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Course content We identify the portion of a syllabus that contains a description of the course’s

content by searching for section titles such as “Summary,” “Description,” and “Content.”8 Typically,

this portion describes the basic structure of the course, the key concepts that are covered, and (in

most cases) a timeline of the content and the materials for each lecture.

Reference list We compile a list of bibliographic information for the required and recommended

readings of each course by combining the list provided to us by OSP with all other in-text citations

that we could find, such as “Biasi and Ma (2022).” We are able to compile a list of references for 71

percent of all syllabi. We then collect bibliographic information on each reference from Elsevier’s

SCOPUS database (described in more detail in Section 2.2); this includes title, abstract, journal,

keywords (where available), and textbook edition (for textbooks).

Methods of evaluation To gather information on the methods used to evaluate students and the

set of skills trained in the course, we use information on exams and other assignments. We identify

and extract the relevant portion of the syllabus by searching for sections titled “Exam,” “Assign-

ment,” “Homework,” “Evaluation,” and “Group.” Using the text of these sections, we distinguish

between hard skills (assessed through exams, homework, assignments, and problem sets) and soft

skills (assessed through presentations, group projects, and teamwork). We were able to identify this

information for 99.9 percent of all syllabi.

Sample restrictions and description To maximize consistency over time, we focus our attention

on syllabi taught between 1998 and 2018 in four-year US institutions with at least 100 syllabi in our

sample. We remove universities which exclusively or primarily focus on online instruction. We also

exclude 35,917 syllabi (1.9 percent) with fewer than 20 words or more than 10,000 words (the top

and bottom 1 percent of the length distribution).

Our final sample, described in panel (a) of Table 1, contains about 1.7 million syllabi of 542,251

courses at 767 institutions. Thirty-three percent of all syllabi cover STEM courses, ten percent cover

Business, 30 percent cover Humanities, and 24 percent cover Social Science. Basic courses represent

39 percent of all syllabi, and graduate courses represent 33 percent. A syllabus contains an average

of 2,226 words in total, with a median of 1,778. Our textual analysis focuses on “knowledge” words,

i.e., words that belong to a dictionary, a list of words compiled to capture a document’s academic

content (defined in greater detail in Section 3). The average syllabus contains 420 unique knowledge

words, with a median of 327.

8The full list of section titles used to identify each section is shown in Appendix Table BIV.
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Table 1: Summary Statistics: Syllabi, Instructors, and Schools

Panel (a): Syllabi Characteristics
count mean std 25% 50% 75%

Education-innovation gap 1,706,319 95.3 5.8 91.6 94.9 98.8
# Words 1,706,319 2226 1987 1068 1778 2796
# Knowledge words 1,706,319 1011 1112 349 656 1236
# Unique knowledge word 1,706,319 420 327 203 330 535
Soft skills 1,703,863 33.4 22.9 14.0 30.5 50.0
STEM 1,706,319 0.326 0.469 0 0 1
Business 1,706,319 0.103 0.304 0 0 0
Humanities 1,706,319 0.299 0.457 0 0 1
Social science 1,706,319 0.240 0.427 0 0 0
Basic 1,706,319 0.393 0.488 0 0 1
Advanced 1,706,319 0.275 0.446 0 0 1
Graduate 1,706,319 0.332 0.471 0 0 1

Panel (b): Instructors’ Research Productivity
count mean std 25% 50% 75%

Ever Published? 332,064 0.41 0.49 0 0 1.00
# Publications per year 135,364 1.51 1.94 1.00 1.00 1.38
# Publications, last 5 years 111,404 6.01 14.89 0 1.00 5.42
# Citations per year 135,364 29.22 105.92 0 1.85 17.92
# Citations, last 5 years 111,404 172.46 887.99 0 0 54.32
Ever Grant? 332,064 0.18 0.38 0 0 0
# Grants 58,136 10.14 19.96 2.00 4.00 10.00
Grant amount ($1,000) 54,462 4,023 19,501 236 912 3,201

Panel (c): Students’ Characteristics and Outcomes at the School Level
count mean std 25% 50% 75%

Median parental income ($1,000) 767 97,917 31,054 78,000 93,500 109,900
Share parents w/income in top 1% 767 0.030 0.041 0.006 0.013 0.033
Share minority students 760 0.221 0.166 0.116 0.166 0.267
Graduation rates (2012–13 cohort) 758 0.614 0.188 0.473 0.616 0.765
Income (2003–04, 2004–05 cohorts) 762 45,035 10,235 38,200 43,300 49,800
Intergenerational mobility 767 0.294 0.138 0.182 0.280 0.375
Admission rate 715 0.642 0.218 0.533 0.683 0.800
SAT score 684 1104.4 130.5 1011.5 1079.5 1182.0

Note: Summary statistics of the variables used in the analysis.

2.2 Academic Publications

We use information from Elsevier’s SCOPUS database and compile the list of all peer-reviewed

articles that appeared in the top academic journals of each field since the journal’s foundation. Top

journals are defined as those ranked among the top 10 by Impact Factor (IF) in any of SCOPUS’s
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191 fields at least once since 1975 (or the journal’s creation, if it occurred after 1975).9 Our final

list of publications includes 20 million articles, corresponding to approximately 100,000 articles per

year. For each article, we extract information on its title, abstract, keywords, authors, and authors’

affiliations.

2.3 Alternative Data Source to Capture Knowledge: Patents

An alternative way to measure the knowledge frontier is to use the text of patents, rather than

academic publications. To this purpose, we collect the text of more than six million patents issued

since 1976 from the US Patents and Trading Office (USPTO) website. We capture the content of each

patent with its title and abstract.

2.4 Instructors: Research Productivity, Funding, and Job Titles

Nearly all course syllabi report the name of the course instructor. Using this information, we col-

lect data on instructors’ research productivity (publications and citations) and the receipt of public

research funding. For a subset of instructors, we also collect information on job titles.

Research productivity Individual-level publications and citations data are from Microsoft Aca-

demic (MA). One of the world’s top academic search engines, MA listed publications, working

papers, other manuscripts, and patents for each researcher, together with citation counts for these

documents, until its discontinuation in December 2021. We link MA records to syllabi via fuzzy

matching based on instructor name and institution (details on this procedure are in Appendix B).

We are able to successfully find 41 percent of all instructors, and we assume that instructors without

a MA profile never published any article (Table 1, panel (b)).

Using data from MA, we measure each instructor’s research quantity and quality with the num-

ber of articles published and citations received in the previous five years.10 On average, instructors

published 6 articles in the previous five years, with a total of 172 citations (Table 1, panel (b)). The

distributions of citation and publication counts are highly skewed: The median instructor in our

sample only published one article in the previous five years and received no citations.

Funding We also collect information on US government grants received by each instructor, which

allows us to measure public investment in academic research. We focus on two of the main funding

agencies of the US government: the National Science Foundation (NSF) and the National Institute
9Even if a journal appeared only once in the top 10, we collect all articles published since its foundation.

10Using citations and publications in the previous five years helps address issues related to the life cycle of publica-
tions and citations, with older instructors having a higher number of citations and publications per year even if their
productivity declines with time.
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of Health (NIH).11 Our grant data include 480,633 NSF grants active between 1960 and 2021 (with an

average size of $582K in 2019 dollars) and 2,566,358 NIH grants active between 1978 and 2021 (with

an average size of $504K). We link grants to instructors via fuzzy matching between the name and

institution of the investigator and those of the instructor (more details can be found in Appendix B).

Eighteen percent of all syllabi instructors are linked to at least one grant. Among these, the average

instructor receives ten grants, with a combined size of $4,023K (Table 1, panel (b)).

Job titles In many US states, information on public college and university employees is disclosed

online, to comply with state regulations on transparency and accountability. These records usually

contain each employee’s name and job title. We are able to collect information on job titles for

32,090 instructors in our syllabi sample (9.7 percent of all instructors and 13 percent of public-sector

instructors), employed in 278 public institutions in 13 states. We are able to observe instructors’

titles for the most recent years (the modal year is 2017; we detail the coverage of these data in

Appendix B). Among all syllabi instructors for which we have job title information, 42 percent

are ladder faculty (including 11 percent who are assistant professors, 13 percent who are associate

professors, and 18 percent who are full professors; Appendix Figure AI).

2.5 Information on US Higher Education Institutions

The last component of our data set includes information on all US colleges and universities of the

syllabi in our data. Our primary source is the Integrated Postsecondary Education Data System

(IPEDS), maintained by the National Center for Education Statistics (NCES).12 For each school,

IPEDS reports a set of institutional characteristics (such as name and address, public or private sec-

tor, affiliation, and Carnegie classification); the types of degrees and programs offered; expenditure

and endowment; characteristics of the student population, such as the distribution of SAT and ACT

scores of all admitted students, enrollment figures for different demographic groups, completion

rates, and graduation rates; and faculty composition (ladder and non-ladder). We link each syl-

labus to the corresponding IPEDS record via a fuzzy matching algorithm based on school names.

We are able to successfully link all syllabi in our sample.

We complement data from IPEDS with information on schools and students from three addi-

tional sources. The first one is the school-level data set assembled and used by Chetty et al. (2020),

which includes a school’s selectivity tier (defined using Barron’s scale), the incomes of students and
11These data are published by each agency, at https://www.nsf.gov/awardsearch/download.jsp and https:

//exporter.nih.gov/ExPORTER_Catalog.aspx. We accessed these data on May 25, 2021.
12IPEDS includes responses to surveys from all postsecondary institutions since 1993. Completing these surveys is

mandatory for all institutions that participate, or apply to participate, in any federal financial assistance programs.
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parents, the number of patents obtained by all students, and a measure of intergenerational mo-

bility (the share of students with parental income in the bottom quintile who reach the top income

quintile as adults). These data are calculated using data on US tax records for a cross-section of

cohorts who graduated between 2002 and 2004. The second is the Survey of Earned Doctorates,

conducted by the NSF, which reports characteristics of all doctoral degree recipients in US institu-

tions each year. We use information on students’ graduating cohort and bachelor’s institution to

construct the share of undergraduate students in each school and graduation year who eventually

complete a doctoral degree for the years 1998-2018.13 The third is the College Scorecard Database of

the US Department of Education, an online tool designed to help users compare costs and returns

of attending various colleges and universities in the US. This database reports the earnings of grad-

uates ten years after the start of the program. We use these variables, available for the academic

years 1997-98 to 2007-08, to measure student outcomes for each school.

Panel (c) of Table 1 summarizes the sample of colleges and universities for which we have syllabi

data. On average, the median parental income of all students at each school is $97,917. Across all

schools, three percent of all students have parents with incomes in the top percentile. The share

of minority students equals 0.22. Graduation rates average 61.4 percent in 2018, whereas students’

incomes ten years after school entry, for the 2003–04 and 2004–05 cohorts, are equal to $45,035.

Students’ average intergenerational mobility is equal to 0.29.

2.6 Data Coverage and Sample Selection

Our syllabi sample only covers a small fraction of all courses taught in US schools between 1998 and

2018. The number of syllabi increases over time, from 17,479 in 2000 to 68,792 in 2010 and 190,874

in 2018 (Appendix Figure AII).

To more accurately interpret our empirical results, it is crucial to clarify patterns of selection

into the sample. To do so, we compile the full list of courses offered between 2010 and 2019 in a

subsample of 161 US institutions (representative of all institutions included in IPEDS) using course

catalogs in the archives of each school.14 This allows us to compare our sample to the population of

all courses for these schools and years.
13The Survey of Earned Doctorates has been conducted since 1957. To assign a doctoral degree recipient to their

undergraduate institution, we use information on the institution where they obtained their bachelor’s degree; to assign
the recipient to a bachelor’s degree cohort, we subtract six from their year of doctoral degree completion.

14We begin by randomly selecting 200 schools among all four-year IPEDS institutions. Among these, we were able to
compile course catalogs for 161 institutions. These look very similar in terms of observables to all schools in our sample
(Appendix Table AI). We focus our attention on years 2010 onward to maximize our coverage. For an example of a course
catalog, see https://registrar.yale.edu/course-catalogs.
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This exercise does not reveal stark patterns of selection based on observables. The share of

catalog courses covered by the syllabi sample remains stable over time, at 5 percent (Appendix

Figure AIII). This suggests that, among these randomly selected schools, the increase in the number

of syllabi over time is driven by an increase in the number of courses that are offered, rather than an

increase in sample coverage. Our syllabi sample is also similar to the population in terms of field

and course level composition. Between 2010 and 2018, STEM courses represent 33 percent of syllabi

in our sample and 24 percent of courses in the catalog; Humanities represent 30 and 32 percent, and

Social Sciences represent 24 and 20 percent, respectively (Appendix Figure AIV). Similarly, basic

undergraduate courses represent 39 percent of syllabi in our sample and 31 percent of courses in

the catalog; advanced undergraduate courses represent 28 and 30 percent, and graduate courses

represent 33 and 38 percent (Appendix Figure AV). These shares are fairly stable over time.

In addition, a school’s portion of the catalog that is included in our sample and the change in this

portion over time are unrelated to school observables. We show this in panel (a) of Table 2 (column

1), where we regress a school’s share of courses included in our sample in 2018 on the following

variables, one at the time and also measured in 2018: financial attributes (such as expenditure on

instruction, endowment per capita, sticker price, and average salary of all faculty), enrollment,

the share of students in different demographic categories (Black, Hispanic, alien), and the share

of students graduating in Arts and Humanities, STEM, and Social Sciences. We also test for the

joint significance of all these variables. We find that these variables are individually and jointly

uncorrelated with the share of courses in the syllabi sample, with an F-statistic close to one. In

column 2 we repeat the same exercise, using the 2015-2018 change in the share of courses included

in the syllabi as the dependent variable. Our conclusions are unchanged.

The only dimension in which our syllabi sample appears selected is school selectivity. Relative

to non-selective institutions (for whom the share of courses in the sample is less than 0.1 percent),

Ivy-Plus and Elite schools have a 2.4 percentage point higher share of courses included in the syllabi

sample, and selective public schools have a 4.0 percentage point higher share. Taken together, these

tests indicate that our syllabi sample does not appear to be selected on the basis of observable

characteristics of schools and fields, although it does over-represent Ivy-Plus, Elite, and selective

public schools. By construction, though, we cannot test for selection based on unobservables. Our

results should therefore be interpreted with this caveat in mind.
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Table 2: Selection into the Sample: Share of Syllabi Included in the Sample and
Institution-Level Characteristics

Panel (a): Share and � Share, Correlation w/ School Characteristics

Share in OSP, 2018 �Share in OSP, 2008-18
(1) (2) (3) (4)

Corr. SE Corr. SE
ln Expenditure on instruction 0.002 (0.005) 0.015 (0.010)
ln Endowment per capita -0.001 (0.002) -0.001 (0.002)
ln Sticker price 0.003 (0.007) 0.007 (0.010)
ln Avg faculty salary 0.016 (0.020) 0.049 (0.024)
ln Enrollment 0.018 (0.009) 0.019 (0.011)
Share Black students -0.030 (0.038) 0.035 (0.060)
Share Hispanic students 0.171 (0.145) 0.161 (0.115)
Share Asian students 0.186 (0.214) 0.324 (0.239)
Share grad in Arts & Humanities 0.159 (0.168) 0.189 (0.179)
Share grad in STEM -0.001 (0.028) 0.064 (0.056)
Share grad in Social Sciences 0.014 (0.024) 0.104 (0.056)
Share grad in Business 0.037 (0.065) 0.116 (0.065)
F-stat 1.015 1.376

Panel (b): Share and � Share, By School Tier

Share in OSP, 2018 �Share in OSP, 2008-18
(1) (2) (3) (4)

Mean SE Mean SE
Ivy Plus/Elite 0.024 (0.008) 0.022 (0.009)
Highly Selective 0.003 (0.003) 0.006 (0.004)
Selective Private 0.029 (0.018) 0.001 (0.029)
Selective Public 0.040 (0.023) 0.009 (0.029)
F-stat 3.677 1.806

Note: The top panel shows OLS coefficients (“Corr.”) and robust standard errors (“SE”) of univari-
ate regressions of each listed dependent variable on the corresponding independent variable. The
bottom panel shows OLS coefficients (“Mean”) and syllabus-clustered standard errors (“SE”) of a re-
gression of each dependent variable on indicators for school tiers. The dependent variables are the
school-level share of syllabi contained in the OSP sample in 2018 (columns 1-2) and the change in
this share between 2008 and 2018 columns (3-4). The F-statistics refer to multivariate regressions that
include all the listed independent variables and test for the joint significance of these variables.

3 Measuring the Education-Innovation Gap

This section describes the construction of the education-innovation gap. We first explain how we

measure textual similarities between course syllabi and academic publications. Then, we define and

construct the gap using measures of similarity, implementing a series of adjustments to better de-

scribe each syllabus’s content. Lastly, we validate our measure and describe its variation. Appendix
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C provides additional details on the construction of the measure.

3.1 Measuring The Similarity Between Syllabi and Academic Publications

3.1.1 Constructing Term Frequency Vectors

We start by representing each document d (a syllabus or an article) as a term-frequency vector TFd.

Each element TFdw of TFd represents the frequency of term w in d:

TFdw ⌘ cdwP
k2W cdk

,

where, in the numerator, cdw counts the number of times term w appears in d and the denominator

is the total number of terms in d. To maximize our ability to capture the knowledge content of each

document, we construct TF vectors focusing exclusively on terms related to knowledge concepts

and skills, belonging to a dictionary W with |W | terms (as a result, each term vector contains |W |

elements). Our primary dictionary is the list of all unique terms ever used as keywords in academic

publications from the beginning of our publication sample until 2019.15

3.1.2 Adjusting for Term Relevance

When constructing similarity metrics, it is crucial to ensure that each term receives a weight propor-

tional to its importance in capturing a document’s content. TF vectors give more weight to terms

with a higher document frequency. However, terms that are very common across all documents

receive more weight regardless of their ability to capture the content of a given document. For ex-

ample, holding term frequency fixed, terms such as “Programming” or “Animals”—very common

among Computer Science and Biology syllabi, respectively—are usually less informative of content

than terms such as “Natural Language Processing” or “CRISPR.”16

To this purpose, we use a leading approach in the text analysis literature called “term-frequency-

inverse-document-frequency” (TFIDF, Kelly et al., 2021). This approach assigns each term a weight

inversely proportional to the frequency of the term across all documents, underweighting terms

that are not diagnostic of a document’s content. We implement this approach by constructing an
15We have also used the list of all terms that have an English Wikipedia webpage as of 2019. Our results are robust to

this choice.
16Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a family of DNA sequences found in the

genomes of prokaryotic organisms such as bacteria and archaea. The term also refers to a recent technology that can be
used to edit genes.
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inverse-document frequency vector IDF (of length |W |) with elements defined as

IDFw ⌘ ln

✓
|D|P

n2D (cnw > 0)

◆
,

where D is the set of all documents (syllabi and articles). The denominator in parentheses is the

total number of documents that contain word w. IDFw is thus the inverse of the share of all docu-

ments containing word w. Using IDF , we can then transform TFd into a term-frequency-inverse-

document-frequency vector TFIDFd, with elements equal to

TFIDFdw = TFdw ⇥ IDFw. (1)

Accounting for changes in term relevance over time The TFIDF approach calculates the relative

importance of each term for a given document pooling together documents published in different

years. This is not ideal for our analysis, because we are interested in the novelty of the content of

a syllabus d relative to research published in the years prior to d. Consider, for example, course

CS229 at Stanford University, taught by Andrew Ng in the early 2000s and one of the first that

entirely focused on Machine Learning. The term ”machine learning” term has become very popular

in later years, so its frequency across all documents is very high and its IDFw very low. Pooling

together documents from different years would thus result in a very low TFIDFdw for the term

“machine learning” in the course’s syllabus, failing to recognize the course’s novelty as of early

2000s. Generally, not accounting for changes in term frequency over time would lead us to severely

mischaracterize a course’s path-breaking content.

To overcome this issue, we modify the traditional TFIDF and construct a retrospective or

“point-in-time” version of IDF , meant to capture the inverse frequency of a term among all doc-

uments published prior to d. We call this vector “backward-IDF ,” or BIDFt. It is indexed by t

because it varies over time. We define the set of documents published prior to t as Dt; the elements

of BIDFt can be defined as

BIDFtw ⌘ log

✓
|Dt|P

n2Dt
(cnw > 0)

◆
.

The use of this weighting approach allows us to give a temporally appropriate weight to each term

in a document. Using BIDFt, we can then calculate a “backward” version of TFIDFd—called
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TFBIDFd—whose elements are

TFBIDFdw = TFdw ⇥BIDFt(d)w, (2)

where t(d) is the publication year of document d.

3.1.3 Building Textual Similarities Between Syllabi and Articles

Armed with weighted term vectors, we can now construct measures of textual similarities between

syllabi and articles. For simplicity, we denote TFBIDFd as Vd for each d. The measure of similarity

we use is the cosine similarity, defined for two documents d and d0 as

⇢d,d0 =
Vd

kVdk
· Vd0

kVd0k
(3)

where kVdk is the Euclidean norm of Vd. Since each element of Vd is non-negative, ⇢ lies in the

interval [0, 1]. If d and d0 use the exact same set of terms with the same frequency, ⇢d,d0 = 1; if they

have no terms in common, ⇢d,d0 = 0.

3.2 Calculating the Education-Innovation Gap

We capture the similarity between each syllabus d and different vintages of knowledge using the

average similarity of d with all the articles published in a three-year time period ending ⌧ years

before t(d):

S⌧
d =

P
n2⌦⌧ (d) ⇢dn

|⌦⌧ (d)|

where ⇢dk is the cosine similarity between syllabus d and an article k, ⌦⌧ (d) is the set of all articles

published in the three-year time interval [t(d) � ⌧ � 2, t(d) � ⌧ ], and |⌦⌧ (d)| is the total number of

these articles.17

We construct the education-innovation gap as the ratio between the average similarity of a syl-

labus with older technologies (published in t � ⌧ ) and the similarity with more recent ones (pub-

lished in t� ⌧ 0, where ⌧ 0 < ⌧ ):

Gapd ⌘
✓
S⌧
d

S⌧ 0
d

◆
(4)

Given this definition, the syllabus of a course taught in t has a lower education-innovation gap if its

text is more similar to more recent research (published in t � ⌧ 0) than to older research (published
17Our main analysis uses three-year intervals; our results are robust to the use of one-year or two-year intervals.
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in t � ⌧ ). For our analysis, we set ⌧ = 13 ([t � 15, t � 13] vintage) and ⌧ 0 = 1 ([t � 3, t � 1] vintage).

We multiply the gap by 100 for readability.

Our measure features two attractive properties. First, being constructed as a ratio, the gap is not

affected by syllabus-specific attributes such as style, format, or length, which could introduce noise

when measuring a syllabus’s similarity to knowledge. For example, two courses covering the same

materials could have different similarities to research publications if one syllabus is more detailed

or uses more academic terms. We illustrate this point with a simulation exercise in Appendix C.18

Second, our measure does not heavily penalize syllabi for covering “classic” topics in the liter-

ature, as long as these are widespread across courses. This is guaranteed by the use of a TFBIDF

approach, which reduces the impact on the gap of terms—such as those pertaining to classics—

frequently used across all documents. For example, the term “Ordinary Least Squares” (“OLS”)

refers to a relatively old but very common concept taught in most econometrics and statistics

courses. As such, it will receive a low weight, and syllabi will not be penalized much by cover-

ing it.

3.3 Validating The Measure and Interpreting Its Magnitude

We perform a series of tests to validate our measure’s ability to capture the distance between the

content of a course and the research frontier. First, we show that the relationship between the

gap and the average age of its reference list (defined as the average difference between the year of

the syllabus and the publication year of each reference) is positive and significant (Figure 1, panel

(a)). While the average reference age is easy to calculate, our text-based measure is available for all

syllabi (including those for which the reference list is unavailable) and is more accurate in capturing

the content of courses that only rely on very few bibliographic sources (for example, a textbook).

Second, we show that the gap varies reasonably across course levels. More advanced under-

graduate courses and graduate-level courses have lower gaps than basic undergraduate courses.

Controlling for field-by-year effects, basic undergraduate courses have a gap of 95.7, advanced un-

dergraduate courses have a gap of 95.3, and graduate courses have a gap of 94.7 (Figure 1, panel

(b)). This confirms the intuition that more advanced courses cover content that is closer to the

knowledge frontier.
18We manually create a sample of 1.7 million simulated syllabi, for which we know ex ante the ratio between “old”

knowledge terms (more popular among old publications) and “new” knowledge terms (more popular among recent
publications). In the presence of syllabi idiosyncracies, the education-innovation gap performs significantly better at
recovering a syllabus’s knowledge content (the ex ante ratio between old and new knowledge terms) than a simple
measure of similarity with new terms (Appendix C).
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Figure 1: Validating the Education-Innovation Gap

(a) Gap and Average Reference Age (b) Gap by Course Level

(c) Change in Gap as Old Words are Replaced with New Words

Note: Panel (a) shows a binned scatterplot of the education-innovation gap and the average age of a syllabus’s references
(required or recommended readings), in which age is calculated as the difference between the year of the syllabus and
the year of publication of each reference. Panel (b) shows the mean and 95-percent confidence intervals of the gap by
course level, controlling for field-by-year effects. Panel (c) shows the change in the gap for a subsample of 100,000 syllabi,
in which we progressively replace “old” words with “new” words.

Third, we use a simulation exercise to confirm that our measure responds to even small changes

in a syllabus’s similarity to different knowledge vintages. Specifically, we randomly draw a sub-

sample of 100,000 syllabi. Then, we progressively replace terms that are more frequent in older

knowledge vintages (“old words”) with terms more frequent in newer vintages (“new words”),

and we re-calculate the gap as we replace more words. Old words are those in the top 5 percent in

terms of frequency in the old publication corpus between t� 15 and t� 13 or in the old publication

corpus between t � 15 and t � 13 but not in the new publication corpus between t � 3 and t � 1
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(where t is the year of the syllabus); new words as those in the top 5 percent in terms of frequency

in the new publication corpus between t�3 and t�1 or in the new publication corpus between t�3

and t � 1 but not in the old publication corpus between t � 15 and t � 13. The gap monotonically

decreases as we replace more old words with new ones (Figure 1, panel (c)). This simulation is also

useful for gauging the economic magnitude of changes in the gap. In particular, a unit change in

the gap is equivalent to the replacement of 10 percent of a syllabus’s old words (or 34 old words out

of 327 words for the median syllabus).

3.4 The Education-Innovation Gap: Variation and Variance Decomposition

The average course has a gap of 95.3, with a standard deviation of 5.8, a 25th percentile of 91.6,

and a 75th percentile of 98.8 (Table 1, panel (a) and Appendix Figure AVI). To give an economic

meaning to this variation, we use the relationship illustrated in panel (c) of Figure 1. In order to

move a syllabus from the 75th to the 25th percentile of the distribution (a 7.2 change in the gap), we

would have to replace approximately 200 of its words, or 61 percent of the content of the median

syllabus.

To better understand what drives variations in the gap, we calculate the contribution of each of

five attributes to the total variance: year, field, school, course, and instructor. We do this by means of

a Shapley-Owen decomposition (Israeli, 2007; Huettner et al., 2012), which proceeds in three steps.

We first estimate OLS regressions of the gap on fixed effects for all possible combinations of the

five attributes.19 Second, for each of these regressions, we compute by how much the adjusted R2

declines if we exclude the fixed effects for a specific attribute j. Lastly, we calculate the average

decline for each j across all these regressions, which we denote as the partial-R2 of attribute j, or R2
j .

This quantity, which is analogous to the Shapley value used in game theory, represents the portion

of total variance in the education-innovation gap that can be attributed to j. Analytically, it is equal

to

R2
j =

X

T✓V \{j}

|T |!(K � |T |� 1)!

K!
[R2(T [ {j})�R2(T )]

where R2(S) is the adjusted R2 of a regression of the gap on fixed effects for a set of factors S, V is

the set of all attributes considered, |T | is the number of attributes in set T , and K ⌘ |V | = 5 is the
19Since school effects are subsumed by course effects (each course is taught only at one school), school effects are

not separately identified in a regression that also contains course fixed effects. Our method, however, still allows us to
quantify the contribution of school effects to the total variation in the education-innovation gap out of the regressions of
those combination of the five attributes that do not include course effects.
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total number of attributes considered. The use of adjusted R2 accounts for the fact that the various

sets of fixed effects have different numbers of categories (using the standard R2, larger categories

would mechanically explain a larger portion of the variance).20

Table 3: Decomposing the Variation in the Gap: Schools, Years, Fields, Courses, and Instructors

Variable Partial R2

Year 0.169 0.180
Field 0.039 0.056
School 0.021 0.028
Course level . 0.008
Course 0.330 .
Instructor 0.248 0.346
Total 0.807 0.772

Note: The table shows a decomposition of the adjusted R2 of a regression of the education-innovation gap on all sets of
listed fixed effects into the contribution of each set of fixed effects. This is done using a Shapley-Owen decomposition,
described in details in Section 3.4. Column 1 includes course fixed effects; column 2 only includes course level fixed
effects. Total reports the R2 of a regression with all sets of fixed effects included. We use adjusted R2 in lieu of R2 to
account for the large number of fixed effects.

This decomposition exercise indicates that differences across fields explain 4 percent of the total

variation in the gap, while differences across schools explain 2 percent (Table 3, column 1). Courses

explain a large 33 percent, indicating a great deal of persistence in the content of a course over time.

Importantly, differences across instructors explain a large 25 percent. Results are similar when we

replace courses with course levels; the latter explain less than 1 percent of the total variation (column

2).

4 The Role of Instructors

Instructors are considered one of the most important inputs for the production of student learning

and one of the most costly for schools (De Vlieger, Jacob, and Stange, 2020). In line with this, our

data show that most of the variation in the gap occurs within schools and across courses taught by

different people. Motivated by these findings, we begin our analysis by investigating in depth the
20We perform a placebo test to demonstrate that the large variation explained by courses and instructors is not just

an artifact of the large number of categories in these attributes. In this test, we randomly scramble the course codes in
the data. In this way, the number of course indicators remain the same, but scrambled course codes do not bear any
economic meaning. We replicate the Shapley-Owen decomposition shown in column (1) of Table 3. If the large portion
of explained variance were solely driven by the large number of indicators, even scrambled course codes should explain
some variance. Instead, we find that they explain less than 1% of the total variation in the education-innovation gap.
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role of instructors and their characteristics in shaping the content of higher education.

4.1 Persistence in a Course’s Content over Time and Changes in Instructors

We start by studying how the education-innovation gap of a course varies when the course instruc-

tor changes. This allows us to measure the direct role of instructors in shaping course content. We

estimate an event study of the gap in a [�4, 4] year window around the time of an instructor change:

Gapi =
4X

k=�4

�k (t(i)� Tc(i) = k) + �c(i) + �f(i)t(i) + "i, (5)

where i, f , and t denote a syllabus, field, and year respectively. The subscript c denotes a specific

course within each school (for example, Econ 101 at Yale University); the variable Tc represents the

first year in our sample in which the instructor of course c changes.21 To more precisely capture the

impact of an instructor change, we restrict our attention to courses taught by a maximum of two

instructors in each year and set the indicator function to zero for all courses without an instructor

change, which serve as the comparison group. We cluster standard errors at the course level. After

normalizing ��1 to be 0, the parameters �k capture the differences between the gap k years after an

instructor change relative to the year preceding the change.

OLS estimates of �k, shown in Figure 2, indicate that a change in a course’s instructor is associ-

ated with an immediate decline in the education-innovation gap. Estimates are indistinguishable

from zero and on a flat trend in the years leading to an instructor change; in the year of the change,

the gap declines by 0.1. In order to quantify the economic magnitude of these differences, we can

use the simulation results in Figure 1 (panel (c)). These indicate that this decline is equivalent to

replacing 2 percent of the content of the median syllabus. The decline is also robust to the presence

of plausible deviations from the standard parallel trends assumption of event studies (Rambachan

and Roth, 2019).22

In Table 4 we re-estimate equation (5) for different subsamples of syllabi, pooling together years

preceding and following an instructor change. After a change, the gap declines for all fields and

course levels by about 0.1 on average (2 percent of a course’s content, column 1, significant at 1

percent). The decline is largest for Humanities and STEM courses (-0.14 and -0.11, columns 3 and 4,

respectively) and for graduate courses (-0.12, column 8).
21Our results are robust to using the median or the last year with an instructor change.
22In Appendix Figure AVII we test the robustness of the statistical significance of �0 in equation (5), by implementing

the test proposed by (Rambachan and Roth, 2019). Estimates of �0 remain distinguishable from zero even under plausible
violations of the parallel trends assumption, which indicates that the measured decline in the gap is not due to differential
trends.
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Figure 2: Event Study: The Education-Innovation Gap Around An Instructor Change

Notes: Estimates and confidence intervals of the parameters �k in equation (5), representing an event study of the
education-innovation gap around an instructor change and controlling for course and field-by-year fixed effects. Ob-
servations are at the course-by-year level; we focus on courses with at most two episodes of instructor changes. Standard
errors clustered at the course level.

These results indicate that course updating is not a gradual process taking place over time.

Instructors who teach the same course for many years tend to leave content unchanged. Instead,

instructors who take over a course from someone else significantly update its content, bringing it

closer to the knowledge frontier. This is also consistent with the interpretation that instructors play

a crucial role in shaping the content of the courses they teach, particularly for advanced courses.

Table 4: The Education-Innovation Gap Around An Instructor Change

Field Course level
All Business Humanities STEM Soc. Sci. Basic Advanced Grad
(1) (2) (3) (4) (5) (6) (7) (8)

After change -0.1021*** -0.1009 -0.1417*** -0.1060*** -0.0289 -0.0897** -0.0875* -0.1152***
(0.0244) (0.0683) (0.0464) (0.0399) (0.0416) (0.0456) (0.0450) (0.0374)

N (Course*yr) 379482 36325 105316 152974 95223 125493 112206 137721
# Courses 126343 11775 35947 45982 31805 43530 35395 46213

Course FE Yes Yes Yes Yes Yes Yes Yes Yes
Field*yr FE Yes Yes Yes Yes Yes Yes Yes Yes

Note: OLS estimates; one observation is a course in a given year. The dependent variable is the education-innovation
gap. The variable After change is an indicator for years following an instructor change for courses with only one in-
structor and at most two instructor changes over the observed time period. All specifications control for course and
field-by-year fixed effects. Standard errors in parentheses are clustered at the course level. ⇤  0.1, ⇤⇤  0.05, ⇤⇤⇤  0.01.
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4.2 The Education-Innovation Gap and Instructors’ Characteristics

The decline in the gap that follows an instructor change indicates that instructors are crucial drivers

of differences in course content. We next explore differences in the education-innovation gap among

instructors with different characteristics. We are particularly interested in the relationship between

instructors’ research activity and the education-innovation gap of the courses they teach. This rela-

tionship is not clear ex ante: On the one hand, research-active faculty members are better informed

on the frontier of knowledge and thus are better able to design more updated courses. On the other

hand, research may demand more time and attention, limiting an instructor’s ability to invest in the

design of their courses.

Research productivity We test this hypothesis directly by exploring the relationship between a

course’s gap and the research productivity of the instructor, measured using individual counts of

citations and publications in the previous five years. We estimate the following equation:

Gapi =
4X

n=1

�nqnk(it(i)) + �c(i) + �f(i)t(i) + "i (6)

where qnk equals one if instructor k’s measure of research productivity (publications or citations) is in

the nth quartile of the distribution (the omitted category is courses with instructors whose measure

k equals zero). Course fixed effects �c and field-by-year fixed effects �ft control for unobserved

determinants of the gap that are specific to a course in a given field and year. Estimates of �n

capture the difference in the gap between courses taught by faculty with productivity in the nth

quartile and those taught by faculty with no citations or publications, and they are identified using

changes of instructors for the same course over time.

Estimates of �n, shown in Table 5, indicate that the gap progressively declines as the research

productivity of the instructor increases. In particular, a switch from an instructor without publica-

tions to one with publication counts in the top quartile of the field distribution is associated with

a 0.11 decline in gap (equivalent to updating 3 percent of a course’s syllabus; Table 5, panel (a),

column 1, significant at 1 percent). Similarly, a switch from an instructor without citations to one

with citations in the top quartile is associated with a 0.07 lower gap (panel (b), column 1, significant

at 5 percent). These relationships are stronger for Social Sciences courses (column 5) and for courses

at the graduate level (column 8).23

23Appendix Figure AVIII shows a binned scatterplot of the gap and either citations (panel (a)) or publications (panel
(b)) in the prior five years, controlling for field effects. In this figure, the horizontal axis corresponds to quantiles of each
productivity measure; the vertical axis shows the average gap in each quantile.
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Fit with the course A natural explanation for this finding is that research-active instructors are

better informed about the research frontier. If this is the case, we should expect the relationship

between productivity and the gap be stronger for courses whose topics are more similar to the

instructor’s own research. To test for this possibility, we construct a measure of “fit” between the

course and the instructor’s research. This measure is defined as the cosine similarity between the

instructor’s research in the previous five years and the most updated course on the same topic across

all schools (for example, Introductory Econometrics).24 Estimates of equation (6), obtained using

this measure as the explanatory variable, indicate that a one-standard deviation higher instructor-

course fit is associated with a 0.09 lower gap (Table 6, significant at 5 percent). This relationship is

particularly strong for Social Sciences and STEM courses (columns 4 and 5) and for courses at the

advanced undergraduate level (column 7).

Research funding In Table 7, we use data on the number of NSF and NIH grants received by each

instructor and test whether the same relationship holds between the gap and research inputs, such

as government grants. As before, we control for course and field-by-year effects. A switch from

an instructor who never received a grant to one with at least one grant is associated with a 0.05

reduction in the gap (column 1, significant at 5 percent).25 This suggests that public investments

in academic research can yield additional private and social returns in the form of more updated

instruction.26

Ladder vs non-ladder faculty These results presented so far carry implications for how the education-

innovation gap may co-vary with faculty ranks and tracks (tenure-track vs. non-tenure-track), due

to differences in their research activities. Ladder (i.e., tenure-track or tenured) faculty are gener-

ally more focused on research compared with non-ladder faculty, whose primary job is to teach.

In recent years, universities have started to increasingly rely on non-ladder faculty to meet a rapid

rise in enrollment (Goolsbee and Syverson, 2019).27 Ex ante, one could argue that—by virtue of

being specialized in teaching—non-ladder faculty might be better at keeping educational content

updated.
24An attractive property of this measure is that it does not uniquely reflect the instructor’s own syllabus; rather, it

aims to capture the content of all courses on the same narrowly defined topic. To construct this measure, we obtained a
unique identifier for courses in the same field or topic (e.g., Machine Learning) across schools. Appendix B describes the
procedure used to do this.

25A binned scatterplot reveals a negative relationship between the gap and the number of NSF and NIH grants (Ap-
pendix Figure AVIII, panel (d)).

26For a review of the role of grant funding as a tool to promote innovation, see Azoulay and Li (2020).
27Colleges have monopsony power on tenure-track (but not ladder) faculty, as these earn substantially lower wages

and have a much higher elasticity of labor supply. This implies that, when enrollment increases, schools can avoid
increasing wages for tenure-track faculty by hiring more non-ladder faculty (Goolsbee and Syverson, 2019).
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Comparing the education-innovation gap across job titles and controlling by field-by-course

level-by-year effects, we find that non-ladder faculty (such as adjunct professors, lecturers, profes-

sors in the practice, and visiting professors) have the largest gap, at 95.8 (Figure 3). Tenure-track

assistant professors, on the other hand, have the lowest gap at 95. The difference between assistant

professors and non-ladder faculty is equivalent to 7 percent of a syllabus’s content. One possible

explanation for this finding is that assistant professors are more recently trained and therefore bet-

ter updated about frontier knowledge. Furthermore, they often have the strongest incentives to be

active in research.

Notably, the gap is almost as high for full (tenured) professors as it is for adjuncts, at 95.6.

Associate professors have a slightly smaller gap than full at 95.5, but still significantly higher than

assistant professors. Junior faculty on the tenure track thus appear to teach the courses with the

most updated content.

Taken together, these findings indicate that instructors play a crucial role in shaping course

content. They also reveal some complementarities between research and teaching: Research-active

instructors are more likely to cover frontier knowledge in their courses, especially when teaching

advanced courses and courses closest in topic to their own research agendas. Our results suggest

that a proper deployment of faculty across courses can have important impacts on the content of

education, and that investments in faculty research (both public, in the form of government grants,

and institution-specific) can generate additional returns in the form of more updated instruction.

5 The Education-Innovation Gap Across Schools

Next, we explore differences in the education-innovation gap across schools. Examining these dif-

ferences is helpful to understand how institutional characteristics relate to educational content. This

analysis also allows us to study how access to low-gap content varies across students from different

socio-economic backgrounds, which tend to enroll in schools with different characteristics (Chetty

et al., 2020).

5.1 School Characteristics

We begin by testing how the education-innovation-gap relates to three sets of school attributes: (i)

institutional, such as sector (public or private), research intensity (distinguishing between schools

classified as R1—“Very High Research Intensity”—according to the Carnegie classification, and all

other schools), and emphasis on liberal arts and sciences relative to other subjects (distinguishing

between Liberal Arts Colleges (LAC) and all other schools); (ii) financial, such as endowment and

28



Figure 3: Gap by Job Titles

Notes: Mean education-innovation gap by job title, along with 95-percent confidence intervals. Means are obtained as
OLS coefficients from a regression of the gap on indicators for the job title of the instructor and field-by-course level-by-
year fixed effects. Estimates are obtained by pooling data for multiple years. Standard errors are clustered at the school
level.

spending on instruction, faculty salaries, and research; and (iii) faculty composition and productiv-

ity, such as the share of non-ladder faculty, the share of tenure-track (non-tenured) faculty, and the

number of academic publications per faculty member.

We estimate pairwise correlations between the gap and these attributes controlling for field,

course level, and year of the syllabus. These correlations are captured by � in the following equa-

tion:

Gapi = �Xs(i) +  f(i)l(i)t(i) + "i (7)

where Gapi measures the education-innovation gap of syllabus i, taught in school s(i) and year t(i);

the variable Xs is the institutional characteristic of interest in school s; and field-by-level-by-year

fixed effects  flt control for systematic differences in the gap, common to all syllabi in the same field

(f ) and course level (l), that vary over time (t). We cluster standard errors at the institution level.

Institutional and financial characteristics Estimates of � for each school characteristic are shown

in Figure 4. Public schools have a slightly larger gap compared with private schools, but this dif-

ference is indistinguishable from zero. No differences emerge between LACs and other schools. R1
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schools have a 0.2 smaller gap compared to schools with a lower research intensity. These estimates

imply that, in order to close the difference in the gap between R1 and other schools, we would have

to replace approximately 2 percent of the knowledge content of the median syllabus (7 terms).

The education-innovation gap is also significantly related to schools’ financial characteristics,

such as endowment and spending on instruction, faculty salary, and research. For example, a 10

percent increase in instructional spending is associated with a 3.5 lower gap, or a 35 percent change

in the syllabus; a 10 percent increase in research spending is associated with a unit lower gap, or a

10 percent change in the syllabus.

Selectivity Next, we test whether the gap differs across schools with different selectivity. Follow-

ing Chetty et al. (2020), we group schools in four “tiers” according to their selectivity in admissions,

measured with Barron’s 2009 ranking. “Ivy Plus” include Ivy League universities and the Univer-

sity of Chicago, Stanford, MIT, and Duke. “Elite” schools are all the other schools classified as tier

1 in Barron’s ranking. “Highly selective” schools include those in tiers 2 and 3, while “Selective”

schools are those in tiers 4 and 5. Lastly, “Non-selective” schools include those in Barron’s tier 9

and all four-year institutions not included in Barron’s classification.

To compare the gap across different school tiers, we use the following equation:

Gapi = S0
i� + �f(i)l(i)t(i) + "i (8)

where the vector S0
i contains indicators for selectivity tiers (we omit non-selective schools), and

everything else is as before.

Point estimates of the coefficients vector � in equation (8), shown as diamonds in Figure 4,

indicate that more selective schools offer content that is closer to the research frontier. Ivy Plus

and Elite schools have the smallest gap, 0.84 smaller than non-selective schools (corresponding to

an 8 percent difference in the median syllabus). Highly selective schools have a 0.67 smaller gap

and selective schools have a 0.51 smaller gap (5 percent). One interpretation for these differences is

that more selective schools offer higher-quality education. However, if higher-ability students are

better able to absorb frontier knowledge, another possibility is that schools tailor instruction to the

abilities of their students. We attempt to test this hypothesis in the next section and in Section 6,

where we relate the education-innovation gap to student outcomes.
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5.2 Students’ Characteristics

Schools with different characteristics serve different populations of students. For example, Ivy

Plus and Elite schools are disproportionately more likely to enroll students from wealthier families

(Chetty et al., 2020). Cross-school differences might therefore translate into significant disparities

in access to up-to-date knowledge among students with different backgrounds. Here, we focus on

two dimensions of socio-economic background: parental income and race and ethnicity.

Parental income We re-estimate equation (7) using two measures of parental income as the ex-

planatory variable: median parental income and the share of parents with incomes in the top per-

centile of the national distribution, constructed using tax returns for the years 1996 to 2004 (Chetty

Figure 4: The Education-Innovation Gap and School Characteristics

Notes: OLS point estimates and 95-percent confidence intervals of � in equation (7), i.e., the slope of the relationship
between each reported variable and the education-innovation gap controlling for field-by-course level-by-year fixed ef-
fects. Each estimate is obtained from a separate regression, with the exception of selectivity tiers (Ivy Plus/Elite, Highly
Selective, Selective) which are jointly estimated. Endowment, expenditure, and share minority refer to the year 2018 and
are taken from IPEDS. Estimates are obtained by pooling syllabi data for the years 1998 to 2018. Standard errors are
clustered at the school level.
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et al., 2020). These estimates, shown as the full triangles in Figure 4, indicate that schools serving

more economically disadvantaged students offer courses with a higher gap. Specifically, a one per-

cent higher median parental income is associated with a 0.56 lower gap, which corresponds to a 5

percent difference in the median syllabus. Similarly, a 10 percentage point higher share of students

with parental income in the top percentile is associated with a 0.42 lower gap (4 percent).

In principle, part of these differences could be due to a “vertical differentiation” of educational

content across schools. If students with greater ability are better able to absorb more up-to-date

content, cross-school differences in the gap might reflect schools’ efforts to provide students with

appropriate educational content. Our data, however, do not support this hypothesis. Controlling

for the average SAT score of the students admitted at each school (a proxy for their ability) yields

only slightly smaller estimates compared with the baseline (Figure 4, hollow triangles). This rules

out vertical differentiation as an explanation for cross-school differences in the gap.

Students’ race and ethnicity Schools that enroll a higher share of minority students (Black or His-

panic) also offer courses with a higher gap. Using the share of minority students as the explanatory

variable in equation (7) reveals that a one percentage point higher share is associated with a 0.58

higher gap, equivalent to a 6 percent change in the average syllabus. This relationship holds (but

becomes less precise) if we control for average student ability.

In line with existing evidence on disparities in access to selective schools among more and less

advantaged students, our results document a new dimension of inequality: access to educational

content that is close to the research frontier. Importantly, this inequality cannot be explained by

differences in student ability.

6 The Education-Innovation Gap and Students’ Outcomes

Our findings so far reveal significant differences in access to up-to-date knowledge, both within

and across schools. Do these differences matter for students’ outcomes and for the production of

innovation? As an attempt to answer this question, we now explore the relationship between the

gap and a) measures of students’ innovation activities, such as a school’s share of undergraduate

students who complete a doctoral degree and the number of patents produced by students, and b)

labor-market outcomes, such as graduation rates, earnings, and intergenerational mobility.

All these outcomes are measured at the school level or at the school-by-cohort level (with the

exception of the share of students who attend graduate school, available separately by macro-field).

To match this feature of the data, we follow the school value-added literature (Deming, 2014) and
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estimate the school component of the gap using the following model:

Gapi = ✓s(i) + �f(i)l(i)t(i) + "i. (9)

In this equation, the quantity ✓s captures the school component of the education-innovation gap for

school s, accounting for flexible time trends that are specific to the level l and field f of the course.

Because outcome measures refer to students who complete undergraduate programs at each school,

we construct ✓s using only undergraduate syllabi; our results are robust to the use of all syllabi.

Appendix Figure AXI shows the distribution of ✓̂s; its standard deviation is 0.85, corresponding to

a 10 percent change in the average syllabus.

In the remainder of this section, we present estimates of the parameter � in the following equa-

tion:

Yst = �✓̂s +Xst�+ ⌧t + "st (10)

where Yst is the outcome for students who graduated from school s in year t; ✓̂s is the school-level

component of the gap (estimated from equation (9) and standardized to have mean zero and vari-

ance one); Xst is a vector of school observables; and ⌧t are year fixed effects. We report bootstrapped

standard errors, clustered at the level of the school, to account for the fact that ✓̂s is an estimated

quantity.

It should be stressed that the parameter � does not necessarily capture the causal effect of the gap

on outcomes. There might be school and student attributes related to both the content of a school’s

courses and student outcomes. To account for as many of these attributes as is possible, we control

for a rich set of school observables. We include seven groups of controls, including institutional

characteristics (private-public, selectivity tiers, and an interaction between selectivity tiers and an

indicator for R1 institutions according to the Carnegie classification); instructional characteristics

(student-to-faculty ratio and the share of ladder faculty); financials (total expenditure, research ex-

penditure, instructional expenditure, and salary instructional expenditure per student); enrollment

(share of undergraduate and graduate enrollment, share of white and minority students); selectiv-

ity (indicator for institutions with admission share equal to 100, median SAT and ACT scores of

admitted students in 2006, indicators for schools not using either SAT or ACT in admission); ma-

jor composition (share of students with majors in Arts and Humanities, Business, Health, Public

and Social Service, Social Sciences, STEM, and multi-disciplinary fields); and family background,

measured as the natural logarithm of median parental income.
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6.1 Innovation Measures

Obtaining a doctoral degree We begin by studying the relationship between the gap and the

share of students who obtain a doctoral degree. We construct this variable using data from the NSF

Survey of Doctorate Recipients (SDR), separately for five macro-fields: STEM, Health, Business,

Social Science, and Humanities. To match the level of aggregation of this variable, we aggregate

the education-innovation gap at the school-by-macro field level, rather than just at the school level,

and we modify equation (10) so that one observation in our data is a school and by macro-field

in a year. The quantity ✓s is also estimated separately for each macro field. In column 1 of Table

8 (panel (a)), we pool data across all macro-fields. The unconditional correlation between the gap

and the share of students who obtain a doctoral degree is negative and statistically significant: A

one-standard deviation lower gap is associated with a 0.44 percentage point higher share, or 15

percent compared with an average of 2.69 percent. The correlation is particularly strong for Social

Science (�0.0124) and Health (�0.0074), while it is small and indistinguishable from zero for STEM,

Business, and Humanities. These correlations remain remarkably robust when we control for school

characteristics (Table 8, panel (b)).

Invention Next, we test whether students at schools that offer courses with a lower gap produce

more inventions later in their lives, in the form of patents. We do so by using the total number of

patents received after graduation by students at each school as the dependent variable in equation

(10). Unconditionally, a one-standard deviation decline in the gap is associated with 27 additional

patents at a given school, or 20 percent compared with an average of 130 patents per school (Table 8,

panel (a), column 7, p-value equal to 0.11). The relationship remains robust and even becomes more

precise controlling for school observables (Table 8, column 7, panel (b)). These results indicate that,

although students in schools with a lower gap are not more likely to complete a STEM doctorate (as

shown in column 2), they produce significantly more innovation in the form of patents.

6.2 Labor Market Outcomes

Graduation rates Next, we examine the relationship between the education-innovation gap and

labor market outcomes. We begin with graduation rates, an outcome that immediately precedes

entry in the labor market. Graduation is in part also a function of choices made by the students,

which could be impacted by the content of the courses they took.

Column 1 of Table 9 shows the relationship between the gap (measured in standard deviations)

and graduation rates. An estimate of �0.05 in panel (a), significant at 1 percent, indicates that

34



a one-standard deviation decline in the gap (or a 10 percent change in the content of a syllabus)

is associated with a 5 percentage point higher graduation rate. Compared with an average of 57

percent, this corresponds to a 9 percent increase in graduation rates.

The estimate of � declines as we control for observable school characteristics, indicating that

part of this correlation can be explained by other differences across schools. However, it remains

negative and significant at �0.007, indicating that that a one-standard deviation reduction in the

gap is associated to a 1.3 percent increase in graduation rates (panel (b), column 1, significant at 5

percent).

Table 8: The Education-Innovation Gap and Innovation Measures: Share of Undergraduate Stu-
dents Who Obtain a Doctoral Degree and Total Number of Patents

Share of students who obtain a doctoral degree, by field Nr

All STEM Health Business Soc. Sci. Humanities Patents

Panel (a):
no controls (1) (2) (3) (4) (5) (6) (7)

Gap (sd) -0.0044** -0.0010 -0.0074** -0.0003 -0.0124** 0.0054 -26.8006
(0.0018) (0.0022) (0.0033) (0.0005) (0.0051) (0.0076) (16.6213)

Mean dep. var. 0.0265 0.0452 0.0249 0.0021 0.0335 0.0228 129.7813
N 65755 14714 9218 12698 14657 14468 1715

Panel (b):
w/ controls (1) (2) (3) (4) (5) (6) (7)

Gap (sd) -0.0046** 0.0002 -0.0066** -0.0003 -0.0101** 0.0061 -21.8882*
(0.0021) (0.0019) (0.0030) (0.0005) (0.0046) (0.0074) (12.5836)

Mean dep. var. 0.0269 0.0461 0.0257 0.0021 0.0342 0.0228 131.0248
N 47723 10673 6656 9243 10645 10506 1610

Note: OLS estimates of the coefficient � in equation (10). In columns 1-6, the variable Gap (sd) is a school-by-macro
field-level education-innovation gap (estimated as ✓s(i) in equation (9), separately for each macro-field), standardized to
have mean zero and variance one. In column 7, Gap (sd) is estimated at the school level pooling data from all fields. In
columns 1-6, the dependent variable is the share of undergraduate students at each institution-field who eventually com-
plete a doctoral degree (from the NSF Survey of Doctorate Recipients, year 2000); in column 7, it is the total number of
patents filed by students at each school, from Chetty et al. (2020). All columns in panel (b) control for sector (private or
public), selectivity tiers, and an interaction between selectivity tiers and an indicator for R1 institutions according to the
Carnegie classification; student-to-faculty ratio and the share of ladder faculty; total expenditure, research expenditure,
instructional expenditure, and salary instructional expenditure per student; the share of undergraduate and graduate en-
rollment and the share of white and minority students; an indicator for institutions with admission share equal to 100,
median SAT and ACT scores of admitted students in 2006, and indicators for schools not using either SAT or ACT in ad-
mission; the share of students with majors in Arts and Humanities, Business, Health, Public and Social Service, Social
Sciences, STEM, and multi-disciplinary fields; and the natural logarithm of parental income. Columns 1-6 control for year
effects. Column 1 also controls for macro field fixed effects. Bootstrapped standard errors in parentheses are clustered at
the school level. ⇤  0.1, ⇤⇤  0.05, ⇤⇤⇤  0.01.
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Students’ income and intergenerational mobility We next examine the relationship between the

education-innovation gap and students’ economic success after they leave college. In columns 2-8

of Table 9 we estimate the relationship between the gap and various income statistics.

Column 2 shows estimates of the correlation between the gap and the natural logarithm of

median student earnings 10 years after graduation, from the College Scorecard. Controlling for the

full set of observables, a one-standard deviation lower gap is associated with a 0.9 percent higher

earnings (column 2, panel (b), significant at 5 percent). The College Scorecard also reports mean

earnings, overall and for students with parental incomes in the bottom tercile of the distribution.

Overall, the correlation between the gap and mean earnings equals 0.7 percent (column 3, significant

at 10 percent). For students with parental income in the bottom tercile, it is slightly larger at 0.8

percent (column 4, panel (b), significant at 10 percent).

Information on mean student earnings at the school level is also reported by Chetty et al. (2020),

who calculate it using tax records for two cohorts of students. Unconditional estimates (which omit

year effects due to the cross-sectional structure of the data) indicate that a one-standard deviation

in the gap is associated with a 7 percent increase in students’ mean earnings (panel (a), column 5,

significant at 1 percent). This estimate is smaller, at 1.4 percent, when controlling for institutional

characteristics (panel (b), column 5, significant at 1 percent).

In columns 6 through 8 of Table 9 we investigate the relationship between the gap and the

probability that students’ earnings reach the top echelons of the distribution. Estimates with the

full set of controls indicate that a one-standard deviation decline in the gap is associated with a 0.84

percentage point increase in the probability of reaching the top 20 percent (2.2 percent, panel (b),

column 6, significant at 1 percent), a 0.53 percentage point increase in the probability of reaching the

top 10 percent (2.5 percent, column 7, significant at 5 percent), and a 0.31 percentage point increase

in the probability of reaching the top 5 percent (2.7 percent, column 8, significant at 10 percent).

Taken together, these results indicate a positive relationship between the school-level education-

innovation gap and students’ average and top earnings.

Lastly, in column 9 of Table 9 we study the association between the gap and intergenerational

mobility. The unconditional correlation between these two variables is equal to -0.0293, indicating

that a one-standard deviation lower gap is associated with a 2.9 percentage point increase in inter-

generational mobility (9.9 percent, panel (a), column 9, significant at 1 percent). This correlation

becomes smaller at -0.0047 when we control for school observables (column 9, panel (b), significant

at 10 percent).
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Summary Our findings indicate that students at schools offering courses with a lower education-

innovation gap at the school level produce more innovation and have better academic and economic

student outcomes. The lack of experimental variation in the gap across schools prevents us from

estimating a causal relationship. Yet, our results are robust to the inclusion of controls for a large set

of school and student characteristics, indicating that these correlations are unlikely to be driven by

cross-school differences in spending, selectivity, major composition, or parental background. These

findings point to the potentially important role of up-to-date instruction in determining future in-

novation levels and the outcomes of students as they exit college and enter the labor market.

7 Alternative Measures of Course Content

In this section, we explore alternative measures to describe a course’s content and examine the

sensitivity of our results to the use of these measures.

7.1 Soft Skills in Course Content

The education-innovation gap focuses on the academic content of a course. However, academic con-

tent might not be the only thing that matters for students. Recent works have highlighted the im-

portance of skills for students’ later life outcomes. In particular, soft skills—defined as non-cognitive

abilities that define how a person interacts with their colleagues and peers—are increasingly in high

demand in the labor market and associated with better outcomes (Deming, 2017).

The richness of the syllabi data allows us to examine differences across syllabi in the extent to

which they cover soft skills. We do so by focusing on each course’s evaluation scheme. Specifi-

cally, we consider a course to be more soft-skills intensive if the assignments portion of the syllabus

has a higher share of words that refer to soft-skills training, including “group”, “team”, “presen-

tation”, “essay”, “proposal”, “report”, “drafting”, and “survey”, relative to hard-skill assignments

such as “homework”, “exam”, and “quiz”. In the average syllabus, 33 percent of the words in the

assignment portion of the syllabus refer to soft skills (Table 1, panel (a)).

This measure of soft-skills intensity is negatively correlated with the education-innovation gap

(with a correlation of �0.14, Figure 5, panel (a)). Soft-skills intensity varies across schools in a

similar pattern as the education-innovation gap: It is higher in schools with higher expenditure

on instruction and salaries, in more selective schools, and in those with a higher median parental

income and with a lower share of minority students (Figure AIX, panel (a)). Soft-skills intensity is

higher for courses taught by more research-productive instructors (Figure AX, panel (a)).
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Soft-skills intensity is also positively related to student outcomes. Controlling for the full set

of school observables used in Tables 8 and 9, a one-standard deviation higher soft-skills intensity

of a school’s courses is associated with a 1.2 percentage point higher graduation rate (2 percent,

Table AII, panel (h), column 1, significant at 1 percent), 1.7 percent higher mean earnings (column

2, significant at 1 percent), and a 1.2 percent higher chance of reaching the top earnings quintile for

students with parental income in the bottom quintile (18 percent, column 9, significant at 1 percent).

Taken together, these findings indicate that differences across and within schools in course con-

tent are not limited to the extent to which content is updated with respect to the knowledge frontier,

but also extend to the skills that are trained. We interpret this as additional evidence for the impor-

tance of accounting for differences in content across courses when characterizing the heterogeneity

of educational experiences for students at different schools.

7.2 Alternative Measures of The Education-Innovation Gap

In spite of its desirable properties, our measure of the education-innovation gap has some limita-

tions. For example, it penalizes courses for including old content. This implies that, among two

courses that cover the exact same new content, the one that also covers older knowledge will have

a higher gap. In addition, our measure is designed to capture the “average” knowledge vintage

a course’s content resembles to; it is thus unable to identify courses with extremely novel content

among those with the same gap. Lastly, the gap relies on academic publications to capture knowl-

edge frontier. In some fields, such as STEM, frontier knowledge could also be disclosed in other

forms, such as patents for new technologies.

In this subsection, we probe the robustness of our results using alternative measures of a course’s

content, designed to address these issues.

Presence of old vs new knowledge The education-innovation gap measures the presence of new

content relative to old content. Consider two syllabi that cover the same amount of frontier research;

the first syllabus only contains this new content, while the second one also contains some old con-

tent. Our measure would assign a larger gap to the second syllabus compared to the first due to the

presence of old content, even though both do an equal job in covering frontier knowledge.

To address this limitation, we construct an alternative metric: the share of new knowledge cov-

ered by a course, defined as the ratio between the number of “new words” in each syllabus and the

number of all new words. New words are defined as knowledge words that are (a) in the top 5 per-

cent of the word frequency among articles published between t� 3 and t� 1 or (b) used in articles

published between t� 3 and t� 1 but not in those published between t� 15 and t� 13. Intuitively,
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this measure captures the portion of all new knowledge covered by the course, regardless of the

presence of old knowledge. For clarity, we show our results using one minus the share of covered

new knowledge, which we refer to as the share of non-covered new knowledge. This allows us to work

with a metric that, like the education-innovation gap, is larger when the content of a course is more

distant from frontier knowledge. The correlation between the share of non-covered new knowledge

and the education-innovation gap is 0.22 (Figure 5, panel (b)), and our main results hold if we use

Figure 5: The Education-Innovation Gap and Alternative Measures of Novelty: Binned Scatterplots

(a) Soft-skills intensity (b) Share of non-covered new knowledge

(c) Tail measure (d) Gap with patents

Notes: Binned scatterplots of the education-innovation gap and four alternative measures of novelty of each syllabus: a
measure of soft-skills intensity, defined as the share of words in the assignment portion of a syllabus that refer to soft
skills (panel (a)); the share of non-covered new knowledge, defined as one minus the share of all new words contained
by each syllabus (where new words are knowledge words that are (i) in the top 5 percent of the word frequency among
articles published between t � 3 and t � 1 or (ii) used in articles published between t � 3 and t � 1 but not in those
published between t�15 and t�13 (panel (b)); a “tail measure,” calculated for each syllabus by (i) randomly selecting 100
subsamples containing 20 percent of the syllabus’s words, (ii) calculating the gap for each subsample, and (iii) selecting
the 5th percentile of the corresponding distribution (panel (c)); and the education-innovation gap calculated using the
text of all patents as a benchmark for frontier knowledge, instead of academic articles (panel (d)).

40



this alternative metric to capture the novelty of a syllabus’s content (see panel (b) of Figure AIX for

the correlation with school-level characteristics, panel (b) of Figure AX for the correlation with in-

structors’ research productivity, and panels (a) and (b) of Table AII for the relationship with student

outcomes).

Right tail of academic novelty The education-innovation gap captures the “average” novelty of

a syllabus. It is possible for two syllabi to have the same gap when one of them only covers content

from five years prior, while the other covers mostly material from fifteen years prior but also a small

amount of material from the previous year. To construct a measure that captures the presence of

“extremely” new material in a syllabus, we proceed as follows. First, we draw 100 “sub-syllabi”

from each syllabus, defined as random subsets of 20 percent of the syllabus’s words, and calculate

the corresponding education-innovation gap. The gaps of these 100 sub-syllabi form a distribution;

we use the 5th percentile of this distribution for each syllabus as a tail measure of new content.28

We refer to this as a “tail measure” of novelty.

The tail measure is positively correlated with the education-innovation gap, with a correlation of

0.67 (Figure 5, panel (c)). All our results hold when we use the tail measure as a metric for syllabus

novelty (see panel (c) of Figure AIX for the correlation with school-level characteristics, panel (c) of

Figure AX for the correlation with instructors’ research productivity, and panels (c) and (d) of Table

AII for the relationship with student outcomes).

Gap with patents The education-innovation gap is defined using new academic publications as

the frontier of knowledge. For STEM fields, knowledge advancements are also documented in

the form of patents. To incorporate this information in our analysis, we construct a version of the

education-innovation gap for STEM courses that uses patents in lieu of academic publications. This

measure is positively correlated with the standard education-innovation gap (Figure 5, panel (d)),

and our main results hold when we use the patent-based gap (see panel (d) of Figure AIX for the

correlation with school-level characteristics, panel (d) of Figure AX for the correlation with instruc-

tors’ research productivity, and panels (e) and (f) of Table AII for the relationship with student

outcomes).

Taken together, these results indicate that our main conclusions regarding the content of higher-

education courses across schools, and the way the content relates to instructors’ characteristics and

student outcomes, are not dependent on the specific way in which we measure up-to-date content.
28Our results are robust to the use of the top 10 and one percent.
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8 Conclusion

This paper uses the text of HE course syllabi to quantify the distance between the content of each

course and frontier knowledge. Our approach centers around a new measure, the “education-

innovation gap,” defined as the textual similarity between course syllabi and knowledge from older

vintages, relative to newer ones. We construct this measure by applying NLP techniques to the full

text of 1.7 million syllabi and 20 million academic publications. Our empirical approach combines a

large-scale novel data source with textual analysis to shed new light on some key aspects of higher

education.

Using our measure, we document a set of new findings about the dissemination of frontier

knowledge across HE programs. Across and within schools, significant differences exist in the

extent to which frontier knowledge is taught to students. Instructors play the largest role in shaping

the content of the courses they teach. Courses taught by more research-active instructors have

lower gaps. More selective schools and those with more resources offer courses with a smaller gap.

Since these schools enroll a lower portion of socio-economically disadvantaged students, access to

updated knowledge is highly unequal across students from different backgrounds. The education-

innovation gap is strongly correlated with students’ innovation and labor-market outcomes. In

schools offering courses with lower gaps, students are more likely to graduate, earn a PhD, and

produce patents. They also earn more once they enter the labor market. Taken together, our findings

indicate that the education-innovation gap can be an important metric for quantifying how frontier

knowledge is produced and disseminated, and they could help shed new light on the way in which

schools and instructors impact students’ lives.

For future research, a careful analysis of the causal impacts of a low-gap education on students’

later life outcomes represents an important and fruitful avenue. The use of novel alternative data,

such as the text of various documents, could open the opportunity for researchers to investigate

questions related to higher education which would otherwise be difficult to study.
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