
Causality versus Serial Correlation:
an Asymmetric Portmanteau Test*

Amedeo Andriollo †

JOB MARKET PAPER

Latest version: October 27, 2024

Abstract

I study the problem of testing for noncausality in mean (one-sided conditional mean
independence) between two multivariate time series within the class of testing pro-
cedures based on serial cross-correlation. Existing tests in this class either require
parametrization of the joint process or are characterized under the null hypothesis of
mutual independence. As a result, these tests may suffer from size distortions when
misspecifying inverse causality, i.e., dependencies in the causal direction opposite to
the one being tested. I propose a modified Portmanteau test statistic that incorporates
a correction term to offset the influence of inverse causality, thereby eliminating the
need to fully model the joint dynamics. I demonstrate that the proposed test statistic
converges asymptotically to a standard normal distribution under the null hypothesis
of noncausality in mean, resulting in correct asymptotic size. As an empirical applica-
tion, I explore the statistical properties of my proposed test by studying three widely
used measures of macroeconomic structural shocks, showing that the proposed test
provides more reliable inference than the benchmark test.
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1 Introduction

In this paper I study the problem of testing for noncausality in mean between multivariate
time series within the class of testing procedures based on serial cross-correlation.

Consider two zero-mean multivariate time series {Xt, Zt; t = 1, .., T}. Noncausality in
mean, from Z to X , is understood as the property of one-sided conditional mean indepen-
dence of the present X , with respect to the past X and the past and present of Z.
The null hypothesis of interest is:

H0 : E[Xt|{Xs}s<t, {Zs}s≤t] = 0. (1)

Testing for this form of conditional mean independence in time series models plays an
important role in contexts such as economic policy analysis (see White and Pettenuzzo
(2014) for the connection with Granger causality), forecasting evaluation (e.g., the one-
step conditional predictive ability test in Giacomini and White (2006)), and the study of
business cycle fluctuations via impulse response analysis (see Ramey (2016), and in par-
ticular Chen et al. (2017)).
In these instances, many key questions can often be recast as problems of model specifica-
tion testing in the presence of omitted variables. After specifying the conditional mean for
some variables of interest, practitioners typically have interest in jointly testing two con-
ditions: i) whether the residuals of the model, {Xt}, are conditionally mean independent
with respect to their past (i.e., if the dynamic model is correctly specified), and ii) whether
the variables omitted from the model, {Zt}, do not influence the mean of the variables of
interest. The null H0 of eq.(1) implies both conditions.

As an illustrative example, consider the variable X as a series of economic policy un-
certainty shocks (i.e., unanticipated movements/news associated to the level of uncer-
tainty about economic policy, see Baker et al. (2016)), estimated as residuals from a Struc-
tural Vector AutoRegressive (SVAR) model. The null hypothesis of interest H0 then jointly
examines two conditions: i) whether the model is specified such that the shocks, {Xt}, are
(weakly) exogenous with respect to the other present and past of the endogenous vari-
ables in the model (Ramey (2016)); ii) whether other macroeconomic variables omitted
from the SVAR model, {Zt}, do not influence the exogeneity of the shock series. If ei-
ther condition is violated, the shock series is not an exogenous fluctuation of uncertainty,
calling into question the validity of the impulse response analysis.

Existing tests based on serial cross-correlation either require modelling the conditional
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mean of the joint process (e.g., Wald tests, Hong (1996a); a similar argument extends to
Hong and Lee (2005) and Escanciano and Velasco (2006)), or are characterized under the
null hypothesis of mutual independence (e.g., Portmanteau tests, Haugh (1976), Hong
(1996b)), being a stricter condition than noncausality in mean, as it imposes bidirectional
noncausality in the entire distributions (not restricted to the mean). In both cases, infer-
ence may be jeopardized because of size distortions in the presence of misspecification
when modelling inverse causality, i.e., dependencies from past and present X to present
Z. This is particularly crucial in the example discussed, where it is desirable that infer-
ence about the exogeneity of the economic policy uncertainty shocks is not distorted by
inverse causality, given that dependencies from past shocks, X , to the present of omitted
macroeconomic variables, Z, are likely to be exist.

Using the Portmanteau test (i.e., a weighted sum of squared cross-correlation at differ-
ent lags) as benchmark statistic, I address the limitations of the existing tests by proposing
a modification of the test statistic, that differs by introducing an easy-to-compute correc-
tion term which offsets the influence of inverse causality. Intuitively, the correction term
accounts for asymmetry in the sum of cross-correlation: while the squares (or quadratic
norms) of cross-correlation symmetrically incorporate both directions of causality in their
variance, the correction term isolates the component related to inverse causality, retaining
only the one associated with the tested direction. As a result, my methodology avoids the
need to fully model the joint dynamics, making it robust to misspecifications of the depen-
dencies between present Z and the past and present of X . This is especially useful when
there is no prior knowledge about how external variables interact with the dynamic sys-
tem, allowing for a more agnostic approach to the modelling of joint dependence structure
of the time series.

I show that the corrected version of the benchmark statistic achieves asymptotic nor-
mality under the null hypothesis H0 of interest, which ensures that the test has the correct
size in large samples. This represents a clear improvement over the existing testing strate-
gies whose asymptotic properties are studied under null hypotheses that imply the one of
interest. These methodologies, usually tailored to test for mutual independence, may not
be suitable for conducting inference about the specific direction of causality being tested.
In fact, such procedures are likely to suffer from size distortions when the data generating
process (DGP) exhibits mean independence of present X with respect to the past of the
joint process, but present Z is not independent from the past and present of X . Because
the variance of these test statistics accounts for dependencies in both directions -from Z
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to X and from X to Z- it may be inflated relative to that of a standard normal distri-
bution, leading to incorrect inference due to over-rejection. A similar issue arises with
testing strategies that require modelling the conditional mean of the joint process. In the
presence of misspecified inverse causality, size distortions may occur when present X is
mean independent with respect to the past of the joint process, but present Z is not mean
independent with respect to the past and present of X .

My testing strategy builds on Hong (1996b), whose test statistic is the weighted sum
of squared cross-correlation between univariate time series at positive and negative lags,
with weights determined by a kernel function. Given the one-sided nature of the hypoth-
esis of interest, and following Hong (2001) and Bouhaddioui and Roy (2006), I consider its
multivariate formulation restricted to positive lags as the benchmark statistic, which I re-
gard as representative of the class of tests based on serial cross-correlation. Specifically, the
benchmark is defined as the weighted sum of quadratic forms (the ℓ2 norm) of the cross-
correlation between the two multivariate processes at positive lags. My methodology
differs from the benchmark by introducing a correction term that removes the influence
of dependencies from X to Z, which enters in the statistic due the choice of the quadratic
norm. Specifically, the correction term differentiates out the cross-product terms in the
weighted sum associated to high-order moments of the joint process which capture the
direction of causality inverse to the one being tested.

Pertaining to the assumptions underlying the asymptotic theory, I prioritize restric-
tions on the process X rather than Z, motivated by two reasons: i) the practitioner has
no prior knowledge on how the omitted variables are entering the dynamic system; ii)
the practitioner might have interest in placing additional restrictions on the variables of
interest, as those translate in sharper identifying restrictions on the error terms {Xt} (e.g.,
restrictions on the second moments for the conditional variance of the process). In par-
ticular, the main theorem requires the process {Xt} to be a martingale in the second and
fourth moments, i.e. to be conditionally homoskedastic and homokurtic.1 While the latter
condition is needed to achieve the convergence to normality, the conditional homoskedas-
ticity is essential to isolate the effects on the quadratic forms when testing for the condi-
tional mean.2 Put in technical terms, due the choice of the norm, the former condition is

1Note that the null hypothesis of eq.(1) can be read as testing for the martingale difference property of
the process {Xt}, with respect to a conditioning set that includes the past of the process itself, {Xs; s < t},
enlarged by the present and past of an additional time series, {Zs; s ≤ t}. Thus, it implies that the process
{Xt} is martingale in the first moment.

2When relaxing the assumption of independence, Hong (2001)’s footnote 8 briefly discussed the condi-
tion of conditional homokurtosis for establishing the asymptotic normality of his testing procedure.
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necessary to correctly center the distribution of the test statistic under the null hypothe-
sis of interest. Concerning the construction of the test statistic, the main result about the
asymptotic normality is initially established under the assumption that the processes are
observed. I then relax this assumption, accommodating scenarios where the processes are
estimated. Such an instance, my methodology allows for flexible specifications of the con-
ditional mean of the variables of interest, thus potentially covering a large class of DGPs.

Regarding the properties of the proposed statistic under the alternative hypotheses
(i.e., its power), I consider the class of fixed alternatives characterised by nonzero cross-
correlation between present X and present and past Z, as in Hong (1996a) and Hong
(1996b). Under such class of alternatives, I show that, asymptotically, the corrected statis-
tic has power equal to the benchmark testing procedures, as the correction term becomes
asymptotic negligible, due the finiteness of the fourth-order cumulants. Similarly to the
existing procedures based on serial cross-correlation, the test has no power against al-
ternatives that, either i) have strong auto-correlation in the process X ; ii) have non-zero
causality in mean from Z to X , i.e. E[Xt|{Xs}s<t, {Zs}s≤t] ̸= 0, that is not reflected in any
linear association between {Xt} and {Zs; s ≤ t} or, in other words, when the time series
are uncorrelated but the process X is not mean-independent (non-martingale).

To validate the proposed testing strategy, I provide some simulation evidence. I study
the finite sample properties of the testing procedures in a set of Monte Carlo experiments,
with the purpose of examining the impact of the correction term. The Monte Carlo sim-
ulations validate the asymptotic theory: when the magnitude of the inverse causality is
relevant, the corrected test statistic has good finite sample properties under the null hy-
pothesis, with empirical size close to the nominal one, whereas the benchmark test ex-
hibits rejection rates above the nominal level. This corroborates the theoretical discussion
about the size distortions of the benchmark statistic. Regarding the empirical frequen-
cies under the alternatives, both testing strategies generally have similar empirical power
when there is nonzero cross-correlation between present X and present and past Z.

As empirical application, I study the property of fundamentalness, also known as in-
vertibility, of popular measures of macroeconomic structural shocks. A structural shock
is considered fundamental when it can be expressed as a linear function of the present
and past values of the endogenous variables in the model. Intuitively, fundamentalness is
related to the property of the shock being an exogenous fluctuation that depends only on
the present and past of the endogenous variables in the model, rather than external vari-
ables omitted from the dynamic system or future realizations of the internal variables (see
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Giannone and Reichlin (2006)). Common practice in the Structural VectorAutoRegressive
(SVAR) literature is to assume this condition to hold, despite numerous empirical find-
ings suggesting otherwise (see the survey of Alessi et al. (2011)). Failure to account for
this can result in misleading inference because of model misspecification issues. Testing
for fundamentalness can be reformulated into testing for the null hypothesis in eq.(1) un-
der general conditions (see Theorem 1 in Chen et al. (2017)). With this in mind, I use my
testing strategy to investigate the fundamentalness of three popular measures of macroe-
conomic structural shocks: Baker et al. (2016)’s economic policy uncertainty (EPU) shock,
Jarociński and Karadi (2020)’s monetary policy information shock, and Känzig (2023)’s
carbon policy shock. For all three series of shocks, the two testing procedures –the bench-
mark and its corrected version– deliver different results. By inspecting the test statistics,
we notice that, in all the scenarios, the benchmark testing procedure fails to produce re-
liable conclusions because the inverse causality channel is non negligible. This in turn
underscores the validity of the proposed approach, as the corrected test statistic is robust
to misspecification of such direction of causality.

I conclude that the EPU structural shocks are not fundamental, when testing for the
null hypothesis with respect to the McCracken and Ng (2016)’s macroeconomic factors.
Given this additional set of controls, which alleviates the problem of non-fundamentalness,
I revisit Diercks et al. (2024): when controlling for these additional macroeconomic factors
previously omitted, I find that the response of inflation to the EPU shock becomes dras-
tically positive. In light of this evidence, together with the contractionary responses of
the other variables to the EPU shock, Baker et al. (2016)’s EPU structural shock can be
regarded as a supply-side negative shock (similar to an ‘expectational’ shock, see Ascari
et al. (2023)). The other two shocks, Jarociński and Karadi (2020)’s and Känzig (2023)’s,
narrate a cautionary tale, by highlighting again the fragility of the benchmark test statistic.
I present two scenarios where the practitioner might conclude the non-fundamentalness
of the shocks when relying on the benchmark procedure -a conclusion mainly driven by
the presence of inverse causality between the structural shocks and the set of omitted vari-
ables.

RELATED LITERATURE. In this paper, I contribute to three strands of the literature.
First, I contribute to the literature related to specification testing in dynamic (linear)

models whose tests are typically characterized under the null hypothesis of mutual inde-
pendence. Early examples are the methodologies of Hosking (1980) and Li and McLeod
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(1981), which are essentially Portmanteau (or Ljung and Box (1978)’s) test statistics, i.e.,
statistics based on the sum of squared auto-correlation of residuals with respect to a fixed
number of lags. Both papers study the asymptotic distribution of the residuals of a fitted
multivariate ARMA model under the innovations being independent and identically dis-
tributed. Opposite to fitting a multivariate model, Haugh (1976) proposes a two-step pro-
cedures to test for independence between two sets of time series, which involves i) fitting
univariate models to each of the series, and ii) studying the sum of the cross-correlation at
different lags between the two residual series. In particular, note that Haugh (1976) does
not require the modelling of the joint process. A series of papers, Hong (1996a) and Hong
(1996b), generalises the Box and Pierce (1970)’s and Haugh (1976)’s tests, by proposing
a test statistic based on the sum of weighted squares of residual cross-correlation, with
weights depending on a kernel function. Bouhaddioui and Roy (2006) extend the testing
strategy of Hong (1996b) to multivariate processes. In this paper, I adopt this last testing
strategy, restricted to positive lags, as the benchmark. Thus, I improve on the literature
about testing procedures that follows from Haugh (1976), by introducing a correction term
which makes them more suitable for conducting inference about a specific direction of
causality.

Second, I contribute to the literature concerning the testing for the martingale differ-
ence hypothesis (MDH). When considered for specification testing, such testing procedure
usually require modelling the conditional mean of the joint process. An early example is
Durlauf (1991), which proposes a test statistic based on estimates of the spectral density
(or auto-correlation function), at different lags. Stemming from Hong (1999), two influ-
ential papers, Hong and Lee (2005) and Escanciano and Velasco (2006), generalize the
previous approach to linear and nonlinear serial dependencies through the so-called gen-
eralized spectral density, thus building on the sum of auto-correlation between empirical
characteristic functions at different lags. Similarly to Hong (1996a), Hong and Lee (2005)
proposes a kernel-based spectral test designed explicitly to study the problem of specifi-
cation testing for the conditional mean models in time series. Based on Taylor expansions,
Escanciano and Velasco (2006) examines the problem of MDH for an observed time series.
Under additional assumptions, this last testing procedure can be applied in the context
of specification testing (e.g., Wang et al. (2022)).3 These two testing strategies should be
viewed as extensions of Ljung and Box (1978)’s approach rather than Haugh (1976)’s. Both

3The main difference between the two approaches is that, while the estimation error does not impact the
limit distribution in Hong and Lee (2005), it does in Escanciano and Velasco (2006) as no longer asymptoti-
cally negligible.
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methodologies require to specify the joint conditional mean of the multivariate time se-
ries, {Xt, Zt}, in order to test the null hypothesis of eq. (1), which, after modelling the
joint mean, is interpreted as testing for the MDH in the estimated residuals. Thus, an ar-
gument similar to that used for the class of tests following Haugh (1976) applies here as
well. In short, I improve on this second strand of literature by allowing the bypassing of
modelling both directions of causality in the mean, from Z to X and from X to Z, when
testing the null hypothesis of interest.

Similarly to the aforementioned literature, I presume the weighting function associated
to my statistic to be integrable. Székely et al. (2007) introduce a new measure of depen-
dence between random vectors which allows for non-integrable weighting functions. A
series of papers, Shao and Zhang (2014) and Lee and Shao (2018), extends the Székely et al.
(2007)’s approach to the context of martingale difference hypothesis. Two recent papers
develop new testing strategies based on Escanciano and Velasco (2006)’s approach and
Lee and Shao (2018)’s statistic: Wang et al. (2022) and Wang (2024). Since both testing pro-
cedures fall within this previous strand of literature, my contribution also applies to this
recent literature. However, extending my approach to non-integrable weighting functions
is left for future research.

Third and finally, I contribute to the literature on testing the fundamentalness of struc-
tural shocks. Specifically, I propose a new testing strategy that integrates two approaches
into one: i) those using Granger causality tests (e.g., Giannone and Reichlin (2006); Forni
and Gambetti (2014)), and ii) those associated with the testing for conditional lagged ex-
ogeneity (e.g., Chen et al. (2017), Miranda-Agrippino and Ricco (2023)). Moreover, I pro-
vide new insights about the Economic Policy Uncertainty (EPU) shock series of Baker et al.
(2016). By controlling for additional macroeconomic factors, I reveal that the EPU shock
exhibits characteristics of a superadditive negative supply shock. This finding not only
strengthens the results of Diercks et al. (2024) but suggests that the EPU structural shock
behaves similarly to an ’expectational’ shock as in Ascari et al. (2023).

The paper is structured as follows: Section 2 introduces the benchmark and the pro-
posed test statistics, by discussing the application of the correction term. In particular,
the definition of the asymmetric Portmanteau statistic is found in Section 2.2. Section
3 presents the asymptotic theory for the corrected test statistic. Section 4 offers a set of
Monte Carlo simulations to investigate the finite-sample properties of the testing proce-
dure. Section 5 presents the empirical application. Section 6 concludes.
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NOTATION. Throughout the paper, I use the following standard notation. vec(·) stands
for the vectorization operator, diag(·) is the main diagonal of the matrix. I denote d−→ as
convergence in distribution, p−→ as convergence in probability. ⊥ stands for orthogonality,
and ⊥⊥ for mutual independence. The notation ∼ reads as ‘distributed as’. Given two
vectors a and b, I denote the scalar/inner product ⟨a, b⟩ = a′b, a⊗ b the Kronecker product
between them, and ||a|| =

√
⟨a, a⟩ stands for the Euclidean (or ℓ2) norm of the vector a.

For a real positive semidefinite matrix A, we denote its square-root the matrix B = (A)1/2

such that A = BB = BB′, and ||A||F =
√

tr(A′A) its Frobenius norm, where tr(·) is the
trace operator.

2 The test statistics based on ℓ2-norm

Section 2.1 covers the primary framework and provides a formal discussion on the class
of Portmanteau-type test statistics. I specifically elucidate the link between the variance
of existing test statistics and inverse causality. Building on this, in Section 2.2, I propose a
new test statistic for testing for the null hypothesis of interest.

2.1 Preliminaries and a discussion on a class of test statistics

Let {Xt, Zt; t = 1, .., T} denote two zero-mean multivariate squared integrable stationary
processes of respective dimensions d1, d2 ∈ N+. Let I(t−1) be the information set available
at period t−1 of the joint time series {Zt, Xs, Zs; s < t}, where, together with the past of the
process X , the past and present of the process Z are included. If not explicitly mentioned,
I suppose these processes to be standardized.4

Before presenting my proposed new test statistic (eq. (5)) in Section 2.2, I provide a
discussion of the testing strategies based on serial cross-correlation à la Hong (1996b). As
a benchmark of this class of tests, I consider the following one-sided test statistic based on
the sum of weighted quadratic forms:

Tω =
T−1∑
j=0

ω(j)Q(j) (2)

Q(j) = ||Γ̂XZ(j)||2F = tr
[
Γ̂XZ(j)

′Γ̂XZ(j)
]
=
∣∣∣∣∣∣vec

[
Γ̂XZ(j)

]∣∣∣∣∣∣2 (3)

4In other words, Var[Xt] = E[XtX
′
t] = Id1

and Var[Zt] = E[ZtZ
′
t] = Id2

. This assumption is relaxed in
Section 3.2.
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for some nonrandom non-negative weights {ω(j)}, where Γ̂XZ(j) is the sample cross-
correlation between the processes:

Γ̂XZ(j) =
1

T

T∑
t=j+1

XtZ
′
t−j, ΓXZ(j) = E[XtZ

′
t−j], j = 0, 1, ..., T − 1

The test statistic is one-sided (j ≥ 0) as our focus is on a particular direction of causality
that is tested by H0, i.e., the influence of past and present of Z, {Zs; s ≤ t}, on the present
X , {Xt}.5 The quadratic forms correspond to the squared ℓ2-norms of the vectorized sam-
ple cross-correlation matrices, or alternatively, their squared Frobenius norms.6

Given its formulation, the test statistic can be interpreted as belonging to the class of Port-
manteau tests. The statistic has an equivalent formulation in terms of spectral domain (see
Lemma A.1 in Appendix A.1), where it is explicit that the weights {ω(j)} are determined
by the chosen kernel estimator of the cross-spectrum.

By a perturbation argument, it can be shown that the quadratic form is connected
with the Kullback–Leibler divergence between {Xt} and {Zt−j} as if jointly normally dis-
tributed.7 This result is shown in Appendix A.2. Note that the Kullback–Leibler diver-
gence has been proposed as measure of causality between time series in Geweke (1982),
Gourieroux et al. (1987) and Dufour and Taamouti (2010).

The quadratic form, based on the ℓ2 norm, treats the direction of causality symmetri-
cally. This becomes apparent when decomposing the test statistic: the inner product of
cross-correlation matrices generates cross-product terms where variables X and Z enter
symmetrically across different time lags. To show it formally, by means of some algebra
(Lemma A.2):

5See also Hong (1996a) and Hong (2001).
6This natural way of generalizing the covariance-variance analysis from univariate to the multivariate

dates back to Li and McLeod (1981). Further discussion is in Bouhaddioui and Roy (2006). For the connec-
tion of the one-sided test statistic to Bouhaddioui and Roy (2006)’s statistic, please refer to Lemma A.3 in
Appendix A. For the connection between the Euclidean norm and the trace, please refer to the results about
the trace in chapter 4 of Lütkepohl (1997).

7The KL divergence, DKL, betweeen two mean-zero k-multivariate normal with covariance-variance
matrices Σ and Σ0 = Ik is defined as: DKL = 1

2 (ln(det(Ik)/ det(Σ)) + tr[Σ]− k)
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Tω = T1ω + T2ω (4)

T1ω =
1

T 2

T−1∑
j=0

ω(j)
T∑

t=j+1

||Xt||2||Zt−j||2

T2ω =
1

T 2

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t

< Xt, Xs >< Zt−j, Zs−j >

The test statistic Tω consists of two components, T1ω and T2ω. The former is the sum of
the squared products and the latter is the sum of the cross-products. The sum of cross-
products, T2ω, incorporates the symmetric interaction between time indexes s and t, and
thus generates cross-product terms that blend information about both directions of causal-
ity. This symmetry hints that the quadratic form, when used for testing the null hypothe-
sis, may not effectively distinguish between opposing directions of causality.

A remark is needed. The distinction between components becomes relevant in under-
standing the asymptotic properties of the testing strategies based on Hong (1996b) and
subsequent work. Intuitively, the latter sum, T2ω, dominates the former under the null
hypothesis, therefore it controls for the size of the test; conversely, the first sum, T1ω, dom-
inates the other under (a class of) the alternatives, and so regulates the power of the test.8

With the decomposition of eq.(4) in mind, I now provide a basic example to clarify the
problem of testing the null in eq.(1) with the test statistic based on quadratic forms, Tω.
In particular, this shows how the cross-product terms may incorporate information about
both directions of causality. In the example, we adopt two conditions: i) the marginal
independence of the joint process {Xt, Zt}, i.e, Xt ⊥⊥ Xk, Zt ⊥⊥ Zk, t ̸= k; ii) the process
X is conditionally homoskedastic with respect to the joint information set I(t − 1), i.e.,
E[||Xt||2|I(t− 1)] = E[||Xt||2].

Proposition 1. INVERSE CAUSALITY IN THE VARIANCE.
Let {Xt, Zt} be marginally i.i.d. processes with finite fourth moments, such that the process {Xt}
be conditionally homoskedastic with respect to the joint information set, I(t − 1). Under the null
in eq.(1), the variance of test statistic, Tω, depends on the inverse causality, from X to Z, in the

8In Proposition 2, I describe in detail the asymptotic properties of the test under the null. For the power
of the test, refer to Theorem 3 and the discussion that follows.
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second moments. Indeed, we have that the variance of the cross-products of T2ω is:

E[(< Xt, Xs >< Zt−j, Zs−j >)2] =

(d1d2)
2, s ≥ t− j

d1E[||Xs||2 < Zt−j, Zs−j >
2], s < t− j

If we assume the two processes are independent, Xt ⊥⊥ Zs, ∀s, t , we have:

E[(< Xt, Xs >< Zt−j, Zs−j >)2] = (d1d2)
2

Proof. To show that the variance of test statistic, Tω, depends on the inverse causality in
the second moments, it is sufficient to study the first two moments of the two components
of the quadratic forms, Q(j), as described in eq.(4) (Lemma A.2).
By the conditional homoskedasticity of {Xt} and the law of iterated expectations, we have
that the first two moments of the first component, i.e. the squared products, ||Xt||2||Zt−j||2,
are:

E[||Xt||2||Zt−j||2] = d1d2, E[(||Xt||2||Zt−j||2)2] = E[||Xt||4]E[||Zt||4] = κ1κ2

which means that, for a fixed j ≥ 0, the squared products that characterizes the first term
of the test statistic, T1ω, are independent with respect to the inverse causality (i.e., the
causality from X to Z).
To study the moments of the cross-products, without loss of generality, assume t > s.
We have:

E[(< Xt, Xs >< Zt−j, Zs−j >)] = E[X ′
t]E[Xs < Zt−j, Zs−j >)] = 0

E[(< Xt, Xs >< Zt−j, Zs−j >)2] = d1E[||Xs||2 < Zt−j, Zs−j >
2]

where the first equality is due the null in eq.(1), and the third equality is because of the
conditional homoskedasticity of the process X .
While we cannot go further in the case s < t − j without additional assumptions on the
dependence structure, in the case of s ≥ t− j we can further say that:

E[||Xs||2 < Zt−j, Zs−j >
2] = E[||Xs||2]E[< Zt−j, Zs−j >

2] = d1(d2)
2

This highlights that, for a fixed j ≥ 0, the cross-products that characterizes the second
term of the test statistic, T2ω, are independent with respect to the inverse causality only
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when s ≥ t− j.
If the two processes are independent, then regardless of the time indexes:

E[||Xs||2 < Zt−j, Zs−j >
2] = E[||Xs||2]E[||Zt−j||2]E[||Zs−j||2] = d1(d2)

2

which is aligned to the case when s ≥ t− j.

Proposition 1 demonstrates that, under the null hypothesis, the test statistic Tω in-
corporates, through the cross-products in T2ω, the inverse causality, from X to Z, in the
second moments. In particular, we see that, under the additional condition of conditional
homoskedasticity, the variance of the component T2ω depends on the cross-moments of
the joint process {Xt, Zt}.
This no longer holds in two cases: i) when the processes are independent, Xt ⊥⊥ Zs,∀t, s,
which means that the (strict) exogeneity holds both from Z to X and from X to Z, at any
lags/leads; ii) when a specific ordering of the time indexes is met, s ≥ t− j.
Note that, first, the result of Proposition 1 also follows from assuming the independence of
present X with respect to the present Z and the past of X and Z, i.e., Xt ⊥⊥ Zs1 , Xs2 , with
s1 ≤ t, s2 < t (similar instances of such assumption are found in Hong et al. (2009), Can-
delon and Tokpavi (2016));9 second, the presence of such dependencies in the variances
of the cross-moments occurs even under the restrictive assumptions on the individual
behavior of the sequences, that is the multivariate time series being marginally i.i.d.

Lemma 1. TOY EXAMPLES: conditional heteroskedastic DGPs.

a) Let {Xt, Zt} be a bivariate mean-zero and marginally i.i.d. process, with:

Z2
t = f(Xt−1) + ut, ut ∼ i.i.d.(1, σ2

u), Xt ⊥⊥ us, ∀s, t

for some measurable function f(·) : R → R.
Denote: σ2

Z = Var[Zt] and φ = (E[X2
t f(Xt)] + 1)/σ2

Z .
We have:

Var[T2ω] =
1

T 4

T−2∑
j=0

ω2(j)
(
Σ1(j) + ∆1(j)

)
9This condition, coupled with the marginal i.i.d., is weaker than statistical independence, Xt ⊥⊥ Zs,∀s, t,

where the absence of any dependence structure translates into an absence of directionality in terms of causal-
ity or, in other words, a symmetric/bidirectional noncausality for the time series, from X to Z and from Z
to X .
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with:

Σ1(j) = σ4
Z(T − j)(T − j − 1)

∆1(j) = σ4
Z

T∑
s,t=j+1,s ̸=t

(φ− 1)1{s = t− j − 1}

An identical result holds for the scenarios where the DGPs is such:

Zt = g(Xt−1) + ϵt, ϵt ∼ i.i.d.(0, 1), Xt ⊥⊥ ϵs, ∀s, t

for some measurable function g(·) : R → R, when denoting: φ = (E[X2
t g(Xt)

2] + 1)/σ2
Z .

b) GARCH-type process. Let {Xt, Zt} be a bivariate mean-zero process, with:

Z2
t = αZ2

t−1 + h(Xt−1) + ut, Xt ∼ i.i.d.(0, 1), ut ∼ i.i.d.(1, σ2
u), Xt ⊥⊥ us, ∀s, t

for some measurable function h(·) : R → R.
Denote: σ2

e = E[(h(Xt−1) + ut)
2] and µh = E[h(Xs+1)]. Denote ϑ = E[h(Xs)X

2
s ].

We have:

Var[T2ω] =
1

T 4

T−2∑
j=0

ω2(j)
(
Σ2(j) + ∆2(j)

)
with:

Σ2(j) =
σ2
e

1− α2

 τ(j)∑
υ1=1

α|j−υ1| +

Υ(j)∑
υ2=1

αυ2+j

+
(µh + 1)2

1− α

 τ(j)∑
υ1=1

|j−υ1|−1∑
l1=0

αl1 +

Υ(j)∑
υ2=1

j+υ2−1∑
l2=0

αl2


∆2(j) =

(µh + 1)2

1− α

Υ(j)∑
υ2=1

(
αυ2−1ϑ+ µh

υ2−2∑
l=0

αl

)

where: i) τ(j) is the number of times that s ≥ t − j up to T , at a given j ≥ 0, such that
s ̸= t, and s, t = j + 1; ii) Υ(j) is the number of times that s < t− j, with respect to the same
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conditions. In particular, we have:

τ(j) =
(T − j)(T − j − 1)

2
+ 1(2j − T − 1 < 0) · j(T − 3j/2− 1/2)

+ 1(2j − T − 1 ≥ 0) · (T − j)(T − j − 1)/2

Υ(j) = (T − j)(T − j − 1)− τ(j)

Proof. The proofs are in Appendix A.3.

Lemma 1 derives explicitly how the dependencies from X to Z affect the variance of
the second term of the test statistic, T2ω, under two examples of general conditional het-
eroskedastic DGPs. Both examples pertain to DGPs where X influences Z at the immedi-
ate horizon, encompassing dynamics in the first and second-order moments, both linear
and non-linear. Unlike the first set of DGPs, the second scenario includes DGPs where the
time series Z exhibits autoregressive second-order moments.
In both scenarios, the variance of statistic, T2ω, consists of two components, {Σi}i=1,2 and
{∆i}i=1,2. The first components, {Σi}i=1,2, represent the variance of the statistic as if there
is no causality from present and past X to present Z. Conversely, the second components,
{∆i}i=1,2, capture the dependence from {Xt−1} to {Zt}, which occurs through the condi-
tional variance (or the conditional mean) of the process Z. In other words, the variance
of statistic, T2ω, is augmented by an additional term due to the presence of inverse causal-
ity. As already stated by Proposition 1, these additional terms shows up, at different lags
j ≥ 0, when the time indexes are such that: s < t− j.
Note that the additional terms appear in the variances despite there is no causality from
past and present Z to present X . Indeed, in both scenarios, we have: Xt ⊥⊥ {Xs, Zs+1}s<t.
In conclusions, Lemma 1 displays that the augmentation of the variance of the test statistic
depends essentially on three features:

a) the timing of the inverse causality from X to Z;
(in the examples, the functions {f(·), g(·), h(·)});

b) the functional forms of the conditional mean and variance of the process Z;
(e.g., whether the first/second moments are autoregressive);

c) the higher order moments of the process X ;
(in the examples, the moments denoted by {φ, ϑ}).
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2.2 An asymmetric Portmanteau test statistic

In light of the considerations following from Proposition 1, my approach entails proposing
a new test statistic, which is a modified version of the one-sided test statistic in eq.(2):

T c
ω = Tω − 1

T 2

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s<t−j

< Xt, Xs >< Zt−j, Zs−j >

= Tω − Cω

= T1ω +
1

T 2

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s≥t−j

< Xt, Xs >< Zt−j, Zs−j >

= T1ω + T c
2ω (5)

The purpose of the correction term, Cω, applied to the test statistic Tω, is to eliminate in-
fluence of the causality that is inverse of the tested one, as discussed after Proposition
1. Since the introduction of the correction term “breaks” the symmetry in the quadratic
forms used in the Portmanteau test, the proposed test statistic of eq.(5) is designated as an
asymmetric Portmanteau test. The benefits of considering the corrected test statistic will be
delineated formally in the following Section, particularly in Proposition 2 and thereafter.

For understanding the rationale of the correction term, another viewpoint emerges
when looking at the first two moments of the cross-products as the outcomes of specific
predictive regressions.
In the following argument, I suppose the joint process, {Xt, Zt}, to be bivariate, and addi-
tionally the considered time indexes are such: t > s.
Once applied the correction term to Tω, the first moment of the remaining cross-products,
T c
2ω, are proportional to the coefficients of the regressions of the form: (for a fixed s ̸= 0)

XtXs =
s−1∑

j=t−s

ϕjZt−jZs−j + et

with et being a mean-zero error term, where Zt−j, Zs−j ∈ I(t− j) and Xs ̸∈ I(t− j).
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Indeed, we have:

ϕj = Cov[(XtXs), (Zt−jZs−j)]/Var[Zt−jZs−j], s ≥ t− j

∝ E[XtXsZt−jZs−j]

Conversely, the first moment of the cross-products which constitutes the correction term,
Cω, are proportional to the coefficients of these auto-regressions: (for a fixed j ̸= 0)

XtZt−j =
s∑

l=1

φlXlZl−j + ϵt

with ϵt being a mean-zero error term, and such that Xl, Zl−j ∈ I(s) and Zt−j ̸∈ I(s), where:

φl = Cov[(XtZt−j), (XlZl−j)]/Var[XlZl−j], l < t− j

∝ E[XtZt−jXlZl−j]

Two remarks are needed. First, in the latter case the scale of the coefficients, {φl}, is influ-
enced by the higher moments of the joint process {Xt, Zt} whereas, in the former case, it
is solely determined by the higher moments of the process Z.
Second, the coefficients assess two different implications of the null of interest, by ap-
plication of the law of iterated expectations with respect to the X or Z processes. To
see this, note that, under the null hypothesis of eq.(1), we have {ϕj = 0} and {φi = 0}.
These conditions channel two distinct implications: i) the former case, {ϕj = 0}, implies
the following: E[XtXs] = 0, ∀s < t; ii) the latter case, {φi = 0}, implies the following:
E[XtZt−j] = 0, ∀j ≥ 0. Simply put, under the null hypothesis E[Xt|I(t − 1)] = 0, the
first set of coefficients linearly captures the condition E[Xt|Zt, Xk, k < t] = 0, whereas the
second set of coefficients linearly captures the condition E[Xt|Zl, l < t] = 0.
Despite the null of interest has similar impacts on the first moment of the cross-products
(and thus the first moment of the test statistic), it becomes more evident that is no longer
true when considering their second moments.
For simplicity, suppose the null hypothesis of interest holds and further assume X to be
conditional homoskedastic: E[X2

t |I(t − 1)] = E[X2
t ]. By a parallel argument, the second

moment of the remaining cross-products, T c
2ω, are proportional to the coefficients of the

16



regressions of the form: (for a fixed s ̸= 0)

X2
t X

2
s =

∑
j

ϕ
(2)
j Z2

t−jZ
2
s−j + e

(2)
t , ϕ

(2)
j ∝ E[X2

t X
2
sZ

2
t−jZ

2
s−j], s ≥ t− j

Parallel to the previous logic, the second moment of the cross-products which constitutes
the correction term, Cω, are then proportional to the coefficients of these auto-regressions:
(for a fixed j ̸= 0)

X2
t Z

2
t−j =

s∑
l=1

φ
(2)
l X2

l Z
2
l−j + ϵ

(2)
t , φ

(2)
l ∝ E[X2

t Z
2
t−jX

2
l Z

2
l−j], l < t− j

The condition of conditional homoskedasticity implies:

ϕ
(2)
j = E[X2

t X
2
sZ

2
t−jZ

2
s−j]/Var[Z2

t−jZ
2
s−j] = d21E[Z2

t−jZ
2
s−j]/Var[Z2

t−jZ
2
s−j]

so that the coefficients of the former regressions, {ϕ(2)
j }, are uniquely functions of the

higher moments of the (marginal) process {Zt}, mirroring the same property of the scale
of the coefficients {ϕj}.
Under the same conditions, however, this is not true for the latter regressions as:

φ
(2)
l ∝ d1E[Z2

t−jX
2
l Z

2
l−j] = d1E

[(
E[Z2

t−j|I(t− j − 1)]
)
X2

l Z
2
l−j

]
where it is evident that these last coefficients are proportional rather to higher order mo-
ments of the joint process {Xt, Zt} and are probably mainly shaped by the conditional
variance of the process Z. Reflecting the main results of Proposition 1, this elucidates the
reason of applying a correction term, so to differentiate between the two types of mea-
sure, which translates in making sure that the testing procedure is robust to (higher order)
dependencies through the opposite direction of the tested one.

3 Asymptotic theory

In a baseline scenario where the processes are stationary and directly observable, Section
3.1 outlines the asymptotic properties of the proposed test statistic of eq.(5) under the null
hypothesis of interest. Section 3.2 extends the results of Section 3.1 to a more realistic
scenario where the processes are no longer observed but rather estimated from fitting a
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causal semi-parametric location to some variables of interest. Finally, Section 3.3 studies
the asymptotic properties of the proposed test statistic under a general class of alterna-
tives.

3.1 Asymptotics of the statistic under the null

Proposition 1, and the discussion which follows in Section 2.1, explore the properties of the
test statistic based on the ℓ2−norm of the cross-correlation, by quantifying explicitly the
trade-off between modeling the joint multivariate time series {Xt, Zt} and maintaining the
directionality/asymmetry of the testing procedure. In other words, to study the asymptotic
behaviour of the proposed test statistic Tω under the null of eq.(1), the main challenge is
to carefully examine the restrictions on the joint and marginal processes, keeping in mind
the tested direction of exogeneity. This turns out to be especially crucial when no prior
information on the joint dependence structure is available.

Facing these considerations, this work prioritizes an agnostic approach to inverse causal-
ity, from X to Z, with placing minimal assumptions on the joint process, further formal-
ized in Theorem 1.
Regarding the minimal restrictions on the processes, my approach give precedence to re-
strictions on X rather than Z. This is motivated by two concurring reasons.
On one hand, after choosing a set of variables of interest (i.e., the internal variables), prac-
titioners typically define the dynamics of the system in question and, if the model is cor-
rectly specified, then its innovations, {Xt}, are correctly identified. Consequently, it is
likely that the practitioner has interest in placing additional restrictions on the internal
variables rather than external, since those translate in sharper identifying restrictions and
so a better picture of the causality (e.g., restrictions on its variance or kurtosis).
On the other hand, the specification of the dynamic system often excludes a set of vari-
ables (i.e., the external variables). Despite this prior selection, the practitioner could still
be interested in testing if the omitted variables, {Zt}, should be included in the system.
Since this question likely arises from not knowing how or if the external variables cause
the internal ones, the best interest is to be as agnostic as possible on the dependence struc-
ture between the two sets of variables (internal and external). Conversely, if some prior
knowledge about how to parametrize the dynamics of both sets of variables is available,
the practitioner can conduct inference by means of the existing testing procedures, as test-
ing for causality in mean would translate directly in testing for the correct specification of
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the parametric model (see the related literature in Section 1).10

Before studying the asymptotic properties of the proposed statistic, I first place some as-
sumptions on the set of weights defined in eq.(2):

Assumption 1. Weighting function: Let the sequence of weights {ω(j)} be a function of some
sequence of integers M = M(T ) for which there exists an appropriate square-integrable kernel
k(·) : R → [−1, 1], continuous at 0 and at all points except for a finite number of points, such that:
ω(j) = k2(j/M), k(0) = 1.

This assumption is standard in the literature of nonparametric estimation of the spec-
tral density via kernel functions (see the discussion in Hong (2001)). In this literature, the
sequence of integers M characterizes the window of the kernel estimation: the larger the
M , the larger the window of the kernel (or the larger the magnitude of the weights), the
more importance is attached to cross-correlation at distant time lags. Regarding the role
of the smoothing parameter M , see the discussion at the end of this Section 3.1.
Define the following quantities:

µω,T = µ[{ω(j)}, T ] = d1d2

T−1∑
j=0

(
1− j

T

)
ω(j)

D
(Hete)
ω,T = D(Hete)[{ω(j)}, T ] = d21

T 2

T−2∑
j=1

ω2(j)
T∑

s,t=j+1,s ̸=t,s≥t−j

γt−j,s−j

Dω,T = D[{ω(j)}, T ] = d21d
2
2

T−2∑
j=0

(
1− j

T

)(
1− j + 1

T

)
ω2(j)

(6)

with γt,s = E[⟨Zt, Zs⟩2], when these quantities exist finite. The first two quantities are
approximately the mean and the variance of the correct test statistic, T c

ω , under the null
hypothesis (see Proposition 2).11 In particular, the last one corresponds to the asymptotic
variance of the test statistic of eq.(2) scaled by the number of observations, (T · Tω), when
X and Z are mutually independent (see pg.191-2 in Hong (2001)).
Lemma 1 illustrates how the last quantity, Dω,T , relates to the variance of the test statistic,

10Clearly, if the parametrization of the causality from X to Z is incorrect, then the (parametric) model of
the joint process {Xt, Zt} would be misspecified. Thus, testing for correct specification would lead to reject
the null hypothesis of interest even if it is true. In other words, misspecifying the causality from X to Z
would lead to size distortions for such class of testing procedures.

11For the univariate version, please refer to eq.(22) and the discussion thereafter in Hong (2001). For the
multivariate version, please refer to pg.511-4 of Bouhaddioui and Roy (2006).
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Tω. From the first scenario, we have:

Var[T · T2ω] =
1

T 2

T−2∑
j=0

ω2(j)Σ1(j) +
1

T 2

T−2∑
j=0

ω2(j)∆1(j)

= σ4
ZDω +

1

T 2

T−2∑
j=0

ω2(j)∆1(j)

where is explicit that the variance of the sum of the cross-products, T2ω, consists of two
components: the variance of the statistic as if X and Z are independent, plus the aug-
mented term due the presence of inverse causality.
To understand their asymptotic order, note that, under Assumption 1, those quantities
are proportional to M , or in other words, we have µω,T = O(M), Dω,T = O(M), and
D

(Hete)
ω,T = O(M), provided that γt,s = O(1), ∀t, s . This is formally shown in the proof of

Proposition 2, in Appendix B.1.
Similar to Proposition 1, the following proposition studies the first two moments of

the corrected test statistic, T c
ω .

Proposition 2. Suppose Z has finite fourth moments. Suppose Assumption 1 holds, with M
T

→ 0,
as T,M → ∞. We have the following:

i) If: E[XtX
′
t|I(t− 1)] = E[XtX

′
t], then: E[T · T1ω] = µω,T .

If in addition we have: E[(XtX
′
t)⊗ (XtX

′
t)|I(t− 1)] = E[(XtX

′
t)⊗ (XtX

′
t)],

then: Var[T · T1ω] = O(M2/T ).
Thus, in mean-squared error (ℓ2 convergence), we have:

lim
T→∞

T · T1ω − µω√
D

(Hete)
ω,T

= 0

ii) Under the null hypothesis H0 of eq.(1), we have: E[T · T c
2ω] = 0.

If in addition we have: E[XtX
′
t|I(t− 1)] = E[XtX

′
t], then:

Var[T · T c
2ω] = D

(Hete)
ω,T

When: E[ZtZ
′
t|{Zs; s < t}] = E[ZtZ

′
t], then: Var[T · T c

2ω] =
∑T−2

j=0 ω2(j)
∑τ(j)

l=1
d21d

2
2

T 2 ,
where τ(j) is defined as in Lemma 1.

Proof. The proofs are in Appendix B.1.
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The proposition highlights the advantages of the corrected version of the statistics.
Under the conditional homoskedasticity and conditional homokurtisis of the process X

with respect to the joint information set, we observe that the first two moments of the test
statistics do not incorporate the inverse causality from X to Z. Specifically, the moments
are solely determined by either the set of weights {ω(j)} or, at most, by a particular set of
higher moments of the process Z alone, {γt,s}. Note that, when the process Z is fourth-
order stationary, we have: γt−j,s−j = γt,s.
Requiring the process X to be a martingale with respect to the joint information set in the
higher moments should be interpreted as pivotal restrictions to distinguish and isolate
various causality channels, and so testing for the null hypothesis of interest. In particular,
i) the conditional homoskedasticity is essential to isolate the effect of the null hypothesis
to the center of the test statistic, or equivalently, to associate the mean of the corrected test
statistic, T c

ω , to the mean of the sum of the cross-products, T c
2 ; ii) the conditional homokur-

tosis serves to bound the variance of the sum of the squared products, T1ω, or in other
words, to let the sum of cross-products dominate stochastically the former under the null
hypothesis.
Two additional remarks are needed. First, despite the stringency of these assumptions,
they uphold the directionality of exogeneity, without placing restrictions on the inverse
causal effect (i.e., from X to Z). Second, these assumptions could be considered weaker
than the usual conditions under which this class of test statistics are studied, such as
independence (e.g., Hong (1996b)) and past independence (e.g., Candelon and Tokpavi
(2016)), or comparable to some other conditions, such as approximately q−dependence
(e.g., Hong and Lee (2005)).
Define the following quantity: Λ(1)

s =
∑s−1

j=t−s ω(j)Xs⟨Zt−j, Zs−j⟩. Building on the preced-
ing findings, I now state the first main result.

Theorem 1. Suppose the process {Xt} is such that:

E[XtX
′
t|I(t− 1)] = E[XtX

′
t], E[(XtX

′
t)⊗ (XtX

′
t)|I(t− 1)] = E[(XtX

′
t)⊗ (XtX

′
t)]

Further, suppose the time series {Zt} has finite eight-order moments, the joint process {Xt, Zt} is
strictly stationary, and Assumption 1 holds with M2

T
→ 0, as both T,M → ∞. Under the null

hypothesis in eq.(1):

H0 : E[Xt|{Xs}s<t, {Zs}s≤t] = 0
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we have:

T · T c
ω − µω,T√
D

(Hete)
ω,T

d−→ N (0, 1)

If additionally the joint process {Xt, Zt} satisfies:

|E⟨Λ(1)
1 ,Λ

(1)
1+i1

⟩| = O(i−2
1 ), |Cov[||Z1||2, ||Z1+i2||2]| = O(i−2

2 ), i1, i2 → +∞

the asymptotic normality of the test statistic, T c
ω , holds with M

T
→ 0, as T,M → ∞.

Proof. The proof consists of two parts.
The first part is by direct application of Proposition 2, as it is shown that the statistic T c

ω is
correctly centered and standardized. The second part of the proof is in Appendix B.2. It
relies on appealing to Brown (1971)’s martingale central limit theorem, which guarantees
the desired asymptotic properties. As previously announced in Proposition 2, due the
ℓ2-convergence to zero of the first term of the statistic, T1ω, the asymptotic normality of
T c
ω (= T1ω + T c

2ω) under the null of interest is driven by the second term, T c
2ω.

There are two notable improvement to the testing strategies following Hong (1996b).
First, the class of tests stemming from Hong (1996a) and Hong (1996b) is usually stud-

ied under the null hypothesis of statistical independence, which is strictly contained in
the null hypothesis of eq.(1): testing the null of statistical independence is sufficient but
not necessary for testing the null of interest. This in turn means that the benchmark test-
ing strategies based on the squared cross-correlation (i.e., the quadratic forms in eq.(3)),
might fail to have the desirable asymptotic properties under the null hypothesis of in-
terest, as they include the inverse causality in their higher moments (see Proposition 1).
In other words, under some scenarios, the inference based on the Portmanteau tests à la
Hong (1996b) might be jeopardized because of potential size distortions.
In robustying the test against such distortions, I study a corrected version of this statistic,
i.e., T c

ω , which accounts for the directionality of the hypothesis of interest, by a correc-
tion term that “breaks” the symmetry in the quadratic forms. Theorem 1 shows that the
asymptotic normality of the corrected test statistic, T c

ω , is driven uniquely by the martin-
gale properties of the process X with respect to the joint information set.

Second, a potentially valid statistic for testing the null of interest can be thought to be-
long to the class of tests designed to test the martingale difference property of a process,
e.g. Escanciano and Velasco (2006) and Hong and Lee (2005). However, testing the null of
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eq.(1) following their testing strategies would require either i) the joint process {Xt, Zt} to
be a martingale difference sequence, or ii) modelling the joint process {Xt, Zt} such that
it is possible to isolate the conditional mean of X . The former case is strictly included in
the null of interest, thus the aforementioned discussion holds as well. In the latter case,
before conducting inference, one would possibly require to specify the conditional mean
of X , together with placing high-level assumptions (e.g., Assumption A2-A3 in Hong and
Lee (2005)) that might less transparent than the ones of Theorem 1, where the restrictions
on the conditional moments are rather explicit.
Aligned with the discussion of Proposition 1, these latter conditions can potentially be re-
laxed at the cost of constraining either the marginal behaviour of the process Z or the de-
pendencies of the joint process (e.g. imposing mixing conditions, Dedecker et al. (2007)).
The main difference with respect to the literature stemming from Hong (1996b) is the
imposition of a more stringent asymptotic rate for M , which is required to diverge at a
slower rate than

√
T . This slower divergences comes with a cost in terms of the power of

the statistic (see Theorem 3). However, note that the first part of Theorem 1 comes with
the very minimal restrictions on the conditioning variable Z. By placing some additional
mild restrictions on the dependence structure of the joint process, the second part of The-
orem 1 highlights that the asymptotic properties of the test are still preserved with respect
to a faster asymptotic rate for M , that is the standard in the literature.
In practice, the smoothing parameter M dictates the convergence of the weighted sum of
independent chi-squared variables to a normal distribution, under the null hypothesis.
When M is finite, as the Portmanteau-type test statistic sums over the first M squared co-
variances, standard result in the literature is its limiting distribution being a weighted sum
of independent chi-squared random variables (Box and Pierce (1970), Francq and Raïssi
(2007)). As M increases, more non-zero weights are spread to more covariances, meaning
the sum of such independent chi-squared distributed tends to be normally distributed, by
a classic central limit argument. Under the alternatives, Theorem 3 formalizes the connec-
tion between the smoothing parameter M and the power of the test statistic.
The trade-off is summarized as follows: on one hand, the rate for M needs to be fast
enough to guarantee the approximating asymptotic normality of the statistic under the
null, on the other hand, it needs to be slow enough to assure a good asymptotic power of
the statistic.
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3.2 Estimated processes

When analyzing the variables of interest for a broad understanding of the dynamics, usual
practice is to fit models to the time series processes, so that the information about the se-
rial dependence is summarized by the fitted innovations.
In our context, it translates in viewing the processes X and Z as estimated innovations,
based on a particular model applied to the observed data {W1,t,W2,t; t = 1, ..., T} of di-
mensions d1 and d2, respectively. I suppose both observed processes to be causal or, to put
it differently, I assume that {W1,t} (and {W2,t}) is represented by a causal function of {Xt}
(and {Zt}). Formally, I consider the observed processes to have the following general class
of causal conditional mean models:

W1,t = µX(θ
0
1, {Xs; s < t}) +Xt

W2,t = µZ(θ
0
2, {Zs; s < t}) + Zt

(7)

where, µX(θ
0
1, ·) ∈ Rd1 , µZ(θ

0
2, ·) ∈ Rd2 are vectors whose entries are time-varying measur-

able known functions with respect to two finite time-invariant parameters, θ01 and θ02.
The innovation process {Xt} is defined such that:

E[Xt|{Xs; s < t}] = 0

so that, by design, {µX(·, ·)} is the multivariate conditional mean of W1 with respect its
own past. Put differently, under the specification of eq.(7), the time series {Xt} is the nat-
ural innovations of the conditional mean of W1, and so a martingale difference sequence
with respect to the marginal filtration, {Xs; s < t}.
A brief remark is needed. The restriction on the process W2 should be interpreted in the
context of the two-step approach in Hong (1996b), where noncausality is tested after fit-
ting separate models. Furthermore, while it is possible to account for W2,t as a function of
the joint past {W1,W2}, doing so would implicitly model inverse causality, which might
not be desirable since W2,t are to be considered the omitted variables from the conditional
mean model of W1.
Clearly, many of the existing multivariate time series models that capture the first con-
ditional moment of stationary processes are encompassed by the specifications of eq.(7).
For a process to fall within this category, the only key condition is that, by using a time-
invariant and finite-dimensional set of parameters, the innovations of the first moment are
correctly captured, as this last aspect is particularly crucial when testing for the hypothesis
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of interest.
Suppose the practitioner has

√
T−consistent estimators, {θ̂i}i=1,2, of the true param-

eters for the prespecified functional forms in eq.(7) (e.g., Least Squares or Maximimum
Likelihood estimators for ARMA models). Given the sample data, the estimated innova-
tions are functions of the limited past, Î(t− 1), and such estimators: X̂t(θ̂1), Ẑt(θ̂2). These
are the estimated pseudo-version of the innovations with arbitrary starting values, since
we do not observe the infinite past of the time series (i.e., I(t− 1)).
Define the standardized innovations of the models in eq.(7) as follows:

Ut = (ΓX)
−1/2Xt, Vt = (ΓZ)

−1/2 Zt, s.t. E[||Ut||2] = d1, E[||Vt||2] = d2 (8)

where the covariance-variance matrices are defined as: ΓX = E[XtX
′
t], ΓZ = E[ZtZ

′
t], with

their feasible empirical counterpart being Γ̂X and Γ̂Y , respectively.
Following the definitions in eq.(8), the standardized residuals are:12

Ût =
(
Γ̂X

)−1/2

X̂t, V̂t =
(
Γ̂Z

)−1/2

Ẑt, t = 1, ..., T (9)

Parallel to eq.(2)-(5), here below I consider the test statistic with respect to the standard-
ized estimated processes X and Z:

T̂ c
ω = T̂ω − 1

T 2

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s<t−j

< Ût, Ûs >< V̂t−j, V̂s−j >

= T̂ω − Ĉω = T̂1ω + T̂ c
ω2 (10)

T̂ω =
T−1∑
j=0

ω(j)||Γ̂UV (j)||2F

For the formal connection with eq.(3), refer to Lemma A.3. Similar to eq.(6), define also:

D̂
(Hete)
ω,T =

d21
T 2

T−2∑
j=1

ω2(j)
T∑

s,t=j+1,s ̸=t,s≥t−j

γ̂t−j,s−j, γ̂t−j,s−j =
1

T

T∑
t=1

< V̂t−j, V̂s−j >
2

Theorem 2. Suppose the processes {Wi,t}i=1,2
t=1,...,T admit the causal representation of eq.(7). Sup-

pose the assumptions of Theorem 1, and the regularity conditions of eq.(14)-(15) in Appendix B.3

12Because of the functional dependence of the processes X̂ and Ẑ on the estimators {θ̂i}i=1,2 is presumed,
I suppress the redundant notation for a cleaner exposition. See Appendix B.3 for further details.
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hold true. Let {θ̂i}i=1,2 be
√
T−consistent estimators of the true parameters {θ0i }i=1,2.

Under the null hypothesis in eq.(1) we have:

T · T̂ c
ω − µω,T√
D̂

(Hete)
ω,T

d−→ N (0, 1)

Proof. The proofs are in Appendix B.3.

Theorem 2 show that, if the processes are estimated rather than directly observed, the
results of Theorem 1 still applies, up to some additional mild assumptions. In other words,
if the practitioner uses a plug-in in eq.(10)), where the standardized innovations are esti-
mated with respect to a causal parametric specification, the limiting null distribution is a
standard normal.13

The additional conditions under which the estimation effect is asymptotically negligible
are twofold: i) the parametric model is correct, meaning that the innovations of interest are
estimated at standard rates, i.e.

√
T -consistency; ii) appropriate smoothness of the model

specifications, which guarantees uniform ℓ2-convergence and boundedness of the deriva-
tives with respect to the parameters (refer to eq.(14)-(15) in Appendix B.3). Both types of
conditions are standard in the conditional mean specification literature (see the discussion
in Wang et al. (2022)) and the literature stemming from Hong (1996a) and Hong (1996b)
(e.g., Hong and Lee (2005), Leong and Urga (2023)).

To illustrate the broad applicability of Theorem 2, I present two examples demonstrat-
ing how the proposed testing strategy can be easily adapted to test different causality
channels other than causality in means.

1. A first example is testing for second-order noncausality, or Granger noncausality
in the conditional variance (Granger (1969), Comte and Lieberman (2000)). Sup-
pose the condition of eq.(1) holds. In such context, under the assumptions about the
model specifications of eq.(7), the null hypothesis of second-order noncausality from
W2 to W1 is:

HV NC
0 : E[XtX

′
t|{Xs}s<t, {Zs}s<t] = E[XtX

′
t|{Xs; s < t}]

13The fact that the estimation error does not impact the limit distribution is in line with the literature
stemming from Hong (1996a) and Hong (1996b). In particular, see the discussion in Wang et al. (2022).
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Additionally, if the model specifications of eq.(7) is such that:

E[XtX
′
t|{Xs; s < t}] = ΓX

once defined:

X†
t = vech[XtX

′
t]− vech[ΓX ]

the null hypothesis of second order noncausality is equivalent to testing for the fol-
lowing null hypothesis:

H̃V NC
0 : E[X†

t |{X†
s}s<t, {Zs}s≤t] = 0

where is evident the connection with the null hypothesis of eq.(1).
This example is associated with Cheung and Ng (1996) and Hong (2001): both pa-
pers study a Portmanteau-type statistic that sums, at different lags, the squared
cross-correlation of the standardized centered squared residuals. Other compara-
ble instances in the literature include Tchahou and Duchesne (2013), Aguilar and
Hill (2015) and Leong and Urga (2023).

2. A second example for the application of Theorem 2 might be testing for Granger
noncausality in quantiles (Jeong et al. (2012)). In this example, consider the following
Quantile Autoregressive model (Koenker and Xiao (2006)) for the process W1:

W1,t = QW1,t(τ |{Ws; s < t}) +X•
t =

∞∑
l=1

ϑ(τ)W1,t−l +X•
t

for a given τ ∈ [0, 1], where QW1,t(τ |{Ws; s < t}) is the τ th conditional quantile func-
tion of {W1,t} with respect to its own infinite past. In relation to eq.(7), this means
that:

µX•(θ01, {X•
s ; s < t}) = QW1,t(τ |{Ws; s < t})

which provides the process X• is a martingale difference sequence with respect to its
own past (i.e., E[X•

t |{X•
s ; s < t}] = 0). The null hypothesis of Granger noncausality

27



in the τ−quantile from W2 to W1 is:

HQC
0 : E[QW1,t(τ |{Ws; s < t})|{Ws}s<t, {Zs}s≤t] = QW1,t(τ |{Ws; s < t})

Hence, testing for the previous null hypothesis would be equivalent to testing for
the following null:

H̃QC
0 : E[X•

t |{X•
s}s<t, {Zs}s≤t] = 0

In the literature about quantile regressions, the estimation problem usually involves
discontinuous functions, as the formulation of the estimation problem is character-
ized by the indicator/check function (see Koenker and Bassett Jr (1978), Koenker and
Xiao (2006)). This means that the regularity conditions of eq.(14)-(15) would likely
not hold. However, I conjecture that, by making use of the smoothing techniques of
Fernandes et al. (2021), Theorem 2 could be still applied.
Moreover, some of the existing strategies to test for Granger noncausality in quan-
tiles (e.g., Jeong et al. (2012), Candelon and Tokpavi (2016)) rely on statistics built on
quadratic forms similar to eq.(3).14 Consequently, their findings might benefit from
the application of a correction term akin to that in eq.(5), which would enable their
analyses to be generalized to a broader context.
A more formal treatment of the subject is left for future research.

3.3 Consistency under the alternatives

In this section, we discuss the asymptotic properties of the test under a class of alterna-
tives. Define κmrmr,XY (t, j, k, l) being the fourth-order cumulant of the time series
{Xm,t, Zr,t−j, Xm,t−k, Zr,t−l}, where Xi,t, Zi,t are the ith entries of Xt, Zt, respectively. I refer
to the following condition as the absolute summability of the fourth-order cumulants :∑d1,d2

m,r=1

∑∞
j,k,l=−∞ κmrmr,XZ(0, j, k, l) < ∞.

Theorem 3. Suppose the assumptions of Theorem 2 hold. Suppose {Xt, Zt} is a jointly fourth-
order stationary process with absolute summability of the fourth-order cumulants.
Suppose further: ∃j > 0 , such that ||ΓXZ(j)|| ≠ 0 , with

∑∞
j=1 ||ΓXZ(j)||2 < ∞,

14In particular, refer to eq.(5)-(8) in Jeong et al. (2012), and to eq.(11)-(17) in Candelon and Tokpavi (2016).
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We have:

M1/2

T

T T̂ c
ω − µω,T√
D̂

(Hete)
ω,T

 p−→ ∆
∞∑
j=1

∣∣∣∣∣∣vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2
for a finite ∆ > 0. By the asymptotic rates, equivalently:

lim
T,M→∞

Pr

∣∣∣∣∣∣T T̂
c
ω − µω,T√
D̂

(Hete)
ω,T

∣∣∣∣∣∣ > K

 −→ 1, ∀K ∈ R

Proof. The proofs are in Appendix B.4.

Based on the ℓ2 convergences of the covariance estimator, Theorem 3 shows the con-
sistency of the proposed test statistic.
Once scaled by a rate that decays to zero (M1/2/T → 0, as M,T → ∞), the statistic con-
verges in probability to the sum of ℓ2-norm of the cross-correlation at different lags (up
to a positive finite scale). This means that, under these fixed alternatives, the test statistic
has the desired asymptotic power, with explosive rate, T/M1/2: the slower M grows, the
faster the statistic, T̂ c

ω , will go to infinity, and the test will be more powerful.15 In this
regard, Theorem 3 sets an upper bounds on the rate at which M should grow asymptoti-
cally, as explained at the conclusion of Section 3.1.
The test, however, has no power against the alternatives with zero cross-correlation when
E[Xt|{Xs, Ys; s < t}] ̸= 0, i.e. uncorrelated and non-martingales processes. To put it sim-
ply, the test may have low power against some types of nonlinear causal effects from Z

to X that are not reflected in any linear association between X and Z. This limitation in
terms of the test’s power is common in the testing strategies involving a Portmanteau-
type statistics (e.g., Hong (2001), Bouhaddioui and Roy (2006), Leong and Urga (2023)).
As well, the assumptions of fourth-order stationarity and the absolute summability of the
fourth order joint cumulants are standard in the tests following Hong (1996b), as being
not much restrictive.16

Two technical remarks about Theorem 3 are in order.
First, as mentioned in Section 2.1, the proof of Theorem 3 hinges on establishing that
the sum of the squared products, T̂1ω, regulates the power of the test. In details, under

15In particular, note that the explosive rate is identical to the one in Bouhaddioui and Roy (2006)’s Theo-
rem 2. Thus, the discussion of pg. 517 in Bouhaddioui and Roy (2006) can be still applied.

16They allows for a wide class of processes. See the discussion at pg.846 in Hong (1996a).
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the considered alternatives, the sum of the squared products stochastically dominates the
corrected sum of the cross-products, T̂ c

2ω. This result is reached by appealing to Theorem 6
in Hannan (1970) (pg.210), which follows from a Isserlis (1918)-type argument.17 Thus, to
prove the consistency, two assumptions on the joint process are essential: the fourth-order
stationarity and, particularly, the absolute summability of the fourth-order cumulants.
With the joint process being sufficiently close to a multivariate normal distribution, these
assumptions ensure that the ℓ2-norm difference between the covariance estimator and its
population counterpart goes asymptotically to zero, as mean-square convergence takes
effect “before squaring” the covariances.
It is important to realize that, albeit the fourth-order cumulants are asymptotically negli-
gible under the conditions of Theorem 3, they play a determinant role in Theorem 1-2, due
to Proposition 2: if the process X is a martingale in the higher moments, the cumulants
drive the asymptotic behavior of the test statistic under the null hypothesis of interest. In
fact, it should be noted that the proposed correction term in eq.(5) specifically targets a
subset of those cumulants associated with inverse causality.
Second, Escanciano and Velasco (2006)’s approach relies on an asymptotic theory which
complies to Hannan (1970)’s rationale. They propose a testing strategy based on a mea-
sure of deviations from the zero cross-spectrum in terms of quadratic (Cramér–von Mises)
norm, a statistic resembling Hong and Lee (2005)’s. Under the null hypothesis of m.d.s.,
they show that the sum of sample auto-covariances weakly converges in ℓ2-norm to a
Gaussian process (Escanciano and Velasco (2006)’s Theorem 1).18 This convergence takes
effect “before squaring” the covariances: as the covariances are entering squared in their
proposed test statistic, it then converges in distribution to a weighted sum of independent
χ2
1 random variables. Conversely, Hong (1996a)’s asymptotic theory focuses directly on

the test statistic (i.e., on the sum quadratic form of eq.(3)). “After squaring” the covariances,
the main result revolves around showing that the sum of cumulants converges to a nor-
mal distribution, eventually driving the desired asymptotic properties of his test under
the null hypothesis.
In summary, the fundamental distinction between the two asymptotic theories is that the
former approach, à la Escanciano and Velasco, is based on the convergence driven by

17Equivalently, one can appeal to eq.(5.3.20) of Priestley (1981) and the discussion thereafter.
18They consider a particular form of sample auto-covariances, as they are a “generalization of the usual

autocovariances to measure the conditional mean dependence in a nonlinear time series framework” (Escanciano
and Velasco (2006), pg.155). The convergence of the process is on the Hilbert space of all square integrable
functions equipped with a proper inner product. For further details, refer to pg.158-159 in Escanciano and
Velasco (2006).
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the squared products (i.e., “before squaring”), whereas the latter approach, à la Hong, de-
pends on convergence driven by the cross-products (i.e., “after squaring”). Taking these
considerations into account, my proposed testing strategy underscores the importance
of fourth-order cumulants in cases where there is no available information on modeling
the omitted variables Z, or put differently, where there is no knowledge of the causality
channel opposite to the one being tested.

4 Simulation study

The purpose of this section is to offer Monte Carlo evidences on the impact of the proposed
correction term, Cω, defined in eq.(5). This entails studying the finite sample characteristics
of two types of test statistics: the benchmark one à la Hong (1996a), Tω, and its corrected
version, T c

ω . In details, the benchmark testing procedure is defined as:

T · T̂ω − µω,T√
Dω,T

(11)

where the sample quantities are specified in eq.(6) and eq.(10), with their population coun-
terparts in eq.(2). As the corrected test, I refer to the test statistic that have been discussed
in Theorem 2-3.
Since the asymptotic theory emphasizes the correction term’s importance under the null
hypothesis of interest, the focus of the simulations primarily lies on studying the empiri-
cal rejection rates for DGPs where the null of eq.(1) holds true. This set of results is found
in Section 4.1. Regarding the alternatives, I provide the empirical rejection rates for a lim-
ited range of DGPs, since Theorem 3 shows that the two test statistics should share similar
properties in terms of power. The simulations for this scenario are presented in Section
4.2.

4.1 Under the null

In this set of experiments, I consider three families of DGPs where the process X is defined
as a standardized strong white noise (SWN):

Xt = ϵx, ϵx ∼ i.i.d.(0, 1)
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meaning that, for all the DGPs, the null hypothesis of interest holds true, as there is no
causality in mean from past and present Z to present X . In line with the conclusions
drawn after Lemma 1, the differences between the three scenarios can be distilled into
two key aspects: i) the form of the causality from past X to present Z, i.e. the inverse
causality channel, and ii) the properties of the process Z, in terms of its conditional mean
and variance. Hence, I consider three representative classes of DGPs for the univariate
processes X and Z:

a) DGP 1A: LINEAR-IN-MEAN

Zt = αZt−1 + βXt−1 + ϵz, ϵz ∼ i.i.d.(0, 1)

b) DGP 2A: SQUARED-IN-MEAN

Zt = αZt−1 + βX2
t−1 + ϵz, ϵz ∼ i.i.d.(0, 1)

c) DGP 3A: SQUARED-IN-VARIANCE

Zt = αZt−1 + σzϵz, ϵz ∼ i.i.d.(0, 1), σ2
z = 0.4 + βX2

t−1

with the parameters ranging: α = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, β = {0, 0.2, 0.4, 0.6, 1, 2}.
Two remarks are needed. First, when β = 0, there is no causality in both directions,
i.e. independence between processes X and Z. Second, in all DGPs, the process Z is
conditionally homoskedastic. This last choice is dictated by the parsimony of parametriz-
ing the DGPs. Indeed, as a result of Proposition 2, the variance of the test statistic is:
D

(Hete)
ω,T = (d1d2/T )

2
∑T−2

j=0 ω2(j)
∑τ(j)

l=1 , where τ(j) is defined as in Lemma 1, where is clear
the parallel with the benchmark test statistic’s variance, Dω (see eq.(6)).
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Table 1: Rejection frequencies for DGP1A: This table presents the rejection frequencies of two testing procedure, corrected (T c
ω ) and

benchmark (Tω), when the time series are generated by DGP1A; sample size, T = 700; 700 iterations; the weighting function is the Bartlett
kernel; the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.026 0.015 0.01 0.015 0.023 0.019 0.053 0.048 0.039 0.05 0.049 0.046
α = 0.3 0.019 0.018 0.019 0.033 0.022 0.025 0.039 0.043 0.068 0.053 0.04 0.05
α = 0.4 0.03 0.03 0.019 0.033 0.032 0.019 0.065 0.058 0.056 0.062 0.062 0.045
α = 0.5 0.048 0.04 0.023 0.043 0.035 0.036 0.08 0.075 0.055 0.078 0.073 0.063
α = 0.6 0.045 0.04 0.052 0.039 0.042 0.038 0.076 0.075 0.089 0.076 0.073 0.083
α = 0.7 0.053 0.059 0.055 0.058 0.055 0.063 0.073 0.09 0.09 0.079 0.089 0.1

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.016 0.015 0.009 0.009 0.023 0.016 0.055 0.045 0.033 0.045 0.053 0.053
α = 0.3 0.02 0.018 0.019 0.028 0.023 0.019 0.052 0.056 0.059 0.063 0.053 0.056
α = 0.4 0.028 0.029 0.019 0.039 0.025 0.018 0.072 0.072 0.056 0.075 0.066 0.053
α = 0.5 0.04 0.038 0.028 0.043 0.043 0.023 0.085 0.088 0.058 0.093 0.093 0.068
α = 0.6 0.048 0.039 0.056 0.052 0.045 0.045 0.095 0.089 0.103 0.108 0.098 0.096
α = 0.7 0.053 0.078 0.065 0.068 0.07 0.069 0.13 0.129 0.12 0.123 0.132 0.128

M = 100 ≈ 4
√
T

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.02 0.018 0.018 0.02 0.023 0.023 0.063 0.063 0.058 0.052 0.075 0.068
α = 0.3 0.023 0.015 0.03 0.023 0.036 0.02 0.059 0.066 0.085 0.065 0.098 0.066
α = 0.4 0.038 0.026 0.025 0.036 0.029 0.042 0.086 0.093 0.082 0.088 0.076 0.082
α = 0.5 0.053 0.062 0.059 0.043 0.076 0.05 0.126 0.128 0.115 0.106 0.138 0.126
α = 0.6 0.086 0.082 0.073 0.055 0.085 0.086 0.175 0.153 0.139 0.139 0.17 0.165
α = 0.7 0.095 0.126 0.129 0.12 0.123 0.128 0.176 0.21 0.212 0.196 0.223 0.219
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In light of the discussion about the higher-order moments of the joint process (see
Lemma 1 and Section 2.2), I consider the SWNs to be generated by a multivariate t-
distribution with 6 degrees of freedom: (ϵx, ϵz) ∼ t6(0, I2).19 The degrees of freedom for the
multivariate t-distribution are selected to be appropriate for macroeconomic time series
analysis, especially having in mind the Structural VAR (SVAR) literature, and so aligning
the design of the experiments with the empirical application in Section 5. My primary
example is Brunnermeier et al. (2021), where the structural shocks, identified through het-
eroskedasticity, are estimated as a scaled t-variate with 5.7 degrees of freedom.
All the results are with respect to the 5% nominal significance level.

Table 2: Rejection frequencies for DGP2A: This table presents the rejection frequencies of two testing procedure, corrected (T c
ω ) and

benchmark (Tω), when the time series are generated by DGP2A; sample size, T = 700; 700 iterations; the weighting function is the Bartlett
kernel; the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.026 0.015 0.033 0.026 0.03 0.029 0.053 0.039 0.05 0.055 0.049 0.042
α = 0.3 0.019 0.023 0.032 0.022 0.025 0.038 0.039 0.049 0.055 0.045 0.046 0.058
α = 0.4 0.03 0.026 0.039 0.026 0.045 0.039 0.065 0.053 0.063 0.053 0.056 0.045
α = 0.5 0.048 0.042 0.046 0.045 0.038 0.03 0.08 0.072 0.063 0.07 0.068 0.052
α = 0.6 0.045 0.058 0.056 0.042 0.078 0.045 0.076 0.093 0.085 0.055 0.098 0.065
α = 0.7 0.053 0.05 0.043 0.058 0.072 0.062 0.073 0.09 0.08 0.093 0.108 0.069

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.016 0.013 0.026 0.029 0.028 0.023 0.055 0.033 0.045 0.05 0.046 0.04
α = 0.3 0.02 0.019 0.026 0.025 0.038 0.033 0.052 0.055 0.056 0.053 0.05 0.05
α = 0.4 0.028 0.029 0.049 0.036 0.04 0.039 0.072 0.069 0.073 0.062 0.06 0.055
α = 0.5 0.04 0.039 0.058 0.043 0.036 0.038 0.085 0.086 0.092 0.078 0.078 0.073
α = 0.6 0.048 0.049 0.062 0.053 0.078 0.07 0.095 0.098 0.102 0.082 0.128 0.099
α = 0.7 0.053 0.078 0.063 0.075 0.089 0.093 0.13 0.129 0.11 0.129 0.133 0.132

M = 100 ≈ 4
√
T

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.02 0.022 0.019 0.029 0.035 0.05 0.063 0.069 0.055 0.062 0.068 0.053
α = 0.3 0.023 0.026 0.035 0.035 0.046 0.056 0.059 0.065 0.08 0.066 0.056 0.09
α = 0.4 0.038 0.029 0.04 0.056 0.052 0.062 0.086 0.092 0.078 0.1 0.096 0.089
α = 0.5 0.053 0.059 0.07 0.085 0.083 0.086 0.126 0.11 0.118 0.12 0.126 0.115
α = 0.6 0.086 0.073 0.102 0.102 0.1 0.11 0.175 0.175 0.17 0.169 0.166 0.148
α = 0.7 0.095 0.132 0.115 0.146 0.163 0.165 0.176 0.219 0.225 0.225 0.212 0.228

19In another set of experiments, I consider also the scenario in which the SWNs are generated by a mul-
tivariate normal distribution: (ϵx, ϵz) ∼ N (0, I2). As the results are similar to the presented one, this set of
simulations are not reported in Section 4.1 and are available upon request.
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Table 3: Rejection frequencies for DGP3A: This table presents the Rejection frequencies of two testing procedure, corrected (T c
ω ) and

benchmark (Tω), when the time series are generated by DGP3A; sample size, T = 700; 700 iterations; the weighting function is the Bartlett
kernel; the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.026 0.012 0.022 0.023 0.019 0.018 0.053 0.043 0.043 0.056 0.043 0.039
α = 0.3 0.019 0.02 0.029 0.03 0.028 0.025 0.039 0.042 0.052 0.052 0.058 0.06
α = 0.4 0.03 0.029 0.02 0.03 0.033 0.033 0.065 0.06 0.058 0.059 0.066 0.063
α = 0.5 0.048 0.038 0.029 0.035 0.04 0.04 0.08 0.076 0.055 0.069 0.07 0.063
α = 0.6 0.045 0.04 0.06 0.039 0.058 0.046 0.076 0.075 0.089 0.078 0.102 0.075
α = 0.7 0.053 0.063 0.058 0.052 0.062 0.066 0.073 0.09 0.089 0.082 0.092 0.099

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.016 0.013 0.01 0.023 0.018 0.013 0.055 0.04 0.046 0.05 0.045 0.038
α = 0.3 0.02 0.012 0.023 0.02 0.019 0.023 0.052 0.05 0.066 0.059 0.053 0.063
α = 0.4 0.028 0.03 0.026 0.022 0.033 0.035 0.072 0.076 0.065 0.059 0.073 0.079
α = 0.5 0.04 0.039 0.028 0.043 0.038 0.035 0.085 0.086 0.07 0.079 0.108 0.062
α = 0.6 0.048 0.033 0.059 0.055 0.056 0.042 0.095 0.105 0.093 0.11 0.11 0.08
α = 0.7 0.053 0.066 0.063 0.075 0.08 0.082 0.13 0.122 0.125 0.128 0.129 0.152

M = 100 ≈ 4
√
T

Corrected Benchmark

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.02 0.013 0.016 0.016 0.016 0.019 0.063 0.055 0.066 0.06 0.066 0.049
α = 0.3 0.023 0.019 0.032 0.018 0.022 0.035 0.059 0.062 0.086 0.08 0.075 0.069
α = 0.4 0.038 0.033 0.036 0.03 0.04 0.038 0.086 0.098 0.085 0.069 0.098 0.073
α = 0.5 0.053 0.062 0.039 0.049 0.049 0.046 0.126 0.12 0.108 0.098 0.126 0.11
α = 0.6 0.086 0.069 0.072 0.066 0.08 0.07 0.175 0.158 0.156 0.142 0.155 0.135
α = 0.7 0.095 0.128 0.113 0.115 0.126 0.132 0.176 0.216 0.198 0.186 0.213 0.235

Section 4 displays the results with respect to 700 independent realizations for the time
series length T = 700. For other series lengths (T = 300 and T = 100), please refer to the
Appendix C.1. Regarding the choice of the weighting function, ω(·), all test statistics are
calculated with respect to the Bartlett kernel:20

ω(z) =

1− |z|, |z| ≤ 1,

0, otherwise

In each simulation set, the smoothing parameters considered are: M = {12, 30, 100}. The
first two values adhere to the bandwidth rule specified in Hong and Lee (2005), whereas
the last value is included to assess the robustness of asymptotic theory when the ratio,
M/T , starts to be no longer negligible. While the first is proportional to lnT , the others

20In additional Monte Carlo simulations, I find that the empirical rates do not change significantly with
respect to the choice of the kernel function (e.g. truncated, quadratic-spectral, Daniell, Parzen). Such results
are available upon request.
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are proportional to the usual parametric rate,
√
T .

Under the null of interest, the corrected test typically performs better than the bench-
mark one, as it tends to over-reject less frequently. This makes the new testing strategy
more robust against potential dependencies from X to Z, or equivalently, less sensitive
with respect to the inverse causality channel. As Proposition 1 illustrates, these depen-
dencies, which enter the second moments of the test statistic, can increase its variance
and therefore leading to incorrect conclusions due to size distortions (i.e. over-rejections).
This holds especially true when the correction term becomes relevant or, with respect to
the considered DGPs, when β and α tend to be larger, aligned with Lemma 1.
Generally speaking, the correction term starts to play a significant role when the process
Z is mildly autoregressive and the causality from X to Z is nonzero. Indeed, we have
that, the stronger either the inverse causality (i.e., the magnitude of β) or the persistence
of the process Z (i.e., the magnitude of α), the greater the size distortions in the bench-
mark test statistics. The results for M = 30 hints the following: i) Table 1 displays that, for
α > 0.4, the rejection rates for the benchmark procedure are on average 10.18%, while for
the corrected version are on average 5.02%; ii) Table 2 displays that, for 0.2 < α < 0.7, the
rejection rates for the benchmark procedure are on average 8.26%, while for the corrected
version are on average 4.64%; iii) Table 3 displays that, for α > 0.4, the rejection rates for
the benchmark procedure are on average 5.19%, while for the corrected version are on
average 10.40%.
Across smoothing parameters M , the empirical rates are roughly stable, except when the
process Z is very persistent (α = 0.7). Yet, there is a trade-off when tuning the smoothing
parameter, because it needs to be large enough such that: i) M is growing asypmtotically,
so that the statistic sums over a considerable number of covariances (see the discussion in
Section 3.1); ii) M is negligible compared to T , so that Brown (1971)’s central limit theo-
rem can still apply because of appropriate boundedness of the higher-order moments of
the statistic.
The application of the correction term, however, comes with a cost: when the process Z is
not persistent enough, the corrected test typically tends to under-reject. This poor perfor-
mance was announced in Section 2.2, where the distinction between the differenced-out
cross-products (i.e., associated with Cω), and the remaining cross-products (i.e., associated
with T c

2ω) is explained in terms of predictive regressions. When looking at the second
moments of the test statistic, the latter set of cross-products is associated with regression
coefficients proportional to the auto-covariance of the squared process Z, whereas the
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former set of cross-products is associated with regression coefficients proportional to the
conditional variance of Z with respect to the joint past of both processes X and Z. Conse-
quently, when the process Z is weakly persistent, the sum of the remaining cross-products
has potentially smaller variance and does not match the statistical information entailed in
the differenced-out cross-products.
To outline key guidelines for the practitioner about my proposed testing procedure, I offer
two suggestions:

1. Because of the problem of under-rejection, it is suggested to rely on the corrected
test statistic when the omitted variables Z have some temporal dependence.21

2. Since the correction term plays a role when Z is mildly persistence, it is suggested
to prioritize a smoothing parameter proportional to the parametric rate

√
T .

4.2 Under the alternatives

In this second set of experiments, a smaller range of DGPs is considered, as the contribu-
tion of this work is mainly related to the asymptotic properties of the test statistic under
the null of interest, rather than under the alternatives. Similar to the previous ones, I
define the following three classes of DGPs for the univariate processes X and Z:

a) DGP 1B: LINEAR-IN-MEAN

Xt = γ1Zt−1 + ϵx, Zt = 0.4Zt−1 + βXt−1 + ϵz, (ϵx, ϵz)
′ ∼ N (0, I2)

b) DGP 2B: SQUARED-IN-MEAN

Xt = γ1Z
2
t−1/4 + ϵx, Zt = 0.4Zt−1 − βXt−1 + ϵz, (ϵx, ϵz)

′ ∼ N (0, I2)

c) DGP 3B: SQUARED-IN-VARIANCE

Xt = βZt−1 + ϵx, Zt = 0.4Zt−1 + ϵz, (ϵx, ϵz)
′ ∼ N (0,Σ)

[Σ]1,1 = 0.4 + γ2Z
2
t−1, [Σ]2,2 = 1, [Σ]1,2 = [Σ]2,1 = 0.5

√
[Σ]1,1[Σ]2,2

21This condition can be easily checked by a preliminary analysis on the magnitude (eigenvalues) of the
coefficients of a VAR(p) model fitted to the multivariate process Z.
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with the parameters ranging: γ1 = {−0.6,−0.4,−0.2,−0.05, 0.05, 0.2, 0.4, 0.6},
γ2 = {0.05, 0.1, 0.2, 0.4, 0.6, 0.8}, and β = {0, 0.3, 0.8}. Parallel to the previous section, the
results are with respect to 700 random draws for the series length T = 700. Similarly, the
test statistic are calculated with respect to the Bartlett kernel. In this set of simulations, the
smoothing parameter ranges as: M = {12, 18, 25, 30, 36, 45, 50, 60, 100}.
Under the alternatives, the corrected test has desired large sample properties. The first
panel of Figure 1 shows that, when the {γi}i=1,2 are non-negligible, the testing procedure
tends to have unit power for large samples, mirroring that the probability of failing to
reject the null of interest when is not true (i.e., the type II errors) asymptotically decreases
to zero. For an exhaustive comparison of the two testing procedures, I provide the power
curves associated to the benchmark test statistic in Appendix C.2.
The other panels regard nonlinear dynamics. The second panel of Figure 1 shows that as
β increases, the power curves for DGP2B tend to resemble those of DGP1B qualitatively,
although they are quantitatively lower. For β = 0.8, when |γ1| > 0.4, the empirical rejec-
tion rates are approximately 0.5. As expected, the last panel of Figure 1 indicates that the
corrected test statistic exhibits low power when the dependence between the time series
is not related to any linear association, despite the strong variance dependence (i.e., large
values of γ2). When β = 0, empirical rejection rates range from 0.14 to 0.28. However, as
β increases, the rejection rates also rise. Interestingly, the corrected test statistic appears
more powerful than the benchmark, see in Appendix C.2.

In support of the discussion in the previous section, Figure 1 illustrates how the mag-
nitude of the smoothing parameters determines the large sample properties of the test
statistic, since it regulates the approximation quality of the asymptotic theory. When the
{γi}i=1,2 are close to zero, thus getting to a scenario closer to the null hypothesis of inter-
est, the power curves are more pronounced the larger the M . Indeed, as the smoothing
parameter grows, the bottom of the V-shaped curves gradually stabilizes around the nom-
inal significance level of 5%. This holds true as well for the benchmark testing procedure,
as it is shown in in Appendix C.2.
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(a) DGP 1B, with β = {0, 0.3, 0.8}

(b) DGP 2B, with β = {0, 0.3, 0.8}

(c) DGP 3B, with β = {0, 0.3, 0.8}

Figure 1: Power curves of the proposed test: These figures present the rejection rates of the testing
procedure associated to the corrected test statistic (T c

ω ), under the alternatives (empirical power); sample
size, T = 700; 700 iterations; the weighting function is the Bartlett kernel; the smoothing parameter range
is: M = {12, 18, 25, 30, 36, 45, 50, 60, 100}; nominal significance level is 5%.
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5 Empirical application

This section presents an empirical application of the proposed testing procedure, with a
focus on the comparison between the corrected and the benchmark testing procedures. I
tackle the question of fundamentalness, also known as invertibility, of fashionable mea-
sures of structural shocks with respect to commonly used factors that summarize the state
of the economy. While Section 5.1 introduces the concept of fundamentalness of structural
shocks, Section 5.2 translates testing for fundamentalness to testing for the null hypothe-
sis of interest. In Section 5.3, I investigate the fundamentalness of the uncertainty shock
associated to Baker et al. (2016)’s Economic Policy Uncertainty, and Section 5.4 presents a
discussion of two proxies of structural shocks: Jarociński and Karadi (2020)’s and Känzig
(2023)’s.

5.1 Fundamentalness of structural shocks

Starting from the pioneering work of Sims (1980), the empirical analysis of macroeco-
nomic time series data has progressively hinged on structural vector autoregressive (SVAR)
models.
Common practice in the SVAR literature is to assume that the macroeconomic multivari-
ate time series, {Wt}, has a vector Moving Average (MA) representation with respect to
some mutually orthogonal structural shocks, {ϵt}, such as:

Wt = B(L)ϵt (12)

where the matrices B(L) = B0 +B1L+B2L
2 + ... are moving average filters, that capture

the propagation of the structural disturbances.
This rationale is supported by a twofold motivation: i) by the Wold Representation the-
orem, if the time series is covariance-stationary then it admits a MA(∞) representation
(Brockwell and Davis (1987)), with the Wold innovations being the reduced-form residu-
als of the linear projection of W onto its infinite past; ii) the linear (or linearized) dynamic
stochastic economic model, based on the variables W , usually admits a VARMA solution,
whose structural shocks are assumed to be mutually orthogonal (Fernández-Villaverde
et al. (2007)).
If the process W is causal and invertible, then there exists a linear map between struc-
tural shocks and residuals of the linear projections. This in turn means that the structural
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shocks can be recovered from the linear space of current and lagged values of the process
W , up to a rotation matrix which governs the instantaneous relationships among the com-
ponents of W .
When dealing with macroeconomic time series, the invertibility condition, however, might
not always hold and, in such cases, the MA representation is said to be non-fundamental
(Lippi and Reichlin (1994)). This occurs when the shocks are not solely a linear function
of the past and present of the process W . Examples of non-fundamentalness might be
time series associated to rational expectation models, where the economic agents forms
beliefs about the future of the economy (e.g., Hansen and Sargent (2019)), and likely the
agents’ information space usually differs from the econometrician’s. In practice, the issue
of non-fundamentalness spells out as a problem of VAR misspecification, due to omitted
variables or insufficient set of lagged controls (Chen et al. (2017), Miranda-Agrippino and
Ricco (2023)).
For a better understanding, I use the example of Giannone and Reichlin (2006). Suppose
the process W defined in eq.(12) consists of two blocks of variables, W1 and W2 of dimen-
sions d1 and d2, respectively, such that:(

W1,t

W2,t

)
=

(
A1,1(L) A1,2(L)

A2,1(L) A2,2(L)

)(
Xt

Zt

)
,

(
Xt

Zt

)
= A−1

0

(
ϵ1,t

ϵ2,t

)

(Xt, Zt)
′ ∼ WN(0,Σw), (ϵ1,t, ϵ2,t)

′ ∼ WN(0, Id1+d2), Σw = A−1
0 (A−1

0 )′

where the reduced-form residuals (Xt, Zt)
′ and the structural shocks (ϵ1,t, ϵ2,t)

′ are White
Noise (WN) processes. The Vector MA filters A1,1(L), A2,2(L), A1,2(L) are matrices of di-
mensions, rispectively, d1 × d1, d1 × d2, and d2 × d2. The rotation matrix between reduced-
form residuals and structural shocks, A0, is of dimension (d1+d2)×(d1+d2). From eq.(12),
note that: B(L) = A(L) · (A0)

−1.
Assume the detB(L) with the roots outside the unit circle, and the linear map, A0, to be an
identity matrix. As a consequence, the structural shocks coincide with the reduced-form
residuals. In particular, we have: Xt = ϵ1,t.
Suppose the econometrician is interested in recovering the structural shocks, {ϵ1,t}, but
omits the block of variables W2 from the empirical analysis.
In such scenario, the shocks ϵ1 are invertible, or the MA representation is fundamental,
only if the restriction A1,2(L) = 0 holds, since it implies that the shocks depend only on
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the present and past values of the process W1. The restriction on the coefficients can be
read equivalently as Granger noncausality from the set of omitted variables, W2, to the
innovation process X (as it coincides with ϵ1).
Vice versa, if the restriction A1,2(L) = 0 does not hold, the MA representation is non-
fundamental. To recover the structural shocks of interest, {ϵ1,t}, the present and past val-
ues of the process W1 is no longer sufficient, and the econometrician needs to consider
the enlarged information set, {W1,t,W2,t}, because of her information space being smaller
than the correct one.

5.2 Testing for fundamentalness

As highlighted by the previous example, the problem of testing for fundamentalness of
the structural shocks can be translated into testing for Granger causality (e.g., Giannone
and Reichlin (2006), Forni and Gambetti (2014)) or, equivalently, testing for conditional
lagged exogeneity (e.g., Miranda-Agrippino and Ricco (2023)).22 Complementary to those
works, Chen et al. (2017) propose a test for fundamentalness of the structural shocks by
checking for the martingale difference property of the reduced-form residuals. In par-
ticular, their Theorem 1 shows that, when the DGP is a VARMA process generated by
non-Gaussian i.i.d. (structural) shocks, the structural shocks are fundamental if and only
if the reduced-form innovations are m.d.s. In my empirical analysis, I maintain this as-
sumption about the underlying DGP in all three scenarios.
Thus, continuing with the illustrative VAR from the previous section, the innovations X

are fundamental if: (i) they are invertible with respect to W1, or rather, under the condi-
tions of Theorem 1 in Chen et al. (2017), the process is an m.d.s. with respect to its own
past; (ii) they are not Granger-caused in mean by the process W2 (or equivalently, by its
innovations, Z).

In light of these considerations, the two approaches to testing for invertibility of the
shocks coalesce into testing for the martingale difference property of the structural shocks
with respect to its own past and the past of the additional omitted variables, i.e., the fol-
lowing null hypothesis:

H0 : E[Xt|{Xs}s<t, {Zs}s<t] = 0 (13)

22In particular, Giannone and Reichlin (2006) use a benchmark testing procedure based on the F-stat of
the augmented regressions; Forni and Gambetti (2014) use the multivariate out-of-sample tests proposed
by Gelper and Croux (2007); Miranda-Agrippino and Ricco (2023) propose a Hausman type test of lagged
conditional exogeneity along the lines of Lu and White (2014).
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which is equivalent to the null in eq.(1) up to properly redefining the time index for the
variable Z.23 A parallel conclusion can be drawn in the case of redefining the time index
for the variable X , when the practitioner considers the following null hypothesis:

H0 : E[Xt+h|{Xs}s<t+h, {Zs}s<t] = 0, h = 0, 1, ..., H

which is understood as the condition of the process X being a martingale difference se-
quence with respect its past enlarged by the h-lagged past of the process Z. Note that, this
last condition implies: E[Xt+h|{Xs}s<t, {Zs}s<t] = 0, which might be related to the con-
cept of non-causality at horizon h (see, for linear models, Dufour and Renault (1998), for
nonlinear models or nonlinear regressors, Koop et al. (1996) and Gonçalves et al. (2021)).24

In the next sections, I will investigate the invertibility of estimated structural shocks
and popular proxy of structural shocks. In particular, I will revisit the findings of Baker
et al. (2016) (jointly with Diercks et al. (2024)), Jarociński and Karadi (2020) and Känzig
(2023).
Regarding the choice of the potentially omitted variables, I follow Forni and Gambetti
(2014) by considering the first principal components of datasets that entail the relevant
macroeconomic or financial information. The intuition is that, by the economic system
admitting a state space representation, those estimated factors should capture the state
variables of the system. Thus, as set of omitted variables, {Zt}, I consider three sets of
factors that should control for the state of the economy:25 i) 8 macroeconomic factors from
McCracken and Ng (2016); ii) 8 macroeconomic factors from Rapach and Zhou (2021); iii)
5 financial factors from Giglio and Xiu (2021). As FRED-MD is a macroeconomic database

23Note that, without invoking Chen et al. (2017)’s Theorem 1, the conclusions about fundalmentalness
might still depend on the contemporaneous identification restrictions, despite the null hypothesis of eq.(13)
does not include the present value of the process Z.

24Interestingly, for multivariate autoregressive processes, Dufour and Renault (1998) provides a decom-
position of the linear causality channel at horizon h with respect to the causality at previous horizons. In
terms of conditional mean expectations, this does not hold in general. However, I conjecture that, by as-
suming some primitive conditions on the separability of the conditioning information sets (e.g. Renault and
Triacca (2015)), then comparable conclusions might be drawn. This exercise is left for future research.

25Regarding the first set of factors, using the FRED-MD dataset spanning until June 2021, I estimate 8
static factors by principal component analysis (PCA) adapted to allow for missing values (Stock and Watson
(2002)’s EM algorithm). Regarding the second set of factors, using the same dataset, I estimate 8 static factors
by sparse PCA following Rapach and Zhou (2021). Regarding the last one, I estimate 5 static factors by PCA,
using the dataset in their replication package. Covering from Jan. 1976 to Nov. 2009, their dataset consists
in a large panel of 647 portfolios that include US equities as well as treasury bonds, corporate bonds, and
currencies. For what concerns the other vintages of McCracken and Ng (2016), I run the empirical analysis
with respect to other vintages (e.g., Jan. 2020) but I have not found substantial changes with respect to the
presented conclusions. Such additional results are available upon request.

43



of 134 monthly U.S. indicators, the first two sets of factors control for the state of macroe-
conomic variables. Vice versa, the last set of factors should principally control for the state
of the financial markets, as being extracted by a panel of 647 portfolios, spanning from eq-
uities to corporate bonds.
The simulation results underscore that the good properties of the proposed testing pro-
cedure depend on the autoregressive properties of the process Z. Regarding this aspect,
all sets of factors seem to have nonnegligible persistence. In a preliminary analysis, it
emerges that, by looking at the information criteria after fitting VAR models: i) for the
first two sets of factors, the AIC (BIC) suggests the optimal choice of lag controls to be
around 4 (2); ii) for the last set of factors, the AIC (BIC) suggests the optimal number of
lag controls to be 3 (1).

5.3 Baker et al. (2016)’s Economic Policy Uncertainty Shock

Baker et al. (2016) propose a measure of economic policy uncertainty (EPU) based on
newspaper coverage frequency. In particular, for major U.S. newspapers, the index mea-
sures the frequency of articles containing terms that are associated with uncertainty, the
economy, and policy.
Following Baker et al. (2016) (Section IV.D), I estimate the uncertainty structural shock at
monthly frequency by: i) fitting a VAR(6) to 5 monthly US time series from Jan. 1985 to
Dec. 2019; ii) imposing the following ordering restriction via Cholesky decomposition:
first, the EPU index, then the log of the S&P 500 index, the federal funds rate, log em-
ployment, and lastly log industrial production.26 As discussed in Diercks et al. (2024), the
estimated structural shock is serially uncorrelated.
The small VAR system, however, arguably controls for all relevant macroeconomic con-
ditions. This turns to be critical when questioning the fundamentalness of the estimated
shock, especially since the measure should also capture “uncertainties related to the economic
ramifications of “noneconomic” policy matters [...] both near-term concerns [...] and longer term
concerns” (Baker et al. (2016)).
In response to these concerns about fundamentalness, I test for the null hypothesis of
eq.(13), by employing both Portmanteau-type testing procedures: the corrected one (i.e,
based on T̂ c

ω , see Theorem 2) and the benchmark one (i.e., based on T̂ω, see eq.(11)). With
respect to the times series {Xt, Zt}, the EPU uncertainty shock is to be considered as the
process X , while the McCracken and Ng (2016)’s factors as the process Z.

26The data is available in the replication package of Diercks et al. (2024).
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The left panel of Figure 2 displays that, for both testing procedures, we reject the null

Figure 2: Baker et al. (2016). Comparison between the two testing strategies: LEFT PANEL: on
the y-axes, the level of the standard/benchmark test statistic (blue solid) and corrected test statistic (orange
solid) at different horizons M ; on the x-axis, the smoothing parameter range from 1 to 30; the weighting
function is the Bartlett kernel; nominal significance levels are 5% (dashed yellow), and 10% (dashed purple).
RIGHT PANEL: on the y-axes, the contributions of the causality channels relative to the standard/benchmark
test statistic (in absolute value), as decomposed in eq. (5): the inverse Cω (blue solid), the tested (orange
solid) T c

2ω , and the one associated to the conditional homoskedasticity of process X (yellow solid) T1ω , after
being centered.

hypothesis at 5% significance level. The corrected test statistic conveys the importance
of the past cross-correlation, from moderate (18 months) to long horizons (30 months).27

On the contrary, the benchmark test statistic, indicates that the null hypothesis should be
rejected for a narrow window of moderate horizons (14-16 months), thus failing to reject
the null for longer horizons.
Despite seemingly puzzling, we understand the difference between the two testing strate-
gies once looking at the right panel of Figure 2, which dissects the benchmark test statistic
as in eq.(5). Albeit the relative importance of the tested causality channel (i.e., T c

2ω) remains

27These values of the smoothing parameter are in line with the guideline at the end of Section 4.1. Note
that, since the sample size is T = 408, we have: M = 20 ≈

√
T , and M = 27 ≈ 5(10T )1/5 (see the preliminary

bandwidth in Hong and Lee (2005)).
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similar across horizons, the relative importance of the inverse causality channel (i.e, Cω) is
larger at shorter horizons but fading away at longer horizons. This causes the ambiguous
inference drawn by the benchmark test, which visually appears as the inverse U-shaped
curve on the left panel. On the opposite, the corrected test statistic, being robust to the
inverse causality channel, does not suffer such issue, and so produces a more coherent
picture. Moreover, as the relative importance of the term T1ω tends to small, the shock
series can be regarded approximately to be conditionally homoskedastic and homokurtic.
Please recall that, as described in the first part of Proposition 2, the statistic T1ω is centered
at zero when the conditional homoskedasticity holds, and has negligible variance when
the conditional homokurtosis holds.
In light of these considerations, I am prone to conclude that the shock is not fundamen-
tal to the system when including the McCracken and Ng (2016)’s macroeconomic factors.
Regarding the other macroeconomic factors, for both testing procedures, we fail to reject
the null hypothesis.
Causal inference about the EPU uncertainty shock, thus, can beneficiate from including
the McCracken and Ng (2016)’s factors. As an example, I revisit the findings of Diercks
et al. (2024) about the superadditive effects of uncertainty shocks. In particular, I focus
on the impulse response analysis of inflation with respect to uncertainty, measured by the
EPU shocks, within the system of variables as in Baker et al. (2016).
Diercks et al. (2024) estimate the following set of state-dependent local projections:

yt+h = αh +
(
β0,h + β1,h1{ϵunc,t−1 > 0, .., ϵunc,t−L > 0}

)
ϵunc,t +

p∑
i=1

γi,hwt−i + ut+h

where h sets the predictive horizon, ranging from 0 to 36 months, p is the number lags used
for the control variables, {wt}, and the indicator function takes value 1 if each one of the
previous L uncertainty shocks {ϵunc,t−1, .., ϵunc,t−L} has been positive. The local projections
are considered as state-dependent because the indicator function measures the response
to the shock conditional on having L previous consecutive positive shocks. Indeed, the
β1,h coefficient is dubbed as the “state multiplier” as it captures the superaddivite effect
of shocks to uncertainty: the impact of a cascade of positive uncertainty shocks is more
severe than the isolated sum of them.
In the empirical application of their Appendix B.1 (Figure B.2), the shock of interest ϵunc is
the EPU uncertainty shock, the outcome variable y is inflation (Personal Consumption Ex-
penditures price index), the number of consecutive positive shocks is 2, L = 1, the number
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of lags for the controls is 6, p = 6. The set of controls is the same as in Baker et al. (2016),
augmented by the past realizations of the outcome variable. Figure 4a reproduces Diercks
et al. (2024)’s results.
Once adding two lags of McCracken and Ng (2016)’s macroeconomic factors to the set of
LP controls, we notice that, while there is no much relevant change to the unconditional
linear response (see Appendix D.1), the state-dependent response ({β1,h}h=0,...,H) becomes
significantly positive. This corroborates the superadditivity of the uncertainty shocks: a
sequence of consecutive (positive) EPU structural shocks leads to a noticeable increase of
inflation, substantially more severe than the case when there is no such consecutive se-
quence. This finding connects to two studies. First, it aligns with the impulse response
analysis in Fernández-Villaverde et al. (2015), which shows that unexpected changes in
fiscal policy uncertainty can lead to increased inflation within a standard New Keynesian
model. Second, it relates to Ascari et al. (2023), where they demonstrate that, in a rich
DSGE model with firm dynamics, a shock that raises short-term inflation expectations re-
sults in negative macroeconomic effects, causing inflation to rise while output declines
(stagflationary response).
Regarding the other variables of the system, the responses to the shocks are similar to
Diercks et al. (2024), except for the stock market (real S&P500 price index). In particu-
lar, the responses of industrial production and short rates to uncertainty shocks are still
negative, in line with Diercks et al. (2024)’s (Figure 10-11 in Appendix D.2). Conversely,
the state-dependent response of the stock market to consecutive (positive) EPU structural
shocks becomes significantly more negative at longer horizons (Figure 5). This finding
is consistent with Berger et al. (2020), who observe that uncertainty shocks, as associated
with future volatility, are linked to declines in stock returns (refer to their discussion in
Section 5.2). Upon inspecting Figure 3, we observe that EPU shocks correlate with the
past state of the macroeconomy, particularly during two periods: from 2005 to 2007 and
from 2009 to 2013 —i.e., the end of the Great Moderation and the aftermath of the Great
Recession.

Interestingly, the response of inflation to an uncertainty shock, as measured by the one
of other two proxies in Diercks et al. (2024) (namely, financial uncertainty from Ludvigson
et al. (2021) and realized market volatility from Berger et al. (2020)), seems to be strongly
negative. At the same time, for all the proxies, the responses of industrial production to
uncertainty shocks tend to be negative, confirming the countercyclical nature of the shocks
(Diercks et al. (2024)). In light of these findings, it appears that the EPU uncertainty shock
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could be considered a supply-side negative shock, while the other two uncertainty shocks
are more accurately described as demand-side negative shocks. In conclusion, I find
that, after accounting for macroeconomic factors, EPU uncertainty shocks—particularly
between the end of the Great Moderation and the recovery from the Great Recession—
behaves as (superadditive) ‘expectational’ shocks, as inspired by Ascari et al. (2023).

(a) Time series of EPU from Baker et al. (2016), and PCE and S&P 500 price indexes in percentage growth.

(b) Time series of the estimated EPU shock and the estimated projection of the shock series on the two lags
of McCracken and Ng (2016)’s macroeconomic factors.

Figure 3: Time series and shocks:
Parallel to Figure 1 in Diercks et al. (2024), the upper panel displays the time series of EPU, together with the
time series associated to inflation and stock market in percentage growth (i.e, (current/previous− 1)× 100).
The lower panel displays the the estimated EPU shock series and its part that correlates with the past of
the macroeconomic factors. The shaded areas represent NBER (National Bureau of Economic Research)
recessions.
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(a) Replication of Figure B.2.(e)-(f) in Diercks et al. (2024)’s Appendix B.1

(b) Inclusion of two lags of McCracken and Ng (2016)’s macroeconomic factors to the set of controls

Figure 4: Response of price level to consecutive positive EPU uncertainty shocks:
LEFT PANELS: the empirical state-dependent impulse responses (estimated with LPs as in Diercks et al.
(2024)) to two consecutive positive uncertainty shocks (dashed blue line) and contrast it to the response to a
single shock (solid black line). RIGHT PANELS: the incremental effect of the second shock, i.e. {β1,h}h=1,..,H ,
with 90% confidence intervals (shaded area). In both panels, on the y-axes, the level of impulse responses;
on the x-axes, the horizons, h. Price level is measured by the Personal Consumption Expenditures (PCE)
Price Index.
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(a) Replication of Figure B.3(e)-(f) in Diercks et al. (2024)

(b) Inclusion of two lags of McCracken and Ng (2016)’s macroeconomic factors to the set of controls

Figure 5: Response of stock market to consecutive positive EPU uncertainty shocks:
LEFT PANELS: the empirical state-dependent impulse responses (estimated with LPs as in Diercks et al.
(2024)) to two consecutive positive uncertainty shocks (dashed blue line) and contrast it to the response to a
single shock (solid black line). RIGHT PANELS: the incremental effect of the second shock, i.e. {β1,h}h=1,..,H ,
with 90% confidence intervals (shaded area). In both panels, on the y-axes, the level of impulse responses;
on the x-axes, the horizons, h. Stock market is measured by real S&P 500.
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5.4 Cautionary tales: Jarociński and Karadi (2020), Känzig (2023)

Contrary to the previous application, this section provides examples where the bench-
mark testing strategy suggests to reject the null hypothesis, in contrast with the corrected
version. I consider two series of structural shocks: Jarociński and Karadi (2020)’s mone-
tary policy information shock and Känzig (2023)’s carbon policy shock.28

Combining high frequency and sign restrictions identification schemes, Jarociński and
Karadi (2020) propose a methodology to disentangle the monetary policy information sur-
prises into two components: the one associated with the information about monetary pol-
icy (i.e., the monetary policy information shock) and the one associated with the central
bank’s assessment of the economic outlook (i.e., the central bank information shocks). In
this application, I consider the monetary policy information shock identified by the “Poor
Man’s” sign restrictions (refer to their Section III.C).
Suppose a practitioner investigates the fundamentalness of the Jarociński and Karadi
(2020)’s monetary policy information shock while controlling for the state of the econ-
omy, by testing the null hypothesis of eq.(13). With respect to the times series {Xt, Zt}, in
this example, the monetary policy shock is to be considered as the process X , while the
Rapach and Zhou (2021)’s sparse factors as the process Z.
The left panel of Figure 6 shows that the benchmark testing procedure suggest to reject
the null hypothesis at 5% significance level. In particular, it hints the importance of the
past cross-correlation from moderate (16 months) horizons. Vice versa, by considering
the corrected test statistic, we fail to reject the null at all horizons. Once appealing to the
decomposition on the right panel of Figure 6, we understand that the relative magnitude
of the inverse causality channel is non-negligible, therefore leading to contrasting results.

Adopting an event study approach that exploits high-frequency data and the institu-
tional features of the European carbon market, Känzig (2023) isolates a series of carbon
policy surprises. Measured around the regulatory news, these surprises are defined as
changes in the carbon futures price (relative to wholesale electricity price). Using the sur-
prise series as instrument for the energy price (i.e., Proxy-VAR approach), Känzig (2023)
then estimates the carbon policy shock from a Structural VAR with 8 variables (refer to his
Section 3).

28Both series are downloaded from the authors’ github repositories: https://github.
com/marekjarocinski/jkshocks_update_fed; https://github.com/dkaenzig/
carbonpolicyshocks; I thank the authors, Marek Jarocinski and Diego Känzig, for publicly shar-
ing the data.

51

https://github.com/marekjarocinski/jkshocks_update_fed
https://github.com/marekjarocinski/jkshocks_update_fed
https://github.com/dkaenzig/carbonpolicyshocks
https://github.com/dkaenzig/carbonpolicyshocks


Figure 6: Jarociński and Karadi (2020). Comparison between the two testing strategies:
LEFT PANEL: on the y-axes, the level of the standard/benchmark test statistic (blue solid) and corrected
test statistic (orange solid) at different horizons M ; on the x-axis, the smoothing parameter range from 1 to
30; the weighting function is the Bartlett kernel; nominal significance levels are 5% (dashed yellow), and
10% (dashed purple). RIGHT PANEL: on the y-axes, the contributions of the causality channels relative to
the standard/benchmark test statistic (in absolute value), as decomposed in eq. (5): the inverse Cω (blue
solid), the tested (orange solid) T c

2ω , and the one associated to the conditional homoskedasticity of process
X (yellow solid) T1ω , after being centered.

Now, suppose a practitioner investigates the fundamentalness of the Känzig (2023)’s car-
bon policy surprises while controlling for the state of the US financial markets, by testing
the null hypothesis of eq.(13).29 With respect to the times series {Xt, Zt}, in this example,
the carbon policy shock is to be considered as the process X , while the Giglio and Xiu
(2021)’s financial factors as the process Z.
Similarly to the previous case, in the left panel of Figure 7, the benchmark testing proce-
dure suggest to reject the null hypothesis at 10% significance level, Vice versa, by consid-
ering the corrected test statistic, we fail to reject the null at all horizons. The benchmark
test statistic hints the importance of the past cross-correlation at very short horizons (3-5
months), but fading away right after. Again, by dissecting the statistic on the right panel

29Note that Känzig (2023) does not include any variable associated to the state of the financial markets in
his Structural VAR model (e.g., S&P 500).
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of Figure 7, we deduce that the notable impact of the inverse causality channel drives the
conclusions about rejecting the null.

Figure 7: Känzig (2023). Comparison between the two testing strategies: LEFT PANEL: on
the y-axes, the level of the standard/benchmark test statistic (blue solid) and corrected test statistic (orange
solid) at different horizons M ; on the x-axis, the smoothing parameter range from 1 to 30; the weighting
function is the Bartlett kernel; nominal significance levels are 5% (dashed yellow), and 10% (dashed purple).
RIGHT PANEL: on the y-axes, the contributions of the causality channels relative to the standard/benchmark
test statistic (in absolute value), as decomposed in eq. (5): the inverse Cω (blue solid), the tested (orange
solid) T c

2ω , and the one associated to the conditional homoskedasticity of process X (yellow solid) T1ω , after
being centered.
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6 Conclusion

In this paper, I offer a strategy to test for causality in mean between multivariate time
series based on serial cross-correlation. In particular, building on Hong (1996a), I propose
a test statistic based on the weighted sum of ℓ2 norm of the cross-correlation between the
two multivariate processes at positive lags.
My methodology differs from the standard Portmanteau-type testing procedure by the
introduction of a correction term that removes the influence of the causal dependencies
whose direction is inverse to the tested one. Hence, the proposed approach is suited for
scenarios where the practitioner wants to preserve an agnostic approach to the modelling
of the joint conditional moments of the variables of interests and the omitted variables.
With respect to mild assumptions on the joint process, I show that the corrected version
of the benchmark test statistic has desired asymptotic normality under the null hypothe-
sis of (one-sided) conditional mean independence, for two cases: when the processes are
directly observed, and when the processes are estimated from a conditional mean model.
Under a class of fixed alternatives, the corrected statistic has asymptotic power similar to
the benchmark statistic.
A set of Monte Carlo experiments validates the results from the asymptotic theory: when
the inverse causality matters, the rejection frequencies of the proposed testing procedure
are close to the nominal size, while this is not true for the benchmark procedure, which
tends to over-reject. Both testing strategies generally have similar empirical power under
the alternatives.
For the empirical application, I study the property of fundamentalness of three popular
measures of macroeconomic structural shocks: Baker et al. (2016)’s economic policy un-
certainty (EPU) shock, Jarociński and Karadi (2020)’s monetary policy shock, and Känzig
(2023)’s carbon policy shock. All three scenarios are characterized by nonnegligible in-
verse causality, and so the two testing procedures, the benchmark (Hong (1996a)) and its
corrected version, draw different conclusions in terms of inference. Given the robustness
of the proposed procedure, I deduce that the EPU structural shocks are not fundamental
and, by revisiting Diercks et al. (2024), I find that the response of inflation to the EPU shock
is positive, suggesting it can be dubbed as supply-side negative shock. Regading the other
two shock series, Jarociński and Karadi (2020)’s and Känzig (2023)’s, while the standard
procedure suggests, in both cases, to reject the null hypothesis of fundamentalness, the
corrected test statistic fails to reject the null. The decomposition of the benchmark test
statistic confirms that these conclusions are largely driven by the influence of the causal-
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ity whose direction is inverse to the tested one.
Two interesting venues for future research might be: i) generalizing my proposed testing
strategy to capture also nonlinear depedences by means of the Hong (1999)’s generalized
spectrum (e.g. Hong and Lee (2005), Escanciano and Velasco (2006)). Similarly, consider-
ing the case where the dimensions of the time series are growing, i.e., high dimensional
time series, is a natural extension. This line of research shares a strong connection with
the distance correlation literature, as shown in Han and Shen (2024) and Wang (2024); ii)
to extend my proposed testing strategy to panel data (e.g. Hong and Kao (2004), Chen
(2022)), and so to apply it for testing for weak/ strict exogeneity.
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A Appendix

A.1 Formulations of the statistics

Lemma A.1.

2π

∫
2π

vec[ ˆf(λ)]′vec[ ˆf(λ)] = Tω

Proof. By using the property tr(A′C) = vec(A)′vec(C), together with the properties of the
conjugates30 and the interchangeability of trace and integral operator, we can rewrite the
former as:

2π

∫
2π

vec[ ˆf(λ)]′vec[ ˆf(λ)] =2π

∫
2π

tr
(
[ ˆf(λ)]′[ ˆf(λ)]

)
= 2πtr

(∫
2π

[ ˆf(λ)]′[ ˆf(λ)]

)

By the definition of an appropriate kernel estimator of the cross-spectrum,

f̂(λ) =
1

2π

T−1∑
j=0

(ω(j))1/2Γ̂XZ(j)e
−ijλ

with i being the imaginary unit, and by virtue of Parseval’s theorem, we rewrite the test
statistic as follows:

2πtr

(∫
2π

[ ˆf(λ)]′[ ˆf(λ)]

)
= 2πtr

(
2π

∞∑
j=0

1

4π2
ω(j)

(
Γ̂XZ(j)′

)(
Γ̂XZ(j)

))

=
∞∑
j=0

ω(j)tr

(
Γ̂XZ(j)

′Γ̂XZ(j)
′

)
=

T−1∑
j=0

ω(j)Q(j)

where the last equality follows from the trace property and the definition in eq.(2).

30Namely: the sum of the conjugate is the conjugate of the sum, the conjugate of the transpose is the
transpose of the conjugate, the conjugate of a real matrix is the real matrix itself.
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Lemma A.2.

Tω =
T−1∑
j=0

ω(j)Q(j) = T1ω + T2ω

=
T−1∑
j=0

ω(j)

(
1

T 2

T∑
t=j+1

||Xt||2||Zt−j||2 +
1

T 2

T∑
s,t=j+1,s ̸=t

< Xt, Xs >< Zt−j, Zs−j >

)

Proof. It sufficies to show that:

Q(j) = Tr
[
Γ̂XZ(j)

′Γ̂XZ(j)
]

=
1

T 2
Tr

[(
T∑

t=j+1

Zt−jX
′
t

)(
T∑

t=j+1

XtZ
′
t−j

)]

=
1

T 2

T∑
s,t=j+1

Tr
[
Zt−jX

′
tXsZ

′
s−j

]
=

1

T 2

T∑
s,t=j+1

< Xt, Xs >< Zt−j, Zs−j >

Lemma A.3. Define: Γ̂X̂Ẑ(j) =
1
T

∑T
t=j+1 X̂tẐ

′
t−j (see Appendix B.3). We have:

Q̂(j) = vec
(
Γ̂X̂Ẑ(j)

)′ [(
Γ̂Z

)−1

⊗
(
Γ̂X

)−1
]

vec
(
Γ̂X̂Ẑ(j)

)
Proof. We have:

Q̂(j) = vec
(
Γ̂X̂Ẑ(j)

)′ [(
Γ̂Z

)−1

⊗
(
Γ̂X

)−1
]

vec
(
Γ̂X̂Ẑ(j)

)
= vec

[
(Γ̂X)

−1/2Γ̂X̂Ẑ(j)(Γ̂
−1/2
Z )′

]′
vec

[
(Γ̂X)

−1/2Γ̂X̂Ẑ(j)(Γ̂
−1/2
Z )′

]
=
∣∣∣∣∣∣vec

[
(Γ̂X)

−1/2Γ̂X̂Ẑ(j)(Γ̂
−1/2
Z )′

]∣∣∣∣∣∣2 = ∣∣∣∣∣∣vec
[
Γ̂UV (j)

]∣∣∣∣∣∣2
where the last equality is due the definition in eq.(9). Clearly, we see that if the estimated
innovations are the actual population-standardized innovation, the statistic is equal to the
one defined in eq.(3).
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A.2 Connection between quadratic form and KL divergence:

Proposition 3

The next proposition points out a symmetry that is intrinsically linked to the quadratic
forms. In particular, it shows the explicit connection between the quadratic form and the
Kullback-Leibler divergence.

Proposition 3. SYMMETRIC PERTURBATION.
For a positive ϵ → 0, we have the following:

ln
(
det
(
Id1 − ϵΓ̂XZ(j)Γ̂XZ(j)

′
))

= ln
(
det
(
Id2 − ϵΓ̂XZ(j)

′Γ̂XZ(j)
))

+O(ϵ2)

and:

ln
(
det
(
Id1 − ϵΓ̂XZ(j)Γ̂XZ(j)

′
))

≈ ln
(
det
(
Id2 − ϵΓ̂XZ(j)

′Γ̂XZ(j)
))

≈ −ϵQ(j)

Proof. By the Jacobi’s formula up to order 1:

det
(
Id1 − ϵΓ̂XZ(j)Γ̂XZ(j)

′
)
= 1− ϵtr

[
Γ̂XZ(j)Γ̂XZ(j)

′
]
+O(ϵ2) ≈ 1− ϵQ(j)

Since, for perturbation near the identity, the determinant behaves like the trace, as we
generally have: det(1 + ϵA) = 1 + ϵtr[A] + O(ϵ2), for any bounded square matrix A and
infinitesimal ε.31 Similarly:

det
(
Id2 − ϵΓ̂XZ(j)

′Γ̂XZ(j)
)
= 1− ϵtr

[
Γ̂XZ(j)Γ̂XZ(j)

′
]
+O(ϵ2)

= 1− ϵtr
[
Γ̂XZ(j)

′Γ̂XZ(j)
]
+O(ϵ2) ≈ 1− ϵQ(j)

where the second equality is due the property of the trace operator.
The approximation is established by the fact that, for small x, we have: ln(1 + x) ≈ x.
For the connection to the KL divergence measure, note that:

i) If {Xt, Zt−j} are jointly distributed:

(
Xt

Zt−j

)
∼ N

((
0

0

)
,

(
Id1 ϵ1/2ΓXZ(j)

· Id2

))
,

31For the Jacobi’s formula, a useful discussion can be found here: https://terrytao.wordpress.
com/2013/01/13/matrix-identities-as-derivatives-of-determinant-identities/.
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we have: Xt|Zt−j ∼ N (0,Σ), with:

Σ = Id1 − ϵΓXZ(j)(ΓXZ(j))
′

The same holds for the conditional distribution of Zt−j with respect to Xt, with con-
ditional variance that amounts to: Id2 − ϵΓXZ(j)

′ΓXZ(j).

ii) The KL divergence, DKL, betweeen two mean-zero k-multivariate normal with covariance-
variance matrices Σ and Σ0 = Ik is defined as:

DKL =
1

2
(ln(det(Ik)/ det(Σ)) + tr[Σ]− k) ∝ − ln(det(Σ))

which hints that the previous quantities should be understood as:

ln

 det(Id1)

det
(
Id1 − ϵΓ̂XZ(j)Γ̂XZ(j)′

)
 = − ln

(
det
(
Id1 − ϵΓ̂XZ(j)Γ̂XZ(j)

′
))

Proposition 3 proves that, when the cross-correlation between the two time series is
small, the quadratic forms, {Q(j)}, are measures connected to the variances of two con-
ditional distributions. In particular, the quadratic forms are inversely proportional to the
determinant of the perturbed variance of the conditional distribution of {Xt} with re-
spect to {Zt−j}, and of the conditional distribution of {Zt−j} with respect to {Xt}. When
{Xt, Zt−j} are jointly normal distributed with covariance ϵ1/2ΓXZ(j), we have:

Xt|Zt−j ∼ N (0, Id1 − ϵΓXZ(j)(ΓXZ(j))
′) , Zt−j|Xt ∼ N (0, Id2 − ϵ(ΓXZ(j))

′ΓXZ(j))
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A.3 Proof of Lemma 1

a) For the first part, I consider the scenario where the DGPs are such that:

Z2
t = f(Xt−1) + ut, ut ∼ i.i.d.(1, σ2

u), Xt ⊥⊥ us, ∀s, t

where f(·) : R → R is a measureable function.
Since {Xt} is an i.i.d. process that is independent of ut, we also have:

E[Xt|I(t− 1)] = E[Xt] = 0

E[X2
t |I(t− 1)] = E[X2

t ] = 1

By the same logic of Proposition 1, we have:

E[XtXsZt−jZs−j] = 0

E[X2
t X

2
sZ

2
t−jZ

2
s−j] = E[X2

sZ
2
t−jZ

2
s−j]

E[(Xt, XsZt−j, Zs−j)(Xt+h, Xs+hZt−j+h, Zs−j+h)] = 0, ∀h ̸= 0

Denote: σ2
f = E[f(Xt)], ϱf = E[X2

t f(Xt)].
Under the assumption about the DGPs for Z:

E[X2
sZ

2
t−jZ

2
s−j] = (σf + 1)2 = σ4

Z , for s ≥ t− j

E[X2
sZ

2
t−jZ

2
s−j] = (ϱf + 1)(σf + 1) = (ϱf + 1)σ2

Z , for s = t− j − 1

E[X2
sZ

2
t−jZ

2
s−j] = (σf + 1)2 = σ4

Z , for s < t− j − 1

Thus:

Var[T2ω] =
1

T 4

T−1∑
j=0

ω2(j)
T∑

s,t=j+1,s ̸=t

E[X2
t X

2
sZ

2
t−jZ

2
s−j]

=
σ4
Z

T 4

T−1∑
j=0

ω2(j)
T∑

s,t=j+1,s ̸=t

1 +

(
ϱf + 1

σ2
Z

− 1

)
1{s = t− j − 1}

b) Now I consider the scenario where the DGPs are such that:

Zt = g(Xt−1) + ϵt, ϵt ∼ i.i.d.(0, 1), Xt ⊥⊥ ϵs, ∀s, t
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with g(·) : R → R being a measureable function. Denote σ2
g = E[g(Xt)

2], ϱg =

E[X2
t g(Xt)

2].
First, note that, since we have: E[Zt] = 0, then we must have: E[g(Xt−1)] = 0.
Second, under this class DGPs for Z, we have:

Var(Zt) = E[Z2
t ] = σ2

g + 1

Similar to the previous case, in this class of scenarios, we have:

E[Xt|I(t− 1)] = E[Xt] = 0

E[X2
t |I(t− 1)] = E[X2

t ] = 1

Again, by direct application of Proposition 1, we have:

E[XtXsZt−jZs−j] = 0

E[X2
t X

2
sZ

2
t−jZ

2
s−j] = E[X2

sZ
2
t−jZ

2
s−j]

E[(Xt, XsZt−j, Zs−j)(Xt+h, Xs+hZt−j+h, Zs−j+h)] = 0, ∀h ̸= 0

Thus:

E[X2
sZ

2
t−jZ

2
s−j] = (σg + 1)2 = σ4

Z , for s ≥ t− j

E[X2
sZ

2
t−jZ

2
s−j] = (ϱg + 1)(σg + 1) = (ϱg + 1)σ2

Z , for s = t− j − 1

E[X2
sZ

2
t−jZ

2
s−j] = (σg + 1)2 = σ4

Z , for s < t− j − 1

Finally:

Var[T2ω] =
σ4
Z

T 4

T−1∑
j=0

ω2(j)
T∑

s,t=j+1,s ̸=t

(
ϱg + 1

σ2
Z

− 1

)
1{s = t− j − 1}

c) Finally, I consider the scenario where the DGPs are such that:

Z2
t = αZ2

t−1 + h(Xt−1) + ut, Xt ∼ i.i.d.(0, 1), ut ∼ i.i.d.(1, σ2
u), Xt ⊥⊥ us, ∀s, t

for some measurable function h(·) : R → R and |α| ∈ (0, 1).
Denote: µh = E[h(Xs+1)] and ϱh = E[h(Xs)X

2
s ]. Denote: µe = E[h(Xt−1) + ut] = µh + 1
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and σ2
e = E[(h(Xt−1) + ut)

2].
Similar to the previous case, we have:

E[Xt|I(t− 1)] = E[Xt] = 0

E[X2
t |I(t− 1)] = E[X2

t ] = 1

By the same logic of Proposition 1, we have:

E[XtXsZt−jZs−j] = 0

E[X2
t X

2
sZ

2
t−jZ

2
s−j] = E[X2

sZ
2
t−jZ

2
s−j]

E[(Xt, XsZt−j, Zs−j)(Xt+h, Xs+hZt−j+h, Zs−j+h)] = 0, ∀h ̸= 0

Note that the process {Z2
t } is a causal AR(1) process with i.i.d. noise, since we have:

Zt−1 ⊥⊥ Xt−1, ut ⊥⊥ Xt−1

Now, I distinguish two different scenarios:

i) When s ≥ t− j, we have:

E[X2
sZ

2
t−jZ

2
s−j] = E[X2

s ]E[Z2
t−jZ

2
s−j] = E[Z2

t−jZ
2
s−j]

= α|j−υ1| σ2
e

1− α2
+

µ2
e

1− α

|j−υ1|−1∑
l=0

αl

where υ1 = s− t+ j ≥ 0.
To see the last equality, note that we have the following:

• For s = t− j, that is υ1 = 0:

E[Z2
t−jZ

2
s−j] = E[Z2

sZ
2
s−j] = αj σ2

e

1− α2
+

µ2
e

1− α

j−1∑
l=0

αl
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• For s = t− j + 1, that is υ1 = 1:

E[Z2
t−jZ

2
s−j] = E[Z2

s−1Z
2
s−j] = α|j−1| σ2

e

1− α2
+

µ2
e

1− α

|j−1|−1∑
l=0

αl

since:

E[Z2
s−1Z

2
s−j] = E[Z2

s−1Z
2
s ] = α

σ2
e

1− α2
+

µ2
e

1− α
for j = 0

E[Z2
s−1Z

2
s−j] = E[Z2

s−1Z
2
s−1] =

σ2
e

1− α2
for j = 1

· · ·

E[Z2
s−1Z

2
s−j] = E[Z2

s−1Z
2
m+1] = αm σ2

e

1− α2
+

µ2
e

1− α

m−1∑
l=0

αl for j = m+ 1

• For s = t− j + 2, that is υ1 = 2:

E[Z2
t−jZ

2
s−j] = E[Z2

s−1Z
2
s−j] = α|j−2| σ2

e

1− α2
+

µ2
e

1− α

|j−2|−1∑
l=0

αl

since:

E[Z2
s−2Z

2
s−j] = E[Z2

s−2Z
2
s ] = α2 σ2

e

1− α2
+

µ2
e

1− α
(1 + α) for j = 0

· · ·

E[Z2
s−2Z

2
s−j] = E[Z2

s−2Z
2
s−2] =

σ2
e

1− α2
for j = 2

· · ·

E[Z2
s−1Z

2
s−j] = E[Z2

s−1Z
2
m+1] = αm σ2

e

1− α2
+

µ2
e

1− α

m−1∑
l=0

αl for j = m+ 2
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Summing up the terms, we have:

T−2∑
j=0

ω(j)
T∑

s≥t−j,s̸=t

E[X2
sZ

2
t−jZ

2
s−j] =

T−2∑
j=0

ω(j)

τ(j)∑
υ1=0

α|j−υ1| σ2
e

1− α2
+

µ2
e

1− α

|j−υ1|−1∑
l=0

αl


where τ(j) is the number of times that s ≥ t − j up to T , at a given j ≥ 0, such
that: s ̸= t, and s, t = j + 1. In particular, we have:

τ(j) =
(T − j)(T − j − 1)

2

+ 1(2j − T − 1 < 0) ·
(
(T − 2j − 1)j + j(j + 1)/2

)
+ 1(2j − T − 1 ≥ 0) · (T − j)(T − j − 1)/2

To see that, note that the summation is with respect to two indexes:

i. The first term,
(T − j)(T − j − 1)

2
, is the number of times that s ≥ t − j when

increasing along the s index;

ii. The second term, (T −2j−1)j+j(j+1)/2, is the number of times that s ≥ t−j

while increasing along the t index when j < T+1
2

;

iii. The third term,
(T − j)(T − j − 1)

2
, is the number of times that s ≥ t− j while

increasing along the t index when j ≥ T+1
2

.

Here below, I present a table that helps to visualize the previous terms:

t = j + 1 t = j + 2 t = j + 3 t = j + 4 j + 4 < t < 2j + 2 t = 2j + 2 t = 2j + 3 t = 2j + 4

s = j + 1 0 1 1 1 1 0 0 0

s = j + 2 1 0 1 1 1 1 0 0

s = j + 3 1 1 0 1 1 1 1 0

s = j + 4 1 1 1 0 1 1 1 1

· · · · · · · · · · ·
s = 2j + 2 1 1 1 1 1 0 1 1

s = 2j + 3 1 1 1 1 1 1 0 1

s = 2j + 4 1 1 1 1 1 1 1 0

The entries take value one if s ≥ t − j, i.e. 1(s ≥ t − j). Because of the additional
condtion that s ̸= t, the diagonal entries are zero.
The first term, (T − j)(T − j − 1)/2, is the summation over the lower-triangular
entries. The second and third terms are the summations over the upper-triangular
entries. When j < T+1

2
, some entries are zeros on the top-right corner, meaning
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that the upper sum is j-times T −2j−1, plus the bottom-right corner of the upper-
triangular part, which consists of j(j+1)/2 elements. When j ≥ T+1

2
, the top-right

corner contains no null entry or, in other words, the entries are symmetric about
the main diagonal, which means that the upper-triangular summation is identical
to the lower-triangular one.

ii) when s < t− j, denote υ2 = t− s− j > 0. We have the following:

E[X2
sZ

2
t−jZ

2
s−j] = αυ2−1E[Z2

s+1X
2
sZ

2
s−j] +

µ2
e

1− α
(1 + µh)

υ2−2∑
l=0

αl

To see it, note that:

• For s = t− j − 1, meaning υ2 = 1:

E[Z2
s+1X

2
sZ

2
s−j] = αE[X2

sZ
2
sZ

2
s−j] + E[us+1X

2
sZ

2
s−j] + E[h(Xs)X

2
sZ

2
s−j]

= αE[Z2
sZ

2
s−j] + E[Z2

s−j] + E[h(Xs)X
2
sZ

2
s−j]

= α

(
αj σ2

e

1− α2
+

µ2
e

1− α

j−1∑
l=0

αl

)
+

µ2
e

1− α
+

µ2
e

1− α
ϱh

= αj+1 σ2
e

1− α2
+

µ2
e

1− α

j∑
l=1

αl +
µ2
e

1− α
+

µ2
e

1− α
ϱh

= αj+1 σ2
e

1− α2
+

µ2
e

1− α

j∑
l=0

αl +
µ2
e

1− α
ϱh

• For s = t− j − 2, meaning υ2 = 2:

E[Z2
s+2X

2
sZ

2
s−j] = αE[Z2

s+1X
2
sZ

2
s−j] + E[us+2X

2
sZ

2
s−j] + E[h(Xs+1)X

2
sZ

2
s−j]

= αE[Z2
s+1X

2
sZ

2
s−j] + E[Z2

s−j] + E[h(Xs+1)]E[Z2
s−j]

= αE[Z2
s+1X

2
sZ

2
s−j] +

µ2
e

1− α
+

µ2
e

1− α
µh

= αE[Z2
s+1X

2
sZ

2
s−j] +

µ2
e

1− α
(1 + µh)

• For s = t− j − 3, meaning υ2 = 3:

E[Z2
s+3X

2
sZ

2
s−j] = α2E[Z2

s+1X
2
sZ

2
s ] +

µ2
e

1− α
(1 + α)(1 + µh)
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Summing up the terms, we have:

T−2∑
j=0

ω(j)
T∑

s<t−j,s̸=t

E[X2
sZ

2
t−jZ

2
s−j]

=
T−2∑
j=0

ω(j)

(T−j)(T−j−1)−τ(j)∑
υ2=1

(
αυ2−1E[Z2

s+1X
2
sZ

2
s−j] +

µ2
e

1− α
(1 + µh)

υ2−2∑
l=0

αl

)

=
T−2∑
j=0

ω(j)

(T−j)(T−j−1)−τ(j)∑
υ2=1(

αυ2−1

[
αj+1 σ2

e

1− α2
+

µ2
e

1− α

j∑
l=0

αl +
µ2
e

1− α
ϱh

]
+

µ2
e

1− α
(1 + µh)

υ2−2∑
l=0

αl

)

=
T−2∑
j=0

ω(j)

(T−j)(T−j−1)−τ(j)∑
υ2=1(

αυ2+j σ2
e

1− α2
+

µ2
e

1− α

j+υ2−1∑
l=υ2−1

αl + αυ2−1 µ2
e

1− α
ϱh +

µ2
e

1− α
(1 + µh)

υ2−2∑
l=0

αl

)

=
T−2∑
j=0

ω(j)

(T−j)(T−j−1)−τ(j)∑
υ2=1(

αυ2+j σ2
e

1− α2
+

µ2
e

1− α

j+υ2−1∑
l=0

αl + αυ2−1ϱh
µ2
e

1− α
+ µh

µ2
e

1− α

υ2−2∑
l=0

αl

)

Thus, reconciling both results, we conclude:

Var[T2ω] =
T−2∑
j=0

ω(j)

τ(j)∑
υ1=1

α|j−υ1| σ2
e

1− α2
+

µ2
e

1− α

|j−υ1|−1∑
l=0

αl


+

(T−j)(T−j−1)−τ(j)∑
υ2=1

(
αυ2+j σ2

e

1− α2
+

µ2
e

1− α

j+υ2−1∑
l=0

αl + αυ2−1ϱh
µ2
e

1− α
+ µh

µ2
e

1− α

υ2−2∑
l=0

αl

)
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B Appendix:

Proof of Proposition 2, Theorem 1 to 3

B.1 Proof of Proposition 2

i) The proof consists of three parts:

(a) From its definition in eq.(4):

E[T · T1ω] =
1

T

T−1∑
j=0

ω(j)
T∑

t=j+1

E[||Xt||2||Zt−j||2]

The expectations are such that, by law of iterated expectations:

E[||Xt||2||Zt−j||2] = E[E[||Xt||2|I(t− 1)]||Zt−j||2] = d1E[||Zt−j||2] = d1d2

where the second equality is because of the assumption of conditional homoskedas-
ticity, E[XtX

′
t|I(t− 1)] = E[XtX

′
t], and the processes being standardized. Substi-

tuting above:

E[T · T1ω] =
1

T

T−1∑
j=0

ω(j)(T − j)d1d2 = µω,T

(b) By definition:

Var[T · T1ω] = E[(T · T1ω − µω,T )
2]

For simplicity, denote:

T · T1ω − µω,T =
1

T

T−1∑
j=0

ω(j)
T∑

t=j+1

(
||Xt||2||Zt−j||2 − d1d2

)
=

1

T

T−1∑
j=0

ω(j)
T∑

t=j+1

Υ
(1)
t,j

so that, using the Mean Square Error (MSE) norm (i.e., || · ||MSE = E[·]2) the
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previous expression can be bounded as follows:

Var[TT1ω] =
1

T 2
E

(T−1∑
j=0

ω(j)
T∑

t=j+1

Υ
(1)
t,j

)2
 =

1

T 2

∣∣∣∣∣
∣∣∣∣∣
T−1∑
j=0

ω(j)
T∑

t=j+1

Υ
(1)
t,j

∣∣∣∣∣
∣∣∣∣∣
2

MSE

≤ 1

T 2

T−1∑
j=0

ω(j)

∣∣∣∣∣
∣∣∣∣∣

T∑
t=j+1

Υ
(1)
t,j

∣∣∣∣∣
∣∣∣∣∣
MSE

2

by virtue of Minkowski inequality.
By the assumptions on the conditional moments, we have:

E[||Xt||4||Zt−j||4] = E[E[X ′
tXtX

′
tXt|I(t− 1)]||Zt−j||4] = E[||Xt||4||]E[Zt−j||4]

thus:∣∣∣∣∣
∣∣∣∣∣

T∑
t=j+1

Υ
(1)
t,j

∣∣∣∣∣
∣∣∣∣∣
2

MSE

= E

( T∑
t=j+1

Υ
(1)
t,j

)2


≤ E

[(
T∑

t=j+1

||Xt||4||Zt||4
)

+ 2d1d2

(
T∑

t=j+1

||Xt||2||Zt||2
)

+ d21d
2
2(T − j)

]
≤ (T − j)max{3d21d22,E[||Xt||4||]E[Zt−j||4]} = O(T )

where the last equality is by the finiteness of the fourth moments.
Equivalently, this means: ∣∣∣∣∣

∣∣∣∣∣
T∑

t=j+1

Υ
(1)
t,j

∣∣∣∣∣
∣∣∣∣∣
MSE

= O(T 1/2)

Thus:

Var[TT1ω] ≤
∆

T

(
T−1∑
j=1

ω(j)

)2

=
∆

T
M2

(
M−1

T−1∑
j=1

ω(j)

)2

= O(M2/T )

for finite ∆ > 0, where the last equality comes by realizing that, under Assump-
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tion 1, the following convergence holds:

M−1

T−1∑
j=1

ω(j) →
∫ ∞

0

k2(z)dz < ∞

(c) By the same reason as above, under Assumption 1, the following convergence
holds:

M−1Dω,T → 1

2

∫ ∞

0

k4(z)dz < ∞

so that:

Dω,T = O(M)

Given the finiteness of the fourth moments of Z, and the result in Lemma 1, we
also have that:

D
(Hete)
ω,T =

d21
T 2

T−1∑
j=1

ω2(j)
T∑

s,t=j+1,s≥t−j

γt−j,s−j ≍
1

T 2

T−1∑
j=1

ω2(j)

τ(j)∑
l=1

≍
T−1∑
j=1

ω2(j)

(
(T − j)(T − j − 1)

2T 2
+ 1(2j − T − 1 < 0) ·

(
(T − 2j − 1)j + j(j + 1)/2

)
T 2

+ 1(2j − T − 1 ≥ 0)
(T − j)(T − j − 1)

2T 2

)
= O(M)

where a ≍ b stands for the joint condition: a = O(b) and b = O(a).
Together with the previous findings, we have:

E

T · T1ω − µω,T√
D

(Hete)
ω,T

 = 0, Var

T · T1ω − µω,T√
D

(Hete)
ω,T

 = O(M/T )

so that, under the asymptotics of Assumption 1, when M/T → 0 as T → ∞, we
have ℓ2 (or MSE) convergence to zero.

ii) The proof consists of two parts:
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(a) From its definition in eq.(5):

E[T · T c
2ω] =

2

T

T−2∑
j=0

ω(j)
T∑

t=j+2

t−1∑
s=t−j

E[< Xt, Xs >< Zt−j, Zs−j >]

=
2

T

T∑
t=2

t−1∑
s=1

s−1∑
j=t−s

ω(j)E[< Xt, Xs >< Zt−j, Zs−j >]

Under the null hypothesis in eq.(1) and by law of iterated expectations:

E[< Xt, Xs >< Zt−j, Zs−j >] = E[E[X ′
t|I(t− 1)]Xs < Zt−j, Zs−j >] = 0

as the indexes are such that t > s. Thus:

E[T · T c
2ω] = 0

(b) Since, under the null hypothesis in eq.(1), the following property holds:

E[< Xt, Xs >< Zt−j, Zs−j >< Xt−h, Xs−h >< Zt−j−h, Zs−j−h >] = 0

for any integers h ̸= 0, as the indexes are always such that: t > s.
Given the uncorrelatedness of the process, by definition:

Var[T · T c
2ω] =

4

T 2

T∑
t=2

t−1∑
s=1

s−1∑
j=t−s

ω2(j)E[(⟨Xt, Xs⟩⟨Zt−j, Zs−j⟩)2]

where:

E[(⟨Xt, Xs⟩⟨Zt−j, Zs−j⟩)2] = E[E[X ′
tXsX

′
sXt⟨Zt−j, Zs−j⟩2|I(t− 1)]]

= E[E[tr(X ′
tXt)|I(t− 1)]⟨Xs, Xs⟩⟨Zt−j, Zs−j⟩2]

= d1E[||Xs||2⟨Zt−j, Zs−j⟩2]

= d1E[E[||Xs||2|I(s− 1)]⟨Zt−j, Zs−j⟩2]

= d21E[Z ′
t−jZs−jZ

′
s−jZt−j] = d21γt−j,s−j

with γt,s = E[⟨Zt, Zs⟩2]. If the process Z is fourth-order stationary, then the lag
index j could be dropped, meaning that the previous expression could be written
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as:

E[(⟨Xt, Xs⟩⟨Zt−j, Zs−j⟩)2] = d21γt,s

In conclusions, we have:

Var[T · T c
2ω] =

4d21
T 2

T−2∑
j=0

ω2(j)
T∑

t=j+2

t−1∑
s=t−j

γt−j,s−j

Under the assumption of conditional homoskedasticity of {Zt} with respect to
the own information set, that is E[ZtZ

′
t|IZ(t − 1)] = E[ZtZ

′
t], by law of iterated

expectations, we have:

E[(⟨Xt, Xs⟩⟨Zt−j, Zs−j⟩)2] = d21d
2
2

thus:

Var[T · T c
2ω] =

(
d1d2
T

)2 T−2∑
j=0

ω2(j)
∑

s,t=j+1,s≥t−j,s̸=t

=
T−2∑
j=0

ω2(j)

τ(j)∑
l=1

d21d
2
2

T 2

B.2 Proof of Theorem 1

The proof of asymptotic normality of the test statistic, T c
ω , translates into proving the

asymptotic normality of the dominating term T · T c
2ω, as because of Proposition 2 we have

asymptotically:

TT1ω − µω,T√
D

(Hete)
ω,T

= op(1)

when M/T → 0 as M,T → ∞. Note that, if we have M2/T → 0, the asymptotical
negligibility holds as well.
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For simplicity, define:

T · T c
2ω =

2

T

T∑
t=2

Jt

Jt =
t−1∑
s=1

s−1∑
j=t−s

ω(j)⟨Xt, Xs⟩⟨Zt−j, Zs−j⟩ =
t−1∑
s=3

⟨Xt, Xs⟩Wts

such that: Wts =
∑s−1

j=t−s ω(j)⟨Zt−j, Zs−j⟩.
Note that, under Assumption 1,

∑s−1
j=t−s ω(j) = O(M), as discussed in Proposition 2.

The process {(Jt, I(t− 1)), t ∈ Z+} constitutes a martingale difference sequence, since:
1) we have E[Jt|I(t − 1)] = 0 under the null hypothesis of eq.(1); 2) E[|Jt|] < ∞ by the
finiteness of the moments.
Finally, to invoke Brown (1971)’s theorem, two conditions need to be verified.

i) The following Lindeberg condition needs to hold:

T−2(D(Hete)
ω )−1

T∑
t=2

E
[
(Jt)

2 · 1
{
|Jt| > ϵ(D(Hete)

ω )1/2
}]

→ 0

To prove it, it is sufficient to show that the Lyapounov condition holds:

T−4(D(Hete)
ω )−2

T∑
t=2

E[(Jt)4] → 0

We have the following inequalities:

E[(Jt)4] ≤ E

[
t−1∑
s=1

||Xt||||Xs||Wts

]4

≤ E

E[||Xt||4
∣∣∣∣∣I(t− 1)

][
t−1∑
s=1

||Xs||Wts

]4
≤ E[||Xt||4]E

[
t−1∑
s=1

||Xs||Wts

]4

where the first inequality is by Cauchy-Schwarz, and the last one is by the assump-
tion on the conditional moments (conditional homokurtosis).
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Denote: Λ(1)
s = UsWts.

Note that {(Λ(1)
s,j , σΛ(s − 1) = σ(Λ

(1)
l,j ; l < s), s ∈ Z+)} is a martingale difference se-

quence, with respect to its natural σ−algebra, by the null hypothesis since the indexes
are such that s ≥ t − j, and by the aforementioned justifications for the m.d.s. prop-
erty of the process J .
Thus, we define:

bi,t = max
i≤l≤t

∣∣∣∣∣
∣∣∣∣∣Λ(1)

i

l∑
k=i

E[Λ(1)
k |σΛ(i)]

∣∣∣∣∣
∣∣∣∣∣
MSE

= max

{
0,
∣∣∣∣∣∣Λ(1)

i

∣∣∣∣∣∣2
MSE

}

where the last equality is by the martingale difference property and by law of iterated
expectations, since we have for k > i, we have E[Λ(1)

k |σΛ(i)] = 0.
The ℓ2 norm is to be interpreted in MSE terms, as previously referred in Proof of B.1.
By definition:

∣∣∣∣∣∣Λ(1)
i

∣∣∣∣∣∣2
MSE

= E
[(

Λ
(1)
i

)′ (
Λ

(1)
i

)]
= E

[
E
[
||Xs||2|I(s− 1)

]
W 2

ts

]
= d1E

[
W 2

ts

]
where the last equality is because of the assumption of the conditional moments (con-
ditional homoskedasticity). By a similar logic of part (b) of proof of Proposition 2, in
ℓ2 norm:

E
[
W 2

ts

]
≤

(
s−1∑

j=t−s

ω(j)E[< Zt−j, Zs−j >
2]

)2

= O(M2)

where the last equality is by the assumption of finiteness of the higher order cross-
moments, ∀t, s, |γt,s| < ∞, and by Assumption 1 on the weighting function.
Note that, this last equality is also trivially satisfied under the assumption of condi-
tional homoskedasticity of the process Z with respect to the own information set, that
is: E[ZtZ

′
t|{Zs, s < t}] = E[ZtZ

′
t].

By application of Proposition 5.4 of Dedecker et al. (2007) (Burkholder’s inequality):

E[(Jt)4] ≤

(
4

t−1∑
s=1

bi,t

)2

= O(t2M4)
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which means that under Assumption 1:

T−4(D(Hete)
ω )−2

(
T∑
t=2

E[(Jt)4]

)
= ∆T−4M−2

(
T 3M4

)
= O(M2/T ) = op(1)

for finite ∆ > 0, under M2/T → 0, as M,T → ∞.

To reach a sharper conclusion, the alternative line is to appeal to Marcinkiewicz-
Zygmund inequalities. Under the assumptions of the time series {Λ(1)

i }:

|Cov[Λ(1)
1 ,Λ

(1)
1+i]| = O(i−4/2) = O(i−2), i → +∞

by application of Theorem 4.1 of Dedecker et al. (2007), we have that:

E[(Jt)4] = O(t2M2)

Similar result can be obtained via Rosenthal type inequalities. For further details,
please refer to Theorem 4.2 and Corollary 5.4 of Dedecker et al. (2007).
For this latter scenario, we have the sharper conclusion:

T−4(D(Hete)
ω )−2

(
T∑
t=2

E[(Jt)4]

)
= ∆T−4M−2

(
T 3M2

)
= O(1/T ) = op(1)

for finite ∆ > 0, as T → ∞.

ii) The following condition needs to hold:

T−2(D(Hete)
ω )−1

T∑
t=2

E[(Jt)2|I(t− 1)]
p−→ 1

Similar to the previous point, we prove the sufficient condition:

T−4(D(Hete)
ω )−2Var

[
T∑
t=2

E[(Jt)2|I(t− 1)]

]
→ 0

To ease the notation, let us define Λ′
t =

∑t−1
s=1(Λ

(1)
s )′ =

∑t−1
s=1 WtsU

′
s .
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Using the trace operator properties, we can express the conditional expectations as
follows:

E[(J⋆
t )|I(t− 1)] = tr

{
E

[
t−1∑
s=1

WtsX
′
s(XtX

′
t)

t−1∑
s=1

Xs(Wts)
′

∣∣∣∣∣I(t− 1)

]}
≤ tr

{
E
[
||Xt||2

∣∣I(t− 1)
]}

tr
{
E
[
Λ′

tΛt

∣∣I(t− 1)
]}

= d1 · tr {Λ′
tΛt}

where the last equality is because of the assumption of the conditional moments (con-
ditional homoskedasticity), and by realizing that Λt ∈ I(t− 1).
Denote:

tr {Λ′
tΛt} =

t−1∑
s=1

||Xs||2(W ⋆
ts)

2 + 2
t−1∑
s1=2

s1−1∑
s2=1

⟨Xs1 , Xs2⟩Wts1Wts2

= B̃t + 2Ãt

(a) The second addend, Ãt, is a sum of martingale difference sequences, over the
index s1 , because of the null hypothesis of eq.(1).
Define:

Λ(2)
s1

=

s1−1∑
s2=1

⟨Xs1 , Xs2⟩Wts1Wts2

By similar arguments to the previous ones:

b̃i,t = max
i≤l≤t

∣∣∣∣∣
∣∣∣∣∣Λ(2)

i

l∑
k=i

E[Λ(2)
k |σΛ(i)]

∣∣∣∣∣
∣∣∣∣∣
MSE

= max

{
0,
∣∣∣∣∣∣Λ(2)

i

∣∣∣∣∣∣2
MSE

}

By the martingale difference property of the sequence, we write:

∣∣∣∣∣∣Λ(2)
i

∣∣∣∣∣∣2
MSE

=

s1∑
s2=3

||⟨Xs1 , Xs2⟩Wts1Wts2||2MSE
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with:

||⟨Xs1 , Xs2⟩Wts1Wts2 ||2MSE =

∣∣∣∣∣
∣∣∣∣∣⟨Xs1 , Xs2⟩

s1−1∑
j=t−s1+1

ω(j)⟨Zt−j, Zs1−j⟩Wts2

∣∣∣∣∣
∣∣∣∣∣
2

MSE

≤

∣∣∣∣∣
∣∣∣∣∣⟨Xs1 , Xs2⟩⟨Zh1 , Zh2⟩M

(
M−1

s1−1∑
j=t−s1+1

ω(j)

)
Wts2

∣∣∣∣∣
∣∣∣∣∣
2

MSE

≤ M4||⟨Xs1 , Xs2⟩⟨Zh1 , Zh2⟩⟨Zh3 , Zh4⟩||2MSE

≤ M4||⟨Xs1 , Xs2⟩||4MSE

(
||⟨Zh1 , Zh2⟩||4MSE

)2
= O(M4)

for some appropriate indexes {hi}4i=1, where the first inequality is due station-
arity, while the last inequality is by use of Cauchy-Schwarz and the assumption
of the conditional moments (conditional homokurtosis). The last equality is due
the finiteness of the higher moments of the process Z.
Thus: ∣∣∣∣∣∣Λ(2)

i

∣∣∣∣∣∣2
MSE

= O(tM4)

By application of Proposition 5.4 of Dedecker et al. (2007) (Burkholder’s inequal-
ity):

||Ãt||2MSE = E[Ã2
t ] ≤

(
4

t−1∑
s1=2

b̃i,t

)
= O(t2M4)

which in turn means that, under Assumption 1, we have:

T−4(D(Hete)
ω )−2

(
T∑
t=2

E[(Ãt)
2]

)
= ∆T−4M−2

(
T 3M4

)
= O(M2/T ) = op(1)

for finite ∆ > 0, where the last equality is under Assumption 1 and under the
asymptotic rate such that M2/T → 0, as M,T → 0.

Similar to the previous part i), under the assumptions of the time series {Λ(1)
i }:

|Cov[Λ(1)
1 ,Λ

(1)
1+i]| = O(i−4/2) = O(i−2), i → +∞
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since:

t−1∑
s1=2

Λ(2)
s1

=
t−1∑
s1=2

s1−1∑
s2=1

⟨Λ(1)
s1
,Λ(1)

s2
⟩

by application of Cauchy-Schwarz and the previous result by virtue of Theorem
4.1 of Dedecker et al. (2007), we must have that:

E[(Ãt)
2] = O(t2M2)

so that, under Assumption 1:

T−4(D(Hete)
ω )−2

(
T∑
t=2

E[(Ãt)
2]

)
= ∆T−4M−2

(
T 3M2

)
= O(1/T ) = op(1)

for finite ∆ > 0, as T → ∞.

(b) The first addend, B̃t, can be expressed as:

t−1∑
s=1

||Xs||2(W ⋆
ts)

2 =
t−1∑
s=1

(||Xs||2 − d1)(Wts)
2 + d1

t−1∑
s=1

(Wts)
2

= B
(1)
t +B

(2)
t

Note that the first term, B(1)
t , is a sum of martingale difference sequences over

indexes s, under the conditional homoskedasticity of process X .
Following a similar arguments to the previous ones, by the application of Propo-
sition 5.4 of Dedecker et al. (2007):

E
[
(B

(1)
t )2

]
≤

(
4

t−1∑
s=1

||(||Xs||2 − d1)(Wts)
2||2
)

≤

(
4∆

t−1∑
s=3

||(Wts)
2||2
)

= O(tM4)

for finite ∆ > 0. The second inequality is because of the assumption of the con-
ditional moments (conditional homokurtosis), while the last equality is by the
previous results on the fourth moments of the time series {Wts} and finiteness of
the moments of the process Z.
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By the last placed restrictions, we write:

E
[
(B

(2)
t )2

]
≤ O(t2M4)

Alternative, one can notice that the order of the last term, B(2)
t , is determined by

the magnitude of the unconditional variance, E[J2
t ].

Thus:

T∑
t=3

E[(B̃(1)
t )2] = O(T 2M4),

T∑
t=3

E[(B̃(2)
t )2] = O(T 3M4)

Regarding the last term, under the assumptions of the time series {Λ(1)
i }:

|Cov[Λ(1)
1 ,Λ

(1)
1+i]| = O(i−2), i → +∞

|Cov[||V1||2, ||V1+i||2]| = O(i−2), i → +∞

we must have:

T∑
t=3

E[(B̃(1)
t )2] = O(T 3M2),

T∑
t=3

E[(B̃(2)
t )2] = O(T 2M4) = O(T 3M2)

where the last equality is because of M/T → 0.
For the first (weaker) case, in conclusions, we have:

T−4(D(Hete)
ω )−2Var

[
T∑
t=3

E[J2
t |I(t− 1)]

]
≤ ∆T−4M−2

(
T 3M4

)
= O(M2/T ) = op(1)

for finite ∆ > 0, where the last equality is due Assumption 1 and under the
asymptotics M2/T → 0.
Conversely, for the second (sharper) case, i.e., under the additional assumptions:

|Cov[Λ(1)
1 ,Λ

(1)
1+i]| = O(i−2), i → +∞

|Cov[||V1||2, ||V1+i||2]| = O(i−2), i → +∞
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we have:

T−4(D(Hete)
ω )−2Var

[
T∑
t=3

E[J2
t |I(t− 1)]

]
≤ ∆T−4M−2

(
T 3M3

)
= O(M/T ) = op(1)

for finite ∆ > 0, where the last equality is due Assumption 1 and under the
asymptotics M/T → 0.

B.3 Proof of Theorem 2

I introduce some additional notations and objects.
Given a parameter belonging to a parameter space, θ ∈ Θ, I define the gradient and Hes-
sian operators with respect to θ to be ∇θ and ∇2

θ, whenever have proper meaning.
Define {Θi}i=1,2 the parameter spaces of the real parameters {θ0i }i=1,2, respectively.
Following eq.(7), given {θi ∈ Θi}i=1,2, I defined the processes:

X̃t(θ1) = W1,t − µX(θ1, IX(t− 1))

Z̃t(θ2) = W2,t − µZ(θ2, IY (t− 1))

with the corresponding standardized innovations of the unobservable infinite past:

Ũt = (ΓX)
−1/2 X̃t(θ1), Ṽt = (ΓZ)

−1/2 Ỹt(θ2)

Under the parametrization of eq.(7), we have:

Ut = Ũt(θ
0
1), Vt = Ṽt(θ

0
2)

Define further the population-standardized estimated innovations as follow:

Ŭt = (ΓX)
−1/2 X̂t, V̆t = (ΓZ)

−1/2 Ẑt

where, using the previous notation, we have:

X̂t = W1,t − µX(θ̂1, ÎX(t− 1))

Ẑt = W2,t − µZ(θ̂2, ÎZ(t− 1))
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where ÎX(t − 1) and ÎZ(t − 1) are the feasible information sets, i.e., the information sets
constrained to the observable finite past of the time series, {Wi,t}i=1,2

t=1,...,T .
Note that, generally: X̂t ̸= X̃t(θ̂1), Ẑt ̸= Z̃t(θ̂2).
Recall that:

Ût =
(
Γ̂X

)−1/2

X̂t, V̂t =
(
Γ̂Z

)−1/2

Ẑt

Denote the kth entry-wise element of Ŭt, Ũt, Ut with Ŭk,t, Ũk,t, Uk,t, respectively. In a similar
fashion, denote V̆l,t−j, Ṽl,t−j, Vl,t−j the lth element of, respectively, V̆t−j, Ṽt−j, Vt−j .
We denote:

CUV (j) =
1

T

T∑
t=1

Ut(Vt−j)
′, CX =

1

T

T∑
t=1

Xt(Xt)
′, CY =

1

T

T∑
t=1

Yt(Yt)
′

Γ̂UV (j) =
1

T

T∑
t=1

Ût(V̂t−j)
′, ĈUV (j) =

1

T

T∑
t=1

Ŭt(V̆t−j)
′ = (ΓX)

−1/2Γ̂X̂Ẑ(j)(ΓZ)
−1/2

Γ̂X̂Ẑ(j) =
1

T

T∑
t=j+1

X̂tẐ
′
t−j

which are respectively: the sample covariance between standardized innovations, the
sample variances of the innovations, the sample covariance between feasible standard-
ized residuals, and the population-standardized sample covariance between estimated
residuals.

Additional to the assumptions listed in Theorem 2, I presume the following conditions
hold true:

sup
θ1∈Θ1

T∑
t=1

E||Ut(θ1)− Ũt(θ1)||2 = O(1/T )

sup
θ2∈Θ2

T∑
t=1

E||Vt(θ2)− Ṽt(θ2)||2 = O(1/T )

(14)

and

sup
θ1∈Θ1

1

T

T∑
t=1

E||∇θ1Ũt(θ1)||4 = O(1), sup
θ2∈Θ2

1

T

T∑
t=1

E||∇θ2Ṽt(θ2)||4 = O(1)

sup
θ1∈Θ1

1

T

T∑
t=1

E||∇2
θ1
Ũt(θ1)||4 = O(1), sup

θ2∈Θ2

1

T

T∑
t=1

E||∇2
θ2
Ṽt(θ2)||4 = O(1)

(15)

which are essentially conditions on the uniform ℓ2−convergence, the second-order differ-
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entiability and boundedness of the derivatives.
These conditions are relatively standard in the literature. For instance, see Assumption A3
in Hong and Lee (2005), and Assumption 2.3-2.4 in Leong and Urga (2023). In particular,
with respect to the latter ones, the conditions in eq.(15) are stricter than their conditions in
Assumption 2.4.

Notice that we can write the following:

T · T̂ c
ω − µω,T√
D̂

(Hete)
ω,T

=
T
(
T̂ω − T̂ ⋆

ω

)
√

D̂
(Hete)
ω,T

+
T
(
T̂ ⋆
ω − T ⋆

ω

)
√

D̂
(Hete)
ω,T

−
T
(
Ĉω − C⋆

ω

)
√

D̂
(Hete)
ω,T

+

√
D

(Hete)
ω,T√

D̂
(Hete)
ω,T

T · T ⋆c
ω − µω,T√
D

(Hete)
ω,T
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with:

T̂ω =
T−1∑
j=0

ω(j)||Γ̂UV (j)||2F

=
1

T 2

T−1∑
j=0

ω(j)
T∑

t=j+1

||Ût||2||V̂t−j||2 +
1

T 2

T−1∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t

< Ût, Ûs >< V̂t−j, V̂s−j >

T̂ ⋆
ω =

T−1∑
j=0

ω(j)||ĈUV (j)||2F

=
1

T 2

T−1∑
j=0

ω(j)
T∑

t=j+1

||Ŭt||2||V̆t−j||2 +
1

T 2

T−1∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t

< Ŭt, Ŭs >< V̆t−j, V̆s−j >

T ⋆
ω =

T−1∑
j=0

ω(j)||CUV (j)||2F

=
1

T 2

T−1∑
j=0

ω(j)
T∑

t=j+1

||Ut||2||Vt−j||2 +
1

T 2

T−1∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t

< Ut, Us >< Vt−j, Vs−j >

Ĉω =
1

T 2

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s<t−j

< Ût, Ûs >< V̂t−j, V̂s−j >

C⋆
ω =

1

T 2

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s<t−j

< Ut, Us >< Vt−j, Vs−j >

D̂
(Hete)
ω,T =

d21
T 2

T−2∑
j=0

ω2(j)
T∑

s,t=j+1,s ̸=t,s≥t−j

E[< Vt−j, Vs−j >
2]

T ⋆c
ω = T ⋆

ω − C⋆
ω

where the correction term, C⋆
ω, is defined accordingly to eq.(5).

The proof of Theorem 2 follows from Propositions (4)-(7), and by direct application of
Slutsky’s theorem and Theorem 1, for which:

T · T ⋆c
ω − µω,T√
D

(Hete)
ω,T

d−→ N (0, 1)
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Proposition 4. Under the Assumptions of Theorem 2, we have:

T
(
T̂ ⋆
ω − T ⋆

ω

)
√

D̂
(Hete)
ω,T

p−→ 0

Proof. The proof is provided in Appendix B.3.1.

Proposition 5. Under the Assumptions of Theorem 2, we have:

T
(
T̂ω − T̂ ⋆

ω

)
√

D̂
(Hete)
ω,T

p−→ 0

Proof. The proof is provided in Appendix B.3.2.

Proposition 6. Under the Assumptions of Theorem 2, we have:

T
(
Ĉω − C⋆

ω

)
√

D̂
(Hete)
ω,T

p−→ 0

Proof. The proof is provided in Appendix B.3.3.

Proposition 7. Under the Assumptions of Theorem 2, we have:√
D̂

(Hete)
ω,T

p−→
√

D
(Hete)
ω,T

Proof. Given the consistency of the estimators, the boundedness of the moments and the
conditions of eq.(14)-(15), showing that

(
D̂

(Hete)
ω,T −D

(Hete)
ω,T

)
= op(1) is parallel to the first

part of the proof of Proposition 5 (Appendix B.3.2). Using the continuous mapping theo-
rem directly concludes the proof.

B.3.1 Proof of Proposition 4

The proof is parallel to the one of Hong (2001)’s Lemma A.1-2, Bouhaddioui and Roy
(2006)’s Lemma 2, and Leong and Urga (2023)’s Appendix B.
The aim is to show that:

T
(
T̂ ⋆
ω − T ⋆

ω

)
= op(M

1/2)
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since D̂
(Hete)
ω,T = O(M) by Proposition 2 and Proposition 7.

The initial section of the proof studies the difference:

T
(
T̂ ⋆
ω − T ⋆

ω

)
= T

T−1∑
j=1

ω(j)

(∣∣∣∣∣∣vec
[
ĈUV (j)

]∣∣∣∣∣∣2 − ||vec [CUV (j)]||2
)

= T

T−1∑
j=1

ω(j)
(
||vec(ĈUV (j))− vec(CUV (j))||2

+ 2⟨vec(CUV (j)),vec(ĈUV (j))− vec(CUV (j))⟩
)

The proof then consists of two parts:

i) We have:

||vec(ĈUV (j))− vec(CUV (j))||

=

d1∑
k=1

d2∑
l=1

1

T

(
T∑

t=j+1

Ŭk,tV̆l,t−j − Uk,tVl,t−j

)

=

d1∑
k=1

d2∑
l=1

(
1

T

T∑
t=j+1

(Ŭk,t − Uk,t)Vl,t−j + Uk,t(V̆l,t−j − Vl,t−j) + (Ŭk,t − Uk,t)(V̆l,t−j − Vl,t−j)

)

=

d1∑
k=1

d2∑
l=1

(
F

(1)
Tj + F

(2)
Tj + F

(3)
Tj

)
Thus, applying of Cauchy-Schwarz inequality:

||vec(ĈUV (j))− vec(CUV (j))||2 ≤ ∆

d1∑
k=1

d2∑
l=1

(
(F

(1)
Tj )

2 + (F
(2)
Tj )

2 + (F
(3)
Tj )

2
)

for some finite ∆ > 0. I now study the three terms:
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(a) For the term F
(3)
Tj , we have:

sup
j
(F

(3)
Tj )

2

≤

(
1

T

T∑
t=1

(Ŭk,t − Uk,t)
2

)(
1

T

T∑
t=1

(V̆l,t−j − Vl,t−j)
2

)

≤

(
1

T

T∑
t=1

(Ŭk,t − Ũk,t + Ũk,t − Uk,t)
2

)(
1

T

T∑
t=1

(V̂l,t−j − Ṽl,t−j + Ṽl,t−j − Vl,t−j)
2

)

≤

{(
1

T

T∑
t=1

(Ŭk,t − Ũk,t)
2

)
+

(
1

T

T∑
t=1

(Ũk,t − Uk,t)
2

)}
{(

1

T

T∑
t=1

(V̆l,t−j − Ṽl,t−j)
2

)
+

(
1

T

T∑
t=1

(Ṽl,t−j − Vl,t−j)
2

)}
≤
{
F

(31)
T + F

(32)
T

}{
F

(33)
T + F

(34)
T

}
where the first and the third inequalities are by virtue of Cauchy-Schwarz in-
equality.
Because of the condition eq.(14), we have:

F
(31)
T =

1

T

T∑
t=1

(Ŭk,t − Ũk,t)
2 = Op(T

−2), F
(33)
T =

1

T

T∑
t=1

(V̆l,t − Ṽl,t)
2 = Op(T

−2)

Now, I turn the attention on the other two terms, F (32)
T , F

(34)
T .

By joint application of the mean value theorem and the Cauchy-Schwarz in-
equality:

F
(32)
T ≤ ||θ̂1 − θ01||2

{
1

T

T∑
t=1

E||∇θ1Ũk,t(θ̆1)||2
}

with θ̆1 ∈ [θ̂1, θ
0
1]. By the consistency of the estimator and the conditions of

eq.(15): F (32)
T = O(T−1).

The same logic holds for F (34)
T = O(T−1).

In conclusions:

sup
j
(F

(3)
Tj )

2 = Op(T
−2)
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(b) For the term F
(1)
Tj , we have:

F
(1)
Tj =

1

T

T∑
t=j+1

(Ŭk,t − Uk,t)Vl,t−j

=
1

T

T∑
t=j+1

(Ŭk,t − Ũk,t + Ũk,t − Uk,t)Vl,t−j

=
1

T

T∑
t=j+1

(Ŭk,t − Ũk,t)Vl,t−j +
1

T

T∑
t=j+1

(Ũk,t − Uk,t)Vl,t−j

= F
(11)
T + F

(12)
T

By Cauchy-Schwarz inequality and the boundedness of the fourth moments of
the process Y :

(F
(11)
Tj )2 ≤ 1

T 2

T∑
t=j+1

(Ŭk,t − Ũk,t)
2(Vl,t−j)

2 ≤ F
(31)
Tj

(
1

T

T∑
t=1

(Vl,t−j)
2

)
= Op(T

−2)

By the conditions of eq.(15), the term F
(12)
T can be expressed into two terms using

its Taylor expansion (up to the second order):

F
(11)
T =

1

T

T∑
t=j+1

(Ũk,t − Uk,t)Vl,t−j

=
1

T
(θ̂1 − θ01)

′
T∑
t=1

(∇θ1Ũk,t(θ
0
1)Vl,t−j) +

1

2T
(θ̂1 − θ01)

′
T∑
t=1

(∇2
θ1
Ũk,t(θ̆1)Vl,t−j)(θ̂1 − θ01)

where θ̆1 ∈ [θ̂1, θ
0
1]. Applying twice the Cauchy-Schwarz inequality:

1

T
(θ̂1 − θ01)

′
T∑
t=1

(∇θ1Ũk,t(θ
0
1)Vl,t−j) =

1

T
(θ̂1 − θ01)

′
T∑
t=1

((∇θ1Uk,t)(Vl,t−j))

≤ 1

T 2
E
[
||θ̂1 − θ01||2

]
E

{ T∑
t=1

||(∇θ1Uk,t)(Vl,t−j)||

}2


≤ 1

T 2
E
[
||θ̂1 − θ01||2

] T∑
t=1

E
[
||∇θ1Uk,t||4

]
E
[
||Vl,t−j||2

]
= Op(T

−2)

where the last equality follows from the boundedness of the moments, the con-
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sistency of the estimator, and the conditions in eq.(15).

A remark is needed. To prove the last inequality, there is a trade-off between
bounding the moments of the derivatives {∇θ1Uk,t,∇2

θ1
Uk,t} and imposing addi-

tional orthogonality conditions. In fact, instead of imposing the boundedness of
the fourth moment of {∇θ1Uk,t}, one could reach the same conclusions by im-
posing orthogonality between {∇θ1Ut} and {Vt−j}. Since the purpose of the pro-
posed statistic is to infer about non-causality, we wish not to preclude possible
causality channels by imposing extra restrictions on those.

By the same logic, the other term:

1

2T
(θ̂1 − θ01)

′
T∑
t=1

(∇2
θ1
Ũk,t(θ̆1)Vl,t−j)(θ̂1 − θ01)

≤ 1

4T 2
E
[
||θ̂1 − θ01||4

]
E

∣∣∣∣∣
∣∣∣∣∣

T∑
t=1

∇2
θ1
Ũk,t(θ̆1)Vl,t−j

∣∣∣∣∣
∣∣∣∣∣
2
 = Op(T

−2)

which means: F (12)
T = Op(T

−2). In conclusions:

(F
(1)
T )2 = Op(T

−2), (F
(2)
T )2 = Op(T

−2)

where the second equation is by reasoning analogue to the one above.

Finally:

T−1∑
j=1

ω(j)||vec(ĈUV (j))− vec(CUV (j))||2

≤ ∆

d1∑
k=1

d2∑
l=1

(
(F

(1)
Tj )

2 + (F
(2)
Tj )

2 + (F
(3)
Tj )

2
)
= Op(MT−2) = op(M

1/2T−1)
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ii) We have:

T−1∑
j=1

ω(j)⟨vec(CUV (j)),vec(ĈUV (j))− vec(CUV (j))⟩

=
T−1∑
j=1

ω(j)vec(CUV (j))
′(vec(ĈUV (j))− vec(CUV (j)))

=
T−1∑
j=1

ω(j)

d1d2∑
k=1

d1d2∑
l=1

Ck,UV (j)
(
Ĉl,UV (j)− Cl,UV (j)

)
=

d1d2∑
k=1

d1d2∑
l=1

T−1∑
j=1

ω(j)Ck,UV (j)
(
Ĉl,UV (j)− Cl,UV (j)

)

≤
d1d2∑
k=1

d1d2∑
l=1

(
T−1∑
j=1

ω(j)(Ck,UV (j))
2

)1/2(T−1∑
j=1

ω(j)
(
Ĉl,UV (j)− Cl,UV (j)

)2)1/2

where the last inequality is by Cauchy-Schwarz inequality.
By the results of the previous parts:

(
T−1∑
j=1

ω(j)
(
Ĉl,UV (j)− Cl,UV (j)

)2)1/2

= Op(M
1/2T−1)

(
T−1∑
j=1

ω(j)(Ck,UV (j))
2

)1/2

= Op(M
1/2T−1/2)

where the last equality is by:

T−1∑
j=1

ω(j)(Ck,UV (j))
2 ≤

T−1∑
j=1

ω(j)||Ck,UV (j)||2 = O(MT−1)

In conclusions:

T−1∑
j=1

ω(j)⟨vec(CUV (j)),vec(ĈUV (j))− vec(CUV (j))⟩ = Op(MT−3/2) = op(M
1/2T−1)

As announced:

T̂ ⋆
ω − T ⋆

ω = op(M
1/2T−1)
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which means that the proof is concluded by Proposition 2 and Proposition 7.

B.3.2 Proof of Proposition 5

The proof is parallel to the one of Hong (2001)’s Lemma A.1, Bouhaddioui and Roy
(2006)’s Proposition 3, and Leong and Urga (2023)’s Appendix B.
Similar to the proof of Proposition 4, the aim is to show that:

T
(
T̂ω − T̂ ⋆

ω

)
= Op(MT−1/2)

since D̂ω,T

(Hete)
= O(M) by Proposition 7 and Proposition 2.

By Lemma A.3, we can write:

T
(
T̂ω − T̂ ⋆

ω

)
= T

T−1∑
j=1

(
||Γ̂UV (j)||2F − ||ĈUV (j)||2F

)
= T

T−1∑
j=1

k2

(
j

M

)(
vec(Γ̂X̂Ẑ(j))

′
(
Γ̂−1
Z ⊗ Γ̂−1

X

)
vec(Γ̂X̂Ẑ(j))

− vec(Γ̂X̂Ẑ(j))
′ (Γ−1

Z ⊗ Γ−1
X

)
vec(Γ̂X̂Ẑ(j))

)
= T

T−1∑
j=1

k2

(
j

M

)
vec(Γ̂X̂Ẑ(j))

′
(
Γ̂−1
Z ⊗ Γ̂−1

X − Γ−1
Z ⊗ Γ−1

X

)
vec(Γ̂X̂Ẑ(j))

Recall that X̂k,t, Xk,t are the kth element of X̂t(θ̂1), Xt, respectively.
Consider the term (Γ̂X − ΓX):

||Γ̂X − ΓX ||F ≤
d1∑
k=1

d2∑
l=1

||Γ̂kl,X − Γkl,X ||

By triangular equality, it follows that:

||Γ̂kl,X − Γkl,X || = ||Γ̂kl,X − Ckl,X + Ckl,X − Γkl,X || ≤ ||Γ̂kl,X − Ckl,X ||+ ||Ckl,X − Γkl,X ||
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For the first term, by virtue of Cauchy-Schwarz inequality:

Γ̂kl,X − Ckl,X =
1

T

T∑
t=1

2(X̂k,t −Xk,t)Xk,t + (X̂k,t −Xk,t)
2

≤ 4

(
1

T

T∑
t=1

(Xk,t)
2

)1/2(
1

T

T∑
t=1

(X̂k,t −Xk,t)
2

)1/2

+
1

T

T∑
t=1

(X̂k,t −Xk,t)
2 = Op(T

−1/2)

since we have that the term 1
T

∑T
t=1(Xk,t)

2 = Op(1) because of Chebyshev inequality and
boundedness of moments, while the term 1

T

∑T
t=1(X̂k,t −Xk,t)

2 = Op(T
−1) as consequence

of what proved in Proposition 4.
By application of Chebyshev inequality: ||Ckl,X − Γkl,X || = Op(T

−1/2), ∀k, l.
This in turn implies:

Γ̂kl,X − Γkl,X = Op(T
−1/2)

By analogue reasoning:

Γ̂kl,Z − Γkl,Z = Op(T
−1/2)

and 1
T

∑T
t=1(Zk,t)

2 = Op(1), as well as Γkl,X = O(1) and Γkl,Z = O(1).
Thus, by virtue of the continuous mapping theorem, I can conclude that:

Γ̂−1
X ⊗ Γ̂−1

Z − Γ−1
X ⊗ Γ−1

Z = Op(T
−1/2)

Now, since ΓX and ΓZ are bounded (i.e., ΓX = O(1),ΓZ = O(1)), studying the bounded-
ness of the term, Γ̂X̂Ẑ(j), is equivalent to studying the boundedness of the term, ĈUV (j).
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Thus, I direct my focus to the term that follows:

T−1∑
j=1

ω(j)
(
vec(Γ̂X̂Ẑ(j))

′vec(Γ̂X̂Ẑ(j))
)

≍
T−1∑
j=1

ω(j)
(
vec(ĈUV (j))

′vec(ĈUV (j))
)

=
T−1∑
j=1

ω(j)
(

vec(ĈUV (j))
′vec(ĈUV (j))− vec(CUV (j))

′vec(CUV (j))

+ vec(CUV (j))
′vec(CUV (j))

)
i) We have:

T−1∑
j=1

ω(j)
(

vec(ĈUV (j))
′vec(ĈUV (j))− vec(CUV (j))

′vec(CUV (j))
)

=
T−1∑
j=1

ω(j)

d1∑
k=1

d2∑
l=1

Ĉ2
kl,UV (j)− C2

kl,UV (j)

=

d1∑
k=1

d2∑
l=1

T−1∑
j=1

ω(j)

{(
Ĉkl,UV (j)− Ckl,UV (j)

)2
+ 2Ĉkl,UV (j)

(
Ĉkl,UV (j)− Ckl,UV (j)

)}
= Op(MT−1)

where the last equality is because of Proposition 4.

ii) We have:

T−1∑
j=1

ω(j)
(
vec(CUV (j))

′vec(CUV (j))
)
=

d1d2∑
r=1

T−1∑
j=1

ω(j)(Cr,UV (j))
2 = Op(MT−1)

where the last equality follows from Proposition 4, since Ci,UV (j) as the ith entry of
the matrices vec(CUV (j)).

This in turn means that:

T−1∑
j=1

ω(j)vec(ĈUV (j))
′vec(ĈUV (j)) = Op(MT−1)
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In conclusion:

T
(
T̂ω − T̂ ⋆

ω

)
= T

T−1∑
j=1

k2

(
j

M

)
vec(Γ̂X̂Ẑ(j))

′
(
Γ̂−1
Z ⊗ Γ̂−1

X − Γ−1
Z ⊗ Γ−1

X

)
vec(Γ̂X̂Ẑ(j))

= T ·Op(MT−1) ·Op(T
−1/2) = Op(MT−1/2)

which concludes the proof as D̂(Hete)
ω,T = O(M) by Proposition 7 and Proposition 2.

B.3.3 Proof of Proposition 6

The proof is parallel to Proposition 4 and Proposition 5.
As previously done, I consider the following decomposition:

T
(
Ĉω − C̆ω

)
√

D̂ω

(Hete)
+

T
(
C̆ω − C⋆

ω

)
√
D̂ω

(Hete)

p−→ 0

with:

C̆ω =
1

T 2

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s<t−j

< Ŭt, Ŭs >< V̆t−j, V̆s−j >

By a similar argument of Proposition 5:

T
(
Ĉω − C̆ω

)
√

D̂
(Hete)
ω,T

p−→ 0

since the convergence is uniquely driven by the distance between Γ̂X and ΓX , and between
Γ̂Y and ΓY . It remains to prove:

T
(
C̆ω − C⋆

ω

)
= op(M

1/2)
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We have:

T
(
C̆ω − C⋆

ω

)
=

1

T

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s<t−j

(
Ŭ ′
tŬsV̆

′
t−jV̆s−j − (Ut)

′Us(Vt−j)
′Vs−j

)

=

d1∑
k=1

d2∑
l=1

1

T

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s<t−j

(
Ŭk,tŬk,sV̆l,t−jV̆l,s−j − Uk,tUk,sVl,t−jVl,s−j

)

=

d1∑
k=1

d2∑
l=1

1

T

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s<t−j

([
Ŭk,tŬk,s − Uk,tUk,s

]
Vl,t−jVl,s−j

+ Uk,tUk,s

[
V̆l,t−jV̆l,s−j − Vl,t−jVl,s−j

]
+
[
Ŭk,tŬk,s − Uk,tUk,s

] [
V̆l,t−jV̆l,s−j − Vl,t−jVl,s−j

])

=

d1∑
k=1

d2∑
l=1

T−2∑
j=0

ω(j)
T∑

s,t=j+1,s ̸=t,s<t−j

(
T−1

[
(Ŭk,t − Uk,t)Uk,s + (Ŭk,s − Uk,s)Uk,t + (Ŭk,t − Uk,t)(Ŭk,s − Uk,s)

]
Vl,t−jVl,s−j

+ T−1Uk,tUk,s

[
(V̆l,t−j − Vl,t−j)Vl,s−j + (V̆l,s−j − Vl,s−j)Vl,t−j + (V̆l,t−j − Vl,t−j)(V̆l,s−j − Vl,s−j)

]
+ T−1

[
Ŭk,tŬk,s − Uk,tUk,s

] [
V̆l,t−jV̆l,s−j − Vl,t−jVl,s−j

])

Proposition 4 shows that all terms inside the brackets are at most Op(T
−2), which con-

cludes the proof as:

C̆ω − C⋆
ω = Op(MT−2) = op(M

1/2T−1)
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B.4 Proof of Theorem 3

For the definition of the objects and the regularity conditions, please refer to the first part
of the proof of Theorem 2 in Appendix B.3. The proof is parallel to the one of Hong (2001)’s
Theorem 2, Bouhaddioui and Roy (2006)’s Theorem 2, and Leong and Urga (2023)’s Ap-
pendix C.
As done for Theorem 2, the test statistic is decomposed as follows:

(
M1/2

T

)
T · T̂ c

ω − µω,T√
D̂

(Hete)
ω,T

=

(
T̂ω − T̂ ⋆

ω

)
√

M−1D̂
(Hete)
ω,T

+

(
T̂ ⋆
ω − T ⋆

ω

)
√
M−1D̂

(Hete)
ω,T

−

(
Ĉω − C⋆

ω

)
√
M−1D̂

(Hete)
ω,T

+

√
M−1D

(Hete)
ω,T√

M−1D̂
(Hete)
ω,T

 T ⋆c
ω − µω,T√
M−1D

(Hete)
ω,T


By Assumption 1, as µω,T and D

(Hete)
ω,T are of order O(M), together with Proposition 7, I can

conclude:

(
M1/2

T

)
T · T̂ c

ω − µω,T√
D̂

(Hete)
ω,T

p−→

(
T̂ω − T̂ ⋆

ω

)
√

M−1D̂
(Hete)
ω,T

+

(
T̂ ⋆
ω − T ⋆

ω

)
√

M−1D̂
(Hete)
ω,T

−

(
Ĉω − C⋆

ω

)
√

M−1D̂
(Hete)
ω,T

+

 T ⋆c
ω√

∆
∫∞
0

k4(z)dz

+ op(1)

for some finite ∆ > 0.
The proof of Theorem 3 follows from: i) Corollary 2, which show that the first three terms
are of order op(1), ii) Corollary 1 together with Slutsky’s theorem, and iii) Lemma B.4.
In conclusions, we have the following:

M1/2

T

T T̂ c
ω − µω,T√
D̂

(Hete)
ω,T

p−→ T ⋆c
ω√

∆
∫∞
0

k4(z)dz
+ op(1)

Corollary 1. Suppose Assumptions of Theorem 3 hold. It follows that:

M−1D̂
(Hete)
ω,T

p−→ ∆

∫ ∞

0

k4(z)dz

for some finite ∆ > 0.
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Proof. The proof follows directly from Proposition 7 and by having:

M−1D
(Hete)
ω,T −−−−→

M→∞
∆

∫ ∞

0

k4(z)dz

for some finite ∆ > 0, as discussed in Appendix B.1.

Corollary 2. Suppose the assumptions of Theorem 3 hold. It follows that:

T̂ω − T̂ ⋆
ω = op(1)

T̂ ⋆
ω − T ⋆

ω = op(1)

Ĉω − C⋆
ω = op(1)

Proof. The proof follows from direct application of Proposition 4-5-6, since:

T̂ω − T̂ ⋆
ω = op(M

1/2T−1), T̂ ⋆
ω − T ⋆

ω = op(M
1/2T−1), Ĉω − C⋆

ω = op(M
1/2T−1)

and concludes by Assumption 1, as M1/2T−1 → 0.

Lemma B.4. Suppose Assumptions of Theorem 3 hold. We have:

T ⋆c
ω

p−→
∞∑
j=1

∣∣∣∣∣∣vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2 + op(1)

Proof. The proof is focused on establishing the consistency of the statistic, so that the dif-
ference between the two quantities is of order op(1). We have:

T ⋆c
ω −

∞∑
j=1

||Γ−1/2
X ΓXZ(j)Γ

−1/2
Z ||2 = T ⋆

ω − C⋆
ω −

∞∑
j=1

||Γ−1/2
X ΓXZ(j)Γ

−1/2
Z ||2

=
T−1∑
j=1

ω(j)

(
||vec [CUV (j)]||2 −

∣∣∣∣∣∣vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2)− C⋆
ω

+
T−1∑
j=1

(ω(j)− 1)
∣∣∣∣∣∣vec

[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2 + ∞∑
T

∣∣∣∣∣∣vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2

100



For the first term, we have:

T−1∑
j=1

ω(j)

(
||vec [CUV (j)]||2 −

∣∣∣∣∣∣vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2)− C⋆
ω

=

[
T−1∑
j=1

ω(j)
∣∣∣∣∣∣vec [CUV (j)]− vec

[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2 − C⋆
ω

]
+ 2

T−1∑
j=1

ω(j)λ⋆(j)

=

[
d1,d2∑
k,l=1

T−1∑
j=1

ω(j)Var[Ckl,UV (j)]− C⋆
ω

]
+ 2

T−1∑
j=1

ω(j)λ⋆(j)

with λ⋆(j) =
〈

vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]
,vec

[
CUV (j)− Γ

−1/2
X ΓXZ(j)Γ

−1/2
Z

]〉
.

Denote ρkl(j), the (k, l)− entry of the matrix
(
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

)
.

If {Xt, Zt} is a fourth-order stationary process so {Ut, Vt} is fourth-order stationary as well,
by Hannan (1970) pg.209-210 or, equivalently, by Priestley (1981) pg. 325–26:

Var[Ckl,UV (j)] = T−1

T−1∑
j=1

ω(j)
T−1∑

i=−T+1

(
1− i

T

)
ρkl(i+ j)ρkl(i− j)

+ T−1

T−1∑
j=1

ω(j)
T−1∑

i=−T+1

(
1− |i|

T

)
κklkl,XZ(0, j, i, j + i)

Following a similar argument in Hong (2001)’s Lemma A.6, Bouhaddioui and Roy (2006)’s
Lemma A.7, or Leong and Urga (2023)’s Lemma C.3, as

∑d1,d2
m,r=1

∑∞
j,k,l=−∞ κmrmr,XZ(0, j, k, l) <

∞, we have:

d1,d2∑
k,l=1

T−1∑
j=1

ω(j)Var[Ckl,UV (j)]− C⋆
ω = Op(1/T +M/T ) = op(1)

where the last equality is because of the assumption on the asymptotic rates ( M
T

→ 0, as
T,M → ∞) and by realizing that C⋆

ω represents the fourth-order cumulants of:
{Um,t, Vr,t−j, Um,t−k, Vr,t−l}.
By the dominated convergence theorem, the boundedness condition on the covariances,∑∞

j=−∞ ||ΓXZ(j)||2 < ∞, and by the assumptions on the asymptotic rates, I can conclude

101



that:

T−1∑
j=1

(ω(j)− 1)
∣∣∣∣∣∣vec

[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2 = op(1)

∞∑
T

∣∣∣∣∣∣vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2 = op(1)

This in turn implies as well:

T−1∑
j=1

ω(j)
〈

vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]
,vec

[
CUV (j)− Γ

−1/2
X ΓXZ(j)Γ

−1/2
Z

]〉
= op(1)

Hence:

T ⋆c
ω

p−→
∞∑
j=1

∣∣∣∣∣∣vec
[
Γ
−1/2
X ΓXZ(j)Γ

−1/2
Z

]∣∣∣∣∣∣2 + op(1)

which concludes the proof.

C Appendix

C.1 Monte Carlo simulations: under the null

C.1.1 Small sample: T = 300
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Table 4: Rejection frequencies for DGP2A: This table presents the rejection frequencies of two testing procedure, corrected (T c
ω ) and

standard (Tω), when the time series are generated by DGP2A; sample size, T = 300; 700 iterations; the weighting function is the Bartlett kernel;
the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.01 0.02 0.02 0.02 0.02 0.06 0.04 0.04 0.04 0.05 0.05
α = 0.3 0.03 0.02 0.03 0.02 0.02 0.02 0.05 0.05 0.06 0.04 0.05 0.03
α = 0.4 0.03 0.03 0.04 0.02 0.04 0.03 0.06 0.06 0.07 0.04 0.08 0.06
α = 0.5 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.06 0.07 0.08 0.07 0.06
α = 0.6 0.03 0.05 0.05 0.04 0.07 0.04 0.06 0.08 0.09 0.06 0.09 0.07
α = 0.7 0.07 0.06 0.07 0.04 0.07 0.05 0.10 0.09 0.09 0.07 0.10 0.08

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.02 0.02 0.02 0.01 0.03 0.02 0.06 0.04 0.04 0.04 0.06 0.05
α = 0.3 0.02 0.02 0.03 0.02 0.02 0.02 0.06 0.07 0.07 0.05 0.05 0.05
α = 0.4 0.04 0.03 0.03 0.03 0.03 0.03 0.07 0.07 0.08 0.05 0.07 0.07
α = 0.5 0.04 0.04 0.04 0.05 0.04 0.04 0.07 0.07 0.07 0.09 0.09 0.07
α = 0.6 0.03 0.05 0.05 0.04 0.07 0.04 0.08 0.10 0.10 0.07 0.12 0.08
α = 0.7 0.09 0.08 0.09 0.06 0.09 0.06 0.14 0.13 0.14 0.12 0.13 0.10

M = 100 ≈ 4
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.02 0.02 0.02 0.03 0.05 0.06 0.05 0.06 0.07 0.09 0.09
α = 0.3 0.04 0.04 0.05 0.04 0.04 0.03 0.06 0.08 0.10 0.08 0.08 0.09
α = 0.4 0.06 0.04 0.05 0.04 0.04 0.06 0.11 0.08 0.09 0.08 0.10 0.11
α = 0.5 0.08 0.07 0.08 0.07 0.09 0.08 0.13 0.10 0.12 0.14 0.13 0.11
α = 0.6 0.09 0.10 0.10 0.12 0.12 0.12 0.12 0.16 0.15 0.17 0.16 0.17
α = 0.7 0.18 0.16 0.18 0.16 0.15 0.17 0.23 0.21 0.22 0.22 0.22 0.21
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Table 5: Rejection frequencies for DGP3A: This table presents the rejection frequencies of two testing procedure, corrected (T c
ω ) and

standard (Tω), when the time series are generated by DGP3A; sample size, T = 300; 700 iterations; the weighting function is the Bartlett kernel;
the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.03 0.03 0.03 0.03 0.04 0.06 0.05 0.04 0.04 0.06 0.05
α = 0.3 0.03 0.03 0.04 0.04 0.03 0.03 0.06 0.05 0.06 0.05 0.05 0.04
α = 0.4 0.03 0.03 0.05 0.03 0.04 0.05 0.07 0.05 0.08 0.05 0.06 0.07
α = 0.5 0.03 0.03 0.04 0.05 0.05 0.04 0.05 0.06 0.06 0.07 0.07 0.06
α = 0.6 0.04 0.06 0.05 0.04 0.06 0.04 0.06 0.09 0.07 0.07 0.09 0.07
α = 0.7 0.08 0.07 0.05 0.06 0.08 0.07 0.11 0.1 0.08 0.08 0.1 0.1

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.02 0.02 0.04 0.04 0.04 0.06 0.04 0.04 0.05 0.07 0.05
α = 0.3 0.02 0.03 0.04 0.04 0.05 0.05 0.06 0.05 0.06 0.05 0.06 0.06
α = 0.4 0.04 0.04 0.04 0.06 0.04 0.04 0.08 0.06 0.07 0.07 0.07 0.07
α = 0.5 0.04 0.03 0.04 0.06 0.06 0.06 0.08 0.06 0.07 0.08 0.1 0.06
α = 0.6 0.03 0.07 0.05 0.06 0.08 0.08 0.08 0.11 0.09 0.09 0.12 0.1
α = 0.7 0.09 0.08 0.08 0.09 0.12 0.1 0.15 0.13 0.11 0.13 0.14 0.13

M = 100 ≈ 4
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.03 0.04 0.06 0.06 0.08 0.07 0.07 0.05 0.07 0.08 0.08
α = 0.3 0.04 0.05 0.06 0.06 0.08 0.09 0.07 0.07 0.09 0.08 0.09 0.09
α = 0.4 0.06 0.05 0.07 0.09 0.09 0.09 0.11 0.09 0.09 0.11 0.09 0.1
α = 0.5 0.09 0.08 0.09 0.09 0.12 0.11 0.13 0.12 0.12 0.13 0.14 0.12
α = 0.6 0.09 0.12 0.13 0.16 0.15 0.14 0.12 0.17 0.16 0.18 0.17 0.17
α = 0.7 0.18 0.16 0.17 0.19 0.21 0.23 0.23 0.21 0.2 0.23 0.24 0.23
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Table 6: Rejection frequencies for DGP4A: This table presents the rejection frequencies of two testing procedure, corrected (T c
ω ) and

standard (Tω), when the time series are generated by DGP4A; sample size, T = 300; 700 iterations; the weighting function is the Bartlett kernel;
the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.02 0.02 0.02 0.03 0.02 0.06 0.05 0.04 0.05 0.06 0.04
α = 0.3 0.03 0.03 0.03 0.04 0.04 0.03 0.06 0.06 0.07 0.07 0.06 0.06
α = 0.4 0.03 0.03 0.04 0.03 0.04 0.04 0.07 0.06 0.07 0.06 0.07 0.08
α = 0.5 0.03 0.04 0.03 0.04 0.03 0.04 0.05 0.05 0.06 0.08 0.07 0.07
α = 0.6 0.04 0.06 0.06 0.04 0.05 0.06 0.06 0.09 0.09 0.06 0.09 0.09
α = 0.7 0.08 0.08 0.07 0.05 0.06 0.07 0.11 0.1 0.09 0.09 0.09 0.12

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.01 0.03 0.01 0.03 0.03 0.06 0.04 0.06 0.04 0.06 0.05
α = 0.3 0.02 0.02 0.03 0.03 0.04 0.03 0.06 0.06 0.07 0.06 0.07 0.05
α = 0.4 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.07 0.07 0.07 0.08 0.08
α = 0.5 0.04 0.04 0.05 0.04 0.04 0.04 0.08 0.07 0.08 0.07 0.08 0.08
α = 0.6 0.03 0.06 0.05 0.05 0.06 0.06 0.08 0.1 0.09 0.1 0.11 0.11
α = 0.7 0.09 0.08 0.08 0.08 0.08 0.1 0.15 0.13 0.13 0.12 0.14 0.15

M = 100 ≈ 4
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.02 0.01 0.02 0.03 0.03 0.07 0.05 0.06 0.05 0.07 0.06
α = 0.3 0.04 0.04 0.04 0.04 0.04 0.04 0.07 0.08 0.09 0.07 0.08 0.08
α = 0.4 0.06 0.05 0.05 0.05 0.07 0.05 0.11 0.08 0.1 0.09 0.12 0.09
α = 0.5 0.09 0.07 0.09 0.06 0.08 0.08 0.13 0.11 0.14 0.11 0.11 0.12
α = 0.6 0.09 0.1 0.11 0.1 0.11 0.12 0.12 0.16 0.16 0.17 0.15 0.18
α = 0.7 0.18 0.18 0.18 0.17 0.17 0.2 0.23 0.22 0.21 0.21 0.23 0.25
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C.1.2 Small sample: T = 100

Table 7: Rejection frequencies for DGP2A: This table presents the rejection frequencies of two testing procedure, corrected (T c
ω ) and

standard (Tω), when the time series are generated by DGP2A; sample size, T = 100; 700 iterations; the weighting function is the Bartlett kernel;
the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.02 0.03 0.04 0.03 0.02 0.03 0.05 0.05 0.07 0.05 0.05 0.05
α = 0.3 0.03 0.02 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.04 0.05 0.07
α = 0.4 0.04 0.05 0.03 0.03 0.04 0.02 0.06 0.07 0.06 0.05 0.06 0.05
α = 0.5 0.04 0.05 0.04 0.05 0.05 0.03 0.05 0.05 0.06 0.07 0.08 0.06
α = 0.6 0.05 0.04 0.06 0.05 0.06 0.05 0.06 0.07 0.09 0.08 0.08 0.07
α = 0.7 0.07 0.07 0.05 0.06 0.05 0.07 0.1 0.1 0.08 0.1 0.07 0.09

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.02 0.03 0.03 0.03 0.03 0.05 0.04 0.05 0.05 0.05 0.06
α = 0.3 0.04 0.03 0.04 0.04 0.03 0.04 0.05 0.06 0.06 0.05 0.05 0.06
α = 0.4 0.04 0.05 0.05 0.04 0.03 0.05 0.08 0.07 0.06 0.05 0.06 0.06
α = 0.5 0.05 0.06 0.05 0.05 0.06 0.05 0.07 0.08 0.07 0.07 0.09 0.08
α = 0.6 0.08 0.05 0.07 0.07 0.08 0.06 0.1 0.08 0.1 0.1 0.11 0.09
α = 0.7 0.1 0.1 0.11 0.12 0.08 0.1 0.13 0.13 0.14 0.14 0.1 0.12

M = 100 ≈ 4
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.07 0.06 0.07 0.05 0.06 0.07 0.07 0.07 0.09 0.06 0.08 0.1
α = 0.3 0.09 0.09 0.08 0.07 0.07 0.09 0.09 0.1 0.09 0.09 0.1 0.12
α = 0.4 0.11 0.1 0.1 0.1 0.08 0.1 0.12 0.11 0.1 0.12 0.11 0.12
α = 0.5 0.13 0.14 0.14 0.11 0.13 0.13 0.14 0.15 0.13 0.14 0.16 0.16
α = 0.6 0.18 0.17 0.18 0.17 0.16 0.15 0.17 0.15 0.17 0.17 0.17 0.16
α = 0.7 0.23 0.23 0.23 0.24 0.23 0.25 0.22 0.23 0.23 0.25 0.22 0.26
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Table 8: Rejection frequencies for DGP3A: This table presents the rejection frequencies of two testing procedure, corrected (T c
ω ) and

standard (Tω), when the time series are generated by DGP3A; sample size, T = 100; 700 iterations; the weighting function is the Bartlett kernel;
the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.02 0.03 0.03 0.04 0.02 0.04 0.05 0.04 0.06 0.05 0.04 0.03
α = 0.3 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.04 0.05 0.05 0.04 0.06
α = 0.4 0.04 0.04 0.03 0.04 0.02 0.03 0.06 0.05 0.05 0.06 0.03 0.04
α = 0.5 0.04 0.04 0.05 0.04 0.03 0.05 0.05 0.06 0.06 0.06 0.06 0.06
α = 0.6 0.05 0.05 0.05 0.05 0.04 0.04 0.06 0.07 0.07 0.08 0.06 0.05
α = 0.7 0.07 0.07 0.06 0.05 0.06 0.05 0.1 0.1 0.09 0.07 0.08 0.07

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.03 0.03 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.03
α = 0.3 0.04 0.03 0.04 0.05 0.04 0.06 0.05 0.05 0.05 0.06 0.04 0.05
α = 0.4 0.04 0.03 0.05 0.05 0.05 0.07 0.08 0.06 0.06 0.06 0.04 0.07
α = 0.5 0.05 0.05 0.04 0.06 0.07 0.09 0.07 0.07 0.07 0.06 0.06 0.08
α = 0.6 0.08 0.07 0.07 0.08 0.08 0.09 0.1 0.07 0.1 0.09 0.07 0.09
α = 0.7 0.1 0.11 0.09 0.13 0.12 0.13 0.13 0.13 0.11 0.14 0.12 0.11

M = 100 ≈ 4
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.07 0.05 0.07 0.07 0.1 0.11 0.07 0.06 0.07 0.07 0.09 0.1
α = 0.3 0.09 0.08 0.09 0.11 0.12 0.13 0.09 0.09 0.09 0.10 0.12 0.11
α = 0.4 0.11 0.09 0.11 0.13 0.14 0.16 0.12 0.10 0.11 0.11 0.12 0.16
α = 0.5 0.13 0.12 0.12 0.16 0.18 0.22 0.14 0.14 0.12 0.14 0.16 0.19
α = 0.6 0.18 0.16 0.19 0.21 0.2 0.26 0.17 0.16 0.17 0.19 0.17 0.22
α = 0.7 0.23 0.22 0.25 0.29 0.3 0.3 0.22 0.22 0.22 0.28 0.27 0.26

107



Table 9: Rejection frequencies for DGP4A: This table presents the rejection frequencies of two testing procedure, corrected (T c
ω ) and

standard (Tω), when the time series are generated by DGP4A; sample size, T = 100; 700 iterations; the weighting function is the Bartlett kernel;
the smoothing parameter range is: M = {12, 30, 100}; nominal significance level is 5%.

M = 12 ≈ 2(10T )1/5 ≈ 2 lnT

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.05 0.07 0.06 0.07 0.06
α = 0.3 0.03 0.03 0.03 0.02 0.03 0.03 0.05 0.05 0.05 0.05 0.05 0.05
α = 0.4 0.04 0.04 0.04 0.04 0.03 0.04 0.06 0.06 0.05 0.07 0.05 0.06
α = 0.5 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.07 0.06 0.08 0.07 0.07
α = 0.6 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.07 0.08 0.08 0.08 0.07
α = 0.7 0.07 0.08 0.07 0.07 0.06 0.07 0.10 0.10 0.09 0.09 0.08 0.09

M = 30 ≈ 5(10T )1/5 ≈
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.03 0.02 0.03 0.03 0.04 0.03 0.05 0.04 0.05 0.04 0.06 0.05
α = 0.3 0.04 0.03 0.04 0.02 0.04 0.03 0.05 0.06 0.06 0.05 0.05 0.06
α = 0.4 0.04 0.05 0.05 0.04 0.04 0.04 0.08 0.08 0.08 0.06 0.05 0.06
α = 0.5 0.05 0.06 0.04 0.05 0.06 0.06 0.07 0.07 0.07 0.07 0.09 0.09
α = 0.6 0.08 0.05 0.06 0.07 0.08 0.07 0.1 0.08 0.1 0.1 0.1 0.1
α = 0.7 0.1 0.11 0.11 0.12 0.1 0.11 0.13 0.12 0.13 0.13 0.13 0.13

M = 100 ≈ 4
√
T

Corrected Standard

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2 β = 0 β = 0.2 β = 0.4 β = 0.6 β = 1 β = 2

α = 0.2 0.07 0.07 0.07 0.06 0.09 0.07 0.07 0.07 0.08 0.07 0.1 0.08
α = 0.3 0.09 0.09 0.09 0.07 0.07 0.1 0.09 0.11 0.09 0.08 0.07 0.08
α = 0.4 0.11 0.09 0.1 0.11 0.08 0.08 0.12 0.1 0.09 0.11 0.1 0.09
α = 0.5 0.13 0.13 0.13 0.13 0.15 0.13 0.14 0.13 0.13 0.13 0.15 0.13
α = 0.6 0.18 0.16 0.18 0.17 0.19 0.19 0.17 0.16 0.18 0.17 0.18 0.17
α = 0.7 0.23 0.23 0.25 0.26 0.25 0.28 0.22 0.23 0.23 0.25 0.23 0.26
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C.2 Monte Carlo simulations: under the alternatives

(a) DGP 1B, with β = {0, 0.3, 0.8}

(b) DGP 2B, with β = {0, 0.3, 0.8}

(c) DGP 3B, with β = {0, 0.3, 0.8}

Figure 8: Power curves of the original test: These figures present the rejection rates of the testing
procedure associated to the original test statistic (Tω), under the alternatives (empirical power); sample size,
T = 700; 700 iterations; the weighting function is the Bartlett kernel; the smoothing parameter range is:
M = {12, 18, 25, 30, 36, 45, 50, 60, 100}; nominal significance level is 5%.
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D Appendix

D.1 Linear responses of inflation to uncertainty shocks

(a) Linear responses in Figure B.2.(e)-(f) in Diercks
et al. (2024)’s Appendix B.1

(b) Inclusion of two lags of McCracken and Ng
(2016)’s macroeconomic factors to the set of controls

Figure 9: Linear response of price level to EPU uncertainty shocks: The panels show the em-
pirical unconditional impulse responses, i.e. {β0,h}h=1,...,H . On the y-axes, the level of impulse responses;
on the x-axes, the horizons, h; solid blue line represents the standard LPs and red solid line represents the
Smoothed LPs; dashed red line stands for the 90% confidence intervals. LEFT PANEL: the original results
in Diercks et al. (2024). RIGHT PANEL: the results once controlling for the McCracken and Ng (2016)’s
macroeconomic factors.

D.2 Responses of the other variables to EPU shocks
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(a) Replication of Figure 2.E-F in Diercks et al. (2024)

(b) Inclusion of two lags of McCracken and Ng (2016)’s macroeconomic factors to the set of controls

Figure 10: Response of industrial production to consecutive positive EPU uncertainty
shocks:
LEFT PANELS: the empirical state-dependent impulse responses (estimated with LPs as in Diercks et al.
(2024)) to two consecutive positive uncertainty shocks (dashed blue line) and contrast it to the response to a
single shock (solid black line). RIGHT PANELS: the incremental effect of the second shock, i.e. {β1,h}h=1,..,H ,
with 90% confidence intervals (shaded area). In both panels, on the y-axes, the level of impulse responses;
on the x-axes, the horizons, h.
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(a) Replication of Figure B.1(e)-(f) in Diercks et al. (2024)

(b) Inclusion of two lags of McCracken and Ng (2016)’s macroeconomic factors to the set of controls

Figure 11: Response of short rate to consecutive positive EPU uncertainty shocks:
LEFT PANELS: the empirical state-dependent impulse responses (estimated with LPs as in Diercks et al.
(2024)) to two consecutive positive uncertainty shocks (dashed blue line) and contrast it to the response to a
single shock (solid black line). RIGHT PANELS: the incremental effect of the second shock, i.e. {β1,h}h=1,..,H ,
with 90% confidence intervals (shaded area). In both panels, on the y-axes, the level of impulse responses;
on the x-axes, the horizons, h.
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