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1 Introduction

Information plays a central role in many decision processes. Nevertheless, decision-makers

often face a lack of information, preventing them from making good choices. Therefore,

effective information transmission is crucial. A simple, but functional form of information

sharing is costless, non-binding and unverifiable communication: cheap talk. Communica-

tion is key in our daily life: For instance, the success of big organizations depends on the

interaction among its divisions. Another example is the communication strategy of central

banks such as the Fed or ECB. Since it affects people’s behavior and has thus an impact on

the economy, it is of high interest and a common topic in the news media.

This paper investigates a communication game between a decision-maker and a biased

expert with learning. In many situations, decision-makers consult experts not because they

are omniscient, but because they can gather the desired information more easily by means

of their prior knowledge or skills. For example, a firm who contemplates launching a new

product might contact a market researcher, who then conducts a survey among potential

customers in order to evaluate the product’s expected profitability.

Even though the decision-maker delegates the information acquisition to the expert, she

typically has an incentive to monitor the learning process in order to increase her benefits

of the advice. In the above firm-researcher application, for example, the firm might want

to have a look at the survey’s questionnaire in advance to ensure that its outcome provides

valuable information for the firm.

In this paper, I consider a sender-receiver game à la Crawford and Sobel (1982)1 with

endogenous learning: A sender gathers private, costly information about an unknown state

by publicly2 choosing a statistical experiment à la Blackwell (1953). Then, he communicates

via a cheap-talk message with a receiver who takes an action affecting both agents’ payoff.

There are two reasons why the receiver might remain partially uninformed: First, there

might be a conflict of interest between the two agents, preventing the sender from sharing all

his information with the receiver. Second, the sender may not acquire all information if this is

too costly for him. To better understand the overall effect and interplay of these two forces,

the paper examines experiments that are optimal, meaning implementable in equilibrium

and Pareto efficient among all implementable experiments. There typically exist multiple

optimal experiments because the two agents asymmetrically benefit from information: While

the receiver is best off from the most informative experiments, the sender also has to bear

the cost of learning. If more informative experiments incur higher costs, the sender may be

1They study a cheap-talk game with a perfectly informed sender and an uninformed receiver.
2Hence, the receiver observes which experiment the sender selects, but not its outcome.
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better off from experiments providing limited information content.

My model is a general version of Crawford and Sobel (1982) going beyond single-peaked

and single-crossing preferences. Apart from usual continuity assumptions on utility and cost

functions, and compactness assumptions on state and action spaces, I impose a monotonicity

condition on the cost function, ensuring that the costs of an experiment are proportional to

its Blackwell informativeness3. Cost functions commonly used in the literature on rational

inattention, such as the entropy-based cost function, satisfy this requirement. Also, free

learning, i.e., zero cost, is a special case of the model.

I begin with a result that simplifies the identification of the set of optimal experiments:

It is without loss of generality to restrict attention to equilibria in which the sender tells the

truth, meaning that he fully reveals all information he learns to the receiver. The intuition for

this is straightforward: Since the receiver has the authority over decision making, the sender

does not directly benefit from any information which he does not transmit to the receiver.

Therefore, it is more efficient if he only gathers information that he actually wants to forward

to the receiver due to the cost caused by information gathering. In addition to that, the

paper provides an existence theorem for optimal equilibria in the general framework.

Having too much information can be harmful. To see this most clearly, consider the

zero-cost case. Even if the sender has the option to choose a most informative4 experiment,

he typically does not do so in an optimal equilibrium. Since the sender’s message is not

verifiable to the receiver, and the sender cannot commit to a communication strategy ex

ante, the sender can transmit information to the receiver more credibly if he himself knows

less: With less information, the sender has less incentives to misreport.

I estimate the efficiency of the communication game’s decision-making process by com-

paring the optimal equilibrium outcomes to best feasible outcomes, i.e., Pareto efficient

outcomes among all feasible ones. What are feasible outcomes? Suppose a social planner

chooses an experiment in lieu of the sender and takes an action instead of the receiver based

on the acquired information. An outcome that can be implemented this way is feasible.

A common concern about cheap talk is that the lack of verifiability and commitment

implies efficiency losses. It seems natural that frictions arise in the communication game if

the two agents have unequal interests. But where exactly do these inefficiencies come from?

Under certain regularity conditions, I show that a best feasible outcome is implementable

if and only if there is a unique best feasible outcome. So if there is no disagreement about

what is the best outcome, the two agents manage to coordinate in equilibrium to achieve

3An experiment is more informative in the sense of Blackwell (1953) than another experiment if the
latter is a Blackwell garbling of the former.

4An experiment is most informative if no other available experiment is Blackwell more informative.
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this outcome. On the other hand, if the agents prefer different feasible outcomes, cheap talk

involves inefficiencies. Consequently, different preferences per se do not lead to inefficiencies.

Only if there is disagreement about best possible outcomes, frictions are inevitable under

cheap talk. This finding provides an explanation why cheap talk is prevalent in real life.

Under posterior separable cost5, the cheap-talk problem is solved by an experiment that is

a convex combination of two experiments whose outcomes satisfy an analogous condition as

the convex independence condition of Crémer and McLean (1988, p.1251). Such experiments

are optimal because they produce a certain expedient amount of information using the least

possible number of different outcomes. If the state space is finite, the number of outcomes

of an optimal experiment is bounded by twice the number of states. In standard cheap-talk

settings with a fully informed sender, optimal outcomes are typically not implementable if

the number of messages is bounded by (twice) the number of states.

With posterior-mean preferences6, optimal experiments are so-called bi-pooling policies7.

These experiments induce a monotone partition8 of the state space such that each outcome

is associated with exactly one element of the partition, and at most two different outcomes

belong to the same partitioning element. Similar results have been derived in the literature

on Bayesian persuasion. This is an interesting observation on the relation between cheap talk

and persuasion: While the two problems do not necessarily admit the same solution9, they

are equivalent in the sense that they admit a solution within the same class of experiments.

Finally, I apply the bi-pooling result to the classical setting with quadratic preferences,

a uniformly distributed state, an additive sender-bias and zero cost in order to solve for the

optimal experiment. I find that monotone partitions are not always optimal. If the bias is

sufficiently small, it is either a uniform partition10, a non-uniform monotone partition or a

bi-pooling policy with exactly two bi-pooling elements. This is an interesting finding because

optimality of monotone partitions is prevalent in the uniform-quadratic case of related cheap-

talk games (see Crawford and Sobel (1982), Pei (2015) or Ivanov (2010)). Comparative

statics show that the outcome of my model is closest to the Pareto frontier of the set of feasible

5This is a standard assumption in the literature on rational inattention (cf. Maćkowiak, Matějka, and
Wiederholt (2018) or Matějka and McKay (2015)).

6Such preferences do not depend on the whole conditional distribution of the state, but only on its
expected value at any stage of the game.

7This term has been introduced by Arieli, Babichenko and Smorodinsky (2020).
8A monotone partition is a partition into convex subsets.
9In general, optimal cheap talk and optimal Bayesian persuasion are not outcome-equivalent due to the

commitment constraint that is imposed under cheap talk, but absent in the persuasion problem. Lipnowski
(2020) derives outcome-equivalence of the two problems under certain conditions (namely finiteness of the
action space and continuity of the sender’s value function), which render the commitment constraint non-
binding.

10A uniform partition is a monotone partition into equally sized subsets.
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outcomes as compared to the related cheap-talk models (i.e., perfect information, covert

learning, overt learning restricted to experiments being monotone partitions, mediation,

etc.). This result suggests that overt and flexible11 information acquisition is valuable. The

main takeaway of this is that agents should use these factors if they are available: In terms

of the firm-researcher application, this means, for instance, that the firm should insist on

getting access to the survey that the researcher plans to conduct.

The cheap-talk model with overt information acquisition can also be interpreted as a

persuasion model with partial commitment: The sender can commit to the experiment he

chooses, but not to the message he sends. So this case is in between full commitment, i.e,

Bayesian persuasion (cf. Kamenica and Gentzkow (2011)), and no commitment. A natural

question to ask in this context is whether the outcome of partial commitment is closer to no

or full commitment. That is, is commitment with respect to the information choice valuable

on its own, or only in conjunction with commitment with respect to the communication

strategy? I provide comparative statics for the uniform quadratic model suggesting that

commitment with respect to the information choice has indeed an intrinsic value.

The paper is structured as follows: Section 2 introduces the model and equilibrium

concept. Section 3 contains the recommendation principle, the existence proof, and the

comparison of best implementable versus best feasible outcomes. In Section 4, I derive

the optimality of independent outcomes under posterior separable cost. Section 5 covers

the bi-pooling result for posterior-mean preferences. Section 6 contains the analysis of the

uniform-quadratic model, and Section 7 discusses model variants and provides comparative

statics. Finally, Section 8 concludes. Proofs are deferred to the appendix.

Related Literature. This paper contributes to the literature on strategic information

transmission. Since the seminal work by Crawford and Sobel (1982), the embedment of

information acquisition into communication games has been an active subfield of this liter-

ature.

Pei (2015) discusses a cheap-talk game with costly, covert information acquisition. For

the uniform-quadratic case, he shows that monotone partitions are chosen in equilibrium

if the set of available experiments is the set of all finite partitions. In the limit case when

costs converge to zero, the equilibrium outcomes of this model correspond to the equilibrium

outcomes of the model without information acquisition by Crawford and Sobel (1982). This

highlights the difference between overt and covert learning: The option for endogenous

learning does not necessarily improve information transmission. It may be crucial that the

11Flexible information acquisition means that the sender can choose arbitrary experiments. It is a standard
assumption in the literature on information design (cf. Kamenica and Gentzkow (2011)) and coordination
games (cf. Yang (2015)).
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receiver can observe which information the sender acquires.

Ivanov (2010) examines a model with costless information procurement in which the

receiver selects the experiment instead of the sender. He derives optimal monotone partitions

for the uniform quadratic model. The equilibrium outcomes of this model are equal to those

of my model. Hence, it does not matter whether the sender or the receiver chooses the

experiment, as long as this choice is publicly known.

Deimen and Szalay (2019) investigate overt information acquisition in a communication

game in which the conflict of interest between the sender and the receiver evolves endoge-

nously through the learning process. To make information transmission the most effective,

the sender acquires information that is equally beneficial for both agents because this reduces

the endogenous bias and increases cooperation between both parties. This relates to the in-

tuition behind the implementability of best feasible outcomes in my model: Information

transmission is best if the two agents are not biased towards different best feasible outcomes

because this allows them to cooperate.

This paper adds to the literature on strategic information transmission by investigating a

general setting beyond single-peaked and single-crossing preferences or the uniform-quadratic

case.

There are several devices other than endogenous learning that potentially improve the

outcome of cheap-talk games: multiple rounds of communication, mediation or delegation

(see Aumann and Hart (2003), Krishna and Morgan (2004), Goltsman, Hörner, Pavlov and

Squintani (2009), and Dessein (2002)).

My work is also related to the literature on Bayesian persuasion as it is a model with

partial commitment. Following the pioneering work by Kamenica and Gentzkow (2011)12, the

main tool of this literature is the geometric characterization of solutions via concave closures

of the agent’s valuation function.13 The concavification approach is also a useful technique to

study cheap-talk games in which the sender has state-independent preferences (see Lipnowski

and Ravid (2020)). With state-dependent sender preferences, however, the characterization

of concave closures turns out to become an intractable task in general because of additional

sender incentive constraints to be incorporated.

An exception is Lyu and Suen (2022). They study a cheap-talk game with overt in-

formation acquisition using an extended version of the concavification approach respecting

incentive compatibility of the sender. They focus on a binary state space and the zero

cost case. Feasibility of their concavification approach crucially hinges on the binary-state

12They study a communication game with endogenous information acquisition in which the sender can
commit to both the information and the message choice.

13See Gentzkow and Kamenica (2014), Gentzkow and Kamenica (2016), Ely (2017) for further applications
of the concavification approach.
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assumption.14 Allowing for richer state spaces requires a different approach, namely the

characterization of extreme points: Optimal experiments are extreme points of the set of

available experiments.

Last but not least, this paper relates to the literature on extreme points and majorization.

Since the fundamental work by Kleiner, Moldovanu and Strack (2021) on extreme points of

monotonic functions under majorization constraints, this technique has become increasingly

popular in the persuasion literature. Kleiner et al. (2021) and Arieli et al. (2020) show that

optimal experiments in the standard persuasion problem are bi-pooling policies. For further

applications of the extreme-point approach in the persuasion literature, see Matysková and

Montes (2021) or Candogan and Strack (2021), for instance.

As for the concavification approach, the incorporation of sender incentive compatibility

constraints is a crucial step when applying the extreme-point method to cheap-talk settings.

This is considerably easier in the extreme-point approach. Hence, the extreme-point method

is a useful tool to determine optimal experiments in the cheap-talk model beyond the binary

state case.

2 Model

2.1 Setting

There is a sender S (he), a receiver R (she), and a state of the world ω. The state space Ω is

a compact and convex subset of R15, and the state follows a distribution µ0 ∈ 4Ω,16 which

is common knowledge. The state realization ω is initially unknown to both players.

The game proceeds as follows: After the realization of the state, the sender publicly

chooses an experiment π, i.e., a distribution over posterior beliefs of the state µ ∈ 4Ω, at

cost c(π). The set of available experiments Π is a compact subset of 4 (4Ω). The cost

function c is continuous on the convex hull of Π. Next, the sender transmits a message

m ∈ 4Ω to the receiver. Then, the receiver takes an action a from a compact and convex

action space A ⊂ R. Payoffs are determined by the agents’ von Neumann-Morgenstern

utility functions uS : A× Ω→ R and uR : A× Ω→ R, which are continuous on A× Ω.

Figure 1 summarizes the course of the game: I impose additional mild assumptions on

the cost of information acquisition and the set of available experiments:

14With a binary state space, incentive compatibility reduces to a single inequality constraint.
15I assume that the state is real-valued for tractability. All results in Section 2.2 and 4 also apply when

Ω ⊂ Rn.
16For a compact metrizable space X, let 4X denote the set of distributions over X, endowed with the

topology of weak convergence. For each χ ∈ 4X, let supp(χ) denote the support of χ.
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State ω
realizes.

Information acquisition
stage

S chooses
experiment π.

R observes
choice of π.

S learns
outcome µ.

Communication
stage

S sends message
m to R.

Action
stage

R chooses
action a.

Figure 1: Timeline of the game

Assumption 1. The cost function c : I → R has the following properties:

1. (Zero-normalization): c (π) = 0 if supp(π) = {µ0}

2. (Monotonicity): If π′ is a Blackwell garbling17 of π, then c (π) ≥ c (π′).

Zero-normalization requires that learning nothing, i.e., choosing the uninformative exper-

iment π0 whose sole outcome is the prior distribution, is costless. Monotonicity captures the

idea that information which is more precise in the sense of Blackwell should be costlier: Since

the information provided by a Blackwell garbling π′ can also be generated by the original

experiment π through appropriate mixing over its outcome, the former experiment should

be less costly than the latter one.

Assumption 2. If π ∈ Π and π′ is a Blackwell garbling of π, then π′ ∈ Π.

This means that the set of available experiments is sufficiently rich in the sense that for

any available experiment, the sender could also choose an arbitrary Blackwell garbling of it.

Intuitively, the sender has enough flexibility in acquiring information about the state: He

can take any desired experiment — up to a certain level of precision.

2.2 Equilibrium Characterization

A sender strategy (σI , σM) consists of an information rule σI ∈ 4Π and a communication

rule σM : Π ×4Ω → 4(4Ω). A receiver strategy is an action rule σA : Π ×4Ω → 4A.

The sender’s belief after choosing the experiment π and observing its outcome µ is µ. The

receiver has a belief function µR : Π×m → 4Ω with µR (·|π,m) indicating her belief after

observing the sender’s choice of the experiment π and receiving his message m.

As is standard in the cheap-talk literature, I consider perfect Bayesian equilibria.18

17Formally, π′ is a Blackwell garbling of π if for all µ′ ∈ supp(π′), there exists some λµ′ ∈ 4(4Ω) such
that µ′ =

∫
supp(π)

µ dλµ′ (µ).
18Restricting attention to perfect Bayesian equilibria is just for tractability. In fact, for any perfect

Bayesian equilibrium, there exists an outcome-equivalent Bayesian equilibrium. Hence, all results in this
paper also apply to the latter equilibrium concept.
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Definition 1. A perfect Bayesian equilibrium (PBE) E = {((σI , σM) , σA) , µR)} consists of

a strategy profile ((σI , σM) , σA) with beliefs µR such that

1. the information rule σI is optimal given (σM, σA), that is,

supp(σI) ⊆ arg max
π∈Π

∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσA (a|I,m) dµ (ω) dσM (m|I, µ) dπ (µ)

2. the communication rule σM is optimal given σA, i.e., for all (π, µ) ∈ Π×4Ω,

supp (σM (π, µ)) ⊆ arg max
m∈4Ω

∫
Ω

∫
A

uS (a, ω) dσA (a|π,m) dµ (ω)

3. the action rule σA is optimal given µR, that is, for all (π,m) ∈ Π×4Ω,

supp (σA (π,m)) ⊆ arg max
a∈A

∫
Ω

uR (a, ω) dµR (ω|π,m)

4. the receiver’s beliefs are derived from Bayes’ rule, whenever possible.

The ex-ante expected payoffs of an equilibrium E are

US (E) ≡
∫
Π

∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσA (a|π,m) dµ (ω) dσM (m|π, µ) dπ (µ)− c (π) dσI (π)

for the sender and

UR (E) ≡
∫
Π

∫
4Ω

∫
4Ω

∫
Ω

∫
A

uR (a, ω) dσA (a|π,m) dµR (ω|π,m) dσM (m|π, µ) dπ (µ) dσI (π)

for the receiver.

2.3 Babbling Equilibria

Existence of a PBE is guaranteed because it is always possible to construct an equilibrium in

which the sender babbles, i.e, transmits no information, and the receiver chooses an ex-ante

optimal action.

Definition 2. A PBE is a babbling equilibrium if µR (·|π,m) = µ0 for all π,m ∈ 4Ω.

The set of babbling equilibria is denoted by E0.
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When the sender babbles, there is no belief-updating from the receiver’s perspective

because her on-path beliefs coincide with the prior distribution. Hence, she does not learn

anything.

Proposition 1. There exists an equilibrium. Moreover, E0 is nonempty.

While equilibrium existence holds true, uniqueness generically fails. Indeed, there can

even be multiple babbling equilibria unless the receiver’s best response to the prior belief is

unique: One can sustain her choosing any priorly optimal action in equilibrium.

Nevertheless, the payoffs of babbling equilibria serve as a lower bound for the agents’

ex-ante expected payoffs of any PBE.

Proposition 2. For any PBE E, it holds that

US (E) ≥ inf
E′∈E0

US (E ′) and UR (E) ≥ sup
E′∈E0

UR (E ′) .

Both agents’ equilibrium payoffs are bounded below by some babbling outcome: The

receiver can always choose an action that is optimal for her given the prior distribution,

thus securing the payoff of any arbitrary babbling equilibrium. On the contrary, the sender’s

payoff is not necessarily the same across all babbling equilibria.19. Nevertheless, he can

secure the lowest babbling payoff by choosing the uninformative experiment π0.

3 Best Implementable Outcomes

This section studies optimal equilibria. I will use the following terminology:

Definition 3. A payoff profile (UR,US) is implementable if there is some PBE E such that

Ui = Ui(E) for all i ∈ {S,R}. Any such PBE E is said to generate (UR,US).

A payoff profile (UR,US) dominates another one (U ′R,U ′S) if Ui ≥ U ′i for all i with at

least one inequality holding strictly. A PBE dominates another PBE if the payoff profile

generated by the former PBE dominates the payoff profile generated by the latter one.

A payoff profile is best implementable if it is implementable and not dominated by any

other implementable payoff profile. Any PBE generating a best implementable payoff profile

is called optimal. An experiment π is called optimal if π ∈ Π of some optimal PBE.

Best implementability means a payoff profile can be attained in a PBE, and is undomi-

nated by the ex-ante expected payoffs of all other PBE in the sense of the Pareto criterion.20

19This can be the case if arg maxa∈A
∫

Ω
uR(a, ω) dµ0 (ω) is not a singleton.

20The literature on Bayesian persuasion and cheap-talk games usually focuses on sender- or receiver-
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3.1 Fully Revealing Equilibria

This section provides a useful tool towards determining the set of best implementable payoff

profiles: It is without loss of generality to focus on equilibria in which the sender fully reveals

his acquired information to the receiver.

Definition 4. A PBE is a fully revealing equilibrium if µR (·|π,m) = µ for every m ∈
supp (σM (π, µ)), all µ ∈ supp(π) and all π ∈ supp (σI). The communication rule in a fully

revealing PBE is denoted by σFRM .

In a fully revealing equilibrium, the sender transmits all his information to the receiver

such that their equilibrium beliefs coincide.

The argument of the recommendation principle involves two steps: First, it suffices to

focus on equilibria where the sender uses a pure strategy in the information acquisition stage

for the purpose of identifying optimal experiments.

Definition 5. An information rule σI is called pure-strategy if | supp (σI) | = 1.

Under a pure-strategy information rule, the sender chooses one experiment with proba-

bility 1 in equilibrium.

Lemma 1. Any best implementable payoff profile is generated by a PBE with a pure-strategy

information rule. Moreover, any optimal experiment is chosen by the sender in some PBE

with a pure-strategy information rule.

The proof of this lemma is constructive: For any optimal experiment π that the sender

chooses in some PBE E with a mixed-strategy information rule, one can find a payoff-

equivalent PBE Eπ in which the sender takes π only. The sender gets the same ex-ante

expected payoff in the two PBE because he is indifferent between all experiments he chooses

in the PBE E. The receiver’s payoff in the PBE E is the average over her payoffs in the PBE

optimal equilibria (cf. Kamenica and Gentzkow (2011), Gentzkow and Kamenica (2014) or Ambrus, Azevedo
and Kamada (2013)). So why is it worth studying all best implementable payoff profiles? If the receiver’s
best response in the action stage is guaranteed to be unique, the sender-optimal equilibrium is most rea-
sonable: Supposing that the two players try to coordinate on mutually most beneficial outcomes even off
the equilibrium path in case the sender mistakenly chooses an experiment not prescribed by the information
rule, the model prediction is exactly the sender-optimal outcome. This argumentation breaks down if the
receiver is indifferent between different actions: She could announce to choose an action being least favorable
to the sender among those between which she is indifferent in case the sender deviates to an experiment off
path. This is a credible threat. Hence, the model prediction is no longer the sender-optimum necessarily
under the assumption of off-path coordination. It is not clear what the actual model prediction is, but it is
a best implementable outcome, most likely in between the sender- and receiver-optimum. Analyzing all best
implementable outcomes ensures to find the characteristics of the optimal experiment under this equilibrium
selection criterion.
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Eπ in which the sender chooses one of the experiments in the support of the mixed strategy

with probability 1. If the receiver does not obtain the same payoff in all latter PBE, there is

one in which she gets a higher payoff than in the PBE E. So the latter one cannot generate

a best implementable payoff profile.

Second, fully revealing PBE dominate other equilibria.

Lemma 2. Any PBE with a pure-strategy information rule is dominated by a fully revealing

PBE with a pure-strategy information rule.

Since information is costly, it is inefficient if the sender acquires more information than

he is actually willing to transmit to the receiver. Any additional private information is of no

use to him as he can influence her action choice only via the amount of information that he

reveals to her.

Endowed with these two lemmata, the recommendation principle can be established:

Theorem 1. Any best implementable payoff profile is generated by some fully revealing PBE

with a pure-strategy information rule.

Next, I prove the existence of best implementable payoff profiles.

Theorem 2. There exists a best implementable payoff profile. Moreover, the set of best

implementable payoff profiles is compact.

Existence follows from an application of Berge’s maximum theorem.21 Assumption 1.2

and compactness of Π ensure that the corresponding optimization problem has a continuous

objective function over a compact set. Let

ŨS (π, σ̃A) ≡
∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσ̃A (a|π, µ) dµ (ω) dπ (µ)− c (π)

ŨR (π, σ̃A) ≡
∫
4Ω

∫
Ω

∫
A

uR (a, ω) dσ̃A (a|µ) dµ (ω) dπ (µ)

be the agents’ ex-ante expected payoff if the sender chooses experiment π, communicates its

outcome fully to the receiver, and the receiver chooses her action according to the strategy

σ̃A : 4Ω → 4A. A payoff profile (U∗S,U∗R) is best implementable if and only if there exists

some π∗ and some σ̃∗A with U∗i = Ũi (π∗, σ̃∗A) for each i ∈ {S,R} solving

max
(π,σ̃A)

ŨS (π, σ̃A)

21See Aliprantis and Border (2006), p.570.
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s.t. supp (σ̃A (µ)) ⊆ arg max
a∈A

∫
Ω

uR (a, ω) dµ (ω) for all µ ∈ 4Ω (1)

∫
Ω

∫
A
uS(a, ω) dσ̃A (a|µ) dµ(ω)

≥
∫

Ω

∫
A
uS(a, ω) dσ̃A (a|µ′) dµ(ω)

for all µ, µ′ ∈ supp (π) (2)

ŨS (π, σ̃A) ≥ U0
S (3)

ŨR (π, σ̃A) ≥ UR (4)

for some UR ≥ U0
R, where U0

i denotes agent i’s minimal ex-ante expected payoff in a PBE.22

This maximization problem determines the highest possible ex-ante expected payoff the

sender can obtain in a fully revealing PBE with a pure-strategy information rule provided

that the receiver’s ex-ante expected payoff does not fall below a threshold value UR: The con-

straints (1) guarantee the optimality of the receiver’s action rule. The inequality constraints

(2) ensure that the sender has an incentive to report the experiment’s observed outcome

always truthfully. The participation constraint (3) makes sure that the sender is willing to

acquire costly information, that is, his ex-ante expected payoff must not be lower than the

minimal ex-ante expected payoff he would obtain if he acquired no information. Condition

(4) makes sure that the receiver’s ex-ante expected payoff is at least UR.

The equilibrium that implements the best implementable payoff profile (U∗S,U∗R) looks as

follows: It is a fully revealing PBE with a pure-strategy information rule in which the sender

chooses the experiment π∗. For any other experiment off the equilibrium path, the agents

agree on a babbling outcome which yields the minimal ex-ante expected payoff to the sender

that he can obtain in a babbling PBE.

3.2 Best Implementable versus Best Feasible Outcomes

The set of best implementable payoff profiles depends on both the model’s parameters (utility

functions, set of available actions/experiments, etc.) and the game’s structure (information

acquisition and transmission by the sender, decision authority of the receiver): To better

understand the interplay of these two forces, I compare the best possible outcomes that do

not depend on the game’s structure to the best implementable payoff profiles.

Suppose there is a social planner, i.e., a third neutral party, who chooses an experiment

in lieu of the sender according to a mixed strategy σ̄I ∈ 4Π and, based on the experiment’s

outcome, an action in place of the receiver according to the strategy σ̄A : Π ×4Ω → 4A.

22According to Proposition 2, U0
S = infE′∈E0 US (E′) and U0

R = supE′∈E0 US (E′).
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Payoffs that can be generated via such an intervention by a social planner are of the form

ŪS (σ̄I , σ̄A) ≡
∫
Π

∫
4Ω

∫
Ω

∫
A

uS(a, ω) dσ̄A(a|π, µ) dµ(ω) dπ (µ)− c (π) dσ̄I(π)

ŪR (σ̄I , σ̄A) ≡
∫
Π

∫
4Ω

∫
Ω

∫
A

uR(a, ω) dσ̄A(a|π, µ) dµ(ω) dπ (µ) dσ̄I(π).

Definition 6. A payoff profile (US,UR) is feasible if there exist some σ̄I and some σ̄A such

that Ui = Ūi (σ̄I , σ̄A) for all i. It is best feasible if it is feasible and dominates all other

feasible payoff profiles.

Existence of best feasible payoff profiles is guaranteed:

Theorem 3. There exists a best feasible payoff profile. Moreover, the set of best feasible

payoff profiles is compact.

The proof proceeds analogously to the proof of Theorem 2. Formally, a payoff profile

(U∗S,U∗R) is best feasible if and only if there exists some σ̄∗I and some σ̄∗A with U∗i = Ūi (σ̄∗I , σ̄∗A)

fr all i solving

max
(σ̄I ,σ̄A)

ŪS (σ̄I , σ̄A)

s.t. ŪR (σ̄I , σ̄A) ≥ UR. (5)

for some UR ∈ R. While every implementable payoff profile is feasible, the converse does not

hold true. So best implementable payoff profiles can, but need not, be best feasible. The

next theorem states a sufficient condition for the equivalence of best implementable and best

feasible outcomes:

Theorem 4. Suppose there exists a unique best feasible payoff profile. Then, it is the unique

best implementable one.

Uniqueness of the best feasible payoff profile implies that the sender- and receiver-optimal

feasible payoff profile coincide. So both players agree on what is the best attainable outcome.

This closes the gap between best feasible and best implementable payoff profiles because the

sender and the receiver have an incentive to coordinate in equilibrium to achieve the best

feasible outcome.

Allowing for multiplicity annihilates the equivalence result:

Theorem 5. Suppose there exist at least two best feasible payoff profiles. Then, a best

feasible payoff profile (US,UR) is not best implementable supp(σI) = {πfull} for any (σ̄I , σ̄A)

with Ui = Ūi (σ̄I , σ̄A) for each i.
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Consider first the receiver-optimal feasible payoff profile. Since it is feasible only with

the fully informative experiment πfull, the sender would have an incentive to misreport in the

communication stage to achieve the receiver-optimal feasible payoff profile, which is distinct

by multiplicity. For all other best feasible payoff profiles, the receiver would have an incentive

to choose another action rule after the sender fully revealed the fully informative outcome

in order to generate the receiver-optimal feasible payoff profile instead.

To conclude, the frictions caused by information transmission from the acquirer to the

decision-maker affect the best implementable outcomes beyond the model parameters when-

ever the sender and the receiver do not concur about the best achievable outcome, that is,

whenever there are multiple best feasible payoff profiles.

The subsequent finding reinforces the idea that disagreement over optimal feasible out-

comes leads to inefficiencies: It provides conditions under which uniqueness of the best

feasible payoff profile is a necessary and sufficient condition for the equivalence of best im-

plementability and best feasibility. Let A∗(ω, u) = arg maxa∈A u (a, ω) be the set of optimal

actions if the state is ω given the utility function is u.

Corollary 1. If A∗(ω, αuS + (1−α)uR)∩A∗(ω′, αuS + (1−α)uR) = ∅ for all α ∈ [0, 1] and

all ω 6= ω′, and c = 0, then a best feasible payoff profile is best implementable if and only if

it is unique.

Remarkably, the set of best feasible and best implementable payoff profiles either coincide

or are disjoint — depending on whether the former one is a singleton or not. In that sense,

the potential frictions introduced by the cheap-talk game influence all best implementable

payoff profiles equally. The section concludes with an illustrating example:

Example 1. Consider the uniform-quadratic case à la Crawford and Sobel (1982) with an

additive bias b = 0.126 and zero cost. Note that A∗(ω, αuS + (1 − α)uR) = ω + (1 − α)b

for all α, ω ∈ [0, 1]. There is a continuum of best feasible payoff profiles and a unique best

implementable payoff profile. Showing the receiver’s ex-ante expected payoff on the x-axis

and the sender’s ex-ante expected payoff on the y-axis, Figure 2 compares the best feasible

payoff profiles (the points on the blue line) to the best implementable payoff profile (U∗S,U∗R),

the red point. Since there are multiple best feasible payoff profiles, the red point cannot lie

on the blue curve by Corollary 1.

4 Posterior Separable Cost

This section analyses optimal experiments for posterior separable cost functions.
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Figure 2: Payoff comparison in the uniform-quadratic setting with bias b = 0.126

Definition 7. A cost function is posterior separable if there exists a convex function k :

4Ω→ R so that c (π) = −k (µ0) +
∫
4Ω

k (µ) dπ (µ).

Any posterior separable cost function satisfies Assumption 1. Posterior separability is

the standard assumption on the cost structure in the literature on rational inattention (cf.

Caplin and Dean (2013) or Caplin, Dean and Leahy (2019)). Examples include the entropy-

based cost as well as zero cost. For the sake of tractability, I suppose that the sender can

choose any arbitrary experiment — a condition being in line with Assumption 2. Hence, all

results derived in the previous sections remain applicable under the following assumption:

Assumption 3. The cost function c is posterior separable and Π = 4 (4Ω).

Under posterior separable cost and flexible learning, optimal experiments can be derived

from the following class of experiments:

Definition 8. An experiment π exhibits weakly independent outcomes if

µ =

∫
4Ω

ν dλ (ν) ⇒ λ = δµ a.e.,

where δµ is the Dirac measure at µ, for all µ ∈ ΠI , except a set of measure zero.

An experiment π exhibits strongly independent outcomes if for all λ1, λ2 ∈ 4 (4Ω) with

pλi + (1− p)λ′i = π for some p ∈ (0, 1) and some λ′i ∈ 4 (4Ω) for i ∈ {1, 2}, it holds that∫
4Ω

ν dλ1 (ν) =

∫
4Ω

ν dλ2 (ν) ⇒ λ1 = λ2 a.e..

Outcomes are weakly independent if no outcome can be replicated as a convex combina-

tion of other outcomes. Strong independence means that no convex combination of outcomes
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can be represented by another convex combination of outcomes.23 Strong independence im-

plies weak independence, but not vice versa.

Every optimal experiment is outcome-equivalent to an experiment being a convex com-

bination of two experiments with strongly independent outcomes.

Theorem 6. Take any best implementable payoff profile (US,UR).

(i) There exist some π, π ∈ Π′ with strongly independent outcomes and some α ∈ [0, 1] such

that (US,UR) is generated by a fully revealing PBE with a pure-strategy information

rule in which the sender chooses the experiment απ + (1− α) π′.

(ii) If c = 0, (US,UR) is generated by a fully revealing PBE with a pure-strategy information

rule where the sender chooses an experiment with weakly independent outcome.

Any experiment π without strongly independent outcomes corresponds to a convex com-

bination of two experiments π1 and π2. If either one, say π2, does not generate strongly

independent outcomes, it is again a convex combination of some experiments π3 and π4.

But then, there is some convex combination either of π1 and π3, π1 and π4, or π3 and π4

that is implementable and dominates π. The last fact follows from linearity of payoffs, and

is illustrated in Figure 3: The 2-simplex shows all convex combinations of the experiments

π1 π4

π3

π2

π

UR

Figure 3: Payoff comparison in a simplex of three experiments

π1, π3 and π4. The original experiment π lies in the interior of that simplex, on the dotted

line between π1 and π2 as it is a convex combination of those two points. Similarly, π2 lies

on the line between π3 and π4. The red line represents all experiments that yield the same

ex-ante expected payoff UR to the receiver as the original experiment π. By linearity, the

23Geometrically, strong independence means that the set of outcomes supp(π) corresponds to the set of
extreme points of a simplex within the space 4 (4Ω). That is, the experiment’s outcomes span a simplex
in the space 4 (4Ω).

16



sender’s ex-ante expected payoff is monotone along this line so that the optimum is attained

at one of its blue intersections with the edges of the simplex, which corresponds to a convex

combination of only two of the three experiments π1, π3 and π4.

Applying Theorem 6 to settings with a finite state space provides a bound on the number

of different outcomes of optimal experiments: It suffices to consider experiments whose num-

ber of outcomes do not exceed twice the number of states. Especially for environments with

a small state space, this result can be quite helpful towards finding an optimal experiment

as the result rules out a huge number of potential candidates for such an experiment.

Corollary 2. Suppose |Ω| <∞. For any best implementable payoff profile (US,UR),

(i) there exists some π with supp(π) ≤ 2|Ω| such that (US,UR) is generated by a fully

revealing PBE with a pure-strategy information rule in which the sender chooses I.

(ii) If c = 0 and |Ω| = 2, there is a π with supp(π) = 2 so that (US,UR) is generated by a

fully revealing PBE with a pure-strategy information rule where the sender takes π.

Under the finiteness assumption, any set of |Ω|+ 1 outcomes is linearly dependent.

Remark 1. The finding of Corollary 2 is a distinguishing feature of cheap-talk models with

endogenous learning: In cheap-talk settings, where the sender is fully informed about the

state of nature, optimal outcomes cannot be implemented in general if the number of mes-

sages may not exceed the number of states, as long as the latter one is finite.

5 Posterior-mean preferences

This section studies optimal equilibria for posterior-mean preferences. All assumptions made

in previous sections remain valid.

Definition 9. A von Neumann-Morgenstern utility function u is partially separable if there

are continuous functions u1 : A→ R, u2 : A→ R and u3 : Ω→ R such that

u(a, ω) = u1(a) + u2(a) · ω + u3(ω).

Partially separable utility functions are additively separable in a and ω, except for a

component that is quasi-linear in ω. This is a broad class of preferences containing those fre-

quently studied in the literature on cheap-talk and Bayesian persuasion24, namely quadratic

24For the use of quadratic preferences, see Crawford and Sobel (1982), Krishna and Morgan (2004), Ivanov
(2010), or Pei (2015), for instance. For quasi-linear utility, see Gentzkow and Kamenica (2016), Kolotilin,
Mylovanov, Zapechelnyuk and Li (2017), or Candogan and Strack (2021), for example.
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preferences (u (a, ω) = − (a− (ω + b))2 where b ∈ R), and quasi-linear utility functions

(u (a, ω) = u1(a) + u2(a) · ω). From now on, I consider posterior-mean preferences:

Assumption 4. The agents’ von Neumann-Morgenstern utility functions are partially sep-

arable, and the cost function is of the form

c(πI) = −k
Å∫

Ω

ω dµ0(ω)

ã
+

∫
4Ω

k

Å∫
Ω

ω dµ(ω)

ã
dπ(µ).

Under these preferences, the sender’s best response to his belief in the communication

stage as well as the receiver’s best response to her belief in the action stage depend on the

expected state conditional on the respective belief only. Moreover, both agents’ ex-ante

expected payoffs are additively separable with respect to the prior µ0 and the distribution

over posteriors π.

Lemma 3. Take any µ, µ′ ∈ 4Ω with
∫

Ω
ω dµ(ω) =

∫
Ω
ω dµ′(ω). Then, it holds that

arg max
a∈A

∫
Ω

uR(a, ω) dµ(ω) = arg max
a∈A

∫
Ω

uR(a, ω) dµ′(ω),

and for any a, a′ ∈ A,∫
Ω

uS(a, ω) dµ(ω) ≥
∫
Ω

uS(a, ω) dµ(ω) ⇔
∫
Ω

uS(a, ω) dµ′(ω) ≥
∫
Ω

uS(a, ω) dµ′(ω).

For any σA : 4 (4Ω) ×4Ω → 4A and π ∈ 4 (4Ω), there exist functions vi,1 : 4Ω → R
and vi,2 : Ω→ R such that∫
4Ω

∫
Ω

∫
A

ui(a, ω) dσA(a|π, µ) dµ(ω) dπ (µ) =

∫
4Ω

vi,1 (µ) dπ (µ) +

∫
Ω

vi,2 (ω) dµ0 (ω) . (6)

In any fully revealing PBE, both agents’ decisions during the game only depend on the

conditional mean of the state given the experiment’s outcome — not on the outcome itself.

Since learning is costly, it is without loss of generality to restrict attention to experiments

whose outcomes imply different conditional means. Let Π̄ be the set of such experiments.

Next, I introduce bi-pooling policies:25 These experiments divide the state space into

subintervals and assign at most two outcome realizations to each of those subintervals —

therefore the name. The following definition formalizes the notion of a state space division:

25The term ”bi-pooling policy” is borrowed from Arieli et al. (2020). My definition extends their definition
to distributions of the state with atoms.
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Definition 10. A partitioning of an experiment π ∈ Π̄ is a collection of closed intervals in

Ω, denoted by {[ωj, ω̄j]|j ∈ J}, endowed with the corresponding collection of open intervals

{(ωj, ω̄j)|j ∈ J} such that

1.
⋃
j∈J [ωj, ω̄j] = Ω,

2. (ωj, ω̄j) ∩ (ωj′ , ω̄j′) = ∅ for all j, j′ ∈ J : j 6= j′, and

3. for all µ ∈ supp(π), there is exactly one j ∈ J so that Pr
(
ω̃ ∈ [ωj, ω̄j]|µ, π

)
= 1.

A partitioning {[ωj, ω̄j]|j ∈ J} of I is called finest if there is no j∗ ∈ J and ω∗ ∈ [ωj∗ , ω̄j∗ ]

so that the collection {[ωj, ω̄j]|j ∈ J\{j∗}} ∪ {[ωj, ω∗], [ω∗, ω̄j]} is a partitioning of π, too.

Verbally, a partitioning is a collection of closed and open intervals so that the union of

closed intervals covers the state space, the open intervals are pairwise disjoint, and each

outcome µ is associated with one closed interval of the collection.26 Endowed with the

definition of a partitioning, I can now specify bi-pooling policies:

Definition 11. Take an experiment π ∈ Π̄ with finest partitioning {[ωj, ω̄j]|j ∈ J}. Then,

π is a bi-pooling policy if for any j ∈ J with (ωj, ω̄j) ∩ supp(ω) 6= ∅, there are at most two

outcomes µ ∈ supp(π) that realize if ω ∈
(
ωj, ω̄j

)
. Two outcomes form a 2-partition if they

realize with positive probability on the same open interval (ωj, ω̄j). All other outcomes form

a 1-partition.

Monotone partitions form a subset of the set of bi-pooling policies:

Definition 12. A bi-pooling policy is a monotone partition if all its outcomes form a 1-

partition.

Under posterior-mean preferences, optimal experiments lie within the set of bi-pooling

policies, which are a subset of the set of experiments with strongly independent outcomes.

Corollary 3. Any best implementable payoff profile is generated by a fully revealing PBE

with a pure-strategy information rule in which the sender chooses a convex combination of

two bi-pooling policies. If c = 0, it is generated by a fully revealing PBE with a pure-strategy

information rule in which the sender chooses a bi-pooling policy.

Bi-pooling policies are optimal as they are the most informative experiments (they cannot

be replicated by a mixture of other experiments) among all experiments for which both

agents have a common interest in the revelation of their information content, that is, among

26Each experiment has a partitioning: the singleton collection {Ω}. Furthermore, the finest partitioning
always exists and is unique.
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all experiments the sender is willing to choose in a fully revealing PBE. Reducing the class of

experiments to bi-pooling policies is a useful step towards finding the optimal experiments

as demonstrated in the next section where I compute optimal bi-pooling policies.

6 The Uniform-Quadratic Case

This section characterizes the optimal experiments in the uniform-quadratic model with an

additive bias b > 0 and zero cost: The state is uniformly distributed on the interval [0, 1],

the agents’ von Neumann-Morgenstern utility functions are given by uR(a, ω) = −(a − ω)2

and uS(a, ω) = −(a− (ω + b))2, and the action space is A = [0, 1].

By Corollary 3, some optimal experiment must be a bi-pooling policy, which can be

determined using the general maximization problem on page 12.

Lemma 4. A tuple (I, σ̃A) fulfills (1) and (2) if and only if supp (σA (µ)) = {
∫

Ω
ω dµ(ω)}

for all µ ∈ supp(π) and
∣∣∫

Ω
ω dµ(ω)−

∫
Ω
ω dµ′(ω)

∣∣ ≥ 2b for all µ, µ′ ∈ supp(π).

Due to the quadratic preferences, the receiver’s unique best response to outcome µ is the

conditional mean
∫

Ω
ω dµ (ω) in a fully revealing PBE. The sender’s incentive compatibility

constraints reduce to the distance between any two induced posterior means of the state

exceeding some constant, namely twice the bias.

Remark 2. With a perfectly informed sender, incentive compatibility requires that the dis-

tance between any two messages is not constant, but increasing because equilibria exhibit

intervals of increasing length (cf. Crawford and Sobel (1982)). Where does the difference

come from? The recommendation principle is responsible for the constant distance between

induced posterior means: This paper’s model can be interpreted as one where the sender

is perfectly informed, but the states of interest are the conditional means, which are in the

middle of the different intervals. In Crawford and Sobel (1982), intervals are of increasing

length because the sender is inclined towards exaggerating on the right end of an interval,

which are the states where he has the highest incentive to misreport. In my model variant,

the sender’s incentives towards exaggerating/undermining are equally distributed because

the relevant state is not on the right end of an interval, but in the middle.

Ex-ante expected payoffs in a fully revealing PBE differ by a constant between agents:

ŨS (π, σ̃A) = ŨR (π, σ̃A)− b2 for all (π, σ̃A) satisfying the conditions stated in Lemma 4. So

there is a unique best implementable payoff profile, making (3) and (4) redundant.

The sender’s incentive compatibility constraints together with the fact that Ω is bounded

imply that the optimal experiment has a finite support {µ1, . . . , µn}, where n ∈ N. Define

ω̄i ≡
∫

Ω
ω dµi(ω), and let pi be the probability that the experiment’s outcome is µi.
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The optimal experiment depends on the value of the bias: If b > 1
4
, no information is

revealed.27 Before deriving the exact structure of an optimal bi-pooling policy for b ≤ 1
4
, it

is useful to think about its size, i.e., the optimal number of outcome realizations n. The un-

derlying trade-off is that experiments with more outcome realizations are more informative,

thus payoff superior, but also less likely implementable in equilibrium. The best experiment

is thus of a sufficiently large size that is still consistent with incentive compatibility. The

size of an optimal experiment can only take two different values:

Lemma 5. If b ∈
Ä

1
2n
, 1

2(n−1)

ó
for some n ≥ 3, there is an optimal experiment being

� the uniform partition28 of size n− 1, or

� a bi-pooling policy of size n so that ω̄i+1 − ω̄i = 2b for all i ∈ {1, . . . , n− 1}, and both

µ1 and µn are 1-partitions.

Neglecting all incentive compatibility constraints, the best experiment of a specific size

is the uniform partition of that size. Moreover, uniform partitions of larger sizes dominate

uniform partitions of smaller sizes. Consequently, the uniform partition of size n− 1 domi-

nates all experiments of size n− 1 or smaller, and it satisfies incentive compatibility. Since

experiments of size n + 1 or larger are not incentive compatible, the optimal policy is thus

either the uniform partition of size n− 1, or a bi-pooling policy of size n.

6.1 Small Bias: b ≤ 1
12

For a bias b ∈
Ä

1
2n
, 1

2(n−1)

ó
≤ 1

12
, the optimal bi-pooling policy of size n is either a monotone,

non-uniform partition whose 1-partitions are of alternating size, or a bi-pooling policy with

exactly two 2-partitions — one between the second and third outcome realization, and an-

other one between the second-last and third-last realization — and equally-sized 1-partitions

in-between.

Lemma 6. Let n ≥ 7 and b ∈
Ä

1
2n
, 1

2(n−1)

ó
. The optimal bi-pooling policy of size n satisfies

ω̄i = 1
2

+ b(2i− n− 1) for all i, and there exists some b̂n ∈
î

1
2n
, 1

2(n−1)

ä
so that

27In this case, the distance between any two induced posterior means must be strictly larger than 1
2 ,

implying that at most two different actions on [0, 1] can be implemented. However, the distance between
these two means may be no larger than 1

2 . Due to the uniform distribution of the state, the maximal distance
1
2 can essentially be achieved if and only if the lower action is induced whenever ω̃ ∈ (0, x) and the upper
action is induced whenever ω̃ ∈ (x, 1) for some x ∈ (0, 1), that is, whenever the experiment is essentially a
partition.

28A uniform partition of size n′ ∈ N is a monotone partition with p1 = . . . = pn′ .
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� if b ≤ b̂n, it is a monotone partition with

pi =

1− 2b(n− 1) , if i is odd

2b(n+ 1)− 1 , if i is even
(7)

� if b ≥ b̂n, µ2 and µ3 as well as µn−2 and µn−1 form a 2-partition, respectively, and all

other µi are 1-partitions such that

pi =


1− 2b(n− 1) , if i ∈ {1, n}
(n+4)b

2
− 1

4
, if i ∈ {2, 3, n− 2, n− 1}

2b , else

(8)

Furthermore, it holds that b̂n ∈
Ä

1
2n
, 1

2(n−1)

ä
if n is odd, and b̂n = 1

2n
if n is even.

To give an intuition for this result, notice that uniform, monotone partitions would be

best, but are infeasible. Therefore, one either has to give up on uniformity by choosing a

non-uniform, monotone partition, or one can restore parity for most outcome realizations by

choosing two 2-partitions close to the boundary of the state space [0, 1].

If n is even, the optimal experiment of size n cannot be a monotone partition: Any

monotone partition for which all incentive constraints of adjacent posterior means are binding

has alternatingly sized 1-partitions: p1 = p3 = . . . = pn−1 and p2 = p4 = . . . = pn.

Moreover, the posterior mean ω̄i is always in the middle of the interval of states its outcome

is associated with. This implies that p1 + p2 = p3 + p4 = . . . = pn−1 + pn = 4b and thus∑n
i=1 pi = n

2
· 4b = 2bn > 1 — a contradiction because

∑n
i=1 pi = 1.

Figure 4 depicts an optimal bi-pooling policy of size 12 when the bias is b = 0.0435: With

values of the state realization on the x-axis and values of the state’s density function on the

y-axis, the outer rectangle represents the area under the state’s density function. It is divided

into several sub-rectangles, each of which belongs to one outcome of the bi-pooling policy,

which is specified by the circled values. As stated in Lemma 5 and Lemma 6, the first and

last outcome form a 1-partition, respectively, the second and third as well as the tenth and

the eleventh outcome form a 2-partition, respectively, and the third to ninth outcome form

1-partitions of equal size. Why is this bi-pooling policy optimal? First, note that 2-partitions

are involve a loss of information. By separating two outcomes forming one 2-partition into

two 2-partitions, keeping their probabilities equal, one could construct a better experiment.

However, this is not possible because no monotone partition of size 12 is feasible, as argued

above. Hence, 2-partitions are necessary, but due to their inefficiency, it is best to hold
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Figure 4: Optimal bi-pooling policy of size n = 12 with underlying bias b = 0.0435

their number small. Due to the symmetric distribution of the state, symmetric experiments

are optimal, therefore, there are two 2-partitions. Since the first and last outcome form

1-partitions, the 2-partitions cannot be directly at the margins of the state space. But why

are they not further to the center? If so, there would be 1-partitions of alternating sizes at

the margins, and less 1-partitions of equal size in the center. This is worse because uniform

partitions dominate monotone partitions of alternating sizes.

6.2 Large Bias: 1
12 < b ≤ 1

4

If the bias exceeds 1
12

, the optimal bi-pooling policy of maximal size n can be constructed

straightforwardly: If n = 3, Lemma 5 implies that the optimal experiment must be a mono-

tone partition because both the first and last outcome form a 1-partition, so does the inter-

mediate one. For n = 4, there are two options: Again, the first and last outcome form a

1-partition so that the two intermediate outcomes either form a 2-partition or two separate

1-partitions. Recall that monotone partitions are not feasible if the number of outcomes is

even. Consequently, the two intermediate outcomes must form a 2-partition. If n = 5, three

different scenarios are possible: Either the second and third or the third and fourth outcome

form a 2-partition, or all outcomes form a 1-partition. Due to the symmetry of the uniform

distribution, it turns out that the optimal partition is also symmetric, hence it is a monotone

partition. For n = 6, one obtains by a similar symmetry-argument and by infeasibility of

monotone partitions that both the second and the third as well as the fourth and the fifth

outcome form a 2-partition, respectively.

Figure 5 illustrates an optimal policy of size 4 on the left side, which is a bi-pooling policy

with a proper 2-partition, and an optimal experiment of size 5 on the right side, which is a

monotone partition. The following lemma formalizes the above observations:
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Figure 5: Optimal bi-pooling policy of size n = 4 with underlying bias b = 0.15 on the left
side and of size n = 5 with bias b = 0.11 on the right side

Lemma 7. Let n ∈ {3, 4, 5, 6} and b ∈
Ä

1
2n
, 1

2(n−1)

ó
. The optimal bi-pooling policy of size n

satisfies ω̄i = 1
2

+ b(2i− n− 1) for all i, and

� if n is odd, it is a monotone partition with (7).

� if n is even, µ2 and µ3 as well as µn−2 and µn−1 form a 2-partition with (8).

6.3 Globally optimal experiments

The underlying trade-off when comparing the optimal bi-pooling policy of size n with the

optimal experiment of size n − 1, i.e., the uniform partition of that size, is the following:

The optimal bi-pooling policy of size n has an additional outcome realization coming at the

expense of non-uniform 1-partitions or 2-partitions to satisfy incentive compatibility. The

latter effect dominates as the bias increases implying that the best bi-pooling policy of size

n is globally optimal for small bias values in the interval
Ä

1
2n
, 1

2(n−1)

ó
, while the uniform

partition of size n− 1 is globally optimal for larger biases in that interval.

Proposition 3. If b ∈
Ä

1
2n
, 1

2(n−1)

ó
for some n ≥ 3, there exists some b̄n ∈

Ä
1

2n
, 1

2(n−1)

ä
such that the optimal experiment is the best bi-pooling policy of size n if b ≤ b̄n and it is the

uniform partition of size n− 1 if b ≥ b̄n. Furthermore, if n ≥ 7 and n is odd, then b̄n ≤ b̂n.

7 Model Variants

7.1 Information Acquisition by the Receiver

Consider a variation of the cheap-talk model in which the receiver chooses the experiment

instead of the sender: First, the receiver publicly chooses an experiment (whose costs are
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borne by the sender). Then, the sender privately observes its outcome and sends a cheap-talk

message to the receiver. Third, the receiver takes an action.

The recommendation principle from Section 3.1 remains valid: To see this, recall that

the best implementable payoff profiles of the baseline model can be generated by a fully

revealing PBE in which the sender chooses a pure-strategy information rule, and a babbling

outcome is implemented everywhere off-path. Since both agents’ expected payoffs on-path

exceed their expected payoffs under the babbling outcome, it does not matter whether the

sender or the receiver chooses the experiment. Consequently, the model predictions do not

change:

Proposition 4. The set of best implementable payoff profiles in the model where the receiver

publicly chooses the experiment coincides with the one of the original model.

7.2 Covert Information Acquisition

Suppose now the sender chooses the experiment covertly instead of overtly, that is, he cannot

commit to the choice of the experiment.

A version of recommendation principle can be established for this model variant, too.

Any PBE of the model variant is a PBE of the baseline model, but the converse does not

hold true: If the sender chooses a certain experiment when he cannot commit to it, he would

also choose it if he had commitment power. Hence, model predictions may change:

Proposition 5. Any best implementable payoff profile in the model where the sender learns

covertly is dominated by an implementable payoff profile of the original one.

7.3 Bayesian Persuasion

Under Bayesian persuasion, the sender can commit both to the experiment he chooses and

full revelation of its outcome. Therefore, higher payoff can be achieved in equilibrium:

Proposition 6. Any best implementable payoff profile of the original model is dominated by

an implementable payoff profile of the model where the sender can commit to full revelation.

7.4 Mediation

Suppose the sender is perfectly informed about the state, but does not directly communicate

with the receiver. Instead, he sends a cheap-talk message to a neutral mediator who then

transmits a message to the receiver. Can better equilibrium outcomes be attained under

endogenous learning or mediation?
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In general, endogenous, overt learning and mediation cannot be ranked: This is because

the sender’s incentives to report his information are affected at different stages: Under

endogenous learning, the sender has less incentives to misreport as he can decide to acquire

less than perfect information. On the other hand, the mediator can enforce outcomes that

are beneficial to both the sender and the receiver: If the sender communicates with the

receiver directly, he would always send a message that implements the best possible action

among all that the receiver chooses in equilibrium given his information. A mediator is not

restricted to that (see the mediation solution by Krishna and Morgan (2004), for instance).

In the uniform-quadratic case, however, endogenous learning always outperforms media-

tion:

Proposition 7. Consider the uniform-quadratic setting with zero cost. For any b ≤ 1
2
, the

unique best implementable payoff profile under endogenous, overt learning dominates any

payoff profile that can be implemented by a mediator.

As a consequence, endogenous, overt learning also outperforms long cheap talk (see Au-

mann and Hart (2003)) in this setting because mediation dominates long cheap talk (see

Krishna and Morgan (2004)).

7.5 Comparative statics

This section illustrates the effects of the discussed model variants using the example of the

uniform-quadratic model.

Ivanov (2010) characterizes the optimal monotone partition of the model variant from

Section 7.1. From Proposition 3, one can therefore infer the following:

1. If n is odd, then the optimal policy of size n is always a monotone partition and

corresponds to the solution of Ivanov (2010).

2. If n is even, the optimal policy of size n is a bi-pooling policy. Since no monotone

partition of size n is feasible, the best experiment in the analysis of Ivanov (2010) is

the uniform partition of size n− 1.

Finally, let’s compare the best implementable payoff profile in my model to the optimal

payoffs in related models. How does my model (overt and flexible information acquisition by

sender or receiver) compare to Crawford and Sobel (1982) (full information acquisition by

default), Pei (2015) (covert information acquisition) and Ivanov (2010) (overt information

acquisition by sender or receiver among the set of monotone partitions). Figure 6 illustrates

the different payoff profiles of these models if b = 0.126: The blue line is the Pareto frontier
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Figure 6: Payoff comparison in the uniform-quadratic setting with bias b = 0.126

of feasible payoff profile, the red point (U∗S,U∗R) is the solution of my model, the green point

(U ′S,U ′R) is the solution of Ivanov (2010) and the yellow point (U ′′S ,U ′′R) is the solution to

Crawford and Sobel (1982) and Pei (2015). Comparing the red and the yellow point, note

that the red one is considerably closer to the blue Pareto frontier. This suggests that with zero

cost, covert information acquisition has no effect, while overt information has a significant

effect. By comparing the red point to the green point, one can infer that flexible information

acquisition (i.e., the option to choose non-monotone partitions as well) is valuable, too.

On the other hand, how does my model compare to Kamenica and Gentzkow (2011)

(i.e., Bayesian persuasion)? Bayesian persuasion means that the sender can commit to both

the information as well as the communication rule. In the uniform-quadratic setting, this

means that the sender can commit to the fully informative experiment, and the receiver

chooses her optimal action. So the solution of Kamenica and Gentzkow is the right endpoint

of the blue curve. My setting is a model of partial commitment (only commitment with

respect to information, not with respect to communication), and Crawford and Sobel (1982)

can be interpreted as an environment with no commitment at all. The partial commitment

solution is closer to the full commitment solution than to the no commitment solution. This

suggests that the value of commitment with respect to information is higher than the value

of commitment with respect to messages. Or in other words, the efficiency loss of giving
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up on the latter commitment device while keeping the former one is not too large. This

is good news to the related literature: A common critique about Bayesian persuasion is

that commitment with respect to the communication strategy is hard to apply to real-world

settings. On the other hand, there are applications for which commitment with respect to

information makes sense (see the example of a survey from the introduction). Since the

latter commitment device dominates the former (in terms of value) my model of partial

commitment could be an adequate alternative to Bayesian persuasion.

8 Conclusion

Summing up, this paper explores the effects of costly information procurement in a model

of strategic information transmission from an expert to a decision-maker. The first main

finding is that in an optimal equilibrium, the sender generically only acquires information

that he is also willing to forward to the receiver.

Under posterior separable cost, optimal information structures are determined by the

class of experiments with independent outcomes. In settings with a finite state space, ap-

plying this fact considerably reduces the set of experiments among which one can find an

optimal information structure. Besides, I have derived an equivalence of the characteristics

of optimal experiments in cheap-talk and Bayesian persuasion problems, and I have solved

the uniform-quadratic model.
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Crémer, J. and R. P. McLean (1988). “Full extraction of the surplus in Bayesian and domi-

nant strategy auctions”. In: Econometrica: Journal of the Econometric Society, pp. 1247–
1257.

Deimen, I. and D. Szalay (2019). “Delegated expertise, authority, and communication”. In:
American Economic Review 109.4, pp. 1349–74.

Dessein, W. (2002). “Authority and communication in organizations”. In: The Review of
Economic Studies 69.4, pp. 811–838.

Dudley, R. M. (1989). “Real analysis and probability. Wadsworth & Brooks”. In: Cole, Pacific
Groves, California 8, p. 39.

Ely, J. C. (2017). “Beeps”. In: American Economic Review 107.1, pp. 31–53.
Gentzkow, M. and E. Kamenica (2014). “Costly persuasion”. In: American Economic Review

104.5, pp. 457–62.
— (2016). “A Rothschild-Stiglitz approach to Bayesian persuasion”. In: American Economic

Review 106.5, pp. 597–601.
Goltsman, M., J. Hörner, G. Pavlov, and F. Squintani (2009). “Mediation, arbitration and

negotiation”. In: Journal of Economic Theory 144.4, pp. 1397–1420.
Ivanov, M. (2010). “Informational control and organizational design”. In: Journal of Eco-

nomic Theory 145.2, pp. 721–751.
Kamenica, E. and M. Gentzkow (2011). “Bayesian persuasion”. In: American Economic

Review 101.6, pp. 2590–2615.
Kleiner, A., B. Moldovanu, and P. Strack (2021). “Extreme points and majorization: Eco-

nomic applications”. In: Econometrica 89.4, pp. 1557–1593.
Kolotilin, A., T. Mylovanov, A. Zapechelnyuk, and M. Li (2017). “Persuasion of a privately

informed receiver”. In: Econometrica 85.6, pp. 1949–1964.

29



Krishna, V. and J. Morgan (2004). “The art of conversation: eliciting information from
experts through multi-stage communication”. In: Journal of Economic theory 117.2,
pp. 147–179.

Lipnowski, E. (2020). Equivalence of Cheap Talk and Bayesian Persuasion in a Finite Con-
tinuous Model.

Lipnowski, E. and D. Ravid (2020). “Cheap talk with transparent motives”. In: Econometrica
88.4, pp. 1631–1660.

Lyu, Q. and W. Suen (2022). “Information design in cheap talk”. Working paper.
Maćkowiak, B., F. Matějka, and M. Wiederholt (2018). “Survey: Rational inattention, a

disciplined behavioral model”. Working paper.
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Appendix

Proofs to Section 2: Model

Proof of Proposition 1 The proof proceeds by construction of a babbling equilibrium.
Since Π is nonempty (by implicit assumption), and π0 is a Blackwell garbling of any

experiment, it follows from Assumption 2 that π0 ∈ Π. Assumption 1 implies that c (π0) = 0.
Fix some m0 ∈ 4Ω and some a0 ∈ A0 ≡ arg maxa∈A

∫
Ω
uR(a, ω) dµ0 (ω). Notice that a0

is well-defined: Since A × Ω is compact and uR is continuous on A × Ω, uR is bounded on
A×Ω. By the Dominated Convergence Theorem, continuity of uR(·, ω) on A for each ω ∈ Ω
implies continuity of

∫
Ω
uR(·, ω) dµ0 (ω) on A. Consequently,

∫
Ω
uR(·, ω) dµ0 (ω) attains a

maximum on the compact set A, i.e., A0 is nonempty, by the Weierstrass extreme value
theorem.

Consider the strategy profile ((σ0
I , σ

0
M) , σ0

A) and beliefs µ0
R with

supp
(
σ0
I
)

= {π0},
supp

(
σ0
M (π, µ)

)
= {m0} for all µ ∈ 4Ω and all π ∈ Π,

supp
(
σ0
A (π,m)

)
= {a0} for all m ∈ 4Ω and all π ∈ Π, and

µ0
R (·|π,m) = µ0 for all m ∈ 4Ω and all π ∈ Π.

It can be easily verified that these profiles constitute a PBE E0: First, the receiver’s beliefs
are always consistent with Bayes’ rule on the equilibrium path, and it is F in any subgame
in the action stage. Hence, it is — by definition of a0 — optimal for her to choose a0 always.
Likewise, it is a best response for the sender to transmit the uninformative message m0

always because the receiver does not condition her action decision on the sender’s message.
Third, note that both agents’ expected utilities (excluding the sender’s cost) are constant
across all subgames after the information acquisition stage. Therefore, the sender optimally
chooses an experiment which induces the lowest possible cost in the information acquisition
stage. Since c (π0) = 0, it is optimal to take experiment π0.

By definition of µ0
R, E0 is a babbling equilibrium.

Proof of Proposition 2 Fix some PBE E ′ = {((σ′I , σ′M) , σ′A) , µ′R}.

(a) First, note that µR (·|π,m) = µ0 for all m ∈ supp (σ′M (π, µ)), µ ∈ supp(π) and
π ∈ supp(σI) for any E ∈ E0. By optimality of the receiver’s action rule in all such PBE, her
expected payoff is the same in all on-path subgames after the information acquisition stage
of any such PBE. So her ex-ante expected payoff is constant across all babbling PBE:

inf
E∈E0
UR (E ′) = UR

(
E0
)

= sup
E′∈E0

UR (E ′)

where E0 is defined as in the proof of Proposition 1.
Next, I demonstrate that UR (E ′) ≥ UR (E0): If the receiver deviated in the PBE E ′ to

σ0
A, she would attain the ex-ante expected payoff UR (E0). But as σ′A is a best response for

the receiver in E ′, it follows that UR (E ′) ≥ UR (E0).
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(b) Consider the strategy profile ((σ0
I , σ

0
M) , σ00

A ) and beliefs µ0
R where

supp
(
σ00
A
(
π0,m

))
∈ A00 ≡ arg min

a∈A0

∫
Ω

uS(a, ω) dµ0 (ω) (9)

for all m ∈ 4Ω. Recall from the proof of Proposition 1 that
∫

Ω
uS(a, ω) dµ0 (ω) is continuous

on A. This together with the compactness of A implies that A0 is compact by Berge’s max-
imum theorem. Consequently, A00 is nonempty by the Weierstrass extreme value theorem.

Using analogous arguments as in the proof of Proposition 1, one can check that the above
profiles constitute a PBE E00 ∈ E0.

Next, I show that the sender’s ex-ante expected payoff in the PBE E00 serves as a lower
bound for his ex-ante expected payoff in any PBE: For any π ∈ supp (σ′I), it must hold that∫

4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσ′A (a|π,m) dµ (ω) dσ′M (m|π, µ) dπ (µ)− c (π)

≥
∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσ′A
(
a|π0,m

)
dµ (ω) dσ′M

(
m|π0, µ

)
dπ0 (µ)− c

(
π0
)

≥ US
(
E00
)
.

The first inequality follows from the fact that σ′I is a best response for the sender given
(σ′M, σ

′
A), and the second inequality holds true by construction of E00 due to (9).

This yields
US (E) ≥ US

(
E00
)
, (10)

completing the proof.

Proofs to Section 3: Best Implementable Outcomes

Proof of Lemma 1 Fix some best implementable payoff profile generated by the PBE
E = {((σI , σM) , σA) , µR}. For any π ∈ supp(σI), let Eπ = {((σπI , σM) , σA) , µR} where
supp(σπI ) = {π}, and note that Eπ is a PBE, too. By optimality of σI for the sender in the
PBE E, it follows for all π, π′ ∈ supp(σI) that US (Eπ) = US

(
Eπ′
)

because∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσA (a|π,m) dµ (ω) dσM (m|π, µ) dπ (µ)− c (π)

=

∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσA (a|π′,m) dµ (ω) dσM (m|π′, µ) dπ′ (µ)− c (π′) .

Best implementability of (US (E) ,UR (E)) yields UR (E) ≥ UR (Eπ) for all π ∈ supp(σI). By
construction, the former one is the mean of the latter ones, UR (E) =

∫
Π
UR (Eπ) dσI(π), so

that UR (E) = UR (Eπ) for all π. Hence, (US (E) ,UR (E)) is generated by any PBE Eπ.
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Proof of Lemma 2 Fix some PBE E with supp(σI) = {π∗} for some π∗ ∈ Π. Now con-
sider the experiment π∗∗ with outcomes {µR (·|π∗,m)}m∈⋃µ∈supp(π∗) supp(σM(π∗,µ)) distributed

according to
∫
µ∈supp(π∗) σM (·|π∗, µ) dπ∗ (µ). In words, the distribution over outcomes under

the experiment π∗∗ corresponds to the distribution over the receiver’s on-path beliefs in the
PBE E. By Assumption 2, π∗∗ ∈ Π as π∗∗ is a Blackwell garbling of π∗. By Assumption 1,
one gets that c (π∗∗) ≤ c (π∗).

One can find a fully revealing PBE E ′ in which the sender chooses π∗∗. The agents’
expected utilities are the same as in the PBE E, but the sender’s cost are smaller in E ′.
Hence, E ′ dominates E. In order to construct the fully revealing PBE, consider the strategy
profile ((σ′I , σ

′
M) , σ′A) and beliefs µ′R with supp(σ′I) = {π∗∗},

σ′M (·|π, µ) =

®
σFR
M (·|π∗∗, µ) , π = π∗∗

σ0
M (·|π, µ) , else

for all µ ∈ 4Ω

σ′A (·|π,m) =

®
σA (·|π∗, τ (m)) ,m ∈ supp (σ′M (π∗∗, µR (·|π∗, τ (m)))) and π = π∗∗

σ0
A (·|π,m) ,m ∈ 4Ω and π 6= π∗∗

µ′R (·|π,m) =

®
µ ,m ∈ supp (σ′M (π∗∗, µ)) and π = π∗∗

F ,m ∈ 4Ω and π 6= π∗∗
,

where ((σ0
I , σ

0
m) , σ00

a ) and (µ0
s, µ

0
R) are defined as in the proofs of Proposition 1 and 2,

and where τ :
⋃
µ∈supp(π∗∗) supp (σ′M (π∗∗, µ)) →

⋃
µ∈supp(π∗) supp (σM (π∗, µ)) is a bijec-

tive function defined as follows: If the sender sends message m after choosing π∗ in the
PBE E, he sends message τ−1 (m) after taking π∗∗ in the equilibrium candidate E ′ if the
experiment’s outcome is µR (·|π∗,m).29 The above profiles constitute a PBE E ′: First,
the agents’ beliefs are updated according to Bayes’ rule whenever possible. Moreover,
since

∫
Ω
uR (a, ω) dµ′R (ω|π∗∗,m) =

∫
Ω
uR (a, ω) dµR (ω|π∗, τ (m)) for all a ∈ A and all

m ∈ supp (σ′M (π∗∗, µR (·|π∗, τ (m)))), and since σA is a best response given µR in any sub-
game after the sender chooses π∗, one can infer that σ′A is optimal given µ′R in any subgame
after he takes π∗∗. Besides, σ′A is also a best response given µ′R in any subgame after the
sender chooses an experiment π 6= π∗∗ (see the proof of Proposition 2). Hence, σ′A is optimal

29Bijectivity of τ (or rather τ−1) ensures that E′ is fully revealing: If µR (·|π∗,m) 6= µR (·|π∗,m′) for
some m,m′ ∈

⋃
µ∈supp(π∗) supp (σM (π∗, µ)), but τ−1 (m) = τ−1 (m′), the sender would not fully reveal to

the receiver whether he observed outcome µR (·|π∗,m) or µR (·|π∗,m′) after choosing π∗∗ in E′. Moreover,
σ′A (·|π∗∗,m) is well-defined for all m ∈

⋃
µ∈supp(π∗∗) supp (σ′M (π∗∗, µ)) since the communication rule is fully

revealing on the equilibrium path and the receiver updates her beliefs according to Bayes’ rule: For any
such m, which the sender sends after choosing π∗∗ in the candidate for a fully revealing equilibrium E′ ,
there exists a message τ (m) which he sends in the PBE E after choosing π∗ so that the receiver’s belief
after observing π∗ and τ (m) in E equals the outcome of the experiment π∗∗ conditional on which the sender
transmits m in E′.
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given µ′R. Furthermore, one obtains that∫
Ω

∫
A

uS (a, ω) dσ′A (a|π∗∗,m) dµ (ω)

=

∫
Ω

∫
A

uS (a, ω) dσA (a|π∗, τ (m)) dµ (ω)

=

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσA (a|π∗, τ (m)) dµ (ω)

︸︷︷ ︸
≥
∫
Ω

∫
A

uS (a, ω) dσA (a|π∗, τ (m′)) dµ (ω) for all µ′ ∈ supp (π∗)

dPr (µ′|π∗, τ (m) , σM)

≥
∫
Ω

∫
A

uS (a, ω) dσA (a|π∗, τ (m′)) dµ (ω)

=

∫
Ω

∫
A

uS (a, ω) dσ′A (a|π∗∗,m′) dµ (ω)

for all m ∈ supp (σ′M (π∗∗, µ)), m′ ∈ 4Ω and µ ∈ supp (π∗∗). The first equality holds true
since σ′A (·|π∗∗,m) = σA (·|π∗, τ (m)) for all m ∈

⋃
µ∈supp(π∗∗) supp (σ′M (π∗∗, µ)). The second

equality is obtained by the law of iterated expectations, with Pr (·|π∗, τ (m) , σM) being the
distribution over outcomes after the sender chooses π∗ and given he takes message τ (m)
according to σM. The weak inequality is due to the fact that τ (m) is optimal for the sender
in the PBE E after taking π∗ and learning its outcome µ so that τ (m) ∈ supp (σM (π∗, µ)).
The last two equalities follow from the same arguments as for the first two equalities applied
in reverse order. So σ′M is a best response given σ′A in any subgame after the sender chooses
π∗∗. Also, σ′M is a best response given σ′A in any subgame after the sender chooses an π 6= π∗∗

(see the proof of Proposition 2). Hence, σ′M is optimal given σ′A. By the law of iterated
expectations, it holds for all i ∈ {S,R} that∫

4Ω

∫
4Ω

∫
Ω

∫
A

ui (a, ω) dσ′A (a|π∗∗,m) dµ (ω) dσ′M (m|π∗∗, µ) dπ∗∗ (µ) (11)

=

∫
4Ω

∫
4Ω

∫
4Ω

∫
Ω

∫
A

ui (a, ω) dσA (a|π∗, τ (m)) dµ (ω) dPr (µ′|π∗, τ (m) , σM) dPr (τ (m) |π∗)

=

∫
4Ω

∫
4Ω

∫
Ω

∫
A

ui (a, ω) dσA (a|π∗, τ (m)) dµ (ω) dσM (τ (m) |π∗, µ) dπ∗ (µ) ,
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so each agent’s expected utilities after π∗∗ in E ′ and after π∗ in E coincide. This yields∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσ′A (a|π∗∗,m) dµ (ω) dσ′M (m|π∗∗, µ) dπ∗∗ (µ)− c (π∗∗)

≥
∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσA (a|π∗, τ (m)) dµ (ω) dσM (τ (m) |π∗, µ) dπ∗ (µ)− c (π∗)

≥ US
(
E00
)

=

∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσ′A
(
a|π0,m

)
dµ (ω) dσ′M

(
m|π0, µ

)
dπ0 (µ)− c

(
π0
)

≥
∫
4Ω

∫
4Ω

∫
Ω

∫
A

uS (a, ω) dσ′A (a|π,m) dµ (ω) dσ′M (m|π, µ) dπ (µ)− c (π)

for all π ∈ Π. The first inequality follows from c (π∗∗) ≤ c (π∗). Since E is a PBE where the
sender chooses π∗, the term in the second line equals US (E). The second inequality imme-
diately follows from the definition of E00 (cf. the proof of Proposition 2). Since the sender’s
expected utility is constant across all subgames after the sender chooses some π 6= π∗∗ (as the
babbling outcome is implemented in any such subgame), the last inequality results from the
fact that c (π) ≥ c (π0) by Assumption 1 as π0 is a Blackwell garbling of π. As a consequence,
the σ′I is optimal given (σ′M, σ

′
A). This concludes the proof that {((σ′I , σ′M) , σ′A) , µ′R} forms

a PBE E ′, which is fully revealing and has a pure-strategy information rule by construc-
tion. (11) implies that UR (E ′) = UR (E), and that US (E ′) ≥ US (E) since c (π∗∗) ≤ c (π∗).
The PBE E is thus dominated by the fully revealing PBE E ′, which has a pure-strategy
information rule.

Proof of Theorem 1 Fix a best implementable payoff profile. By Lemma 1, there is a
PBE with a pure-strategy information rule generating this payoff profile. Suppose none of
these PBE is fully revealing. Fix such a PBE E, and note that by Lemma 2, the PBE E
is dominated by some fully revealing PBE E ′ with a pure-strategy information rule. Hence,
either (US,UR) is generated by E ′ or (US,UR) is not best implementable — a contradiction.

Proof of Theorem 2 The proof proceeds by using Berge’s maximum theorem for the opti-
mization problem stated on page 12. Let S be the set of continuous mappings σ̃A : (4Ω, dLP)→ (4A, dLP),
where dLP is the Lévy–Prokhorov metric30, endowed with the sup metric, and let C : R ⇒
Π × S be the correspondence defined by the constraint set of the optimization problem:
C (UR) ≡ {(π, σ̃A) ∈ Π× S| (π, σ̃A) satisfies (1)− (4).} for each UR ∈ R. By Assump-
tion 2.3, Π is compact. Moreover, the set of continuous functions S endowed with the
sup metric constitutes a compact space. So by Tychonoff’s theorem, Π× S is compact. To
apply the maximum theorem, I need the following auxiliary lemmata. The first one is on
the compactness of the values of the correspondence C:

Lemma A.1. If C (UR) 6= ∅, then C (UR) is compact.

30See Dudley (1989), p.394 for the definition.

35



Proof. Suppose C (UR) 6= ∅. Let’s show that C (UR) is closed: Fix some sequence (πn, σ̃A,n)n∈N
in C (UR) with limit (π, σ̃A). Let ãn (µ)(ã (µ)) denote the random variable with distribution
σ̃A,n (·|µ)(σ̃A (·|µ)). I verify in sequence that (π, σ̃A) satisfies (1)–(4):

(1) Suppose there is an a′ ∈ supp (σ̃A (µ)) with a′ /∈ arg maxa∈A
∫

Ω
uR (a, ω) dµ (ω).

Note that Pr (ã (µ) ∈ (a′ − ε, a′ + ε)) = σ̃A (a′ + ε|µ) − σ̃a (a′ − ε|µ) > 0 for any ε > 0 as
a′ ∈ supp (σ̃A (µ)). Since the metric space (4A, dLP) is endowed with the Lévy-Prokhorov
metric, (σ̃A,n (·|µ)) converges in distribution to σ̃A (·|µ) (see Billingsley (1999), p.72). Take
any ε > 0 with Pr (ã (µ) ∈ {a′ − ε, a′ + ε}) = 0, and note that (a′ − ε, a′ + ε) is a continuity
set of ã (µ). Let ε∗ denote the set of such ε. As (σ̃A,n (·|µ)) converges in distribution to
σ̃A (·|µ), one gets Pr (σ̃A,n (·|µ) ∈ (a′ − ε, a′ + ε))→ Pr (σ̃A (·|µ) ∈ (a′ − ε, a′ + ε)) as n→∞
for any ε ∈ ε∗. As Pr (σ̃A (·|µ) ∈ (a′ − ε, a′ + ε)) > 0, for all ε ∈ ε∗, there is an n (ε) ∈ N
with Pr (σ̃a,n (·|µ) ∈ (a′ − ε, a′ + ε)) > 0. So there is some a′ (ε) ∈ (a′ − ε, a′ + ε) so that
a′ (ε) ∈ arg maxa∈A

∫
Ω
uR (a, ω) dµ (ω) because

(
πn(ε), σ̃A,n(ε)

)
satisfies (1). By construction,

a′ (ε) → a′ as ε → 0.31 Since arg maxa∈A
∫

Ω
uR (a, ω) dµ (ω) is closed, this yields a′ ∈

arg maxa∈A
∫

Ω
uR (a, ω) dµ (ω).

(2) Suppose
∫
A
uS(a, ω) dσ̃A (a|µ) dµ(ω) <

∫
Ω

∫
A
uS(a, ω) dσ̃A (a|µ′) dµ(ω) for some

µ, µ′ ∈ supp(π). So for all n ∈ N, µ /∈ supp(πn) or µ′ /∈ supp(πn). Take a subsequence
(πnk , σ̃A,nk)k∈N of (πn, σ̃A,n)n∈N so that µ /∈ supp(πnk) for any k.32 By analogous argu-

ments as in the proof of (1), there exists a subsubsequence
Ä
πnkl , σ̃A,nkl

ä
l∈N

and a sequence

(µl)l((µ
′
l)l) with µl ∈ supp(πnkl ) (µl ∈ supp(πnkl )) for all l converging to µ (µ′). Since∫

A
uS(a, ω) dσ̃A (a|µ) dµ(ω) −

∫
Ω

∫
A
uS(a, ω) dσ̃A (a|µ′) dµ(ω) is continuous in (µ, µ′) and∫

A
uS(a, ω) dσ̃A (a|µ) dµl(ω) −

∫
Ω

∫
A
uS(a, ω) dσ̃A (a|µ′) dµl(ω) ≥ 0 for each l becauseÄ

πnkl , σ̃A,nkl

ä
satisfies condition (2), one obtains for the limit that

∫
A
uS(a, ω) dσ̃A (a|µ) dµ(ω)−∫

Ω

∫
A
uS(a, ω) dσ̃A (a|µ′) dµ(ω) ≥ 0.

(3) As ŨS is continuous, ŨS (πn, σ̃A,n) ≥ U0
S for all n implies ŨS (π, σ̃A) ≥ U0

S.

(4) By continuity of ŨR, ŨR (πn, σ̃A,n) ≥ UR for all n yields ŨR (π, σ̃A) ≥ UR.
Hence, C (UR) is a closed subset of the compact set Π× S, so C (UR) is compact.

The next auxiliary lemma is about non-emptiness of the values of the correspondence C:

Lemma A.2. There is some Umax
R ∈ [U0

R,∞) so that C
(
ŪR
)
6= ∅ iff ŪR ≤ Umax

R .

Proof. Note that C (UR (E0)) 6= ∅ since (π0, σ0
A (π0, ·)) ∈ C (UR (E0)), where σ0

a is defined as
in the proof of Lemma 2. Recall that E0 is a fully revealing PBE with a pure-strategy infor-
mation rule, so (π0, σ0

A (π0, ·)) satisfies (1) and (2). Also, ŨS (π0, σ0
A (π0, ·)) = US (E0) ≥ U0

S

31There exists a sequence in ε∗ converging to zero because ã (µ) has at most countably many realizations
that occur with positive probability.

32If such a subsequence does not exist, take any infinite subsequence (πnk
, σ̃A,nk

)k∈N of (In, σ̃a,n)n∈N such
that µ′ /∈ supp(πnk

) for any k, which must then exist, and switch the labels of µ and µ′.
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and ŨR (π0, σ0
A (π0, ·)) = UR (E0) = U0

R, that is, (π0, σA (π0, ·)) fulfills (3) and (4). Sec-
ond, C (UR) 6= ∅ implies C (U ′R) 6= ∅ for all U ′R ≤ UR: If (π0, σA (π0, ·)) ∈ C (UR), then
ŨR (π0, σA (π0, ·)) ≥ UR ≥ U ′R. Since the constraints (1)–(3) do not depend on UR, this
yields (π0, σA (π0, ·)) ∈ C (U ′R). Third, continuity of uR and compactness of A × Ω yield
ŨR (π, σ̃A) ≤ max(a,ω)∈A×Ω uR (a, ω) <∞ for any (π, σ̃A) ∈ Π× S. Hence, there exists some
Umax
R ∈ [U0

R,∞) such that C (UR) 6= ∅ if UR < Umax
R and C (UR) = ∅ if UR > Umax

R . Finally,
let’s verify that C (Umax

R ) 6= ∅: Consider an increasing sequence (UR,n)n∈N with limit Umax
R ,

and a sequence (πn, σ̃A,n)n∈N satisfying ŨR (πn, σ̃A,n) = UR,n and (1)–(3) for all n. Such a
sequence exists since C (UR) 6= ∅ for all UR < Umax

R . By compactness of Π× S, there exists
a convergent subsequence of (πn, σ̃A,n)n∈N with limit (π, σ̃A). By continuity of ŨR, it follows

that ŨR (π, σ̃A) = Umax
R . From the proof of Lemma A. 1, (π, σ̃A) satisfies (1)–(3) so that

(π, σ̃A) ∈ C (Umax
R ).

The third auxiliary lemma establishes continuity of C:

Lemma A.3. C is continuous in UR on (−∞,Umax
R ].

Proof. I show that C is both upper and lower hemicontinuous at any UR ∈ (−∞,Umax
R ]: Take

any sequence (UR,n)n converging to UR, any (π, σ̃A) ∈ Π × S, and any sequence (πn, σ̃A,n)n
so that (πn, σ̃A,n) ∈ C (UR,n) for all n converging to (π, σ̃A). Suppose (π, σ̃A) /∈ C (UR,n).
By Lemma A.1, since (πn, σ̃A,n)n satisfies (1)–(3), so does its limit. Consequently, (π, σ̃A) /∈
C (UR) means that ŨR (π, σ̃A) < UR. Continuity of ŨR yields ŨR (πn, σ̃A,n) < UR,n for large
n — a contradiction. This proves upper hemicontinuity. Take again a sequence (UR,n)n con-

verging to UR and any (π, σ̃A) ∈ C (UR). If ŨR (π, σ̃A) > UR, then (π, σ̃A) ∈ C (UR,n) for large
n. So there is a subsequence (UR,nl)l and a sequence (πl, σ̃A,l)l with (πl, σ̃A,l) = (π, σ̃A) and

ŨR (πl, σ̃A,l) > (UR,l) for all l, which, by construction, converges to (π, σ̃A). If ŨR (π, σ̃A) =
UR, there is, by continuity of ŨR, some (πn, σ̃A,n)n satisfying (1)–(3) and ŨR (πn, σ̃A,n) = UR,n
for all n with limit (π, σ̃A). This proves lower hemicontinuity.

So the objective function ŨS is continuous in (π, σ̃A), and the correspondence C is
compact-valued, non-empty and continuous on (−∞,Umax

R ]. By Berge’s maximum theo-
rem, arg max(π,σ̃A)∈C(UR) ŨS (π, σ̃A) is non-empty for all UR ∈ (−∞,Umax

R ], and U∗S
(
ŪR
)
≡

max(π,σ̃A)∈C(UR) ŨS (π, σ̃A) is continuous in UR on (−∞,Umax
R ]. This proves the existence part

of the theorem. To prove the compactness part, notice first that the set of best implementable
payoff profiles is

⋃
UR∈(−∞,Umax

R ] U
∗
S (UR). Moreover, observe that min(a,ω)∈A×Ω uS (a, ω) ≤

U∗S (UR) ≤ max(a,ω)∈A×Ω uS (a, ω) for all UR ∈ (−∞,Umax
R ], where the min- and max-function

are well-defined by continuity of uS and compactness of A×Ω. As a result, continuity of U∗S
implies that

⋃
UR∈(−∞,Umax

R ] U
∗
S (UR) is compact.

Proof of Theorem 3 Analogously to Theorem 2, the proof proceeds by applying Berge’s
maximum theorem to the optimization problem on page 13. Details are therefore omitted.

Proof of Theorem 4 Let (U∗S,U∗R) be the unique best feasible payoff profile. By feasi-
bility, there is some (σ̄I , σ̄A) so that U∗i = Ūi (σ̄I , σ̄A) for all i. First, the strategy profile((
σ̄I , σ

FR
m

)
, σ̄a
)

together with some beliefs µR form a PBE E: Suppose the receiver has
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an incentive to deviate. Then, there is some σA with UR
({((

σ̄I , σFR
M
)
, σA

)
, µR

})
> U∗R.

As σFR
M is fully revealing, Ui

({((
σ̄I , σFR

M
)
, σA

)
, µR

})
= Ūi (σ̄I , σA) for all i, i.e., the pay-

off profile induced by the receiver’s deviation is feasible. This yields ŪS (σ̄I , σA) < U∗S as(
ŪS (σ̄I , σA) , ŪR (σ̄I , σA)

)
is feasible and would otherwise strictly dominate (U∗S,U∗R) — a

contradiction since (U∗S,U∗R) is best feasible. By compactness of the set of best feasible pay-
off profiles (cf. Theorem 3), there exists thus a best feasible payoff profile (U ′S,U ′R) with
U ′R ≥ ŪR (σ̄I , σA) > U∗R and U ′S ≤ ŪS (σ̄I , σA) < U∗S, contradicting uniqueness of the best
feasible payoff profile. Now, suppose the sender has a profitable deviation (σIσM), that is,
US ({((σI , σM) , σ̄A) , µR}) > U∗S. Notice that there is some σ̂A so that Ui ({((σI , σM) , σ̄A) , µR}) =
Ūi (σI , σ̂A) for all i, i.e., the payoff profile induced by the sender’s deviation is feasible. One
can conclude from this that either (U∗S,U∗R) is not best feasible, or there exists another best
feasible payoff profile, contradicting uniqueness. By construction, it holds that Ui (E) = U∗i
for all i. Hence, (U∗S,U∗R) is implementable. Since (U∗S,U∗R) is also best feasible, it is best im-
plementable. Finally, suppose (U∗S,U∗R) is not the unique best implementable payoff profile,
i.e., there is another best implementable payoff profile (U ′′S ,U ′′R). But then, since (U∗S,U∗R) is
also feasible, there exists another best feasible payoff profile by Theorem 3 — a contradiction.

Proof of Theorem 5 Fix some best feasible payoff profile (U∗S,U∗R) and suppose that
the conditions stated in Theorem 5 hold true. In particular, supp(σ̄I) =

{
πfull

}
implies

that the best feasible payoff profile for agent i is generated if the social planner fully learns
the state and chooses the optimal action for agent i per state, i.e., this payoff profile is
(
∫
Ω

uS (a∗i (ω) , ω) dµ0 (ω) − c
(
πfull

)
,
∫
Ω

uR (a∗i (ω) , ω) dµ0 (ω)). Since there are at least two

best feasible payoff profiles, the sender-optimal and receiver-optimal ones do not coincide
so that the set of states with a∗S (ω) 6= a∗R (ω) is of positive measure. If (U∗S,U∗R) is imple-
mentable, there is a PBE

{((
σ̄I , σFR

M
)
, σ̄A

)
, µR

}
for some such (σ̄I , σ̄A). However, if (U∗S,U∗R)

is the receiver-optimal feasible payoff profile, the sender has an incentive to misreport in the
communication stage to generate the sender-optimal outcome. Similarly, if (U∗S,U∗R) is any
other best feasible payoff profile, the receiver has an incentive to deviate in the action stage
to generate the receiver-optimal outcome.

Proof of Corollary 1 The ”if” direction holds due to Theorem 4. The ”only if” direction
follows from Theorem 5: Fix a best feasible payoff profile (U∗S,U∗R). From the optimization
problem on page 13, it follows that there is some (σ̄∗I , σ̄

∗
A) solving max(σ̄I ,σ̄A) αŪS (σ̄I , σ̄A) +

(1−α)ŪR (σ̄I , σ̄A), with α ∈ [0, 1], so that U∗i = Ūi (σ̄∗I , σ̄∗A) for all i. Since c = 0, one obtains
that

αŪS (σ̄I , σ̄A) + (1− α)ŪR (σ̄I , σ̄A)

=

∫
Π

∫
4Ω

∫
Ω

∫
A

αuS(a, ω) + (1− α)uR(a, ω) dσ̄A(a|π, µ) dµ(ω) dπ (µ) dσ̄I(π).

Since cost are zero and A∗(ω, αuS + (1−α)uR)∩A∗(ω′, αuS + (1−α)uR) = ∅ for all ω 6= ω′,
the objective function is maximized if and only if supp(σ̄I) = {πfull}.
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Proofs to Section 4: Posterior Separable Cost

Proof of Theorem 6 Let (US,UR) be best implementable.

(i) Suppose in any fully revealing PBE E with a pure-strategy information rule, the
sender chooses an experiment π that is not a convex combination of two experiments with
strongly independent outcomes. In particular, π does not have strongly independent out-
comes as π = α · π + (1 − α) · π for any α ∈ [0, 1]. Consequently, there is some p ∈ (0, 1)
and some λ1, λ2, λ

′
1, λ
′
2 ∈ 4 (4Ω) with pλi + (1 − p)λ′i = π for each i so that λ1 and λ2

are not equal almost everywhere, but
∫

Π
ν dλ1 (ν) =

∫
Π
ν dλ2 (ν). Any experiment with-

out strongly independent outcomes is a convex combination of to other experiments: Let
π1 ≡ pλ2+(1−p)λ′1 be the experiment resulting from π by replacing mass p of the distribution
over outcomes λ1 by mass p of λ2, and π2 ≡ pλ1 +(1−p)λ′2. Note that π can be expressed as

a convex combination33 of π1 and π2 as π1+π2
2

=
pλ1+(1−p)λ′1+λ2+(1−p)λ′2

2
= π. By assumption,

π1 or π2 does not have strongly independent outcomes, so for concreteness, suppose π2 does
so. By the same procedure as above, there are two other experiments π3 ≡ qλ4 + (1− q)λ′3
and π4 ≡ qλ3 + (1 − q)λ′4 for some q ∈ (0, 1) and some λ3, λ4, λ

′
3, λ
′
4 ∈ 4 (4Ω) with λ3

and λ4 not being equal a.e. so that π2 = π3+π4
2

. Thus, π = 2π1+π3+π4
4

. Let Πconv be the
set of all convex combinations

∑
i∈{1,3,4} αiπi. Implementability of (US,UR) implies exis-

tence of some σ̃A so that Ui = Ũi (π, σ̃A) for all i. Moreover, it implies implementabil-

ity of
Ä
ŨS (π′, σ̃A) , ŨR (π′, σ̃A)

ä
as supp(π′) ⊆ supp(π) ensures that (2) holds true for any

π′ ∈ Πconv. Denote by Π (UR) the set of experiments π′ ∈ Πconv with ŨR (π′, σ̃A) = UR. By
linearity of ŨR (·, σ̃A) on Πconv, this set forms a straight line in the 2-simplex Πconv. Linearity
of ŨS (·, σ̃A) on Πconv implies that one of the endpoints of this line π′′ maximizes ŨS (·, σ̃A)
on Πconv on that line. Moreover, α1α3α4 = 0 at any such endpoint, that is, π′′ a convex
combination of π1 and π3, π1 and π4, or π3 and π4. By construction, ŨS (π′′, σ̃A) ≥ US as
π′′ ∈ Π (UR). If ŨS (π′′, σ̃A) > US, (US,UR) is dominated by the implementable payoff profileÄ
ŨS (π′′, σ̃A) ,UR

ä
contradicting best implementability of the former one. If ŨS (π′′, σ̃A) = US,

then (US,UR) is generated by a fully revealing PBE with a pure-strategy information rule
in which the sender chooses the experiment π′′ being a convex combination of two experi-
ments. If these two experiments have strongly independent outcomes, the proof is complete.
If not, one can repeat the above argumentation taking π1 = π′′ as the new initial experiment
instead of π. One can rerun this procedure as many times until either (US,UR) is shown to
be dominated or until one finds an experiment π′′n satisfying the properties mentioned in
(i) of the theorem’s statement. In particular, this process ends eventually: If (US,UR) is not
shown to be dominated in any (finite) round n and the constructed experiment π′′n does
not satisfy (i), then ŨS (·, σ̃A) and ŨR (·, σ̃A) are both constant on 4 (4Ω). Consequently,
(US,UR) is generated by a fully revealing PBE with a pure-strategy information rule in which
the sender chooses any experiment in 4 (4Ω), so particularly any experiment with strongly
independent outcomes (such as π0).

33A convex combination of two experiment π and π′ is defined as απ + (1− α)π′ for some α ∈ [0, 1].
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(ii) Suppose the sender chooses an experiment π not having weakly independent out-
comes in any fully revealing PBE E with a pure-strategy information rule. Let µ∗ be the
set of outcomes µ ∈ supp(π) with µ =

∫
Π
ν dλµ (ν) for some λµ not being equal to δµ a.e.,

and let λµ∗ be the conditional distribution over outcomes of π given µ ∈ µ∗. Since µ∗ is
of positive measure p ∈ (0, 1], there exists some λ′ ∈ 4 (4Ω) with π = pλµ∗ + (1 − p)λ′.
Let π′ ≡ p

∫
µ∗ λµ dλµ∗ (µ) + (1 − p)λ′ be the experiment that results from replacing mass

p of outcomes in µ∗ by the corresponding distribution over outcomes λµ. By construction,
π′ has weakly independent outcomes. Furthermore, π is a Blackwell garbling of π′. Im-
plementability of (US,UR) yields existence of some σ̃a so that Ui = Ũi (π, σ̃A) for all i and

implementability of
Ä
ŨS (π′, σ̃A) , ŨR (π′, σ̃A)

ä
because supp(π′) ⊆ supp(π). Incentive com-

patibility (2) of (π, σ̃A) implies ŨS (π′, σ̃A) = ŨS (π, σ̃A) since cost are zero. Since π′ is a
Blackwell garbling of π, one gets ŨR (π′, σ̃A) ≥ ŨR (π, σ̃A). So (US,UR) is either dominated
by (ŨS (π′, σ̃A) , ŨR (π′, σ̃A)), or it is generated by a fully revealing PBE with a pure-strategy
information rule in which the sender chooses the experiment π′.

Proof of Corollary 2 Suppose Ω = {ω1, . . . , ωn} for some n ∈ N.

(i) Verify that | supp(π)| ≤ |Ω| = n for all π with strongly independent outcomes. If not,
there exists some π with strongly independent outcomes and | supp(π)| ≥ n+1. There are at
least n+ 1 different distributions over outcomes λ1, . . . , λn+1 ∈ 4 (4Ω) of positive measure:∑n+1

i=1 αiλi +
Ä
1−

∑n+1
i=1 αi

ä
λ′ = π for some α1, . . . , αn+1 ≥ 0 with

∑n+1
i=1 αi ≤ 1. Define vi ≡Ä∫

ΠI
µ (ω1) dλi (µ) , . . . ,

∫
ΠI
µ (ωn) dλi (µ)

ä′
for all i ∈ {1, . . . , n+1}. As

∫
Π
µ (ω) dλi (µ) = 0

for all ω /∈ Ω, the posterior distribution of the state given the distribution over outcomes
λi is fully characterized by vi. Since n + 1 n-dimensional vectors are linearly dependent,
there exist some numbers β1, . . . , βn+1 ∈ R, not all zero, so that

∑n+1
i=1 βi · vi = 0n. Note that∑n+1

i=1 βi = 0 as
∑n

j=1

∫
Π
µ (ωj) dλi (µ) = 1 for all i. In particular, there is some i with βi < 0.

Rearranging
∑n+1

i=1 βi · vi = 0n yields
∑

i:βi<0
βi

−∑
j:βj<0 βj

· vi =
∑

i:βi≥0
βi∑

j:βj<0 βj
· vi, where

βi
−∑

j:βj<0 βj
∈ [0, 1] for all βi < 0 and βi∑

j:βj<0 βj
∈ [0, 1] for all βi ≥ 0. Hence, there are two

convex combinations (over convex combinations) over outcomes which can be represented
by one another, that is, π does not exhibit strongly independent outcomes. With that, it
follows from Theorem 6 (i) that any best implementable payoff profile is generated by a fully
revealing PBE in which the sender chooses a experiment with at most n+ n = 2n different
outcomes.

(ii) If n = 2, any experiment π with weakly independent outcomes can have most 2
different outcomes. If not, there are at least 3 different outcomes µ1, µ2, µ3 ∈ supp(π). Define
wi ≡ (µi (ω1) , µi (ω2))′ for each i, and notice that µi(ω) = 0 for all ω /∈ Ω. The 2-dimensional
vectors w1, w2 and w3 are linearly independent implying existence of some β1, β2, β3 ∈ R, not
all zero, so that

∑3
i=1 βi ·wi = 02. Without loss of generality, suppose β1 < 0 and β2, β3 ≥ 0.

Rearranging
∑3

i=1 βi · wi = 02 yields w1 =
∑3

i=2
βi
−β1 · wi, where βi

−β1 ≥ 0 for i = 2, 3 and∑3
i=2

βi
−β1 = 1 as

∑3
i=1 βi = 0. Since this holds true for any three outcomes, there is a

positive measure of outcomes in supp(π) that can be represented as a convex combination of
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other outcomes in supp(π) — a contradiction. If cost are zero, an immediate consequence of
Theorem 6 (ii) is that any best implementable payoff profile is generated in a fully revealing
PBE in which the sender chooses some π with supp(π) ≤ 2.

Proofs to Section 5: Partially Separable Utility

Proof of Lemma 3 Denote ω̄(µ) =
∫

Ω
ω dµ (ω). By Assumption 4, it holds that∫

Ω

ui (a, ω) dµ (ω) = ui,1(a) + ui,2(a) · ω̄(µ) +

∫
Ω

ui,3(ω) dµ (ω) (12)

for all µ ∈ 4Ω and each i. Now fix any µ, µ′ ∈ 4Ω with ω̄(µ) = ω̄(µ′). Condition (12) im-
plies that arg maxa∈A

∫
Ω
uR (a, ω) dµ (ω) = arg maxa∈A (uR,1(a) + uR,2(a) · ω̄(µ)) and thus

arg maxa∈A
∫

Ω
uR (a, ω) dµ (ω) = arg maxa∈A

∫
Ω
uR (a, ω) dµ′ (ω). Next, take any a, a′ ∈ A,

and notice that by (12), it follows that
∫

Ω
uS(a, ω) dµ(ω) ≥

∫
Ω
uS(a, ω) dµ(ω) is equiv-

alent to uS,1(a) + uS,2(a) · ω̄(µ) ≥ uS,1(a′) + uS,2(a′) · ω̄(µ), and thus also equivalent to∫
Ω
uS(a, ω) dµ′(ω) ≥

∫
Ω
uS(a, ω) dµ′(ω). Finally, for all µ ∈ supp(π) and ω ∈ Ω, let

vi,1(µ) ≡
∫
A
ui,1(a) + ui,2(a) · ω̄(µ) dσA(a|π, µ) and vi,2(ω) ≡ ui,3(ω). With that, (6) can

be easily verified.

Proof of Corollary 3 The proof proceeds similarily as the proof of Theorem 6. LetÄ
ŨS (π, σ̃A) , ŨR (π, σ̃A)

ä
be best implementable, where π ∈ Π̄.

(i) Suppose that π is not a convex combination of two bi-pooling policies, so in par-
ticular, π is not a bi-pooling policy. That is, for its finest partitioning {[ωj, ω̄j]|j ∈ J},
there is some j ∈ J with (ωj, ω̄j) ∩ supp(ω) 6= ∅ such that the set of outcomes µ∗j that

realize if ω̃ ∈
(
ωj, ω̄j

)
is of cardinality 3 or larger. Let λ̄ be the distribution over posterior

means of the state under experiment π. As shown by Kleiner et al. (2021) and Arieli et
al. (2020), λ̄ is not an extreme point within the set of possible34 distributions over posterior
means, that is, there exist some λ̄1, λ̄2 with λ̄ = 1

2
· λ̄1 + 1

2
· λ̄2. Denote πi an experiment

generating the distribution over posterior means λ̄i for any i. In addition, if π2 is no bi-
pooling policy either, there exist experiments π3 and π4 such that λ̄2 = 1

2
· λ̄3 + 1

2
· λ̄4.

This yields λ̄ = 1
2
· λ̄1 + 1

4
· λ̄3 + 1

4
· λ̄4. Since both agent’s incentives and payoffs depend

on the distribution over posterior means only by Lemma 3, there is some σ̃′A (which is
constructed by σ̃′A(µ) = σ̃A(µ′) for some µ′ ∈ supp(π) with

∫
Ω
ω dµ(ω) =

∫
Ω
ω dµ′(ω)

for all µ ∈
⋃
i∈{1,3,4} supp(πi)) such that

Ä
ŨS (π′, σ̃′A) , ŨR (π′, σ̃′A)

ä
is implementable for all

π′ ∈ Πconv and Ũi
(

1
2
· π1 + 1

4
· π3 + 1

4
· π4, σ̃

′
A
)

= Ũi (π, σ̃A) for all i ∈ {S,R}. The rest of the
proof follows exactly the same steps as the proof of Theorem 6(i).

(ii) As argued in part (i), if π is no bi-pooling policy, there exist some π1, π2 such that
λ̄ = 1

2
· λ̄1 + 1

2
· λ̄2. Moreover, λ̄ is a Blackwell garbling of one of these two distributions, say

of λ̄1 (see Arieli et al. (2020)). Using the arguments from the proof of part (i) and following

34given the prior distribution of the state

41



the same steps as in the proof of Theorem 6(ii), one obtains that
Ä
ŨS (π1, σ̃

′
A) , ŨR (π1, σ̃

′
A)
ä

is implementable and either dominates the payoff profile
Ä
ŨS (π, σ̃A) , ŨR (π, σ̃A)

ä
or is equal

to the latter one.

Proofs to Section 6: Uniform Quadratic Case

Proof of Lemma 4 Solving maxa∈A
∫

Ω
− (a− ω)2 dµ (ω) yields the first-order condition

a = ω̄(µ), which is the global maximizer by strict concavity of the objective function in a.
Take any µ, µ′ ∈ ΠI , and notice that the incentive compatibility constraints (2) of the

sender to fully reveal µ instead of misreporting µ′ reduce to

0 ≤
∫
Ω

− (ω̄(µ)− ω − b)2 + (ω̄(µ′)− ω − b)2
dµ(ω)

=

∫
Ω

− (ω̄(µ)− ω − b)2+ (ω̄(µ′)− ω̄(µ) + ω̄(µ)− ω − b)2
dµ(ω)

=

∫
Ω

2 (ω̄(µ′)− ω̄(µ))(ω̄(µ)− ω − b) + (ω̄(µ′)− ω̄(µ))
2
dµ(ω)

= −2b (ω̄(µ′)− ω̄(µ)) + (ω̄(µ′)− ω̄(µ))
2

= (ω̄(µ′)− ω̄(µ)− 2b) · (ω̄(µ′)− ω̄(µ)) .

Hence, either
∫

Ω
ω dµ′ (ω) −

∫
Ω
ω dµ (ω) ≥ 2b or

∫
Ω
ω dµ′ (ω) −

∫
Ω
ω dµ (ω) ≤ 0 must

hold. The sender has an incentive to truthfully reveal µ′ instead of deviating to µ if
0 ≤

∫
Ω
− (ω̄(µ′)− ω − b)2 + (ω̄(µ)− ω − b)2 dµ′(ω) = (ω̄(µ)− ω̄(µ′)− 2b) (ω̄(µ)− ω̄(µ′)),

implying that either
∫

Ω
ω dµ (ω) −

∫
Ω
ω dµ′ (ω) ≥ 2b or

∫
Ω
ω dµ (ω) −

∫
Ω
ω dµ′ (ω) ≤ 0 must

hold. These two incentive compatibility constraints yield |ω̄(µ)− ω̄(µ′)| ≥ 2b.

Ex-ante expected payoffs Notice that

ŨR (π, σ̃A) =

∫
4Ω

∫
Ω

− (ω̄(µ)− ω)2 dµ (ω) dπ (µ) = −
n∑
i=1

piVar (ω|µi) ,

where Var (ω|µi) is the conditional distribution of the state given µi. If the experiment is
a bi-pooling policy, these conditional variances take simple analytic forms: If µi forms a 1-
partition the state is uniformly distributed on the interval

[
ω̄i − pi

2
, ω̄i + pi

2

]
, so one obtains

Var (ω|µi) =
p2i
12

. Let Ωi ⊆ Ω be set of states associated with the 1-partition µi. To determine
the conditional variance if µi and µi+1 form a 2-partition, let Ωi,i+1 ⊆ Ω be set of states
associated with outcomes µi and µi+1 (i.e., if the state lies in Ωi,i+1, the outcome is µi or
µi+1) and let Fi (Fi+1) be the conditional distribution of the state given outcome µi (µi+1).
The weighted sum piFi+pi+1Fi+1 is the conditional distribution of the state given ω ∈ Ωi,i+1,
which is the uniform distribution on Ωi,i+1. Consequently, its mean is inf{Ωi,i+1} + pi+pi+1

2
.

Let di = ω̄i − inf{Ωi,i+1} and d̄i+1 = sup{Ωi,i+1} − ω̄i+1. Simple algebraic transformations
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yield for the conditional variance of the state given the experiment’s outcome is µi or µi+1

Var (ω|µi or µi+1) =
pi
∫

(ω − ω̄i)2 dFi(ω) + pi+1

∫
(ω − ω̄i+1)2 dFi+1(ω)

pi + pi+1

=
(pi + pi+1)2

12
− (

pi + pi+1

2
− di)(

pi + pi+1

2
− d̄i+1).

The proofs of Lemma 5, Lemma 6, Lemma 7 and Proposition 3 are deferred to
an Online Appendix.

Proofs to Section 7: Model Variants

The proofs of Proposition 4-6 directly follow from the arguments in the main
text.

Proof of Proposition 7 For any b ≤ 1
2
, the receiver’s ex-ante expected payoff under any

mediation rule is bounded above by −1
3
b(1− b) (see Goltsman et al. (2009)). By Lemma 5,

her ex-ante expected payoff in the unique best equilibrium under endogenous learning is

bounded below by − 1
12(n−1)2

, where n is the unique integer such that b ∈
Ä

1
2n
, 1

2(n−1)

ó
. It can

be easily verified that this lower bound exceeds the above upper bound.
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Online Appendix

Omitted Proofs to Section 6: Uniform-Quadratic Case

Proof of Lemma 6 Fix n ≥ 3 and b ∈
Ä

1
2n
, 1

2(n−1)

ó
.

First, I show that ignoring all incentive compatibility constraints, uniform partition are
the best bi-pooling policies:

Fact 1. The payoff-maximizing bi-pooling policy of size k ∈ N is the uniform partition of
size k.

Proof. Consider some non-monotone bi-pooling policy with outcomes µ1, . . . , µk and prob-
abilities p1, . . . , pk. By non-monotonicity, there is some i such that µi and µi+1 form a
2-partition. Now consider a new experiment with outcomes µ′1, . . . , µ

′
k and probabilities

p′1, . . . , p
′
k that is constructed from the original experiment by splitting the 2-partition into

two separate 1-partitions while keeping their weights equal: p′i = pi and p′i+1 = pi+1. Note
that

k∑
i=1

p′iVar (ω|µ′i)−
k∑
i=1

piVar (ω|µi)

=
(pi + pi+1)3

12
− (pi + pi+1)(

pi + pi+1

2
− pi

2
)(
pi + pi+1

2
− pi+1

2
)

−
Å

(pi + pi+1)3

12
− (pi + pi+1)(

pi + pi+1

2
− di)(

pi + pi+1

2
− d̄i+1)

ã
= −(pi + pi+1)(

pi + pi+1

2
− pi

2
)(
pi + pi+1

2
− pi+1

2
) + (pi + pi+1)(

pi + pi+1

2
− di)(

pi + pi+1

2
− d̄i+1)

< 0

since di >
pi
2

and d̄i+1 >
pi+1

2
as µi and µi+1 form a 2-partitions. Hence, the payoff-maximizing

bi-pooling policy must be monotone. Now suppose it was not uniform. But then, it holds
that

k∑
i=1

piVar (ω|µi) =
k∑
i=1

p3
i

12
>

k∑
i=1

( 1
k
)3

12
,

where the last term is the weighted conditional variance of the uniform partition of size k.
The inequality follows from convexity of x3 and the fact that

∑k
i=1 pi =

∑k
i=1

1
k

= 1.

Next, notice that
∑k−1

i=1

( 1
k

)3

12
>
∑n−1

i=1

( 1
n−1

)3

12
for all k < n−1, that is, the uniform partition

of size n−1 yields strictly higher payoff than the uniform partition of size k < n−1. Moreover,
the uniform partition of size n − 1 is implementable because the incentive compatibility
constraints are satisfied: The distance between any two adjacent posterior means of the
state is 1

n−1
≥ 2b as b ≤ 1

2(n−1)
. Consequently, the optimal experiment is either of size n or

the uniform partition of size n− 1.
It remains to show that under an optimal bi-pooling policy of size n, the outcomes µ1

and µn form 1-partitions and the incentive compatibility constraints of all adjacent posterior
means are binding. The proof is completed by the following two facts:
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Fact 2. For any optimal bi-pooling policy, both µ1 and µn are 1-partitions.

Proof. Suppose first that µ1 is no 1-partition, that is, µ1 and µ2 form a 2-partition. Hence,
it holds that p1 + p2 > 2 · (ω̄2 − ω̄1) and max

{
d1, d̄2

}
< p1+p2

2
. The conditional variance of

the state given µ1 or µ2 is

Var (ω|µ1 or µ2) =
(p1 + p2)2

12
−
(p1 + p2

2
− d1

)
·
(p1 + p2

2
− d̄2

)
.

Now construct a new information structure by decreasing ω̄1 by some ε > 0, decreasing p1 by
δ = p1ε

ω̄2−ω̄1+ε
∈ (0, p1) and increasing p2 by δ , keeping everything else unmodified.35 Note that

all incentive compatibility constraints remain satisfied because all posterior means except ω̄1

are the same as under the original experiment, and ω̄1 decreases, that is, the first incentive
compatibility constraint becomes even less binding. As long as ε < p1+p2

2
− (ω̄2 − ω̄1), µ1 and

µ2 continue forming a 2-partition. Hence, the conditional variance of the state given µ1 or
µ2 becomes

V̂ar (ω|µ1 or µ2) =
(p1 + p2)2

12
−
(p1 + p2

2
− (d1 − ε)

)
·
(p1 + p2

2
− d̄2

)
.

For all ε ∈
(
0, p1+p2

2
− (ω̄2 − ω̄1)

)
, this variance is strictly smaller than under the original

information structure because

V̂ar (ω|µ1 or µ2)− Var (ω|µ1 or µ2)

= −
(p1 + p2

2
− (d1 − ε)

)
·
(p1 + p2

2
− d̄2

)
+
(p1 + p2

2
− d1

)
·
(p1 + p2

2
− d̄2

)
= −ε ·

(p1 + p2

2
− d̄2

)
< 0.

Since the conditional variance of the state given ω /∈ Ω1,2 and the set Ω1,2 (and thus the
probability that ω̃ ∈ Ω1,2)) are the same under both information structures, the original
bi-pooling policy is not optimal.
The proof for the fact that µn must be a 1-partition, too, works analogously.

Fact 3. Under any optimal bi-pooling policy of size n ∈
(

1
2b
, 1

2b
+ 1
]
∩ N, all incentive com-

patibility constraints are binding.

Proof. Suppose not, i.e., ω̄ − ω̄i−1 > 2b for some i ∈ {2, . . . , n}. There are four different
cases to be considered:

Case 1: (a) µi−1 belongs to a 1-partition, and µi belongs to a 2-partition.
(b) µi−1 belongs to a 2-partition, and µi belongs to a 1-partition.

Case 2: µi−1 and µi belong to different 2-partitions.
Case 3: µi−1 and µi belong to the same 2-partition.
Case 4: µi−1 and µi both belong to a 1-partition.

35δ is chosen such that the conditional mean of the state given µ1 or µ2 remains unchanged, that is, it
satisfies p1ω̄1 + p2ω̄2 = (p1 − δ)(ω̄1 − ε) + (p2 + δ)ω̄2.
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Proof of Case 1(a): Since µi and µi+1 form a 2-partition, it holds that pi+pi+1 > 2·(ω̄i+1 − ωi)
and max

{
di, d̄i+1

}
< pi+pi+1

2
.

Now construct a new experiment by decreasing ω̄i by some ε > 0, decreasing pi by δ =
piε

ω̄i+1−ω̄i+ε ∈ (0, pi) and increasing pi+1 by δ such that the incentive compatibility constraints

remain satisfied, that is,

(ω̄i − ε)− ω̄i−1 ≥ 2b ⇔ ε ≤ (ω̄i − ω̄i−1)− 2b,

and such that µi and µi+1 continue forming a 2-partition, i.e.,

pi + pi+1 > 2 · (ω̄i+1 − (ω̄i − ε)) ⇔ ε <
pi + pi+1

2
− (ω̄i+1 − ω̄i) .

The total decrease of the conditional variance of the state given µi or µi+1 is

ε ·
(pi + pi+1

2
− d̄i+1

)
> 0.

Proof of Case 1(b): This works analogously the the proof of Case 1(a): One can find a
better experiment by increasing ω̄i−1 by some ε ∈ (0,min{(ω̄i−1 − ω̄i−2) − 2b, pi−2i+pi−1

2
−

(ω̄i−1 − ω̄i−2)}), decreasing pi−1 by δ = pi−1ε
ω̄i−1−ω̄i−2+ε

and increasing pi−2 by δ.

Proof of Case 2: The proof of this case proceeds as in Case 1(a):
Decreasing ω̄i by some ε ∈

(
0,min

{
(ω̄i − ω̄i−1)− 2b, pi+pi+1

2
− (ω̄i+1 − ω̄i)

})
, decreasing

pi by δ = piε
ω̄i+1−ω̄i+ε and increasing pi+1 by δ reduces the conditional variance of the state

given µi or µi+1 by

ε ·
(pi + pi+1

2
− d̄i+1)

)
> 0.

Proof of Case 3: First, note that ω̄i−1 − ω̄i−2 = ω̄i+1 − ω̄i = 2b by Case 1 and 2. From the
fact that µi−1 and µi form a 2-partition, one can conclude that di−1 + d̄i > ω̄i − ω̄i−1 > 2b,
implying that di−1 > b or d̄i > b. Furthermore, since pi−1 + pi = di−1 + (ω̄i − ω̄i−1) + d̄i, it
follows that pi−1 + pi > 4b and di−1 + d̄i >

pi−1+pi
2

.
Let’s now consider the case where di−1 ≤ d̄i, so in particular it holds that d̄i > b:
If µi+1 is a 1-partition, one can construct a new information structure by shifting the

interval of states
(
ω̄i + d̄i − ε, ω̄i + d̄i

)
from outcomes µi−1 or µi to outcome µi+1 for some

ε > 0. Since µi+1 is a 1-partition, ω̄i+1 decreases by exactly ε
2
. Hence, ω̄i must decrease

by at least ε
2

in order to fulfill the ith incentive compatibility constraint. For concreteness,
suppose that ω̄i decreases by exactly ε

2
as well. To satisfy the (i−1)th incentive compatibility

constraint, it is necessary that(
ω̄i −

ε

2

)
− ω̄i−1 ≥ 2b ⇔ ε ≤ ω̄i − ω̄i−1

2
− b.

46



The conditional variance of the state given µi−1 or µi or µi+1 is given by

1∑i+1
j=i−1 pj

·
ñ

(pi−1 + pi − ε)3

12
+

(pi+1 + ε)3

12

− (pi−1 + pi − ε) ·
(pi−1 + pi − ε

2
− di−1

)
·
(pi−1 + pi − ε

2
−
(
d̄i −

ε

2

))]
=

1∑i+1
j=i−1 pj

·
ñ

(pi−1 + pi − ε)3

12
+

(pi+1 + ε)3

12

− (pi−1 + pi − ε) ·
(pi−1 + pi − ε

2
− di−1

)
·
(pi−1 + pi

2
− d̄i

)]
Differentiating this term with respect to ε yields

1

pi−1 + pi + pi+1

·
ñ
−(pi−1 + pi − ε)2

4
+

(pi+1 + ε)2

4
+
(pi−1 + pi

2
− d̄i

)
·
(
pi−1 + pi − ε− di−1

)ô
.

At ε = 0, this derivative reduces to

1

pi−1 + pi + pi+1

·
ñ
−(pi−1 + pi)

2

4
+
p2
i+1

4
+
(pi−1 + pi

2
− d̄i

)
·
(
pi−1 + pi − di−1

)ô
.

Notice that di−1 >
pi−1+pi

2
− d̄i holds due to the fact that µi−1 and µi are a 2-partition, and

that pi+1 = 2 ·
(
2b− d̄i

)
because µi+1 is a 1-partition, which implies that pi+1 < 2b as d̄i > b.

As a consequence, one obtains that the derivative is strictly negative at ε = 0 because

− (pi−1 + pi)
2

4
+
p2
i+1

4
+
(pi−1 + pi

2
− d̄i

)
·
(
pi−1 + pi − di−1

)
< −(pi−1 + pi)

2

4
+
p2
i+1

4
+
(pi−1 + pi

2
− d̄i

)
·
(pi−1 + pi

2
+ d̄i

)
=
p2
i+1

4
− d̄2

i <
(2b)2

4
− b2 = 0.

Since the derivative is continuous in ε, it is thus strictly negative on some non-empty open set
around zero. So for any ε > 0 sufficiently close to zero, the conditional variance of the state
given µi−1 or µi or µi+1 is strictly smaller under the new information structure compared to
the original bi-pooling policy (which corresponds to the case when ε = 0), which therefore
cannot be optimal.

If µi+1 and µi+2 form a 2-partition and the (i+1)th incentive compatibility constraint is
binding, i.e., ω̄i+2− ω̄i+1 = 2b, construct a new information structure by shifting the interval
(ω̄i+ d̄i− ε, ω̄i+ d̄i) from outcomes µi−1 or µi to outcomes µi+1 or µi+2 for some ε > 0 leaving
ω̄i and ω̄i+1 unchanged. As long as

di−1+d̄i−ε ≥
pi−1 + pi − ε

2
⇔ ε ≤ 2·

(
di−1 + d̄i −

pi−1 + pi
2

)
= 2·

(
di−1 + d̄i

)
−(pi−1 + pi) ,

µi+1 and µi+2 continue being a 2-partition. The conditional variance of the state given µi−1,
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µi, µi+1 or µi+2 becomes

1∑i+2
j=i−1 pj

·
ñ

(pi−1 + pi − ε)3

12
+

(pi+1 + pi+2 + ε)3

12

− (pi−1 + pi − ε) ·
(pi−1 + pi − ε

2
− di−1

)
·
(pi−1 + pi − ε

2
−
(
d̄i − ε

))
− (pi+1 + pi+2 + ε) ·

(pi+1 + pi+2 + ε

2
−
(
di+1 + ε

))
·
(pi+1 + pi+2 + ε

2
− d̄i+2

)]
.

Differentiating this term with respect to ε yields

1∑i+2
j=i−1 pj

·
ñ

(pi−1 + pi − ε)2

4
− (pi+1 + pi+2 + ε)2

4

+
(pi−1 + pi − ε

2
− di−1

)
·
(pi−1 + pi − ε

2
−
(
d̄i − ε

))
+
pi−1 + pi − ε

2
·
(pi−1 + pi − ε

2
−
(
d̄i − ε

))
− pi−1 + pi − ε

2
·
(pi−1 + pi − ε

2
− di−1

)
−
(pi+1 + pi+2 + ε

2
−
(
di+1 + ε

))
·
(pi+1 + pi+2 + ε

2
− d̄i+2

)
+
pi+1 + pi+2 + ε

2
·
(pi+1 + pi+2 + ε

2
− d̄i+2

)
−pi+1 + pi+2 + ε

2
·
(pi+1 + pi+2 + ε

2
−
(
di+1 + ε

))]
.

At ε = 0, this term becomes

1∑i+2
j=i−1 pj

·
ñ

(pi−1 + pi)
2

4
− (pi+1 + pi+2)2

4
+
(pi−1 + pi

2
− di−1

)
·
(pi−1 + pi

2
− d̄i

)
+
pi−1 + pi

2
·
(pi−1 + pi

2
− d̄i

)
− pi−1 + pi

2
·
(pi−1 + pi

2
− di−1

)
−
(pi+1 + pi+2

2
−
(
di+1

))
·
(pi+1 + pi+2

2
− d̄i+2

)
+
pi+1 + pi+2

2
·
(pi+1 + pi+2

2
− d̄i+2

)
− pi+1 + pi+2

2
·
(pi+1 + pi+2

2
− di+1

)]
=

1∑i+2
j=i−1 pj

·
[
−d̄i ·

(pi−1 + pi
2

− di−1

)
− pi−1 + pi

2
· d̄i

+di+1 ·
(pi+1 + pi+2

2
− d̄i+2

)
+
pi+1 + pi+2

2
· di+1

]
=

1∑i+2
j=i−1 pj

·
[
−d̄i ·

(
(pi−1 + pi)− di−1

)
+ di+1 ·

(
(pi+1 + pi+2)− d̄i+2

)]
=

1∑i+2
j=i−1 pj

·
[
−d̄i ·

(
(ai − ai−1) + d̄i

)
+ di+1 ·

(
di+1 + (ai+2 − ai+1)

)]
<

1∑i+2
j=i−1 pj

· [−b · (2b+ b) + b · (b+ 2b)] = 0.
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By continuity of this term in ε, there exists some non-empty open interval around zero such
that the derivative is strictly negative on this interval. So for any ε > 0 sufficiently close to
zero, the conditional variance of the state given µi−1, µi, µi+1 or µi+2 is strictly smaller than
under the original experiment.

As a consequence, the original information structure can only be optimal if µi+1 and µi+2

form a 2-partition and ω̄i+2 − ω̄i+1 > 2b. Besides, since di+1 = (ω̄i+1 − ω̄i)− d̄i < 2b− b = b,
this implies that d̄i+2 > b. So by applying the same reasoning as above, this can only be
optimal if µi+3 and µi+4 form a 2-partition and ω̄i+4 − ω̄i+3 > 2b. Iterating forward, it is
thus necessary that for all j ∈ {i, i + 2, . . . , n − 2, n}, µj−1 and µj form a 2-partition and
ω̄j − ω̄j−1 > 2b. So in particular, n− i must be even. However, since µn forms a 1-partition
by Fact 2, this is not possible under an optimal bi-pooling policy.

The proof for the case where di−1+ > d̄i works analogously: One can show that µi−2

cannot form a 1-partition, but for all j ∈ {2, 4, . . . , i− 2, i}, µj must belong to a 2-partition
together with µj−1 such that the (j − 1)th incentive compatibility constraint is binding –
implying that i must be even. However, this contradicts the fact that µ1 forms a 1-partition
by Fact 2.
Proof of Case 4: If both µi and µi−1 are a 1-partition, it follows from ω̄i − ω̄i−1 > 2b that
pi−1 + pi = 2 · (ω̄i − ω̄i−1) > 4b.

Let’s now focus on the case pi ≥ pi−1. Consequently, it holds that pi > 2b.
Suppose first that i = n, i.e., pn > 2b. Since µ1 and µn form a 1-partition, respectively,

it holds that d1 = p1
2

and d̄n = pn
2

. Hence, one obtains that

p1 + pn
2

= d1 + d̄n = 1−
n∑
j=2

ω̄j − ω̄j−1 ≤ 1− (n− 1) · 2b < 2b,

where the first, weak inequality holds true due to the fact that all incentive compatibility
constraints are satisfied, and the second, strong inequality follows from the fact that b > 1

2n
.

One thus gets that p1 < 2b < pn.
Consider now the following alternative information structure: Increase p1 by some ε > 0

and decrease pn by the same ε such that

pn−1 + pn − ε
2

≥ 2b ⇔ ε ≤ 4b− (pn−1 + pn) .

The conditional variance of the state given µ1 or µn is

1

p1 + pn
·
ñ

(p1 + ε)3

12
+

(pn − ε)3

12

ô
.

Its derivative with respect to ε is

(p1 + ε)2

4
− (pn − ε)2

4
,

which is strictly negative at ε = 0, and thus by continuity strictly negative on some non-
empty, open interval around ε = 0. Hence, the conditional variance of the state given µ1
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or µn is strictly smaller under the alternative experiment for any ε > 0 sufficiently close to
zero, implying that the original bi-pooling policy cannot be optimal.

Consequently, it must be that i < n.
Suppose now that µi+1 is a 1-partition. If pi+1 ≥ pi, one can conclude that ω̄i+1 − ω̄i =

pi+1+pi
2

> 2b+2b
2

= 2b. But then, one can find a better information structure by decreasing
pi by some ε > 0 and increasing min{p1, pn} < 2b by the same ε such that all incentive
compatibility constraints remain satisfied, that is, pi+1 + pi − ε ≥ 4b and pi + pi−1 − ε ≥ 4b,
or, equivalently,

ε ≤ min{4b− pi − pi+1, 4b− pi−1 − pi} = 4b− pi −max{pi−1, pi+1} = 4b− pi − pi+1.

Compared to the original information structure, the conditional variance of the state given
µ1 or µi or µn reduces by

1

p1 + pi + pn

ñ
(min{p1, pn})3

12
+
p3
i

12
−
Ç

(min{p1, pn}+ ε)3

12
+

(pi − ε)3

12

åô
.

This term is strictly positive for any ε ∈ (0, pi−min{p1,pn}
2

), implying that the original experi-
ment is not optimal.

Hence, it must be that pi+1 < pi. But then, there is a better information structure under
which pi+1 is increased by some ε > 0 while pi is reduced by the same ε such that all incentive
compatibility constraints remain valid, i.e.,

pi−1 + pi − ε ≥ 4b ⇔ ε ≤ 4b− pi−1 − pi;

and such that the conditional variance of the state given µi or µi+1 shrinks, that is,

1

pi + pi+1

ñ
p3
i

12
+
p3
i+1

12
−
Ç

(pi − ε)3

12
+

(pi+1 + ε)3

12

åô
> 0,

which is the case if ε ∈ (0, pi−pi+1

2
).

Hence, µi+1 must belong to a 2-partition. Let j be the smallest integer larger than
i + 1 such that µj is a 1-partition. This is well-defined as µn is a 1-partition by Fact 2.

Then, j − (i + 1) is even, and for all k ∈ {1, . . . , j−(i+1)
2
}, µ2k+i−1 and µ2k+i form a 2-

partition. Moreover, one obtains that ω̄l − ω̄l−1 = 2b for all l ∈ {i + 1, . . . , j} by Cases
1-3. Consider the following alternative information structure: For some ε ∈ (0, b), shift
the interval (sup{Ωi} − ε, sup{Ωi}) from outcome µi to outcomes µi+1 or µi+2, for each

k ∈ {1, . . . , j−(i+1)
2
− 1}, shift (sup{Ω2k+i−1,2k+i} − ε, sup{Ω2k+i−1,2k+i}) from Ω2k+i−1,2k+i to

Ω2k+i+1,2k+i+2, and shift (sup{Ωj−2,j−1} − ε, sup{Ωj−2,j−1}) from Ωj−2,j−1 to Ωj such that the
posterior means ω̄i, ω̄i+1, . . . , ω̄j−1, ω̄j decrease by ε

2
, respectively.36 The fact that both ω̄i and

ω̄j decrease by ε
2

yields that µi and µj remain 1-partitions. Furthermore, the construction

36Choosing ε < b ensures that intervals are shifted from one 1- or 2-partition to the next one only, that
is, (sup{Ωi} − ε, sup{Ωi}) ⊆ Ωi and (sup{Ω2k+i−1,2k+i} − ε, sup{Ω2k+i−1,2k+i}) ⊆ Ω2k+i−1,2k+i for every

k ∈ {1, . . . , j−(i+1)
2 }.
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ensures that µ2k+i−1 and µ2k+i continue forming a 2-partition because÷p2k+i−1 + ‘p2k+i = p2k+i−1 + p2k+i > 2 (a2k+i − a2k+i−1) = 2
(
a2k+i −

ε

2
−
(
a2k+i−1 −

ε

2

))
for all k ∈ {1, . . . , j−(i+1)

2
}. Additionally, as long as

ω̄i − ω̄i−1 −
ε

2
≥ 2b ⇔ ε ≤ 2 (ω̄i − ω̄i−1 − 2b) ,

all incentive compatibility constraints remain valid. Besides, note that d2k+i−1 < b and

d̄2k+i > b holds for all k ∈ {1, . . . , j−(i+1)
2
}, which can be shown by induction on k: For

k = 1, this is true because

di+1 = (ω̄i+1 − ω̄i)− d̄i = 2b− pi
2
< 2b− 2b

2
= b,

and thus

d̄i+2 = pi+1 + pi+2 − (ω̄i+2 − ω̄i+1)− di+1 = pi+1 + pi+2 − 2b− di+1 > 4b− 2b− b = b.

So for k > 1, one obtains that

d2k+i−1 =
(
ω̄2(k−1)+i+1 − ω̄2(k−1)+i

)
− d̄2(k−1)+i = 2b− d̄2(k−1)+i < b,

as d̄2(k−1)+i > b by the induction hypothesis (k − 1), and hence

d̄2k+i = p2k+i−1+p2k+i−(ω̄2k+i − ω̄2k+i−1)−d2k+i−1 = p2k+i−1+p2k+i−2b−d2k+i−1 > 4b−2b−b = b.

For any k ∈ {1, . . . , j−(i+1)
2
}, the conditional variance of the state given ω̃ ∈ Ω2k+i−1 ∪

Ω2k+i becomes

(p2k+i−1 + p2k+i)
2

12
−
(p2k+i−1 + p2k+i

2
−
(
d2k+i−1 +

ε

2

))
·
(p2k+i−1 + p2k+i

2
−
(
d̄2k+i −

ε

2

))
.

At ε = 0, its derivative with respect to ε is

1

2
·
((p2k+i−1 + p2k+i

2
−
(
d̄2k+i

))
−
(p2k+i−1 + p2k+i

2
−
(
d2k+i−1

)))
=
d2k+i−1 − d̄2k+i

2
<
b− b

2
= 0.

The conditional variance of the state given µi or µj is

1

pi + pj

ñ
(pi − ε)3

12
+

(pj + ε)3

12

ô
,

and its derivative with respect to ε is

1

pi + pj

ñ
−p

2
i

4
+
p2
j

4

ô
< 0
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at ε = 0, as pi > 2b and pj = 2dj = 2 (ω̄j − ω̄j−1 − ¯j − 1) = 2 (2b− ¯j − 1) < 2(2b− b) = 2b.
Therefore, one can conclude by the same reasoning as in the above three cases that there

is a better experiment for some ε > 0 sufficiently close to zero.

Proof of Lemma 7, Lemma 8 and Proposition 3

Optimal Partial Bi-pooling Policies

Consider the following auxiliary problem: Fix some b > 0, some j ∈ N and some interval
(ω, ω̄) ⊂ [0, 1]. The aim is to find an optimal partial bi-pooling policy of size j on the
interval (ω, ω̄), that is, a policy which minimizes the conditional variance of the state given
ω̃ ∈ (ω, ω̄). A partial bi-pooling policy is defined by a partition {Ω1, . . . ,Ωj} of (ω, ω̄)
together with a sequence of values (ω̄i)

j
i=1 such that ω̄i is the conditional mean of the state

given ω̃ ∈ Ωi and Ωi either forms a 1-partition, meaning that the outcome of a corresponding
experiment on the restricted interval (ω, ω̄) forms a 1-partition, or belongs to a 2-partition
for all i ∈ {1, . . . , j}.

Next, I characterize the optimal partial bi-pooling policy among all those with the
following properties: ω̄i − ω̄i−1 = 2b for all i ∈ {2, . . . , j}, d1 ≡ ω̄1 − ω ∈ (0, 2b) and
d̄j ≡ ω̄ − ω̄j ∈ (0, 2b).

Optimal Partial Bi-pooling Policy Given d1 and d̄j

Toward this goal, I first characterize the optimal policy for any fixed d1 ∈ (0, 2b) and d̄j ∈
(0, 2b) and for any j ∈ N. More precisely, I determine under which conditions Ω1 forms a
1-partition or a 2-partition with Ω2 under the optimal experiment. Then, I compute the
optimal conditional variance, which turns out to depend on d1, d̄j and j only, that is, it can
be expressed as

Var(ω|ω ∈ (ω, ω̄)) = v∗(d1, d̄j, j)

for some function v∗ : (0, 2b)× (0, 2b)× N→ R.

j = 1:

Proof. In this case, Ω1 forms a 1-partition, and it must be that d1 = d̄1. The conditional
variance of the state given ω̃ ∈ (ω, ω̄) is

Var(ω|ω ∈ (ω, ω̄)) =

(
d1 + d̄1

)2

12
= v∗(d1, d̄1, 1).

j = 2: � Ω1 forms a 1-partition iff d1 = 2b− d̄j.

� Ω1 and Ω2 form a 2-partition iff d1 > 2b− d̄j.
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Proof. If Ω1 forms a 1-partition, then Ω2 is a 1-partition as well. But this is possible if and
only if p1 + p2 = 2(a2 − a1). Since p1 + p2 = d1 + (a2 − a1) + d̄2 and ω̄2 − ω̄1 = 2b, this is
equivalent to d1 + d̄2 = 2b. On the other hand, Ω1 and Ω2 form a 2-partition if and only if
p1 + p2 > 2(ω̄2 − ω̄1), or, equivalently, d1 + d̄2 > 2b. The conditional variance of the state is

Var(ω|ω ∈ (ω, ω̄)) =

{
1

d1+2b+d̄2
·
(
2d1 · v∗(d1, d1, 1) + 2d̄2 · v∗(d̄2, d̄2, 1)

)
, if d1 + d̄2 = 2b

(d1+2b+d̄2)2

12
−
Ä
d1+2b+d̄2

2
− d1

ä
·
Ä
d1+2b+d̄2

2
− d̄2

ä
, if d1 + d̄2 > 2b

=
1

d1 + 2b+ d̄2

·
Ç
d3

1 + d̄3
2

3
+ b · (d2

1 + d̄2
2)− 4b3

3

å
= v∗(d1, d̄2, 2)

if d1 + d̄2 ≥ 2b.

j = 3: � Ω1 forms a 1-partition iff d1 ≤ d̄j.

� Ω1 and Ω2 form a 2-partition iff d1 > d̄j.

Proof. Suppose that Ω1 forms a 1-partition. Then, p1 = 2d1. Moreover, Ω2 and Ω3 must
form either a 2-partition or two separate 1-partitions. Using the result of the case j = 2,
this is possible if and if p2 + p3 ≥ 2 (ω̄3 − ω̄2). Since p1 + p2 + p3 = d1 + (ω̄3 − ω̄1) + d̄3

and ω̄2 − ω̄1 = ω̄3 − ω̄2 = 2b, this inequality holds true if and only if d1 ≤ d̄3. If Ω1 forms
a 2-partition together with Ω2, then Ω3 is a 1-partition and p3 = 2d̄3. Furthermore, this is
possible if and only if p1 + p2 > 2(ω̄2 − ω̄1), or, equivalently, d1 > d̄3. Then, the conditional
variance of the state becomes

Var(ω|ω ∈ (ω, ω̄))

=


1

d1+4b+d̄3
·
(
2d1 · v∗(d1, d1, 1) +

(
(2b− d1) + 2b+ d̄3

)
· v∗(2b− d1, d̄3, 2)

)
, if d1 < d̄3

1
d1+4b+d̄3

·
(
2d1 · v∗(d1, d1, 1) +

(
(2b− d1) + (2b− d̄3)

)
· v∗(2b− d1, 2b− d̄3, 1) , if d1 = d̄3

+2d̄3 · v∗(d̄3, d̄3, 1)
)

1
d1+4b+d̄3

·
((
d1 + 2b+ (2b− d̄3)

)
· v∗(d1, 2b− d̄3, 2) + 2d̄3 · v∗(d̄3, d̄3, 1)

)
, if d1 > d̄3

=

{
1

d1+4b+d̄3
·
Ä
d31+d̄33

3
+ 3bd2

1 + bd̄2
3 − 8b2d1 + 16b3

3

ä
, if d1 ≤ d̄3

1
d1+4b+d̄3

·
Ä
d31+d̄33

3
+ bd2

1 + 3bd̄2
3 − 8b2d̄3 + 16b3

3

ä
, if d1 ≥ d̄3

= v∗(d1, d̄3, 3).

j = 4: � Ω1 forms a 1-partition iff d1 ≤ max{b, 2b− d̄j}.

� Ω1 and Ω2 form a 2-partition iff d1 > max{b, 2b− d̄j}.

Proof. Suppose that Ω1 forms a 1-partition under an optimal partial bi-pooling policy. Us-
ing the result of the case j = 3, this policy is uniquely determined and has the following
properties: Ω2 forms a 1-partition if and only if 2b− d1 ≤ d̄4, i.e., d1 ≥ 2b− d̄4, and Ω2 and
Ω3 form a 2-partition if and only if d1 < 2b− d̄4.
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On the other hand, if Ω1 and Ω2 form a 2-partition under an optimal partial bi-pooling
policy, then the conditional variance of the state given that ω ∈ (ω, ω̄) equals the optimal
value of the minimization problem

min
d

1

d1 + 6b+ d̄4

·
[
(d1 + 2b+ d) · v∗(d1, d, 2) + (2b− d+ 2b+ d̄4) · v∗(2b− d, d̄4, 2)

]
s.t. d1 + d ≥ 2b and (2b− d) + d̄4 ≥ 2b.

In particular, the inequality constraints ensure that Ω1 and Ω2 as well as Ω3 and Ω4 either
form a 2-partition or two separate 1-partitions, respectively (cf. the case j = 2).37 Besides,
they are equivalent to d̄4 ≥ d ≥ 2b − d1 so that the constraint set is non-empty if and only
if d̄4 ≥ 2b− d1. Differentiating the objective function with respect to d yields

1

d1 + 6b+ d̄4

·
[
d2 + 2bd− (2b− d)2 − 2b(2b− d)

]
=

8b(d− b)
d1 + 6b+ d̄4

.

Hence, the solution of the optimization problem is

d∗ =


b , if d̄4 ≥ b ≥ 2b− d1

d̄4 , if b ≥ d̄4 ≥ 2b− d1

2b− d1 , if d̄4 ≥ 2b− d1 ≥ b

=


b , if d1 ≥ b and d̄4 ≥ b

d̄4 , if d1 ≥ 2b− d̄4 and d̄4 ≤ b

2b− d1 , if d1 ≤ b and d1 ≥ 2b− d̄4

If d1 < 2b− d̄4, no policy under which Ω1 and Ω2 form a 2-partition is feasible such that Ω1

must be a 1-partition under the optimal policy.
If d1 ≥ 2b − d̄4, the only possible 1-partition also belongs to the constraint set of the

minimization problem: It corresponds to d∗ = 2b− d1. Hence, Ω1 and Ω2 form a 2-partition
in the optimum if and only if d∗ 6= 2b− d1, that is, if and only if

d1 > b and d̄4 ≥ b or d1 > 2b− d̄4 and d̄4 ≤ b ⇔ d1 > b and d1 > 2b− d̄4

⇔ d1 > max{b, 2b− d̄4}.
37That is, the constraint set corresponds to the set of policies with these properties.
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One obtains that

Var (ω|ω ∈ (ω, ω̄))

=



1
d1+6b+d̄4

·
(
2d1 · v∗(d1, d1, 1) + (2b− d1 + 4b+ d̄4) · v∗(2b− d1, d̄4, 3)

)
, if d1 ≤ max{b, 2b− d̄4}

1
d1+6b+d̄4

·
(
(d1 + 2b+ d̄4) · v∗(d1, d̄4, 2) , if d1 ≥ 2b− d̄4 and d̄4 ≤ b

+(2b− d̄4 + 2b+ d̄4) · v∗(2b− d̄4, d̄4, 2)
)

1
d1+6b+d̄4

·
(
(d1 + 2b+ b) · v∗(d1, b, 2) + (b+ 2b+ d̄4) · v∗(b, d̄4, 2)

)
, if d1 ≥ b and d̄4 ≥ b

=



1
d1+6b+d̄4

·
(
d31+d̄34

3 + 3b
(
d2

1 + d̄2
4

)
− 8b2

(
d1 + d̄4

)
+ 12b3

)
, if d1 ≤ 2b− d̄4

1
d1+6b+d̄4

·
(
d31+d̄34

3 + 5bd2
1 + bd̄2

4 − 8b2d1 + 4b3
)

, if b ≥ d1 ≥ 2b− d̄4

1
d1+6b+d̄4

·
(
d31+d̄34

3 + bd2
1 + 5bd̄2

4 − 8b2d̄4 + 4b3
)

, if d1 ≥ 2b− d̄4 and d̄4 ≤ b
1

d1+6b+d̄4
·
(
d31+d̄34

3 + b
(
d2

1 + d̄2
4

))
, if d1 ≥ b and d̄4 ≥ b

= v∗(d1, d̄4, 4).

j = 5: � Ω1 forms a 1-partition iff d1 ≤ min{4b
3
,max{b, d̄j}}.

� Ω1 and Ω2 form a 2-partition iff d1 > min{4b
3
,max{b, d̄j}}.

Proof. Suppose that Ω1 forms a 1-partition under an optimal partial bi-pooling policy. Using
the result of the case j = 4, the best policy among those ones is uniquely determined and
has the following properties: Ω2 forms a 1-partition if and only if 2b− d1 ≤ max{b, 2b− d̄j},
or, equivalently, d1 ≥ min{b, d̄5}. Similarly, Ω2 and Ω3 form a 2-partition if and only if
d1 < min{b, d̄5}. On the other hand, if Ω1 and Ω2 form a 2-partition under an optimal
partial bi-pooling policy, then the conditional variance of the state given that ω ∈ (ω, ω̄)
equals the optimal value of the minimization problem

min
d

1

d1 + 8b+ d̄5

·
(
(d1 + 2b+ d) · v∗(d1, d, 2) + (2b− d+ 4b+ d̄5) · v∗(2b− d, d̄5, 3)

)
s.t. d1 + d ≥ 2b

As before, the inequality constraint ensures that Ω1 and Ω2 either form a 2-partition or two
separate 1-partitions (cf. the case j = 2). Since v∗(2b− d, d̄5, 3) is differentiable everywhere
except if 2b − d = d̄5, the objective function is differentiable with respect to d everywhere
except at d = 2b− d̄5, and the derivative is given by

1

d1 + 8b+ d̄5

·
®

8b(d− b) , if 2b− d > d̄5

4b(3d− 2b) , if 2b− d < d̄5

.
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Hence, the solution of the optimization problem is

d∗ =


b , if 2b− b ≥ d̄5 and d1 + b ≥ 2b
2b
3

, if 2b− 2b
3
≤ d̄5 and d1 + 2b

3
≥ 2b

2b− d̄5 , if 2b− b ≤ d̄5 and 2b− 2b
3
≥ d̄5 and d1 + 2b− d̄5 ≥ 2b

2b− d1 , else

=


b , if d1 ≥ b ≥ d̄5

2b
3

, if d1 ≥ 4b
3

and d̄5 ≥ 4b
3

2b− d̄5 , if d1 ≥ d̄5 and 4b
3
≥ d̄5 ≥ b

2b− d1 , d1 ≤ min{4b
3
,max{b, d̄5}}

So if d1 ≤ min{4b
3
,max{b, d̄5}}, any policy under which Ω1 and Ω2 form a 2-partition yields

a higher conditional of the state than some policy under which Ω1 and Ω2 form two separate
1-partitions as the solution to the optimization problem is d∗ = 2b − d1. Consequently, the
optimal policy must be the best one among those under which Ω1 is a 1-partition, as specified
above.

Notice that min{b, d̄5} ≤ min{4b
3
,max{b, d̄5}}. So on the other hand, if d1 ≥ min{4b

3
,max{b, d̄5}},

implying that d1 ≥ min{b, d̄5} , the best policy under which Ω1 is a 1-partition also belongs to
the constraint set of the minimization problem. But this policy is not optimal as d∗ 6= 2b−d1.
It results that the optimal policy is thus one under which Ω1 belongs to a 2-partition. It
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follows that the conditional variance of the state given ω̃ ∈ (ω, ω̄) is

Var (ω|ω ∈ (ω, ω̄))

=



1
d1+8b+d̄5

· (2d1 · v∗(d1, d1, 1) , if d1 ≤ min{4b
3
,max{b, d̄j}}

+(2b− d1 + 6b+ d̄5) · v∗(2b− d1, d̄5, 4)
)

1
d1+8b+d̄5

·
(
(d1 + 2b+ 2

3
· b) · v∗(d1,

2
3
· b, 2) , if d1 ≥ 4b

3
and d̄5 ≥ 4b

3

+(4
3
· b+ 4b+ d̄5) · v∗(4

3
· b, d̄5, 3)

)
1

d1+8b+d̄5
·
(
(d1 + 2b+ 2b− d̄5) · v∗(d1, 2b− d̄5, 2) , if d1 ≥ d̄5 and 4b

3
≥ d̄5 ≥ b

+(d̄5 + 4b+ d̄5) · v∗(d̄5, d̄5, 3)
)

1
d1+8b+d̄5

· ((d1 + 2b+ b) · v∗(d1, b, 2) , if d1 ≥ b ≥ d̄5

+(b+ 4b+ d̄5) · v∗(b, d̄5, 3)
)

=



1
d1+8b+d̄5

·
Ä
d31+d̄35

3
+ 5bd2

1 + 3bd̄2
5 − 8b2(d1 + d̄5) + 32b3

3

ä
, if b ≥ d1 ≥ d̄5

1
d1+8b+d̄5

·
Ä
d31+d̄35

3
+ 3bd2

1 + 5bd̄2
5 − 8b2(d1 + d̄5) + 32b3

3

ä
, if b ≥ d̄5 ≥ d1

1
d1+8b+d̄5

·
Ä
d31+d̄35

3
+ 3bd2

1 + bd̄2
5 − 8b2d1 + 20b3

3

ä
, if d̄5 ≥ b ≥ d1

1
d1+8b+d̄5

·
Ä
d31+d̄35

3
+ 7bd2

1 + bd̄2
5 − 16b2d1 + 32b3

3

ä
, if d̄5 > d1 and 4b

3
≥ d1 ≥ b

1
d1+8b+d̄5

·
Ä
d31+d̄35

3
+ b
(
d2

1 + d̄2
5

)ä
, if d1 ≥ 4b

3
and d̄5 ≥ 4b

3

1
d1+8b+d̄5

·
Ä
d31+d̄35

3
+ bd2

1 + 7bd̄2
5 − 16b2d̄5 + 32b3

3

ä
, if d1 ≥ d̄5 and 4b

3
≥ d̄5 ≥ b

1
d1+8b+d̄5

·
Ä
d31+d̄35

3
+ bd2

1 + 3bd̄2
5 − 8b2d̄5 + 20b3

3

ä
, if d1 ≥ b ≥ d̄5

= v∗(d1, d̄5, 5).

under any optimal policy.

Lemma A. 1. If j ≥ 6, any optimal partial bi-pooling policy on (ω, ω̄) has the following
properties:

(i) If j is even, Ω1 forms a 1-partition if and only if d1 ≤ min
¶
j−2
j−3
· b,max{b, 2b− d̄j}

©
,

while Ω1 and Ω2 are a 2-partition if and only if d1 > min
¶
j−2
j−3
· b,max{b, 2b− d̄j}

©
. The
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optimal conditional variance of the state given ω̃ ∈ (ω, ω̄) satisfies(
d1 + (j − 1) · 2b+ d̄j

)
·Var (ω|ω ∈ (ω, ω̄))

=



d31+d̄3j
3 + 3b

Ä
d2

1 + d̄2
j

ä
− 8b2

(
d1 + d̄j

)
+ 2(j+14)b3

3 , if d1 ≤ b and d̄j ≤ b
d31+d̄3j

3 + 3bd2
1 + (2j − 5)bd̄2

j − 8b2d1 − 4(j − 2)b2d̄j + 4(2j+1)b3

3 , if d1 + d̄j ≤ 2b and j−2
j−3 · b ≥ d̄j ≥ b

d31+d̄3j
3 + 3bd2

1 + bd̄2
j − 8b2d1 +

Ä
2(j+5)

3 − 2
j−3

ä
b3 , if d1 ≤

j−4
j−3 · b and d̄j ≥

j−2
j−3 · b

d31+d̄3j
3 + (2j − 3)bd2

1 + bd̄2
j − 4(j − 2)b2d1 + 4(2j−5)b3

3 , if d1 + d̄j ≥ 2b and b ≥ d1 ≥
j−4
j−3 · b

d31+d̄3j
3 + (2j − 5)bd2

1 + 3bd̄2
j − 4(j − 2)b2d1 − 8b2d̄j + 4(2j+1)b3

3 , if d1 + d̄j ≤ 2b and j−2
j−3 · b ≥ d1 ≥ b

d31+d̄3j
3 + bd2

1 + 3bd̄2
j − 8b2d̄j +

Ä
2(j+5)

3 − 2
j−3

ä
· b3 , if d1 ≥

j−2
j−3 · b and d̄j ≤

j−4
j−3 · b

d31+d̄3j
3 + bd2

1 + (2j − 3)bd̄2
j − 4(j − 2)b2d̄j + 4(2j−5)b3

3 , if d1 + d̄j ≥ 2b and b ≥ d̄j ≥ j−4
j−3 · b

d31+d̄3j
3 + b ·

Ä
d2

1 + d̄2
j

ä
+ 2(j−4)b3

3 , if d1 ≥ b and d̄j ≥ b

=
(
d1 + (j − 1) · 2b+ d̄j

)
· v∗(d1, d̄j , j).

(ii) If j is odd, Ω1 forms a 1-partition if and only if d1 ≤ min
¶
j−1
j−2
· b,max{b, d̄j}

©
, while

Ω1 and Ω2 are a 2-partition if and only if d1 > min
¶
j−1
j−2
· b,max{b, d̄j}

©
. The optimal

conditional variance of the state given ω ∈ (ω, ω̄) fulfills(
d1 + (j − 1) · 2b+ d̄j

)
· Var (ω|ω ∈ (ω, ω̄))

=



d31+d̄3j
3

+ 3b
(
d2

1 + d̄2
j

)
− 8b2

(
d1 + d̄j

)
+
Ä

2(j+14)
3
− 2

j−4

ä
b3 , if d1 ≤ j−5

j−4
· b and d̄j ≤ j−5

j−4
· b

d31+d̄3j
3

+ 3bd2
1 + (2j − 5)bd̄2

j − 8b2d1 − 4(j − 3)b2d̄j + 8(j−1)b3

3
, if d1 ≤ d̄j and b ≥ d̄j ≥ j−5

j−4
· b

d31+d̄3j
3

+ 3bd2
1 + bd̄2

j − 8b2d1 + 2(j+5)b3

3
, if d1 ≤ b ≤ d̄j

d31+d̄3j
3

+ (2j − 3)bd2
1 + bd̄2

j − 4(j − 1)b2d1 + 8(j−1)b3

3
, if d1 ≥ d̄j and b ≥ d1 ≥ j−5

j−4
· b

d31+d̄3j
3

+ (2j − 3)bd2
1 + 5bd̄2

j − 4(j − 1)b2d1 + 8(j−1)b3

3
, if d1 ≤ d̄j and j−1

j−2
· b ≥ d1 ≥ b

d31+d̄3j
3

+ bd2
1 + 3bd̄2

j − 8b2d̄j + 2(j+5)b3

3
, if d1 ≤ b ≤ d̄j

d31+d̄3j
3

+ bd2
1 + (2j − 3)bd̄2

j − 4(j − 1)b2d̄j + 8(j−1)b3

3
, if d1 ≥ d̄j and j−1

j−2
· b ≥ d̄j ≥ b

d31+d̄3j
3

+ b ·
(
d2

1 + d̄2
j

)
+ 2(j−1)(j−5)b3

3(j−2)
, if d1 ≥ j−3

j−2
· b and d̄j ≥ j−3

j−2
· b

=
(
d1 + (j − 1) · 2b+ d̄j

)
· v∗(d1, d̄j, j).

Proof. This result is proven by induction on j with two base cases (j = 6, 7) and two induc-
tion steps, one for j odd and the other for j even:

Base case 1: j = 6:

First, notice that among all experiments where Ω1 forms a 1-partition, the best one has the
following characteristics (see the results of the case j = 5): Ω2 forms a 1-partition if and
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only if it holds that 2b− d1 ≤ min{4b
3
,max{b, d̄j}}, i.e.,

d1 ≥ max

ß
2

3
· b,min

{
b, 2b− d̄j

}™
= min

ß
b,max

ß
2

3
· b, 2b− d̄j

™™
,

while Ω2 and Ω3 are a 2-partition if and only if

d1 < min

ß
b,max

ß
2

3
· b, 2b− d̄j

™™
.

If Ω1 belongs to a 2-partition in the optimum, the conditional variance of the state given
ω ∈ (ω, ω̄) equals the optimal value of

min
d

1

d1 + (j − 1) · 2b+ d̄j
·
(
(d1 + 2b+ d) · v∗(d1, d, 2) + (2b− d+ (j − 3) · 2b+ d̄j) · v∗(2b− d, d̄j , j − 2)

)
s.t. d1 + d ≥ 2b.

Differentiation of the objective function – whenever this is possible – yields

1

d1 + (j − 1) · 2b+ d̄j
·


4b(3d− 2b) , if 2b− d+ d̄j < 2b

16b(d− b) , if 2b− d < b and 2b− d+ d̄j > 2b

8b(d− b) , if 2b− d > min{b, 2b− d̄j}
.

The solution of the optimization problem is thus

d∗ =


2b
3

, if 2b− 2b
3

+ d̄j ≤ 2b and d1 + 2b
3
≥ 2b

b , if 2b− b+ d̄j ≥ 2b and d1 + b ≥ 2b

d̄j , if 2b− 2b
3

+ d̄j ≥ 2b and 2b− b+ d̄j ≤ 2b and d1 + d̄j ≥ 2b

2b− d1 , else

=


2b
3

, if d1 ≥ 4b
3

and d̄j ≤ 2b
3

b , if d1 ≥ b and d̄j ≥ b

d̄j , if d1 ≥ 2b− d̄j and b ≥ d̄j ≥ 2b
3

2b− d1 , if d1 ≤ min{4b
3
,max{b, 2b− d̄j}}

.

If d1 ≤ min{4b
3
,max{b, 2b − d̄j}}, any policy under which Ω1 and Ω2 form a 2-partition

yields a higher conditional variance of the state than some policy under which Ω1 and Ω2

form two separate 1-partitions as the solution to the minimization problem is d∗ = 2b− d1.
Consequently, the best policy must be the best one among those where Ω1 is a 1-partition,
as specified above. Note that min{4b

3
,max{b, 2b − d̄j}} ≥ min{b,max{2b

3
, 2b − d̄j}}. So if

d1 > min{4b
3
,max{b, 2b − d̄j}}, it follows that d1 > min{b,max{2b

3
, 2b − d̄j}}. Therefore,

the best policy under which Ω1 forms a 1-partition also belongs to the constraint set of the
minimization problem. However, this policy is not optimal as d∗ 6= 2b − d1. Therefore, the
optimal policy is the one under which Ω1 and Ω2 form a 2-partition, as specified by the
minimization problem. The optimal conditional variance of the state given ω̃ ∈ (ω, ω̄) is
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thus given by(
d1 + (j − 1) · 2b+ d̄j

)
· Var (ω̃|ω̃ ∈ (ω, ω̄))

=



2d1 · v∗(d1, d1, 1) , if d1 ≤ min{4b
3
,max{b, d̄j}}

+(2b− d1 + (j − 2)2b+ d̄j) · v∗(2b− d1, d̄j, j − 1)

(d1 + 2b+ 2
3
· b) · v∗(d1,

2
3
· b, 2) , if d1 >

4
3
· b and d̄j >

4
3
· b

+(4
3
· b+ (j − 3)2b+ d̄j) · v∗(4

3
· b, d̄j, j − 2)

(d1 + 2b+ d̄j) · v∗(d1, d̄j, 2) , if d1 ≥ 2b− d̄j and b ≥ d̄j ≥ 2b
3

+(2b− d̄j + (j − 3)2b+ d̄j) · v∗(2b− d̄j, d̄j, j − 2)

(d1 + 2b+ b) · v∗(d1, b, 2) , if d1 ≥ b and d̄j ≥ b

(b+ (j − 3)2b+ d̄j) · v∗(b, d̄j, j − 2)

By plugging in the terms of the functions v∗(·, ·, j − 1) and v∗(·, ·, j − 2), one obtains the
expressions listed in the lemma.

Base case 2: j = 7:

First, note that among all experiments where Ω1 forms a 1-partition, the best one has the
following characteristics (cf. the results of case j = 6): Ω2 is a 1-partition if and only if it
holds that 2b− d1 ≤ min{4b

3
,max{b, 2b− d̄j}}, i.e.,

d1 ≥ max

ß
2

3
· b,min

{
b, d̄j

}™
= min

ß
b,max

ß
2

3
· b, d̄j

™™
,

while Ω2 and Ω3 are a 2-partition if and only if

d1 < min

ß
b,max{2

3
· b, d̄j}

™
.

If Ω1 belongs to a 2-partition in the optimum, the conditional variance of the state given
ω ∈ (ω, ω̄) equals the optimal value of

min
d

1

d1 + (j − 1) · 2b+ d̄j
·
(
(d1 + 2b+ d) · v∗(d1, d, 2) + (2b− d+ (j − 3) · 2b+ d̄j) · v∗(2b− d, d̄j , j − 2)

)
s.t. d1 + d ≥ 2b.

Differentiation of the objective function – whenever this is possible – yields

1

d1 + (j − 1) · 2b+ d̄j
·


16b(d− b) , if b > 2b− d > d̄j

4b(3d− 2b) , if 2b− d < min{b, d̄j}
4b(5d− 4b) , if 2b− d < d̄j and 4b

3
> 2b− d > b

8b(d− b) , if 2b− d > min{3b
3
,max{b, d̄j}}

.

60



The solution of the optimization problem is thus

d∗ =



4b
5

, if 2b− 4b
5
≤ d̄j and 4b

3
≥ 2b− 4b

5
≥ b and d1 + 4b

5
≥ 2b

b , if
(
2b− b ≥ d̄j or 4b

3
≤ 2b− b or 2b− b ≤ b

)
and 2b− b ≥ min{b, d̄j} and d1 + b ≥ 2b

2b− d̄j , if
(
2b− 4b

5
≥ d̄j or 4b

3
≤ 2b− 4b

5
or 2b− 4b

5
≤ b
)

and 2b− b ≤ d̄j and 4b
3
≥ 2b− b ≥ b and d1 + 2b− d̄j ≥ 2b

2b− d1 , else

=


4b
5

, if d1 ≥ 6b
5

and d̄j ≥ 6b
5

b , if d1 ≥ b and d̄j ≤ b

2b− d̄j , if d1 ≥ d̄j and 6b
5
≥ d̄j ≥ b

2b− d1 , if d1 ≤ min{6b
5
,max{b, d̄j}}

.

Notice that 2b
3

never solves the optimization problem because the derivative of the objective
function is 4b(3d−2b) only if d > b, making it strictly positive whenever 2b−d < min{b, d̄j}.

If d1 ≤ min{6b
5
,max{b, d̄j}}, any policy under which Ω1 and Ω2 form a 2-partition yields

a higher conditional variance of the state than some policy under which Ω1 and Ω2 form
two separate 1-partitions as the solution to the minimization problem is d∗ = 2b − d1.
Consequently, the best policy must be the best one among those where Ω1 is a 1-partition,
as specified above.

Note that min{6b
5
,max{b, d̄j}} ≥ min{b,max{2b

3
, d̄j}}. So if d1 > min{6b

5
,max{b, d̄j}},

it follows that d1 > min{b,max{2b
3
, d̄j}}. Therefore, the best policy under which Ω1 forms

a 1-partition also belongs to the constraint set of the minimization problem. However, this
policy is not optimal as d∗ 6= 2b− d1. Therefore, the optimal policy is the one under which
Ω1 and Ω2 form a 2-partition, as specified by the minimization problem.

The optimal conditional variance of the state given ω ∈ (ω, ω̄) is thus given by(
d1 + (j − 1) · 2b+ d̄j

)
· Var (ω̃|ω̃ ∈ (ω, ω̄))

=



2d1 · v∗(d1, d1, 1) + (2b− d1 , if d1 ≤ min{6b
5
,max{b, d̄j}}

+(j − 2)2b+ d̄j) · v∗(2b− d1, d̄j, j − 1)

(d1 + 2b+ 4
5
· b) · v∗(d1,

4
5
· b, 2) , if d1 ≥ 6b

5
and d̄j ≥ 6b

5

+(6b
5

+ (j − 3)2b+ d̄j) · v∗(6b
5
, d̄j, j − 2)

(d1 + 2b+ 2b− d̄j) · v∗(d1, 2b− d̄j, 2) , if d1 ≥ d̄j and 6b
5
≥ d̄j ≥ b

+(d̄j + (j − 3)2b+ d̄j) · v∗(d̄j, d̄j, j − 2)

(d1 + 2b+ b) · v∗(d1, b, 2) + (b+ (j − 3)2b+ d̄j) · v∗(b, d̄j, j − 2) , if d1 ≥ b and d̄j ≤ b

By plugging in the terms of the functions v∗(·, ·, j − 1) and v∗(·, ·, j − 2), one obtains the
expressions listed in the lemma.

Induction step 1: j − 1→ j, j even
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Among all experiments where Ω1 forms a 1-partition, the best one has the following character-
istics (cf. the results of case j): Ω2 is a 1-partition if and only if 2b−d1 ≤ min{ (j−2)b

j−3
,max{b, d̄j}},

i.e.,

d1 ≥ min

ß
b,max

ß
j − 4

j − 3
· b, 2b− d̄j

™™
,

while Ω2 and Ω3 are a 2-partition if and only of

d1 < min

ß
b,max

ß
j − 4

j − 3
· b, 2b− d̄j

™™
.

If Ω1 belongs to a 2-partition in the optimum, the conditional variance of the state given
ω ∈ (ω, ω̄) equals the optimal value of

min
d

1

d1 + (j − 1) · 2b+ d̄j
·
(
(d1 + 2b+ d) · v∗(d1, d, 2) + (2b− d+ (j − 3) · 2b+ d̄j) · v∗(2b− d, d̄j , j − 2)

)
s.t. d1 + d ≥ 2b.

Differentiation of the objective function – whenever this is possible – yields

1

d1 + (j − 1) · 2b+ d̄j
·


4b(3d− 2b) , if 2b− d < min{b,max{ j−6

j−5
· b, 2b− d̄j}}

4b(j − 2)(d− b) , if 2b− d+ d̄j > 2b and b > 2b− d > j−4
j−3
· b

4b((j − 3)d(j − 4)b) , if 2b− d+ d̄j < 2b and j−4
j−5
· b > 2b− d > b

8b(d− b) , if 2b− d > min{ j−4
j−5
· b,max{b, 2b− d̄j}}

.

The solution of the optimization problem is thus

d∗ =



(j−4)b
j−3

, if 2b− (j−4)b
j−3

+ d̄j ≤ 2b and j−4
j−5
· b ≥ 2b− (j−4)b

j−3
≥ b and d1 + (j−4)b

j−3
≥ 2b

b , if
Ä
2b− b+ d̄j ≥ 2b or j−4

j−5
· b ≤ 2b− b or 2b− b ≤ b

ä
and 2b− b ≥ min{b,max{ j−6

j−5
· b, 2b− d̄j}} and d1 + b ≥ 2b

d̄j , if
Ä
2b− (j−4)b

j−3
+ d̄j ≥ 2b or j−4

j−5
· b ≤ 2b− (j−4)b

j−3
or 2b− (j−4)b

j−3
≤ b
ä

and 2b− b+ d̄j ≤ 2b and j−4
j−5
· b ≥ 2b− b ≥ b and d1 + d̄j ≥ 2b

2b− d1 , else

=


(j−4)b
j−3

, if d1 ≥
(j−2)b
j−3

and d̄j ≤ (j−4)b
j−3

b , if d1 ≥ b and d̄j ≥ b

d̄j , if d1 ≥ 2b− d̄j and b ≥ d̄j ≥ (j−4)b
j−3

2b− d1 , if d1 ≤ min{ (j−2)b
j−3

,max{b, 2b− d̄j}}

.

In particular, note that 2b
3

is never the solution because the derivative of the objective function

is 4b(3d− 2b) only if d > b, making it strictly positive whenever 2b− d < min{b,max{ j−6
j−5
·

b, 2b− d̄j}}.
If d1 ≤ min{ (j−2)b

j−3
,max{b, 2b− d̄j}}, any policy under which Ω1 and Ω2 form a 2-partition

yields a higher conditional variance of the state than some policy under which Ω1 and Ω2
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form two separate 1-partitions as the solution to the minimization problem is d∗ = 2b− d1.
Consequently, the best policy must be the best one among those where Ω1 is a 1-partition,
as specified above.

Notice that min{ (j−2)b
j−3

,max{b, 2b−d̄j}} ≥ min{b,max{ (j−4)b
j−3

, 2b−d̄j}} holds true. Hence,

if d1 > min{ (j−2)b
j−3

,max{b, 2b− d̄j}}, it follows that d1 > min{b,max{ (j−4)b
j−3

, 2b− d̄j}}. There-
fore, the best policy under which Ω1 forms a 1-partition also belongs to the constraint set of
the minimization problem. However, this policy is not optimal as d∗ 6= 2b − d1. Therefore,
the optimal policy is the one under which Ω1 and Ω2 form a 2-partition, as specified by the
minimization problem.

The optimal conditional variance of the state given ω ∈ (ω, ω̄) is thus given by(
d1 + (j − 1) · 2b+ d̄j

)
· Var (ω|ω ∈ (ω, ω̄))

=



2d1 · v∗(d1, d1, 1)+ , if d1 ≤ min{ (j−2)b
j−3

,max{b, d̄j}}
+(2b− d1 + (j − 2)2b+ d̄j) · v∗(2b− d1, d̄j, j − 1)

(d1 + 2b+ (j−4)b
j−3

) · v∗(d1,
(j−4)b
j−3

, 2) , if d1 >
(j−2)b
j−3

and d̄j >
(j−2)b
j−3

+( (j−2)b
j−3

+ (j − 3)2b+ d̄j) · v∗( (j−2)b
j−3

, d̄j, j − 2)

(d1 + 2b+ d̄j) · v∗(d1, d̄j, 2) , if d1 ≥ 2b− d̄j and b ≥ d̄j ≥ (j−4)b
j−3

+(2b− d̄j + (j − 3)2b+ d̄j) · v∗(2b− d̄j, d̄j, j − 2)

(d1 + 2b+ b) · v∗(d1, b, 2) , if d1 ≥ b and d̄j ≥ b

+(b+ (j − 3)2b+ d̄j) · v∗(b, d̄j, j − 2)

By plugging in the terms of the functions v∗(·, ·, j − 1) and v∗(·, ·, j − 2), one obtains the
expressions listed in the lemma.

Induction step 2: j − 1→ j, j odd

The proof of this step works analogously to the proof of the second base case and is therefore
omitted.

Optimal Partial Bi-pooling Policy Given d1 + d̄j

As a next step, I determine the optimal policy for any fixed d1 + d̄j ∈ (0, 2b] and any j by
comparing the optimal policies for fixed d1 and fixed d̄j from the previous section. It turns
out that the optimal policy is symmetric in the sense that d1 = d̄j:

Lemma A.2. For any j ∈ N, given d1 + d̄j ∈ (0, 2b], the optimal bi-pooling policy is the one
with d1 = d̄j, that is,

v∗(d1, d̄j, j) ≥ v∗
Å
d1 + d̄j

2
,
d1 + d̄j

2
, j

ã
(13)

for any d1, d̄j ∈ (0, 2b) such that d1 + d̄j ∈ (0, 2b].

Proof.
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j = 1: The only feasible policy is the one with d1 = d̄1, which is thus trivially optimal.

j = 2: Since both the quadratic function x2 and the cubic function x3 are convex on R+, it
follows by Jensen’s inequality that

v∗(d1, d̄2, 2) =
1

d1 + 2b+ d̄2
·
Ç
d3

1 + d̄3
2

3
+ b · (d2

1 + d̄2
2)− 4b3

3

å
≥ 1

d1+d̄2
2 + 2b+

d1+d̄2
2

·

Ö(
d1+d̄2

2

)3
+
(
d1+d̄2

2

)3

3
+ b · (

Å
d1 + d̄2

2

ã2

+

Å
d1 + d̄2

2

ã2

)− 4b3

3

è
= v∗

Å
d1 + d̄2

2
,
d1 + d̄2

2
, 2

ã
j = 3: First, I show that the optimal policy with d1 ≤ d̄3 is the one with d1 = d̄3: For this,

notice that the conditional variance can be written as

v∗(d1, d̄3, 3) = v∗
Å
d1 + d̄3

2
− ε, d1 + d̄3

2
+ ε, 3

ã
for some ε ∈ [0, b] for any such d1, d̄3. Its derivative with respect to ε is

1

d1 + 4b+ d̄3

Ç
−
Å
d1 + d̄3

2
− ε
ã2

+

Å
d1 + d̄3

2
+ ε

ã2

− 6b

Å
d1 + d̄3

2
− ε
ã

+ 2b

Å
d1 + d̄3

2
+ ε

ã
+ 8b2

å
=

1

d1 + 4b+ d̄3

(
2ε
(
d1 + d̄3

)
− 3b

(
d1 + d̄3

)
+ 6bε+ b

(
d1 + d̄3

)
+ 2bε+ 8b2

)
=

1

d1 + 4b+ d̄3

(
2(ε− b)

(
d1 + d̄3

)
+ 8b(b+ ε)

)
≥ 1

d1 + 4b+ d̄3

(2(ε− b) · 2b+ 8b(b+ ε))

=
1

d1 + 4b+ d̄3

(
12bε+ 4b2

)
> 0

for all ε ∈ (0, b), where the weak inequality follows from the fact that d1 + d̄3 ≤ 2b. This
yields

v∗
Å
d1 + d̄3

2
− ε, d1 + d̄3

2
+ ε, 3

ã
> v∗

Å
d1 + d̄3

2
,
d1 + d̄3

2
, 3

ã
for all ε > 0.

Due to the symmetry of v∗(·, ·, 3) for d1 ≤ d̄3 and d1 ≥ d̄3, the proof for the fact that
the optimal policy with d1 ≥ d̄3 is the one with d1 = d̄3 works analogously and is therefore
omitted.

j = 4: Since d1 + d̄4 ≤ 2b, that is, d1 ≤ 2b− d̄4, it results from the convexity of the functions
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x2 and x3 that

v∗(d1, d̄4, 4) ≥ v∗
Å
d1 + d̄4

2
,
d1 + d̄4

2
, 4

ã
by Jensen’s inequality.

j = 5: Since d1 + d̄5 ≤ 2b, only the following four cases need to be analyzed: d1 ≥ b ≥ d̄5,
b ≥ d1 ≥ d̄5, b ≥ d̄5 ≥ d1 and d̄5 ≥ b ≥ d1.

First, let’s verify that the optimal policy among all with d1 ≥ b ≥ d̄5 is the one with
d1 = b: Note that

v∗(d1, d̄5, 5) = v∗(b+ ε, d1 + d̄5 − b− ε, 3)

for some ε ∈ [0, b] for any such d1, d̄5. Its derivative with respect to ε is

1

d1 + 8b+ d̄5

Ä
(b+ ε)2 −

(
d1 + d̄5 − b− ε

)2
+ 2b(b+ ε)− 6b

(
d1 + d̄5 − b− ε

)
+ 8b2

ä
≥ 1

d1 + 8b+ d̄5

Ä
(b+ ε)2 − (2b− b− ε)2 + 2b(b+ ε)− 6b (2b− b− ε) + 8b2

ä
=

1

d1 + 8b+ d̄5

(
12bε+ 4b2

)
> 0

for all ε ∈ (0, b), where the weak inequality follows from the fact that d1 + d̄5 − b − ε ≥ 0
and d1 + d̄5 ≤ 2b. This yields

v∗b+ ε, d1 + d̄5 − b− ε, 3) > v∗(b, d1 + d̄5 − b, 3)

for all ε > 0.
Next, I show that the optimal policy given b ≥ d1 ≥ d̄5 is the one satisfying d1 = d̄5. The

proof works similarly as the proof for case j = 3: The conditional variance can be expressed
as

v∗(d1, d̄5, 5) = v∗
Å
d1 + d̄5

2
+ ε,

d1 + d̄5

2
− ε, 5

ã
for some ε ∈ [0, b] for any such d1, d̄5, whose derivative with respect to ε is

1

d1 + 8b+ d̄5

ÇÅ
d1 + d̄5

2
+ ε

ã2

−
Å
d1 + d̄5

2
− ε
ã2

+ 2b

Å
d1 + d̄5

2
+ ε

ã
− 6b

Å
d1 + d̄5

2
− ε
ã

+ 8b2

å
=

1

d1 + 8b+ d̄5

(
2ε
(
d1 + d̄5

)
+ b
(
d1 + d̄5

)
+ 2bε− 3b

(
d1 + d̄5

)
+ 6bε+ 8b2

)
≥ 1

d1 + 8b+ d̄5

(
12bε+ 4b2

)
> 0

for all ε[0, b], which yields

v∗
Å
d1 + d̄5

2
− ε, d1 + d̄5

2
+ ε, 5

ã
> v∗

Å
d1 + d̄5

2
,
d1 + d̄5

2
, 5

ã
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for all ε > 0.
Since v∗ is continuous in both d1 and d̄5 everywhere, the optimal policy with b ≥ d1 ≥ d̄5

(which always exists for any d1 + d̄5 ≤ 2b) is better than the optimal policy with d1 ≥ b ≥ d̄5

(which exists only if d1 + d̄5 is sufficiently large) because the latter one also satisfies b ≥ d1 ≥
d̄5.

As a result, the policy with d1 = d̄5 is the best one among all with d1 ≥ d̄5.
By symmetry, one can deduce that this policy is also optimal among all policies with

d1 ≤ d̄5 (by analyzing the last two cases b ≥ d̄5 ≥ d1 and d̄5 ≥ b ≥ d1) so that it is overall
optimal.

j ≥ 6: The proof works analogously and is therefore omitted.

Optimal Bi-Pooling Policies

The aim of this section is to determine the optimal bi-pooling policy for a given bias

b ∈
î

1
2n
, 1

2(n−1)

ä
, where n ≥ 2.

By Lemma 6, all incentive compatibility constraints are binding in the optimal bi-pooling
policy of size n. Notice that d1 + (n− 1)2b+ d̄n = 1, which yields that

d1 + d̄n = 1− (n− 1)2b ∈
Å

0,
1

n

ò
⊂ (0, 2b).

Therefore, the results on the optimal structure of partial bi-pooling policies also apply to
the complete bi-pooling policies on the whole state space (simply let ω = 0 and ω̄ = 1).

So the optimal policy of size n is the one characterized in Lemma 7 and Lemma 8.
With that, one can show that the payoff of the optimal bi-pooling policy of size n is

weakly decreasing in b on the interval
î

1
2n
, 1

2(n−1)

ä
. Finally, it turns out that for given

b ∈
î

1
2n
, 1

2(n−1)

ä
, the overall optimal policy is the best one of size n if b is sufficiently large,

while it is the best one of size n− 1 if b is sufficiently small.
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