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Abstract

Financial markets’ demand elasticity has decreased substantially over the last 20 years,

leading to increased volatility and undermining price stability. This paper investigates

the impact of the use of AI traders that make unsupervised trading decisions on aggre-

gate stock elasticity. Building on Haddad et al. (2021), I estimate investors’ demand

and then I simulate a fictitious financial market populated by artificial intelligence

(AI) traders, whose investment decisions are governed by a neural network-based rein-

forcement learning algorithm. The introduction of AI traders has non-trivial effects on

elasticity: on the one hand, AI traders have a high individual-specific elasticity; thus,

conditional on trading the asset they increase aggregate elasticity. On the other hand,

their high sensitivity to stock price changes implies that they reduce their exposure

on the risky asset in downturns. This can reduce aggregate elasticity by up to 2.5%..

The last is larger when other investors demand is more sensitive to aggregate market

elasticity.
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1 Introduction

The finance literature has extensively studied the price elasticity of demand in financial

markets, which measures how sensitive prices are to changes in the quantity demanded.

This line of research, pioneered by Koijen and Yogo (2019), has shown that price elasticity

is lower than what standard asset pricing models predict. Haddad et al. (2021) attribute

the decline in price elasticity to the rise of passive investing. A key part of this phenomenon

can be explained by the growing costs associated with acquiring, processing, and translating

information into investment decisions. Price elasticity is of first order importance for market

efficiency, as low elasticity can lead to substantial price movements even in response to small

demand or supply shocks, amplifying volatility and reducing price informativeness.

In recent years, the impact of algorithmic trading on financial markets has become a

key focus for researchers and policymakers, particularly with the advancement of new tech-

nologies such as Artificial Intelligence (AI). The European Securities and Markets Authority

(ESMA) defines algorithmic trading as: trading in financial instruments where a computer

algorithm automatically determines individual parameters of orders—such as whether to

initiate the order, the timing, price, or quantity of the order, or how to manage the order

after its submission—with limited or no human intervention.1 The use of such technology

is pervasive in financial markets: 70% of market orders in the US financial markets are

made by computers. The ESMA has further reported that the number of investment funds

that publicly discloses their use of artificial intelligence or machine learning has increased

from 10 to more than 50 between 2017 and 2022, with up to 3 billion euros of assets under

management.

In a context of large passive investors and low elasticity, the impact of algorithmic trading

governed by advanced artificial intelligence technologies is not trivial. On the one hand, SEC

report on Algorithmic Trading in U.S. Capital Markets (SEC, 2020) claims that the investors

1The literature in finance associates algorithmic trading with high frequency trading (HFT). The definition
of the ESMA is however more general and does not restrict the use of this technology to HFT only.
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using algorithmic technologies are more likely to actively trade due to the high computing

power (Bai et al., 2016; Dugast and Foucault, 2018; Farboodi et al., 2022) and speed in

executing market orders (Biais et al., 2015; Foucault et al., 2016). Thus, algorithmic traders

are potentially more elastic than passive investors. However, the presence of more elastic

traders is a necessary but not sufficient condition to increase market elasticity. Whether

prices become more elastic ultimately depends on whether these agents actually trade stocks.

Sornette and Von der Becke (2011) argue that during boom periods, algorithmic traders

participate in the market and provide liquidity. However, during bad times, algorithms

withdraw liquidity from the market. Whether the participation of algorithmic traders in

financial markets, whose demand is governed by advanced artificial intelligence algorithms,

increases or decreases demand elasticity remains an open question.

This paper aims to study the impact of algorithmic traders on price elasticity. To this end,

I build on Haddad et al. (2021) to estimate the asset demand of U.S. institutional investors

and simulate a fictitious financial market, where prices and aggregate stock elasticity are

equilibrium outcomes. The contribution of this paper is twofold: from a methodological

point of view, I propose a market micro-structure framework to study the decisions made

by artificial intelligence traders (AI traders), which trade with a non-negligible price impact.

Secondly, I use this theoretical framework to study the properties of the demand of AI

traders. Thus, I estimate the individual-specific elasticity of this type of agents. After

providing evidence on the trading aggressiveness of AI traders, I examine whether, and

under which conditions, they increase aggregate stock elasticity.

Artificial intelligence traders will be governed by a state-of-the-art reinforcement learn-

ing algorithm, the Deep Deterministic Policy Gradient (DDPG). The economics and finance

literature has mostly focused on the tabular Q-Learning, because of its implementability and

interpretability (Calvano et al., 2020; Colliard et al., 2022, among others). Unfortunately,

this algorithm is not suitable in very complex environments such as financial markets for

several reasons. First, the tabular Q-Learning cannot handle large and highly dimensional
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state and action spaces. Second, it is not possible to evaluate the optimal strategy learned

by the algorithm in unexplored configurations of the state space. Instead, the DDPG algo-

rithm, a neural network-based reinforcement learning technique accommodates both a large

state space (the information used to optimize the strategy) and a continuous action space

(the actions chosen by the algorithm). The algorithm is trained on a subset of data, and its

strategy is then validated in a previously unexplored market environment. To learn its opti-

mal strategy, the algorithm repeatedly trades in a simulated financial market, observing the

state (which contains all relevant information) and taking actions to determine the optimal

course of action based on its information set. Once the optimal strategy is learned, I test

the algorithm’s ability to trade in the market using data it has not previously encountered.

The goal is to study how the algorithm behaves in a simulated market that closely resembles

real-world conditions, how its investment decisions impact price elasticity compared to a

benchmark case without AI trader participation, and to what extent other investors adjust

their portfolio allocation in response to the presence of algorithmic traders.

I show that the AI trader’s individual-specific demand is larger than that of the average

investor in the US financial market. In particular, it trades more actively when the degree of

strategic response of the representative investor is lower, i.e. when the demand of the latter

is less sensitive to other investors portfolio allocation. This last result suggests that the AI

trader actively seeks profit opportunities that the representative investor would have left

unexploited. Not surprisingly, the presence of an investor with aggressive trading strategy

increases aggregate elasticity compared to a market without algorithmic traders. However,

this result holds primarily during market boom periods. As the price of the risky asset falls,

the AI trader sharply reduces its exposure to the stock, and aggregate elasticity drops by

2.5%. Such drop in market elasticity will cause prices to be more sensitive to investor-specific

demand shocks, causing increased volatility and reduced price informativeness (Gabaix and

Koijen, 2021). All in all, these effects undermine financial market efficiency and economy’s

welfare, especially in bad times.
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The remaining part of the paper is structured as follows: Section 2 review the relevant

literature on the estimation of price elasticity and reinforcement learning for financial appli-

cations, Section 3 discusses the methodology to estimate assets demand following Haddad

et al. (2021) and simulate the fictitious financial market, and the deep deterministic pol-

icy gradient algorithm that governs the decisions of the AI traders, Section 4 describes the

results of the simulation and the impact of algorithmic traders. Section 5 concludes.

2 Related literature

This paper aims to contribute to the recent literature on market elasticity of demand

and performance by leveraging investor holding data. Koijen and Yogo (2019) propose

a structural model that links investor positions in the market with stock characteristics,

allowing for heterogeneity across investors. Assuming a fixed and exogenous supply within

each period, the model incorporates market clearing (i.e., no excess demand or supply),

which enables the construction of counterfactual prices to answer questions such as: How

much of volatility and predictability is explained by stock characteristics? What is the

expected change in prices if a specific type of investor exits the market? To what extent

do unobserved factors influence investors’ portfolios? Another example of exercises that

can be performed using this class of model is studying the impact of introducing a ”large”

artificial intelligence trader (i.e., one with significant assets under management). Gabaix

and Koijen (2021) further supports the idea that prices in financial markets are relatively

inelastic. The study extensively outlines the reasons why low price elasticity is detrimental

to financial market performance. When elasticity is low, prices become more sensitive to

demand and supply shocks, amplifying fluctuations and increasing volatility. Unlike Koijen

and Yogo (2019), who focus on the level of investors’ holdings, van der Beck et al. (2022)

estimates a first-difference version of the model to investigate the determinants of trades.

The paper highlights that demand elasticity varies with the trading horizon and is larger than

5



previously reported. van der Beck (2021) explores the implications of low price elasticity

in the context of ESG investing, showing that flows into ESG stocks increase their prices,

causing realized returns to deviate from expected returns. A counterfactual experiment

demonstrates that, in the absence of flow-driven price pressure on ESG stocks, these stocks

would have underperformed during the sample period.

More recently, Haddad et al. (2021) links the decline in aggregate stock elasticity to the

rise of passive investing. They propose a two-layer equilibrium model where not only prices

but also aggregate elasticity is an equilibrium outcome. Investors trade differently depending

on whether they encounter more or less aggressive traders within their investment universe.

This feature introduces another layer of heterogeneity: elasticity is stock-specific and depends

on the set of investors trading that particular stock. In this paper, I build on Haddad et al.

(2021) by simulating a fictitious financial market populated with one or more AI traders and

studying how their portfolio decisions affect aggregate stock elasticity.

The role of algorithmic and artificial intelligence traders in financial markets has caught

the attention of several scholars. Algorithmic traders are found to be faster than humans in

discovering profit opportunities and executing orders. Bai et al. (2016) and Farboodi et al.

(2022) examine how these recent trends have impacted price informativeness. Foucault et al.

(2016) investigates the extent to which algorithmic trading affects price changes. These types

of traders exploit incoming news and profit from it in the short run. Similarly, Biais et al.

(2015) emphasizes the negative externalities generated (and not internalized) by institutions

using algorithmic trading.

Algorithmic trading in recent years has certainly benefited from advances in artificial

intelligence techniques, such as machine learning and reinforcement learning. The latter has

been employed to address various financial problems, including finding arbitrage opportuni-

ties, pricing securities in market-making frameworks, and solving optimal portfolio problems.

Colliard et al. (2022) design a Q-learning algorithm to set prices in a Glosten and Milgrom

(1985) model. They find that the algorithm learns to set prices in the presence of adverse
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selection but fails to increase competitiveness for risky assets and in states it rarely explores.

A growing literature has instead studied the ability of neural network-based reinforcement

learning to solve portfolio problems. This class of algorithms is particularly suitable for

portfolio optimization as they can: (i) handle very large state spaces, (ii) choose from a

large or even continuous action space, and (iii) be validated on out-of-sample data (Yang

et al., 2020; Zhang et al., 2020; Vyetrenko and Xu, 2019). However, these contributions

typically consider a partial-equilibrium framework where the algorithm does not impact

prices in any way.

This work differs from other studies in several aspects. First, the focus is not merely on

the performance of the algorithm, nor does it aim to find and calibrate the best-performing

algorithm. Instead, the goal is to investigate the impact of AI traders on price elasticity

and how changes in price elasticity induce adjustments in the demand for assets by other

institutional investors. To this end, I relax the assumption that the AI trader is a marginal

investor and allow it to trade with price impact. Second, I do not rely solely on data or

theory to shed light on the role of artificial intelligence; rather, I follow the recent literature on

structural estimation of asset demand and simulate a financial market with heterogeneous

assets and investors, aiming for a representation as close to reality as possible. Then, I

populate it with one or more AI trader, whose demand has non-negligible impact on prices.

3 Methodology

In this section, I describe the methodology to construct the fictitious financial market

that will be augmented with the presence of AI traders. First, I estimate the demand for

assets of US investors following Haddad et al. (2021). Second, I derive equilibrium prices

and aggregate elasticity considering a market populated by a representative investor and J

AI traders. Third, I describe the AI trader objective function and the deep deterministic

policy gradient (DDPG) algorithm that governs its portfolio decisions.
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3.1 Estimating individual-specific elasticity

I estimate the demand of stocks for each investor i “ 1, ..., I following Haddad et al.

(2021):

log δi,n,t ´ pnt ´ χEagg,n,tpnt “ d0,i,t ` d1
1,i,tXnt

´
`

E0,i,t ` E 1
1,i,tX

e
n,t

˘

pnt ` ϵint

(1)

where δi,n,t is the portfolio allocation of investor i on asset n at time t with respect to the

outside asset (cash, bond, ...), pn,t is the log price of stock n at time t, Xd
n,t is a matrix of

stock’s n characteristics including log book equity and log book equity squared, Xe
n,t is the

log book equity of stock n at time t and ϵi,n,t is the latent demand capturing unobserved

factors. The aggregate elasticity is Eagg,n,t and is defined as:

Eagg,n,t “

řN
i“1wi,n,t Ai,t E i,n,t

Pn,t ` χ
řN

i“1wi,n,tAi,t

(2)

where E i,n,t “ E0,i,t ` E1,i,tX
e
n,t denotes the the individual-specific elasticity.

The regression in Eq. 2 suffers from endogeneity as prices appear both on the left- and

right-hand side. Therefore, I estimate Eq. 2 using 2SLS, where pn,t is instrumented by p̂n,t.

The instrument for investor i is the log market capitalization as if all other investors j held

an equal weighted portfolio within their investment universe. This counterfactual price is

not affected by investor’s i investment decisions. Using the same reasoning, I construct an

instrument for Eagg,n,t.

I estimate the coefficients d0,i,t, d1,i,t, E0,i,t and E1,i,t conditional on χ, that represents

the degree of strategic interaction. This coefficient of the interaction between aggregate

stock elasticity and log price tells how sensitive are the portfolio choices of investors relative

to aggregate market elasticity. To gain more insights on how the AI trader trades under

different market conditions, I estimate Eq. 1 conditional on χ “ 1 and χ “ 2.5. The latter

is similar to the average degree of strategic response reported by Haddad et al. (2021).

Individual-specific coefficients are estimated following the procedure of Haddad et al.
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(2021): I start with a guess for Eagg,n,t and a value for χ and run the cross sectional regression

in Eq. 1. Given the coefficients E0,i,t and E1,i,t I update the value of Eagg,n,t using Eq. 2. I

repeat these two steps until the value of aggregate stock elasticity converges. This ensures

that the coefficients are consistent with the estimated aggregate elasticity.

Data I estimate the model on the US equity market from 2000:Q1 to 2022:Q4. Data on

stocks are from CRSP and Compustat. Investor holdings have been retrieved from Thomson

Reuters Institutional Holdings Database at quarterly frequency and include all US investors

with at least one hundred thousand dollars assets under management. CRSP-Compustat

data are merged using CUSIP number. Active investors that hold fewer than 1000 stocks

in a quarter are pooled together, in groups that hold 2000 stocks on average. Furthermore,

shares outstanding are normalized to be equal to one, so that the price Pn,t represents the

market capitalization.2

3.2 Asset Prices with a Representative Agent

I consider a market for N risky assets, with price and dividends denoted by Pn,t and Dn,t

and shares outstanding equal to Sn,t. I normalize the outstanding shares to one, so that they

are constant over time. A risk-free bond is also available with exogenous and constant gross

return Rf .

The market is populated by a representative investor and J AI traders. The j ´ th AI

trader have shares held on asset n equal to Sj
n,t. The residuals shares are bought by the

representative investor and denoted by S̃n,t “ Sn ´
řJ

j“1 S
j
n,t.

The representative investor has demand:

log δn,t ´ pn,t “ d0 ` d1X
d
n,t ´ pE0 ` E1Xe

n,t ´ χEagg,n,tqpn,t (3)

wn,t “
δn,t

1`
řN

m“1 δn,t
(4)

2The dataset is constructed following Koijen and Yogo (2019) and I apply the weighting scheme during
the estimation as in Haddad et al. (2021).
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where wn,t is its portfolio weight on asset n.

At every point in time market clearing requires that the total amount invested in each

stock by the representative investor and by the AI traders equals the stock’s market capital-

ization. Formally:

Atwn,t ` Pn,t

J
ÿ

j“1

Sj
n,t “ Pn,tSn, @n, t (5)

The previous condition can be expressed in terms of residual demand of the representative

investor:

Atwn,t “ Pn,tS̃n,t (6)

To derive the equilibrium prices I use the market clearing condition and Eq. 3:

d0 ` d1X
d
n,t ` rp1 ´ E0q ` χEagg,n,tspn,t “ pn,t ` s̃n,t ´ logpAt ´

N
ÿ

m“1

pn,ts̃n,tq (7)

The wealth of the representative agent evolves according to the law of motion:

At “ At´1Rf `

N
ÿ

m“1

S̃m,t´1pPm,t ` Dm,t ´ RfPm,t´1q (8)

Substituting the latter into 7 and rearranging terms:

0 “ d0 ` d1X
d
n,t ` p1 ´ E0qpn,t ` χEagg,n,tpn,t ´ pn,t ´ s̃n,t ` ϵn,t `

logpAt´1Rf `

N
ÿ

m“1

S̃m,tpDm,t ´ RfPm,t´1q ´

N
ÿ

m“1

Pm,t∆S̃m,tq (9)

Eq. 9 is a system of N equation in N unknowns (p1,t, p2,t, ..., pN,t) that can be solved numer-

ically and represents equilibrium price after accounting for the representative agent and AI

traders demand.3

3For the numerical computation I impose the following bounds in order to meet the existence conditions
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Equilibrium computation Notably, the demand of the representative investor (Eq. 3)

is function of the aggregate elasticity, which in turn depends on the allocation chosen by

investors. The solution of equilibrium prices in Eq. 9 embeds a fixed point problem for the

weights chosen by the representative investor. To overcome this issue, I start with a guess

for the portfolio weights of the representative investor, wn,t and for the current price Pn,t.

Conditionally on these values, I compute the current period assets under management of

the representative investor and the aggregate elasticity, Eagg,n,t. Subsequently, I solve for the

equilibrium prices and compute the representative investor demand as in Eq. 3. I repeat this

procedure until the value of wn,t converge. The algorithm for the equilibrium computation

is reported below.

Are the prices indeed equilibrium prices? To answer this question, I verify that prices

satisfy the market clearing condition at any time. In other words, I compute the differ-

ence between the amount of dollars invested in each stock by the representative investor

and (eventually) the AI trader and the market capitalization. The difference of these two

quantities is always in the order of 10´10.4

for the two log terms in Eq. 9

$

’

’

’

&

’

’

’

%

Pn,t ą

řJ
j“1 θ

j
n,tAUM j

t

Sn

řN
m“1 Pm,t ă

At´1Rf `
řN

m“1 S̃m,t´1 pDm,t ´ RfPm,t´1q `
řN

m“1

řJ
j“1 θ

j
m,tAUM j

t
řJ

j“1 S
j
m,t´1

4The distribution of the difference between allocation of the agents and the stock’s market clearing is
reported in Figure 4.
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Algorithm 1 Equilibrium computation

1: Initialize starting values w0 and p0

2: h Ð 0
3: while (}wh ´ wh´1} ą tol) or (h “ 0) do
4: Compute Ah

t conditional on ph

5: Compute Eagg,n,t conditional on wh, ph and Ah
t

6: Solve equilibrium prices ph`1 (Eq. 9)
7: Compute RI’s portfolio weights as w˚ Ð

δn,t

1`
řN

m“1 δn,t

8: wh`1 Ð pw˚ ˆ 0.5 ` wh ˆ 0.5q

9: h Ð h ` 1
10: end while
11: return ph`1, Eh

agg,n,t

Calibration of the representative investor and stock characteristics To calibrate

the demand coefficients of the representative investor I aggregate the coefficients d0,i,t, d1,i,t,

E0,i,t and E1,i,t estimated in the previous section using an AUM-weighted average across

investors. Then, I obtain time-invariant coefficient by the average over time. Formally, the

coefficients of the representative investor are given by:

x̄ “
1

T

I
ÿ

i“1

AUMi,t
řI

i“1AUMi,t

xi,t

where x is alternatively d0,i,t, d1,i,t, E0,i,t and E1,i,t. The stock characteristic log book equity

is simulated from an AR(1) process fitted on data. Further details are provided in Appendix

A.

3.3 AI trader

The AI trader maximizes the flow profit:

E

8
ÿ

t“1

δt logpπtq (10)
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where δt P p0, 1s is the discount factor and πt is the portfolio return, defined as:

πt “ Rf `

N
ÿ

n“1

θn,t´1pR
˚
n,t ´ Rf q (11)

where R˚
n,t “

P˚
n,t`Dn,t

Pn,t´1
. At the time the AI trader decides the portfolio allocation θn,t´1 the

price Pn,t has not realized yet. Consequently, the portfolio return is calculated using P ˚
n,t,

i.e. the price that would prevail at time t if the AI trader does not change the number of

shares held. I refer to P ˚
n,t as the ”beginning of period price”. θn,t is the portfolio weight on

the N risky assets. The AI trader’s wealth evolves according to:

Aj
t “ Aj

t´1 ˆ πt (12)

The AI trader optimizes the portfolio weights θn,t and θRf ,t, namely the weight on the

risk-free bond, such that θn,t ` θRf ,t “ 1 and θn,t, θRf ,t ě 0 @n, t. In other words, the AI

trader allocates its AUM on the risky and risk-free asset and is not allowed to take short

positions on any asset.5

3.4 Deep deterministic policy gradient

Following Yang et al. (2020), the AI trader is governed by a deep deterministic policy

gradient (DDPG) algorithm (Lillicrap et al., 2015), which incorporates the advantages of the

actor-critic algorithm and the deep q-learning (DQN) approach. The choice is driven by the

fact that the DDPG is particularly suitable to solve financial problems, such as trading or

portfolio optimization, as it can handle very large state spaces and optimize over a continuous

action space (Yang et al., 2020).

The DDPG algorithm is composed by two neural networks, a critic network, ΘQ, which

takes as input the state and approximates the Q-values, and an actor network, Θµ, which

5The short-selling constraint is consistent with the data used to estimate Eq. 1. The 13F filings of the
SEC only include long positions.
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uses the Q-values to optimize the continuous actions. For each of the two a target copy of

the network is constructed and slowly updated, in order to achieve more stability during the

training phase. The target networks are denoted by ΘQ1

and Θµ1

for the critic and actor,

respectively. Moreover, it uses a replay buffer to train off-policy from batches randomly

drawn from this set. Following Ioffe and Szegedy (2015) and Lillicrap et al. (2015) we add

batch normalization layers to the networks.

At each point in time the DDPG observes the current state ω, chooses action(s) a and

receives a reward π. Finally, the next state ω1 is revealed. In order to explore the environment

a noise is added to the action chosen by the agent. For the exploration, noise is drawn from

Dirichlet, such that actions are non-negative and sum up to one.6

The transition tω, a, π, ω1u is stored in the replay buffer B and a batch of size |B| of

transitions is randomly drawn from B.

The target Q-values are computed on the batch as follows:

y pπ, ω1
q “ π ` γΘQ1

´

ω1,Θµ1

pω1
q

¯

where γ is the discount factor.

The loss for the critic network is then given by:

L
`

θQ
˘

“

”

`

y ´ Q
`

ω, a | ΘQ
˘˘2

ı

To update the critic network we minimize the loss between the Q-values computed using

the target network, y pπ, ω1q and those obtained from the online one, with respect to the

critic parameters.

6The Dirichlet distribution of a multivariate generalization of the Beta distribution. Formally Dicpαq “

1
Bpαq

śk
i“1 x

αi´1
i and Bpαq is the multivariate Beta function: Bpαq “

śk
i“1 Γpαiq

Γp
řk

i“1 αiq
. Sampling random actions

from this distribution guarantees that iq x̄i P r0, 1s and iiq
řK

i“1 xi “ 1.
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∇Q
1

|B|

ÿ

pω,a,π,ω1,dqPB

´L
`

ΘQ
˘

For the actor network we maximize the expected return, defined as:

Jpθq “ ErQpω, aq|ω“ωi,at“µpωtqs

To do this we compute the gradient of JpΘq with respect to the policy parameters:

∇ΘµJpΘq « ∇aQpω, aq∇Θµµpω|Θmuq

Finally, the two target networks are soft updated using the parameters of the online actor

and critic networks:

Θµ1

Ð τΘµ1

` p1 ´ τqΘµ

ΘQ1

Ð τΘQ1

` p1 ´ τqΘQ

where τ ! 1 controls the rate at which the target networks are updated.

The calibration of hyperparameters reported in Table 1 is in line with Lillicrap et al.

(2015):

Table 1: Calibration of DDPG hyperparameters

Parameter Value Description
τ 0.001 target update rate
α 0.0001 actor learning rate
β 0.001 critic learning rate
B 64 batch size
B̄ 105 replay buffer size
γ 0.99 discount rate

Notes: This table reports the hyperparameters of the Deep Deterministic Policy Gradient (DDPG) algorithm.
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4 Simulation

In this section I describe the results of the simulation exercise when introducing one

AI trader. Within the simulation, prices and aggregate stock elasticity are endogenously

determined in equilibrium. To compute the aggregate stock elasticity one must know the

demand coefficients E0,i and E1,i. As first exercise, I estimate these demand for the AI

trader, assuming it to be small enough not to have an impact on prices and aggregate stock

elasticity. In the subsequent section, I investigate the effect on aggregate stock elasticity

when introducing a ”large” AI trader, i.e. with sufficient assets under management to impact

equilibrium quantities with its portfolio decisions.

4.1 Simulation design

Each simulation runs for 500 episodes during which the AI trader observes the current

state, takes an action, observes the reward and finally the next state is revealed. An episode

involves 65 time-steps. During a simulation, the AI trader explores the environment over

and over, updating its optimal strategy in order to maximize the objective function.

At the start of each simulation, the initial parameters of the neural network are randomly

initialized. Additionally, the exploration of the environment involves randomness. To ensure

that this randomness does not influence the results, I conduct 20 simulations and report the

average statistics along with a confidence interval.

4.2 AI traders individual-specific elasticity

To compute the aggregate stock elasticity Eagg,n,t, it is necessary to know the individual-

specific elasticity of each investor. However, to estimate the latter, one must know the value

of Eagg,n,t . For the representative investor, these coefficients are identified by following the

iterative procedure of Haddad et al. (2021) described in Section 3. For the AI trader, I

simulate a fictitious financial market and assume the AI trader has no impact on prices,
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and thus on aggregate stock elasticity. In other words, the AI trader has zero AUM. I

let the AI trader train for 500 episodes. Using the portfolio allocation, equilibrium prices,

and aggregate stock elasticity at the last episode, I estimate the AI trader by running the

following time-series regression:

log δt ´ pt ´ χEagg,tpt “ d0,i,t ` d1
1X

d
t ´ pE0 ` E 1

1X
e
t q pt ` ϵt (13)

The individual-specific elasticity E i,n,t “ E0,i,t`E1,i,tX
e
n,t for the AI trader and representa-

tive investor are shown in Figure 1. I estimated the parameters of demand for both investors

conditional on a rather low value of strategic response, χ “ 1 and on a more realistic value,

χ “ 2.5, as reported in Haddad et al. (2021). Representative investor and AI trader have

positive E i,n,t. No matter how competitive is the environment, i.e. how large the degree

of strategic response, the AI trader is always more elastic than the representative investor,

especially when the degree of strategic response is lower. Thus, conditional on trading the

AI trader is likely to increase market elasticity. However, precisely because of its aggressive

trading strategy the AI trader might reduce its exposure during market downturns, causing

a drop in market elasticity.

4.3 Impact on aggregate stock elasticity

Once the individual-specific elasticity of the representative investor and the AI trader

have been estimated I simulate a financial environment where the AI trader has impact on

equilibrium quantities to study how its portfolio allocation shapes aggregate stock elasticity. I

compare Eagg,n,t with the benchmark case where only the representative investor populates the

market. When introducing the AI trader, I assume the total asset under management of the

market remain unchanged. Put it differently, around 10% of the AUm of the representative

investor are now managed by the AI trader. This exercise represents the situation in which

institutional investor let an algorithm take investment decision without affecting the size of
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Figure 1: Individual-specific elasticity

Panel A: χ “ 1 Panel B: χ “ 2.5
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Notes: This figure reports the individual-specific elasticity of the representative investor (blue solid line) and of the AI trader
(orange solid line),conditional on a low value of strategic response (χ “ 1) and a mid value of (χ “ 2.5). The coefficients of
the representative investor are estimated investor-by-investor following Haddad et al. (2021) and aggregated by AUM-weighted
average. The coefficients of the AI trader are estimated from simulation results assuming no price impact and according to Eq.
13

the market.

Figure 2 reports the aggregate stock elasticity with and without AI trader (left panel), the

ratio of the two (mid panel) and the AI trader allocation on the risky asset (right panel) when

the degree of strategic response, χ, is relatively low and equal to one. The aggregate elasticity

increases in both cases, with and without AI trader, as the log book equity of the stock rises.

However, in the first part the of the sample, the rise is significantly more pronounced when

the AI trader participates to the market. Indeed, the allocation on the risky asset is around

50% up to time t. As the AI trader reduce its exposure to the stock, aggregate elasticity

drops. Recall from 3, the representative investor demand depends positively on Eagg,n,t:

when this reduces it shifts its AUM to the risk-less asset, further amplifying the reduction

of elasticity. This is indeed the case when the price of the stock drops (red line in the right

panel) and the AI trader increases its portfolio weight on the risk-less bond. By the end of

the simulation period aggregate elasticity is 2.6% lower than in the benchmark case.

In figure 3 I report the simulation results when χ is equal to 2.5, a value in line with the
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Figure 2: Aggregate stock elasticity and AI trader portfolio allocation (χ “ 1)
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Notes: This figure reports iq the aggregate stock elasticity with and without AI trader (left panel), iiqthe ratio of aggregate
stock elasticity with and without AI trader (mid panel), the allocation of the AI trader and price of the risky asset (right
panel). Individual-specific elasticity is estimated conditional on χ “ 1. Dashed lines denote the 90% confidence interval across
20 simulations.

19



average degree of strategic response in Haddad et al. (2021). Aggregate elasticity is higher

by up to 5% with respect to the benchmark case as the AI trader is active in the market,

i.e. when invests in the risky asset. From period 29, the AI trader allocates less on the stock

causing a drop in aggregate elasticity. As this quantity reduces the representative investor

responds to this changes by investing more in the outside asset. Compared to Fig. 2, the

drop in aggregate elasticity is more pronounced (-3% vs. -2.6%): the parameter χ in the

demand function of the representative investor controls the sensitivity of portfolio allocation

to changes in aggregate stock elasticity. Even though the AI trader reduces its allocation to

the risky asset less compared to the case of low strategic response, the impact on aggregate

elasticity is amplified by the parameter χ.

Figure 3: Aggregate stock elasticity and AI trader portfolio allocation (χ “ 2.5)

10 20 30 40 50 60

Time

1.32

1.34

1.36

1.38

1.4

1.42

1.44

With AI trader

Benchmark

10 20 30 40 50 60

Time

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20

25

30

35

40

45

50

55

AI trader weight on risky asset

Price of the risky asset

10 20 30 40 50 60

Time

0.96

0.98

1

1.02

1.04

1.06

1.08

Notes: This figure reports iq the aggregate stock elasticity with and without AI trader (left panel), iiqthe ratio of aggregate
stock elasticity with and without AI trader (mid panel), the allocation of the AI trader and price of the risky asset (right panel).
Individual-specific elasticity is estimated conditional on χ “ 2.5. Dashed lines denote the 90% confidence interval across 20
simulations.
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5 Conclusions

In the last 20 years, U.S. financial markets have been characterized by reducing aggregate

elasticity, leading to increased volatility and lower price informativeness (Haddad et al.,

2021). This phenomenon can be partly explained by the rise of passive investing, which, in

turn, is a consequence of increased costs of information processing. Almost simultaneously,

algorithmic trading has become more pervasive in financial markets, accounting for around

70% of market orders in recent years (SEC, ESMA). This technology overcomes the costs

of acquiring, processing, and translating information into investment decisions and is thus

used (also) for active trading.

Whether financial markets would benefit from increased aggregate elasticity due to the

presence of algorithmic trading remains an open question for both researchers and policy-

makers. In this paper, I study the impact of artificial intelligence (AI) trading on financial

markets’ aggregate elasticity to shed light on whether and under which conditions AI traders

provide liquidity to the market or withdraw it instead. Building on Haddad et al. (2021), I

simulate a simplified financial market populated by a representative investor, whose demand

is calibrated from the data, and an AI trader. The impact on aggregate elasticity is not

obvious a priori: on the one hand, the individual-specific elasticity of the AI trader (i.e., how

aggressively it trades) is positive and mostly larger than that of the representative investor.

On the other hand, the ultimate effect on aggregate elasticity depends on whether and to

what extent the AI trader allocates to the risky asset.

Results show that during boom market periods, the AI trader increases the aggregate

elasticity of the market compared to the benchmark simulation where only the representative

investor trades. However, as soon as prices decline, the AI trader reduces its exposure to the

risky asset and thus the market elasticity. In turn, the representative investor reacts to the

change in aggregate elasticity, further reducing its demand. This effect is amplified when the

degree of strategic response is large, i.e., when agents react sharply to changes in aggregate

elasticity. Overall, the estimated reduction is around 3%.
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The model illustrates the channels that determine the level of aggregate elasticity, the

individual-specific elasticity, and the allocation to the risky asset. Next steps in this work

would include enriching the model with a larger number of assets and AI traders. The

goal would be to shed light on the interactions between AI traders’ allocations and how

these would impact aggregate elasticity. In these exercises, the degree of strategic response

is taken as given, and together with the assumption of the presence of a representative

investor, this limits the realism of the model as well as the study of how AI traders shape

market competitiveness. To this end, the next step is to simulate a financial market that,

without AI traders, replicates the market statistics we observe in the data. Within this

framework, I will study the role of AI traders for aggregate elasticity and how these agents

impact market competitiveness through the degree of strategic response.
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A Simulating stock characteristics

For the purpose of constructing a fictitious financial market I select 10 stocks that are

alive from 1982Q1 to 2022Q4. Details on the stocks are provided in Table 2:

Table 2: Stock names and industry

Ticker Name Industry
IBM International Business Machines Corporation Technology & Consulting
AXP American Express Financial Services
CPB Campbell Soup Company Food & Beverage
GE General Electric Company Conglomerate / Industrial
XOM Exxon Mobil Corporation Oil & Gas
INTC Intel Corporation Technology & Semiconductors
KO The Coca-Cola Company Food & Beverage
PFE Pfizer Inc. Pharmaceuticals
WMT Walmart Inc. Retail
XRX Xerox Holdings Corporation Technology & Document Solutions

Stock characteristics, log book equity and dividends are simulated stock-by-stock from

the data. The simulated series are then used to train (and validate) the algorithm.

Log book equity For each each I consider the time period from 1982Q1 to 2022Q4 and

fit an AR(1) process. Using the estimated autoregressive coefficient and the variance of

innovation, I simulate the evolution of log book equity. Summary statistics are provided in

Table 3.

Dividends To maintain the dividend-to-price ratio consistent with the data, I compute

model Dn,t{Pn,t´1. For each stock, I account for the frequency of dividend payments and

model it from a uniform distribution. The dividend-to-price payment is modelled as a trun-

cate normal. Table 3 reports the mean and standard deviation of dividend-to-price of the

data and simulated series.
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Table 3: Characteristics, latent demand and returns empirical moments

log book equity IBM AXP CPB GE XOM INTC KO PFE WMT XRX
Data (mean) 6.420733 10.98275 6.819517 7.879842 5.751793 5.10696 8.974074 8.935129 5.614576 4.445884
Simulation (mean) 4.825207 9.801349 5.803029 7.094325 3.375961 2.903987 8.226762 7.751597 5.405748 2.76012
Data (std. dev.) 0.927985 0.939825 0.560494 0.609443 0.845046 1.681084 0.93541 0.577574 0.693133 0.892253
Simulation (std. dev.) 0.902681 1.95134 2.370549 2.316138 1.160787 1.09987 3.509188 1.5197 0.976696 0.897199
Dividends to Pt´1 IBM AXP CPB GE XOM INTC KO PFE WMT XRX
Data (mean) 0.089816 0 0.002855 0.038576 0 0.082899 0.568473 0 0.001596 0.00343
Simulation (mean) 0.090149 0 0.002637 0.038171 0 0.172441 0.623209 0 0.001709 0.003302
Data (std. dev.) 0.222077 0 0.03645 0.17225 0 0.463557 0.68346 0 0.014612 0.043796
Simulation (std. dev.) 0.22094 0 0.034932 0.170494 0 0.493821 0.675759 0 0.015512 0.042841

Notes: This table reports the mean and standard deviation of log book equity and dividend-to-price ratio
of data and simulated series. Sample: 1982Q1 – 2022Q4.
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B Additional results

B.1 Market clearing condition

At every point in time I compute the market clearing condition, defined as:

Atwt ` AUMAI
t wAI

t ´ PtSt

Put it differently, I verify that sum of allocation on each stock equals the market capi-

talization. Figure 4 reports the distribution of the market clearing condition. Notice that

the scale of the figure is 10´14, which is within machine precision.

Figure 4: Market clearing

Notes: This figure reports the distribution of the difference between sum of allocation on each stock and the market capitaliza-
tion.
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