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Abstract

In a model inspired by neuroscience, we study choice between lotteries as a process
of encoding and decoding noisy perceptual signals. The implications of this process
for behavior depend on the decision-maker’s understanding of the risk. The encod-
ing strategy does not influence choice in the limit as perception noise vanishes when
the decision-maker correctly understands the decision problem during decoding. If,
however, the decision-maker underrates the complexity of the decision problem, then
the encoding strategy generates behavioral risk attitudes even for vanishing perception
noise. We show that constrained optimal perception encodes lottery rewards using an
S-shaped encoding function and over-samples low-probability events. Taken together,
the model can explain adaptive risk attitudes and probability weighting as in prospect
theory. Additionally, it predicts that risk attitudes are influenced by the anticipation
of risk, time pressure, experience, salience, and availability heuristics.
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1 Introduction

Choice under risk exhibits inconsistencies with expected utility theory. Some of these revolve

around the fact that behavior cannot be represented by fixed risk preferences. We know at

least since Kahneman and Tversky (1979) that risk attitudes adapt to the environment. In

a similar vein, Rabin’s (2000) paradox implies that choices over small and large risks are

represented by distinct utility functions. Risk attitudes are further modulated by factors such

as the salience of rewards (Bordalo et al., 2012), time pressure (Kirchler et al., 2017), and

experience (Ert and Haruvy, 2017). Additional inconsistencies involve the overweighting of

small relative to large probability events (Kahneman and Tversky, 1979) and the importance

of availability of an event in memory for the assessment of its probability (Tversky and

Kahneman, 1973).

In recent work, Oprea (2023) has shown that some of these regularities may have little

to do with risk. In a laboratory experiment, Oprea replaces lotteries by their “deterministic

mirrors,” which are described exactly like the original lotteries but pay the lotteries’ expected

value and hence involve no risk. The subjects’ behavior is essentially identical when they

choose between risky lotteries to when they choose between the respective deterministic

mirrors. Oprea concludes that apparent risk attitudes may be due to the complexity of

aggregation of the lotteries’ rewards and not due to genuine risk.

In this paper, we develop a model of perception and aggregation that is compatible with

the findings outlined above and, in addition, makes novel predictions. The model is inspired

by literature on noisy coding in neuroscience and economics.

A risk-neutral decision-maker (DM) chooses between a lottery and a safe option. For

illustration, consider the vivid example from Savage (1954) in which the lottery represents

purchase of a convertible car, the enjoyment of which depends on the random weather con-

ditions. The DM knows the probabilities of the possible states of the world (the different

weather conditions), observes the value of the safe option (the price of the car), but faces a

friction in perceiving the rewards of the lottery in the different states (the weather-dependent

enjoyments). She learns about the rewards by sampling signals. Each signal is a reward of

the lottery in some state encoded via a non-linear encoding function that maps rewards to

their mental representations (e.g. neural firing rates), then perturbed by additive Gaussian

noise. Depending on the application, these perturbed signals can be cues extracted from

the visual description of the decision problem, own experiences retrieved from memory, or

experiences provided by others (e.g. the car dealer). When making the decision, the DM

estimates the value of the lottery by decoding the collection of signals that she obtained and

chooses the lottery if its estimated value is larger than the outside option.
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We make two distinct contributions. In the first part of the paper, we treat the encoding

strategy of the DM as exogenous and show that decoding of the perception data via a

misspecified statistical model is an important mechanism by which encoding has behavioral

implications, even when noise in perception is small. In the second part of the paper, we

derive optimal encoding by jointly optimizing perception of lottery payoffs and probabilities.

To understand our first contribution, suppose that the encoding function, which maps

actual rewards into mental representations, is exogenously given. Suppose furthermore that

the frequencies with which the DM samples signals from each state of the world are exogenous

and do not necessarily coincide with the true probabilities of the states. Finally, suppose

that the DM uses a very simple decoding procedure: she just averages all collected signals

and then applies the inverted coding function to determine a value of the lottery. Then,

when the numbers of signals which the DM collects becomes large, her behavior converges

to the behavior of an expected utility maximizer with Bernoulli utility function equal to her

encoding function and subjective probabilities equal to her sampling frequencies. We thus

establish a tight connection between the elements of the encoding strategy (the encoding

function and the sampling frequencies) and the elements of expected utility theory (the

Bernoulli utility function and subjective probabilities).

The described behavior is a result of how the rewards of the lottery are encoded and

decoded in the aggregation process, and not a consequence of the riskiness of these rewards.

In line with the findings of Oprea (2023), we predict behavioral “risk attitudes” for choice

between deterministic mirrors of lotteries, which are not risky but still complex objects that

the DM must aggregate. From a welfare perspective such behavioral risk attitudes reflect

mistakes rather than genuine risk preferences.

The simple model makes several additional predictions that are consistent with empirical

regularities. First, since behavioral risk attitudes depend on the properties of encoding, they

will adapt if the DM’s encoding function adapts to the environment (Kahneman and Tversky,

1979; Frydman and Jin, 2022). Similarly, since behavior depends on sampling frequencies

rather than true probabilities, subjective probability weights may differ from objective prob-

abilities (Kahneman and Tversky, 1979) and can furthermore be affected by the salience of

states (Bordalo et al., 2012) or availability in memory (Tversky and Kahneman, 1973). Our

procedural choice model thus provides a microfoundation for these phenomena.

The simple decoding procedure described above is a special case of maximum likelihood

estimation using a coarse partitional model of the true state space, much like Savage’s (1954)

decision-maker employing a small-world model of the grand world. If the DM anticipates a

riskless lottery that pays the same reward in all states, then averaging all the signals and

applying the inverted coding function gives the maximum likelihood estimate of the value of
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the riskless lottery. The DM’s statistical model is misspecified if the lottery’s rewards differ

across the states, resulting in a biased estimate of the lottery’s value. This bias generates

the behavioral risk attitudes. If, on the other hand, the DM anticipates that the lottery pays

different rewards in different states, her maximum likelihood estimate averages the signals

and applies the inverted coding function state-by-state, leading to an unbiased estimate of

the lottery’s value and to risk-neutral behavior in the limit of rich perception data. With

a general coarse partitional model of the state space, we show that maximum likelihood

estimation leads to risk-neutral choices whenever the DM faces risk that she comprehends

(i.e., which is measurable with respect to her partition) but implies perception-driven risk

attitudes for those elements of the risk that she does not comprehend. Our proof relies on

results by White (1982) for misspecified maximum likelihood estimation. Analogous results

hold for Bayesian estimation (Berk, 1966).

There are various reasons why the DM might employ a coarse model of the world. She

might have evolved in a simple environment and the complexity of the environment has

then increased, making previously payoff-irrelevant contingencies relevant, without the DM

adapting to the change. For example, a financial expert when analysing a new financial asset

may estimate its expected performance in a model that fails to include all variables that are

relevant to the asset’s return. Alternatively, the DM might have been framed to believe that

the decision problem involves less risk than it does (by a car dealer, for instance). Finally,

and in line with findings by Oprea (2023) for laboratory subjects, the DM may deliberately

choose to use a simplified decoding procedure to economize on cognitive resources.

The partitional decoding procedure predicts risk attitudes to be more pronounced with

a coarser partition. To the extent that more experience with a decision environment implies

a better understanding of which contingencies matter, and thus a finer and more appropri-

ate partition, behavior is predicted to become more risk-neutral with experience (Ert and

Haruvy, 2017).

We then study a variant of the model where the DM anticipates some risk but finds large

risks unlikely. We formalize this by letting the DM form a Bayesian estimate of the lottery

value and taking a joint limit in which the number of perception signals grows and the prior

belief of the DM gradually concentrates on the set of riskless lotteries. The DM therefore

possesses a comparable amount of both a priori and perceptual information. Changing the

relative rates of divergence allows us to vary the relative influence of these two sources of

information on choice. We find perception-driven risk attitudes akin to those of the DM

discussed above. Choice becomes more risk-neutral when the DM anticipates larger risk

a priori, consistent with the finding that framing a decision problem as one which features

high risk dampens risk attitudes (Rabin, 2000). Choice also becomes more risk-neutral when
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the DM collects more data, predicting that risk attitudes are intensified under time pressure

when decisions have to rely more on prior information and less on perceptual signals (Kirchler

et al., 2017).

The previous arguments all treated the encoding strategy as exogenous. In the second

part of the paper, we propose one possible way in which encoding may have been shaped. For

this second contribution of our paper, we assume that the DM decodes her signals correctly

in a well-specified model at the time when optimization of the encoding strategy took place

(which might have been during evolutionary times, so the assumption does not imply that

the DM is still decoding correctly today). Choice of the encoding strategy is a specific form

of an attention allocation problem. The DM is akin to an engineer who measures a physical

input by reading off the position of a needle on a meter (Robson, 2001). The engineer can

choose the measurement function that maps the physical input to the needle position. If the

needle position has a stochastic component, then the engineer can increase the precision of

her measurement for a specific range of inputs by making the measurement function steep in

this range. Our DM can increase the precision of her reward perception for a specific range

of rewards by making the encoding function steep in this range. Since the range of possible

mental representations is finite, the encoding function cannot be steep everywhere. Further,

our DM can allocate attention to a specific state of the world by sampling it frequently, but

this comes at the cost of sampling other states less frequently.

We analyze the limit of rich perception data, which enables us to obtain tractable results.

These limit results serve as an approximation for the more realistic case of non-vanishing but

small noise relative to the stakes of the decision problem. We prove that the expected loss

from noisy perception, compared to choice under complete information, is approximately the

mean squared error in the estimate of the lottery value, integrated over all decision problems

that the DM may face in her environment in which the lottery value ties with the safe option.

The conditioning on ties arises endogenously. Accuracy of perception has instrumental value

for choice, and choice is trivial except where the values of two options are nearly equal, given

that information is nearly complete.

We then derive the encoding strategy that minimizes the mean squared error conditional

on ties. For the plausible case of unimodal symmetric reward densities, we show that an

S-shaped encoding function and over-sampling of low-probability states are jointly optimal.

The DM chooses the encoding function to be steep near the modal rewards and flatter

towards the tails of the reward distribution. She thus perceives the reward values that

are typical for her environment relatively precisely, at the expense of precision at the tail

rewards. Conditioning on ties induces a statistical association between tail rewards and

low-probability states. Since tail rewards in high-probability states typically result in very
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attractive or unattractive lotteries rather than in ties, tail rewards arise relatively more

often in low-probability states once we condition on the event of a tie. The DM with an

S-shaped encoding function therefore relatively often struggles to estimate the rewards in

low-probability states, and it is optimal to compensate for this by over-sampling such states.

Our results in the second part of the paper generalize earlier findings in the literature,

which studied choice between simple, one-dimensional objects (Robson, 2001; Netzer, 2009).

Here, we provide a microfoundation for an objective rooted in choice, and we derive results

for choice between complex, multi-dimensional objects. Combined with the results in the

first paper of the paper, our findings provide a possible explanation for prospect theory type

behavior in situation with and without risk.

2 Decoding

We introduce a model of perception and aggregation of lottery rewards based on noisy en-

coding and decoding of signals about these rewards. Throughout this section, we treat the

encoding as fixed and focus on the behavioral implications of decoding. We make predictions

that are in line with the findings of Oprea (2023) and the literatures on prospect theory (Kah-

neman and Tversky, 1979), Rabin’s paradox (Rabin, 2000), salience (Bordalo et al., 2012),

time pressure (Kirchler et al., 2017), experience (Ert and Haruvy, 2017), and availability

heuristics (Tversky and Kahneman, 1973).

2.1 A Simple Decoding Procedure

There is a set of states of the world i ∈ {1, . . . , I}, where each state i has a fixed positive

probability pi. The DM chooses between a safe option of value s and a lottery that pays a

reward ri ∈ [r, r] in each state i, where r < r are arbitrary bounds. We let r = (ri)i ∈ [r, r]I

denote the tuple of rewards and refer to it as the lottery. The pair (r, s) is the decision

problem.

The DM observes the value of the safe option and the probabilities but faces frictions

in the perception of the lottery rewards. She receives a sequence of n signals, where each

signal is a monotone transformation of one of the rewards, perturbed with additive noise.

Signals are given by xk = (m̂k, ik), k = 1, . . . , n, where the size n of the sample is exogenous.

We refer to the first component, m̂k, as the perturbed message. The second component, ik,

indicates the state that the k’th signal pertains to. Each perturbed message is generated by

encoding the reward rik in state ik into unperturbed message m (rik) and then perturbing it

to m̂k = m (rik) + ε̂k, where the noise term ε̂k is independently and identically distributed

6



(iid) standard normal.1 The sampled state ik is one of the states i = 1, . . . , I, iid with

positive probabilities πi. The function m : [r, r] −→ [m,m] is assumed to be continuously

differentiable and strictly increasing withm′ > 0 throughout the paper. The assumption that

the DM encodes rewards into messages from a finite range and that this encoding is noisy

follows a long tradition in the psychometric literature (see e.g. the discussion in Frydman and

Jin, 2022). We refer to m as the encoding function and to (πi)i as the sampling frequencies.

The pair (m, (πi)i) of encoding function and sampling frequencies is the encoding strategy.

Throughout this section, we treat the encoding strategy as exogenous.

In Savage (1954)’s example, the DM is contemplating the purchase of a convertible car

for price s. The purchase is a lottery because the enjoyments of driving a convertible car

depend on the random weather. The states of the world represent the possible weather con-

ditions: rainy or sunny. The perturbed messages m̂k are noisy signals about the enjoyment

rik of driving the car in weather ik, which the DM retrieves from memory and other sources.

Signals can encode own past experiences, stories of peers, or information provided by the car

dealer, etc. The shape of the encoding function determines the neural intensity with which

these experiences are represented. The sampling frequencies are the proportions of experi-

ences under different weather conditions that the DM processes, which are not necessarily

representative (Tversky and Kahneman, 1973).

In other applications, where lottery rewards and probabilities are presented as numbers,

as in Oprea (2023)’s experiment or in financial applications, noisy perception occurs in the

process of visual inspection of the options (Schaffner et al., 2023). Furthermore, memory

is again involved when processing the consequences of different events such as winning or

losing (Ludvig et al., 2015). More generally, in line with a large literature (e.g. Robson, 2001;

Netzer, 2009; Frydman and Jin, 2022), our approach assumes that the DM does not use an

algebraic calculation mechanism to make the choice but instead processes stated numbers

like any other percept (see Khaw et al., 2021, for a careful discussion and motivation of this

assumption).

We now describe a procedure, which we call the simple decoding procedure, that the DM

may employ to decode the collected data: she averages all the perturbed messages and then

applies the inverted encoding function to obtain an estimated lottery valuem−1(
∑n

k=1 m̂k/n).

She chooses the lottery if m−1(
∑n

k=1 m̂k/n) > s and the outside option otherwise. The

following observation describes the behavioral implications of this simple procedure.

1We use the Gaussian assumption mainly because it will yield a tractable form of the Kullback-Leibler
divergence in the next subsection.
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Observation 1. With the simple decoding procedure, the probability that the DM chooses

the lottery in problem (r, s) converges almost surely to 1 (0) as n→ ∞ if

I∑
i=1

πim(ri) > (<)m(s).

The observation shows that the DM behaves in the limit as if the encoding function

m were her Bernoulli utility function and the sampling frequencies πi were her subjective

probabilities. By the strong law of large numbers, the average empirical message
∑n

k=1 m̂k/n

almost surely converges to
∑I

i=1 πim(ri) as n→ ∞, and the value that the DM places on the

lottery therefore converges to m−1(
∑I

i=1 πim(ri)), which is the certainty equivalent of the

lottery for Bernoulli utility m and probabilities πi. The result establishes a tight connection

between the elements of the encoding strategy (encoding function, sampling frequencies) and

the elements of expected utility theory (Bernoulli utility, subjective probabilities).

The simple decoding procedure has several implications that differ from those of expected

utility theory and are in line with empirically documented patterns. First, the behavior in

Observation 1 arises as a consequence of the simplistic reward aggregation procedure, rather

than due to risk preferences. The behavior is the result of aggregation of a complex object

and would arise equally if the lottery was replaced by its “deterministic mirror,” an option

that is described in the same complex way as the lottery but pays the lottery’s expected

value with certainty, in line with the findings by Oprea (2023). Thus, choice over lotteries

may not reveal the DM’s genuine risk preferences.

Second, behavior is affected by the subjective sampling frequencies πi rather than by the

objective probabilities pi. Tversky and Kahneman (1973) have pointed out that subjective

probability weights are influenced by the availability of the respective events in memory

and do not necessarily correspond to the true frequencies of these events. In Bordalo et al.

(2012), salience of a state shifts subjective probabilities in favor of that state. These authors

derive their salience weights from the set of options that the DM considers, while we treat the

sampling frequencies as exogenous in this section, but the simple decoding procedure provides

a microfoundation for salience-driven behavior based on non-representative sampling.

Third, since behavior depends on the encoding function and the sampling frequencies,

rather than on an exogenous Bernoulli utility function and the true probabilities, the DM’s

behavior will be affected by changes in the encoding function (e.g. through environmental

adaptation, see Frydman and Jin, 2022; Schaffner et al., 2023) and by changes in the sampling

frequencies (e.g. by manipulation of her focus through marketing interventions, see Koszegi

and Szeidl, 2013).
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2.2 Maximum Likelihood Decoding

We now generalize the simple decoding procedure and show that it and its generalizations

describe a DM who forms a maximum likelihood estimate of the lottery value using a coarse

model of the state space. The DM is endowed with a compact set A ⊆ [r, r]I of lotteries she

deems possible and, given a sequence of n signals as in the previous subsection, concludes

that she has encountered the lottery

qn ∈ argmax
r′∈A

n∏
k=1

φ
(
m̂k −m

(
r′ik
))

that maximizes the likelihood of the observed signals, where φ is the standard normal den-

sity.2 Given the estimate qn = (q1n, . . . , qIn), she estimates the value of the lottery to be

qn =
∑

i piqin and chooses the lottery if qn > s and the outside option otherwise. The risk-

neutrality with respect to rewards embodied in this rule is an implicit assumption on the

units of measurement in which the rewards are expressed. For instance, the rewards might

be an appropriate concave function of monetary prizes if the DM chooses among monetary

lotteries and money has diminishing returns.3

We consider a DM who employs a possibly simplifying model of the risk in the spirit

of the small world of Savage (1954). The DM anticipates, rightly or wrongly, distinctions

among some of the states of the world to be payoff-irrelevant. Let P be a partition of the

set of all the states {1, . . . , I}. The partition captures the DM’s coarse model of the state

space similarly to Jehiel (2005) as follows. The DM anticipates that ri = rj for all pairs of

states i, j ∈ J that belong to a same element J of the partition P . That is, she anticipates

lotteries from a set

AP =
{
r ∈ [r, r]I : ri = ri′ for all i, i

′, J such that i, i′ ∈ J , J ∈ P
}
. (1)

If P = {{1, . . . , I}} is the coarsest partition, then the DM anticipates only degenerate

lotteries that pay the same reward in all states. In Savage’s original example, the coarse

DM believes that the convertible car will lead to “definite and sure enjoyments”, so she

2The maximum-likelihood estimate exists since A is compact. It is unique for the specifications that we
consider in the following.

3If, for example, rewards are ri = f(wi), where wi is a monetary prize and f is a fitness function, and the
DM measures the rewards ri by applying a non-linear encoding function m(ri), then the simple procedure
from the previous subsection predicts that the DM behaves as expected utility maximizer with Bernoulli
utility u(w) = m(f(w)). If she encounters a lottery with rewards in the concave part of the encoding function,
her choices would make her appear to be more risk-averse than the fitness function f would suggest. For
monetary lotteries with relatively small stakes, where a linear function f appears particularly plausible, all
non-degenerate risk attitudes are entirely driven by the aggregation frictions.
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anticipates a degenerate lottery (r, . . . , r). If, on the other extreme, P = {{1}, . . . , {I}}
is the finest partition, then the DM anticipates that any reward tuple in AP = [r, r]I is

possible. Such fine DM knows that the weather is payoff-relevant and hence anticipates that

the purchase of the convertible car leads to weather-dependent rewards.

We treat the partition P as exogenous. There are, however, various paths that could

have led the DM to the adoption of a partition, and in particular a partition that is too

coarse to measure lotteries she actually encounters. The DM could have evolved in a simple

environment in which all lotteries were measurable with respect to a relatively coarse parti-

tion. Afterwards, the environment became more complex, so that she currently encounters

lotteries that involve more risk, but the DM has not made an adjustment and continues to

model the world as relatively riskless. It is plausible that real-world DMs are sometimes not

aware of all contingencies that affect their payoffs, thus effectively omitting relevant variables

from their model of the risk. Alternatively, the DM may have been assured (incorrectly and

possibly by a strategically interested party such as a car dealer) that her next lottery will

be relatively riskless. Finally, the DM may know that she encounters a risky lottery but

applies a coarse estimation procedure due to its simplicity, as it requires the estimation of a

smaller number of distinct rewards. Subjects in Oprea (2023)’s experiment explicitly report

being aware that they use a simplifying procedure when aggregating the value of a lottery.

Our approach is also compatible with the idea that the DM’s partition changes over time.

An unexperienced agent may first use a coarse partition but become increasingly fine in

subsequent choices.

Our next result characterizes the behavior of the DM who forms a maximum likelihood

estimate using a given partition and a given encoding strategy.

Proposition 1. With maximum likelihood decoding, the probability that the DM chooses the

lottery in problem (r, s) converges almost surely to 1 (0) as n→ ∞ if∑
J∈P

pJr
∗
J > (<) s,

where pJ =
∑

i∈J pi and r
∗
J is the certainty equivalent defined by

m (r∗J) =
∑
i∈J

πi∑
j∈J πj

m (ri)

for each element of the partition J ∈ P.

In the limit, the DM chooses as if she was treating the lottery r as a compound lottery

in which each element J of the partition P constitutes a sub-lottery and these sub-lotteries
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occur with probabilities pJ . She behaves as if she first reduced each sub-lottery to its certainty

equivalent under the Bernoulli utility function m and subjective probabilities equal to the

(normalized) sampling frequencies πi. After the reduction, she evaluates the overall lottery

in a risk-neutral manner using the true probabilities of each J .

We prove the proposition in Appendix A.1. The proof relies on a result about misspecified

maximum-likelihood estimation by White (1982). White lets an agent observe iid signals

from a signal density and form the maximum likelihood estimate from a set of hypothesized

signal densities that may fail to include the true density. He proves that the estimate almost

surely converges to the minimizer of the Kullback-Leibler divergence from the true signal

density as the number of signals diverges. To apply this result in our setting, consider a DM

who encounters a lottery r. She observes the empirical distribution of approximately πin

perturbed messages drawn iid from N (m(ri), 1) for each state i. Since the DM anticipates

a lottery which pays the same reward in all states i ∈ J , she forms an estimate of a single

unperturbed message for each J ∈ P , a perturbation of which has generated the observed

data. For Gaussian errors, this estimate is the arithmetic average of the perturbed messages

for J , denoted m̂Jn, which almost surely converges to
∑

i∈J
πi∑

j∈J πj
m(ri). Thus, the DM’s

estimate of the reward of J converges to the certainty equivalent r∗J defined in the proposition.

Across elements J of the partition, the DM’s anticipation of distinct rewards implies that

her maximum likelihood estimate aggregates the values r∗J in a risk-neutral manner.

The simple decoding procedure studied in the previous subsection corresponds to the

special case of a DM who anticipates no risk at all and uses the coarsest partition P =

{{1, . . . , I}}. This DM explains her perception data by the same reward across all states. The

maximum likelihood estimate of that reward is given by the average of all observed perturbed

messages mapped through the inverse of the encoding function. The behavior of the DM is

therefore governed by the sampling frequencies rather than by the true probabilities. Indeed,

this DM believes that the true probabilities are payoff-irrelevant. In contrast, the sampling

frequencies govern the proportions of her data generated for each state and hence her estimate

of the encoded riskless reward that she thinks she has encountered.

The other extreme is a DM who uses the finest partition P = {{1}, . . . , {I}} and therefore

always behaves in a risk-neutral manner based on correct probabilities. More generally,

whenever the DM encounters a lottery r ∈ AP that she has anticipated, she learns in a

well-specified model. Asymptotic results for well-specified maximum-likelihood estimation

by Wald (1949) imply that she correctly learns the encountered lottery as the number of

signals diverges, implying that her encoding strategy becomes irrelevant and she chooses in

a risk-neutral way.

Between these two extremes, our model gives rise to interesting comparative statics. In
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addition to being compatible with Oprea (2023), we predict that behavior is risk-neutral for

risk that the DM anticipates in her environment, while the encoding strategy generates non-

trivial risk attitudes for risk that the DM does not anticipate. All the behavioral patterns

discussed in the context of the simple decoding procedure in Subsection 2.1 are modulated by

the degree of understanding of the risk and thus by the DM’s experience with the situation,

with more experience generating more risk-neutral and less manipulable behavior. This is

in line with experimental results showing that experience with a decision-problem tends to

shift risk-preferences towards risk-neutrality (Bradbury et al., 2015; Ert and Haruvy, 2017;

Charness et al., 2023).

Our results contrast with Savage (1954). In his discussion of small world models, Savage

argues that a coarse representation of the complex grand world does not necessarily distort

behavior. In his argument, Savage assumes that the DM learns the correct reward average

for each element of the coarse state space partition. Our approach departs from Savage

in that we explicitly model the process of learning. We argue that the DM is unlikely to

learn the correct average rewards for each element of her partition. If she learns within

the small world model, then, instead of the average reward, her estimate converges to the

certainty equivalent under her encoding function and subjective probabilities equal to her

sampling frequencies. We thus add the observation that long-run biases in estimates may

asymptotically survive in a natural coarse learning process.

We conclude this subsection by two remarks. First, Proposition 1 has an immediate

extension to choice between multiple lotteries. The DM’s estimate of the value of any lottery

r converges to
∑

J∈P pJr
∗
J and therefore, in the limit, she chooses the one that maximizes this

expression among all feasible lotteries. Second, analogous results hold when the DM forms

a Bayesian estimate of the lottery using a prior with support AP , rather than a maximum

likelihood estimate. The results of Berk (1966) for misspecified Bayesian estimation imply

that the Bayesian estimate also converges to the minimizer of the Kullback-Leibler divergence

from the true signal distribution, generating the same limiting behavior of the DM as with

the maximum likelihood estimate. The two different estimation approaches deliver the same

result because the effect of the prior becomes negligible in the limit with many signals.

2.3 Decoding with Additional Prior Information

The distinction between anticipated and unanticipated lotteries in the previous section is

dichotomous. In this subsection, we pursue a more continuous approach that allows for ad-

ditional comparative statics. We study, in a specific example, a Bayesian DM who possesses a

comparable amount of both a priori and perceptual information, allowing both these sources
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to influence the choice. The DM is well-specified but has a prior belief leaning towards risk-

less lotteries. For the sake of comparability with the setting from the previous subsection,

we consider a sequence of information structures in which both the prior concentrates on the

set of riskless lotteries and the quantity of perception data diverges. Changing the relative

rates of divergence allows us to modulate the relative influence of a priori versus perceptual

information.

We set the prior belief of the DM over lotteries r, indexed by n, to the density

ϱn(r) = ϱ0n exp
(
− n

2∆
σ2(r)

)
(2)

with support [r, r]I , where σ2(r) =
∑I

i=1 pi(ri −
∑

j pjrj)
2 is the variance of the states’

rewards and ϱ0n is the normalization factor. For large n, this prior approximates a prior over

a riskless value uniformly distributed on [r, r]. The parameter ∆ > 0 specifies the level of

a priori anticipated risk. The larger ∆ is, the more risk the DM anticipates for any given

n.4 Additionally to indexing the prior, we let n control the volume of the DM’s perception

data. Akin to our model in the previous subsections, for each state i the DM observes a

sequence of approximately aπinmessages equal tom (ri) perturbed with iid additive standard

normal noise, where m and (πi)i continue to denote the exogenous encoding strategy.5 The

parameter a > 0 represents attention span. A larger a implies that the DM observes more

signals for every fixed n.

The DM chooses the lottery r over the safe option s if and only if the posterior expected

lottery value exceeds s. The new parameters ∆ and a jointly determine how much the DM’s

prior and the perceptual information affect her posterior expectation. If a∆ is small, then the

DM’s prior anticipation of a relatively riskless lottery dominates the data obtained through

perception. Conversely, if a∆ is large, the rich perception data dominate the relatively

dispersed prior belief.

The result of Berk (1966), who characterizes the Bayesian posterior asymptotically for

expanding data volume keeping the prior fixed, does not apply directly to our setting where

the prior varies alongside the data volume. However, we adapt his result and show that

the Bayesian posterior concentrates on a compromise lottery that balances the unexpected

elements observed in the data (akin to Berk’s conclusion) with the surprises stemming from

our progressively focused prior.

4For large n, one can think of this prior as first drawing a common value for rewards in all states uniformly
from [r, r] and then perturbing each reward with a Gaussian shock with variance proportional to ∆2.

5Since we take the number n of signals to be large, from now on we abstract from uncertainty over the
number of perturbed messages sampled for each state and from divisibility issues, that is, we suppose that
the average of the sampled messages for state i is drawn from N

(
m(ri), 1/(aπin)

)
.
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To formulate our result, we define a function q∗ : [r, r]I −→ [r, r]I by

q∗(r) = argmin
r′∈[r,r]I

{
σ2(r′)

a∆
+

I∑
i=1

πi (m (r′i)−m(ri))
2

}
(3)

and impose the regularity condition that the minimizer is unique for the given r of interest,

which holds generically. We will show that the DM’s posterior expected lottery converges

to q∗(r) almost surely as n → ∞. The asymptotic estimate q∗(r) = (q∗1(r), . . . , q
∗
I (r)) is a

compromise lottery that is not too risky and does not generate messages too far from the true

messages. When a∆ is small, a main concern in (3) is the minimization of σ2(r′), and hence

q∗(r) will involve little risk. In the limit as a∆ → 0, the solution minimizes Kullback-Leibler

divergence from the true lottery (the last term on the right side of (3)) among the riskless

lotteries. When a∆ is large, the main concern in (3) is the minimization of the discrepancy

between the messages, which in the limit as a∆ → ∞ yields the correct lottery q∗(r) = r.

Proposition 2. With Bayesian decoding and concentrated prior beliefs, the probability that

the DM chooses the lottery in problem (r, s) converges almost surely to 1 (0) as n→ ∞ if

I∑
i=1

piq
∗
i (r) > (<) s.

See Appendix A.2 for the proof. If the DM anticipates relatively large risk and/or collects

a lot of perception data (a∆ large), the relevance of the prior information is diminished and

the DM learns the true value of the lottery, becoming risk-neutral like the well-specified DM

in Subsection 2.2. If the DM anticipates relatively little risk and/or collects little perception

data (a∆ small), prior information remains influential and the DM’s posterior mirrors that

of the coarse DM, leading her to maximize Bernoulli utility equal to her encoding function

and to use sampling frequencies as subjective probability weights. Furthermore, the result

yields additional comparative statics in between these two extremes. As the volume of

perception data grows, the DM’s choice progressively shifts from the risk attitudes shaped

by her encoding strategy to risk-neutrality. Similarly, risk attitudes are attenuated by the

anticipation of high risk.6

To illustrate these comparative statics further, we compute the risk premium defined in

the standard manner as the excess return needed to compensate the DM for accepting a

6Our prediction that anticipation of risk makes the DM less risk-averse is reminiscent of Köszegi and Rabin
(2007) but is based on a different mechanism. In Köszegi and Rabin (2007), anticipation is modelled by a
reference lottery and behavioral risk-attitudes are generated by aversion to losses relative to that reference
lottery. In our model, anticipation is modelled by prior beliefs about the decision problem and behavioral
risk-attitudes are generated by biases in the estimation of surprising lotteries.
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risk. As common in expected utility theory, we compute the risk premium for a lottery that

involves little risk, in that the variance σ2(r) of the rewards across states is small. To further

facilitate comparison with expected utility theory, we set the sampling frequencies equal to

the actual probabilities.7

Proposition 3. Let the encoding function m be twice differentiable and assume πi = pi.

Given a lottery r, the expected value of its Bayesian estimate converges almost surely to

r +
1

2

m′′(r)

m′(r)
· 1 + 4z(r)

(1 + z(r))2
· σ2(r) + o(σ2(r)) (4)

as n→ ∞, where z(r) = a∆m′2(r).

See Appendix A.3 for the proof. To interpret the result, recall that the risk premium of

an expected utility maximizer with Bernoulli utility u for a lottery r with small risk is given

by 1
2
u′′(r)
u′(r)

σ2(r). The risk premium of our DM is the same for u(·) = m(·) but scaled by the

positive factor 1+4z(r)
(1+z(r))2

that depends on the parameters ∆ and a. This factor approaches 1

and 0 as a∆ → 0 and a∆ → ∞, respectively.

The bias in the valuation of the lottery – expressed here as the risk premium – arises as

follows. The DM who encounters a risky lottery faces a conflict between the perception data

and the prior information and resolves this conflict by concluding that she has encountered a

compromise lottery that is more risky than a priori anticipated but less risky than indicated

by the perception data. This underestimation of the reward variance leads to a mismatch

with the perception data. To minimize the mismatch, the curvature of the encoding function

requires the DM to form a bias in the estimated average reward. The resulting bias depends

on the curvature of the encoding function (captured by the term 1
2
m′′

m′ ) and on the extent of

the underestimation of the reward variance (captured by the factor 1+4z
(1+z)2

).8

The dependence of the risk premium on the parameter a sheds light on the apparent

instability of risk preferences pointed out by Kahneman (2011). Kahnemann distinguishes

between fast and slow decision-making, where the fast mode favours the risk-attitudes found

in prospect theory whereas the slow mode favours risk-neutrality.9 In accord with Kahne-

mann, we find encoding-based risk attitudes when a → 0, corresponding to a fast decision

7Otherwise, the effect of distorted sampling dominates the effect of the curvature of the encoding function,
because the first effect is of the order of σ(r) while the second effect is only of the order of σ2(r). In the
following, the expression o(·) stands for “term of smaller order than.” Specifically, we say that function f(r)
is o(g(r)) if f(rk)/g(rk) → 0 for any sequence rk such that g(rk) → 0.

8We remark that this latter factor is not monotone in z and larger than one for small z.
9Kirchler et al. (2017) show experimentally that time pressure increases risk aversion for gains and risk

loving for losses. Relatedly, Porcelli and Delgado (2009) and Cahĺıková and Cingl (2017) find that stress
accentuates risk attitudes in lab choices. But see also Kocher, Pahlke, and Trautmann (2013) who do not
find an increase of risk aversion due to time pressure in their design.
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that is based primarily on prior beliefs, without much consideration of the data about the

specific decision problem. In slow decisions, corresponding to a → ∞, the DM collects

enough data for her prior to become irrelevant and makes the risk-neutral choice.

Rabin (2000) points out that risk-averse choices observed for small risks imply implausibly

high risk aversion for large risks under a stable Bernoulli utility function. In our model, risk

attitudes depend on the level of a priori anticipated risk. The anticipation of low risk,

captured by small ∆, induces strong risk attitudes since it makes risky lotteries surprising,

and this leads to distortion of the posteriors when a risky lottery is encountered. If the DM

anticipates large risk, captured by large ∆, then her risk attitudes are attenuated. Risky

lotteries then become relatively unsurprising, and the DM’s posterior expectation approaches

the lottery’s true expected value, inducing risk-neutrality.

3 Optimal Encoding

So far we have treated the encoding strategy (m, (πi)i) as exogenous. In this section, we

propose one way of endogenizing it using optimality arguments.

The encoding strategy determines how the DM allocates attention. An increase of the

sampling frequency of a state increases the DM’s attention to its reward but reduces at-

tention to the rewards in other states. Similarly, making the encoding function steeper in

a neighborhood of a reward value increases attention and reduces perception error in this

neighborhood, but entails decreased attention and increased perception error elsewhere, due

to the finite range of the encoding function. Therefore, the encoding strategy needs to adapt

to the prevailing environment if it is to allocate attention efficiently. We will show that, for

the limit of many signals, the DM’s loss caused by perception errors equals the mean squared

error of her estimate of the lottery value, averaged over the pivotal decision problems where

perception matters even when the data volume is large. We then optimize the encoding

strategy. The loss-minimizing solution generalizes results in the literature (Robson, 2001;

Netzer, 2009; Woodford, 2012; Payzan-LeNestour and Woodford, 2021) and, under reason-

able assumptions, entails an S-shaped encoding function and oversampling of low-probability

states.

3.1 Objective

We fix a state space partition P and assume that this partition correctly describes the

environment at the point of optimization of the encoding function, i.e., all lotteries are

measurable with respect to P . The encoding strategy is therefore optimized in a statistical
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model with well-specified decoding of the perception data. We interpret this optimization

process as evolutionary selection.

Since the distinction between states within each J ∈ P is redundant, we treat J as an

index of a state, refer to the rewards in states i ∈ J simply as rJ , and model the whole

lottery r = (rJ)J∈P as having |P| rewards, each with probability pJ =
∑

i∈J pi. An encoding

strategy consists of the encoding function m(·) and positive sampling frequencies (πJ)J .
10

The encoding strategy is optimized ex ante for a given distribution of decision problems.

Specifically, the rewards rJ are assumed to be iid with a continuous density h, and the safe

option s is drawn from a continuous density hs independently of the lottery rewards. Both

densities have supports [r, r].11

Let r =
∑

J pJrJ denote the value of lottery r and qn =
∑

J pJqJn its maximum likelihood

estimate, where each qJn = m−1(m̂Jn) is the maximum-likelihood estimate of rJ given the

average perturbed message m̂Jn. The DM’s ex ante expected loss relative to choice under

complete information is

L(n) = E [max{r, s} − 1qn>sr − 1qn≤ss] ,

where the expectation is over the estimate qn and the decision problem (r, s).

Proposition 4. The expected loss satisfies

lim
n→∞

nL(n) =
1

2
E

[
hs(r)

∑
J

p2J
πJm′2(rJ)

]
, (5)

where the expectation is with respect to r.

See Appendix A.4 for the proof. The limit loss characterization in (5) has an intuitive

interpretation. It is the DM’s mean squared error (MSE) in the perception of the lottery

value integrated over all decision problems in which the true lottery value r ties with the

outside option value s (multiplied by n/2). The conditioning on the tie arises because the

likelihood of large perception errors vanishes quickly with increasing n. Asymptotically,

only small perception errors contribute significantly to the loss, and these distort choice only

in decision problems in which an approximate tie arises. In the limit, the set of decision

problems in which perception errors have nontrivial loss consequences approaches the set of

10Assuming positive sampling frequencies is without loss, because in the limit when the number of signals
grows it is optimal to gather at least some information about the rewards in each state.

11Since s can have a distinct density from that of rJ , the safe option may for example capture, in reduced
form, the choice of an alternative lottery with each of its rewards drawn from h.
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problems with exact ties.12 To understand the relevance of the MSE for loss, fix the nearby

true and perceived lottery values. The perception error distorts choice and causes loss if and

only if the safe option s falls in between these two values. Hence, a mistaken choice arises

with a probability proportional to the size of the perception error. The loss associated with

such a mistake is also proportional to the error size, making the expected loss proportional

to the MSE.

The precision of the DM’s perception varies across lotteries. Observe that, approximately

for large n, the DM measures reward rJ with MSE equal to 1/(πJnm
′2(rJ)). This is because

she observes the encoded value m(rJ) with MSE 1/(πJn), and the map between the encoded

and the true value can be locally linearized for large n, so that the local slope m′(rJ) of the

encoding function determines the precision of the estimate. The sum in (5) is thus the MSE

of the perception of the value of lottery r, scaled up by n.

Motivated by the asymptotic loss characterization, we now fix a large n, use (5) to

approximate the expected loss, and solve for the encoding strategy which minimizes the loss.

Formally, we define the information-processing problem as the minimization of the expected

MSE conditional on ties:

min
m′(·)>0,(πJ )J>0

E

[∑
J

p2J
πJm′2(rJ)

| r = s

]
(6)

s.t.:

∫ r

r

m′(r̃)dr̃ ≤ m−m (7)

∑
J

πJ = 1. (8)

The objective in (6) equals the asymptotic loss characterized in (5), up to a factor that

is independent of the encoding strategy.13 We let the DM control the derivative m′(·).
Constraint (7) is implied by the finite range of the encoding function – the encoding function

12A related marginal argument was used in Steiner and Stewart (2016) in their analysis of the optional
perception of probabilities.

13The conditional expectation in (6) is

E

[∑
J

p2J
πJm′2(rJ)

| r = s

]
=

E
[∑

J
p2
J

πJm′2(rJ )
hs(r)

]
E[hs(r)]

.

It coincides with the asymptotic loss from (5) up to the ex ante likelihood of a tie, E[hs(r)], and the scaling
factor 2/n. A special case in which conditioning on ties can be ignored is when s is uniformly distributed,
because conditional and unconditional MSE are then identical up to a constant. Earlier work has assumed
the minimization of unconditional MSE (e.g. Woodford, 2012).

18



cannot be steep everywhere. Constraint (8) requires (πJ)J to be a probability distribution –

the DM must also treat sampling frequencies as a scarce resource. We say that an encoding

strategy (m(·), (πJ)J) is optimal if (m′(·), (πJ)J) solves the information-processing problem.

3.2 Optimization

We say that a density f(x) on [r, r] is unimodal and symmetric around the mode rm =

(r + r)/2 if it is strictly decreasing on (rm, r] and f (rm + y) = f (rm − y) for all y.14

Proposition 5. If the densities h and hs are unimodal and symmetric, then the optimal

encoding strategy has the following properties:

1. The encoding function is S-shaped: strictly convex below and strictly concave above rm.

Additionally, it is continuously differentiable.

2. The DM oversamples low-probability states. For any two states J , J ′ such that pJ < pJ ′,

it holds that πJ

pJ
>

πJ′
pJ′

.

The proof in Appendix A.5 derives first-order conditions of the information-processing

problem for general distributions and then exploits unimodality and symmetry to establish

the above properties.

The first statement of the proposition extends an existing result in the literature for

choice over two riskless rewards. The core intuition is that to minimize the loss, the optimal

encoding function is steep in the range of rewards that often occur in decision problems with

ties. The novel challenge arising in our setting is to prove that the reward in each state

conditional on a tie inherits the unimodality and symmetry property of its unconditional

distribution, which then implies the S-shape of the encoding function. The solution restricted

to riskless lotteries with a single state coincides with the optimal encoding from Netzer (2009)

(see Lemma 4 in Appendix A.5 for details).

The second statement of the proposition has no counterpart in the existing literature. It is

driven by our microfoundation of the objective of the information-processing problem. While

rewards are assumed to be iid across the states unconditionally, conditional on a tie they are

no longer identically distributed. The tie condition
∑

J pJrJ = s is relatively uninformative

about rewards in low-probability states, and hence the conditional reward distributions for

14Symmetry is sufficient but not necessary for the statement of Proposition 5. Our proof exploits that
symmetry combined with unimodality of random variables is preserved by summation. This implies that
the distribution of each reward rJ conditional on a tie is unimodal. Unimodality in absence of symmetry is
generally not preserved by summation. Note that, if the safe option is the value of an alternative lottery with
rewards drawn from h, as discussed in footnote 11, then unimodality and symmetry of h implies unimodality
and symmetry of hs.
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the low-probability states are more spread-out compared to the high-probability states. In

simple words, since a tail reward in a high-probability state makes the lottery value extreme

and not likely to result in a tie with the outside option, once the DM conditions on the pivotal

event of a tie, she expects to encounter more tail rewards in low- than in high-probability

states. Because the optimal encoding function is relatively flat at such tail rewards, the DM

measures the rewards of the low-probability states relatively poorly. Sampling according to

the true probabilities would, therefore, leave the DM relatively poorly informed about the

low-probability states, and hence the marginal benefit of an additional signal would be larger

for those than for the other states. As a consequence, the DM finds it optimal to oversample

the low-probability states relative to proportional sampling.15 In particular, when there are

two states, then πJ > pJ for the state with probability pJ < 1/2 and vice versa for the

high-probability state. Had the DM minimized the unconditional MSE, the effect would

not arise. By taking the instrumental perspective that focuses on the payoff consequences

of perception errors in choice problems, we obtain an objective that conditions on ties and

induces nontrivial sampling frequencies as the optimal adaptation.

4 Related Literature

We build on a rich literature in neuroscience and economics, to which we make two distinct

contributions. First, we clarify the role of misspecification for behavioral consequences of

any perception strategy when stakes are large relative to perception frictions. Second, we

jointly optimize both encoding of the lottery rewards and their sampling frequencies.

For the first contribution, we apply the statistical results of Berk (1966) and White (1982)

on asymptotic outcomes of misspecified Bayesian and maximum-likelihood estimation. The

concept of Berk-Nash equilibrium in Esponda and Pouzo (2016) is defined as a fixed point

of misspecified learning. This has motivated a renewed interest in misspecification across

economics. Heidhues et al. (2018) characterize a vicious circle of overconfident learning,

Molavi (2019) studies the macroeconomic consequences of misspecification, Frick et al. (2021)

rank the short- and long-run costs of various forms of misspecification, and Eliaz and Spiegler

(2020) focus on political-economy consequences of misspecification. We study the interplay

of encoding and misspecified decoding of rewards, thereby connecting perception to classical

representations using a Bernoulli utility function and subjective probability weights.

15In Woodford (2012), a decision-maker collects information about multi-attribute objects through an
information channel and allocates finite channel capacity across the different attributes. It is then optimal
to allocate more capacity to attributes with higher prior variance. In our analysis, the more spread-out
reward distributions in low-probability states arise endogenously in the pivotal decision problems, and the
(optimal) S-shaped value function is crucial for making oversampling optimal.
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Salant and Rubinstein (2008) and Bernheim and Rangel (2009) provide a revealed-

preference theory of the behavioral and welfare implications of frames – payoff-irrelevant

aspects of decision problems. We provide an account of how a specific frame – anticipa-

tion of the risk structure – affects choice and welfare. As in Kahneman, Wakker, and Sarin

(1997), our model implies a distinction between decision and welfare utilities. In the case

of the misspecified DM, the gap between the decision utility that she anticipates the lottery

to pay and welfare utility – the true expected lottery reward – may be large. Our model

facilitates an analysis of systematic mistakes in decision making as outlined in Koszegi and

Rabin (2008) and, for the case of framing effects, Benkert and Netzer (2018).

Our second contribution derives ultimately from psychophysics, a field that originated

in Fechner’s (1860) study of stochastic perceptual comparisons based on Weber’s data.16 A

large literature in brain sciences and psychology views perception as information process-

ing via a limited channel and studies the optimal encoding of stimuli for a given channel

capacity. Laughlin (1981) derives and tests the hypothesis that optimal encoding under an

information-theoretic objective encodes random stimuli with neural activities proportional to

their cumulative distribution value. This implies S-shaped encoding for unimodal densities.17

Neuroscience studies encoding adaptations under various optimization objectives such as

maximization of mutual information between the stimulus and its perception, maximization

of Fisher information, or minimization of the mean squared error of perception.18 Eco-

nomics can help here by providing microfoundations for the most appropriate optimization

objective for perceptions related to choice. Robson (2001) has studied encoding of rewards

that minimizes the probability of making a wrong choice and has shown that, in the limit

of vanishing perception frictions, the optimal encoding function likewise coincides with the

cumulative distribution function of rewards in the decision environment. Netzer (2009) has

studied maximization of the expected chosen reward, an objective rooted in the instrumental

approach of economics to information. The optimal encoding function still tracks the cumu-

lative distribution function but is flattened. Schaffner et al. (2023) report that the optimal

encoding function as in Netzer provides a better fit to neural data than do encodings derived

under competing objectives.

These models study choices over riskless prizes and thus the derived encoding functions

are not directly relevant to choices over gambles. Indeed, encoding functions are often

interpreted as hedonic anticipatory utilities rather than as Bernoulli utilities in that literature

(see Rayo and Becker, 2007).19 We extend Netzer’s instrumental approach to choices over

16Woodford (2020) provides a review of psychophysics from an economics perspective.
17See Attneave (1954) and Barlow (1961) for early contributions and Heng et al. (2020) for recent work.
18See e.g. Bethge et al. (2002) and Wang et al. (2016).
19The optimal hedonic utility function of Rayo and Becker (2007) is a step function. They provide an
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gambles, finding a connection to one of the above reduced-form objectives.20 That is, in the

limit with rich perception data, maximization of the expected chosen reward is equivalent

to minimization of the expected mean squared error in the perceived lottery value, where

the expectation is over all decision problems with a tie. This conditioning on ties not

only generates the better fit of the optimal encoding function documented by Schaffner

et al. (2023) but is also crucial for the result of optimal oversampling of low-probability

contingencies. Oversampling would not arise under reduced-form objectives that maximize

unconditional measures of precision.21

Some recent papers study risk attitudes stemming from reward encoding in the presence

of noise. Khaw et al. (2021) show theoretically and verify experimentally that exogenous

logarithmic stochastic encoding and Bayesian decoding generates risk attitudes in an effect

akin to reversion to the mean, compatible with the paradox of Rabin (2000). Vieider (2023)

proposes a model in which probabilities are also encoded in an exogenous logarithmic way and

establishes a connection to stochastic prospect theory. Frydman and Jin (2022) and Juechems

et al. (2021) allow for optimal encoding of the lottery reward and show both theoretically

and experimentally that this encoding adapts to the distribution of the decision problems

and that the adaptation affects choice. Like ours, these papers are in principle compatible

with the findings of Oprea (2023). Relative to these papers, we analyze optimal encoding of

rewards alongside optimal treatment of probabilities. We also differ in the proposed source of

behavioral distortions. The discussed models assume well-specified learning, and thus they

approximate the frictionless benchmark when noise becomes small. We focus on the limit

of small encoding noise right away. This focus uncovers a novel connection between coding

and behavior. While the impact of coding on behavior must necessarily vanish when the

decoding model is well-specified, as in the previous literature, the implications for behavior

remain substantial if the cognitive model used for decoding oversimplifies the structure of

the risk.

extension in which this function becomes s-shaped. Robson et al. (2023) is a dynamic version of Robson
(2001) and Netzer (2009) that captures low-rationality, real-time adaptation of a hedonic utility function
used to make ultimately deterministic choices. Friedman (1989) is an early approach dealing with gambles.

20Our model differs from Robson (2001) and Netzer (2009) concerning the perception friction. Those
papers model frictions as minimal just noticeable differences, while here we rely on the modeling framework
of Thurstone (1927) who hypothesized that perception is a Gaussian perturbation of an encoded stimulus.
Payzan-LeNestour and Woodford (2021) have shown that the Gaussian approach yields the same limiting
results as in Robson (2001) and Netzer (2009).

21Herold and Netzer (2023) derive probability weighting as the optimal correction for an exogenous dis-
tortive S-shaped value function, and Steiner and Stewart (2016) find probability weighting to be an optimal
correction for naive noisy information processing. Lieder et al. (2017) argue that a contingency should be
oversampled if it has extreme payoff consequences and decisions are based on a small sample. The present
paper derives both S-shaped encoding and low-probability over-sampling in a joint optimization.
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5 Conclusion

We develop a model of perception and aggregation of lotteries (or other complex options).

Our model has an encoding stage, where the DM generates signals about the lottery rewards

using an encoding function and sampling frequencies that jointly determine how she allocates

her attention, and a decoding stage, where the DM estimates the value of the lottery based

on the generated signals using a more or less sophisticated estimation procedure.

We first show that the behavioral impact of encoding vanishes for rich perception data if

the DM encounters a lottery that she has anticipated and that she therefore decodes using

a well-specified estimation procedure. On the other hand, encoding-induced behavioral risk

attitudes arise for lotteries that the DM has not anticipated and that she therefore decodes

using a misspecified estimation procedure. In the latter case, our model provides a unified

explanation for multiple well-documented empirical patterns: adaptive risk preferences, dif-

ferent risk attitudes for small and large risks, probability weighting, availability heuristics,

the roles of salience, time pressure and experience, and behavioral risk attitudes toward

non-risky options. Second, we derive properties of optimal encoding in a model with well-

specified decoding and show that the optimal encoding strategy typically exhibits S-shaped

reward encoding and oversampling of low-probability states.

An interesting question that our paper leaves open is about the properties of optimal en-

coding when decoding is anticipated to be misspecified. Even though evolutionary processes

are typically not forward looking, there may be benefits to a robust encoding solution that

performs well when the DM acts in changing environments for which she is misspecified.

When considering the limit of rich perception data, like we did in this paper, the large mis-

takes from misspecification will always outweigh the small mistakes from perception errors,

and this constitutes a force towards linear encoding functions (Rustichini et al., 2017) which

mitigate the misspecification bias. A more suitable framework for the study of optimal en-

coding with misspecified decoding may be a Bayesian model with prior information like in

our Subsection 2.3, where perception errors and misspecification errors remain of compara-

ble size. Optimal perception of lotteries in the presence of large encoding noise and with

anticipation of one’s own decoding frictions remains a hard open problem that may require

new conceptual breakthroughs.
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A Proofs

A.1 Proof of Proposition 1

Let fr(x) be the signal density conditional on the encountered lottery r. That is, for signal

x = (m̂, i), fr(x) = πiφ (m̂−m(ri)) where φ is the standard normal density. The Kullback-

Leibler divergence of the signal densities for any two lotteries r, r′ is

DKL (fr ∥ fr′) =

∫
R×{1,...,I}

fr(x) ln
fr(x)

fr′(x)
dx

=
I∑

i=1

∫
R
πiφ (m̂−m (ri)) ln

πiφ (m̂−m (ri))

πiφ (m̂−m (r′i))
dm̂

=
I∑

i=1

πi

∫
R
φ (m̂−m (ri)) ln

φ (m̂−m (ri))

φ (m̂−m (r′i))
dm̂

=
I∑

i=1

πiDKL

(
φm(ri) ∥ φm(r′i)

)

=
1

2

I∑
i=1

πi (m (ri)−m (r′i))
2
,

where φm̃(m̂) = φ(m̂ − m̃) is the density of the perturbed message m̂ conditional on the

unperturbed message m̃. The last equality follows from the fact that the Kullback-Leibler di-

vergence of two Gaussian densities with means µ1, µ2 and variances equal to 1 is (µ1 − µ2)
2 /2

(see e.g. Johnson and Orsak, 1993).

Let

r∗ = argmin
r′∈AP

DKL (fr ∥ fr′) = argmin
r′∈AP

I∑
i=1

πi (m (ri)−m (r′i))
2
.

This minimizer r∗ = (r∗i )i is unique and satisfies, for each state i = 1, . . . , I,

m (r∗i ) = argmin
m∈[m,m]

∑
j∈J(i)

πj (m (rj)−m)2

=
∑
j∈J(i)

πj
πJ(i)

m (rj) ,
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where J(i) is the element of the partition P that contains i and πJ(i) =
∑

j∈J(i) πj. The

estimated lottery value qn almost surely converges to
∑I

i=1 pir
∗
i , which follows from White

(1982) who proves that qn almost surely converges to the minimizer of the Kullback-Leibler

divergence (provided the minimizer is unique).

A.2 Proof of Proposition 2

We first state a lemma that will be useful for the proof of Proposition 2.

Lemma 1. Let ψn(x) : [r, r]
I −→ R be a sequence of continuous functions uniformly con-

verging to a function ψ(x) which has a unique minimizer x∗. Then, the random variable Xn

with PDF equal to αn exp(−nψn(x)), where αn is the normalization factor, converges to x∗

in probability as n→ ∞.

Proof. We need to prove that for every δ > 0, the probability P (Xn ∈ Bδ) → 1 as n → ∞,

where Bδ is the open Euclidean δ-ball centered at x∗. Fix δ > 0 and define

d = min
x∈[r,r]I\Bδ

{ψ(x)− ψ(x∗)} .

The minimum exists as ψ is continuous and the set [r, r]I \Bδ is closed. Additionally, d > 0

since x∗ is the unique minimizer of ψ on [r, r]I .

Because the convergence ψn → ψ is uniform, for any d′ > 0 there exists nd′ ∈ N such

that |ψn(x) − ψ(x)| < d′ for all x ∈ [r, r]I and n ≥ nd′ . Consider n ≥ nd/4. Because

ψn(x) ≥ ψ(x)− d
4
≥ ψ(x∗) + 3d

4
for x outside of the ball Bδ, the probability density of Xn is

at most αn exp
(
−nψ(x∗)− 3d

4
n
)
. This implies,

P (Xn /∈ Bδ) ≤ α̃n exp

(
−3d

4
n

)
(r − r)I , where α̃n := αn exp(−nψ(x∗)). (9)

We conclude by establishing an upper bound for α̃n. Given δ > 0, let δ′ > 0 be such that

ψ(x) ≤ ψ(x∗) + d/4 for all x ∈ Bδ′ ∩ [r, r]I . Existence of such δ′ follows from the continuity

of ψ. Then, ψn(x) ≤ ψ(x) + d
4
≤ ψ(x∗) + d

2
for all x ∈ Bδ′ ∩ [r, r]I and n > nd/4. Thus the

probability density of Xn is at least α̃n exp
(
−d

2
n
)
on this set. It follows that,

1 ≥ P (Xn ∈ Bδ′) ≥ α̃n exp

(
−d
2
n

)
b′,

where b′ > 0 is the volume of the set Bδ′ ∩ [r, r]I . Substituting the implied upper bound on
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α̃n into (9) gives

P (Xn /∈ Bδ) ≤ exp

(
−d
4
n

)
(r − r)I

b′
.

Since the right side vanishes as n→ ∞, the claim follows.

We now prove Proposition 2. Let m̂n = (m̂in)
I
i=1 be the tuple of the averages of aπin

perturbed messages received for each state i. Since the encoding errors are standard normal,

this tuple of averages is a sufficient statistic for the Bayesian estimation, and we have m̂in ∼
N
(
m(ri),

1
aπin

)
. By Bayes’ Rule, the posterior density of each lottery r′ ∈ [r, r]I is, for given

m̂n, proportional to

ϱn (r
′)

I∏
i=1

φ
((
m̂in −m(r′i)

)√
aπin

)
∝ exp

(
− nψ(r′; m̂n)

)
,

where ∝ denotes equality modulo normalization and

ψ(r; m̂) :=
1

2

I∑
i=1

(
σ2(r)

∆
+ aπi

(
m(ri)− m̂i

)2)
.

Throughout this paragraph, consider a fixed realization of the sequence (m̂n)n such that

m̂in → m(ri) for all i. Then, ψ(r′; m̂n) converges to ψ
(
r′; (m(ri))i

)
, uniformly in r′. Addi-

tionally, ψ
(
r′; (m(ri))i

)
as a function of r′ has the unique minimizer q∗(r) by assumption.

Lemma 1 implies that the posterior formed given m̂n converges in probability to q∗(r).

Since the support of the rewards is bounded, convergence in probability implies convergence

in expected value, and thus the Bayesian estimate E [r̂ | m̂n] ∈ [r, r]I converges to q∗(r).

Since m̂in → m(ri) almost surely, we conclude that E[
∑I

i=1 pir̂i | m̂n] ∈ [r, r] converges to∑I
i=1 piq

∗
i (r) almost surely. Here, r̂ and r̂i stand for random variables and r and ri are their

realizations.

A.3 Proof of Proposition 3

By Proposition 2, the Bayesian estimate of r converges to q∗(r) almost surely. We write

q∗ = (q∗i )
I
i=1 as an abbreviation for q∗(r) and let q∗ =

∑
i piq

∗
i . The first-order condition of

the minimization in (3) implies

(q∗i − q∗) + a∆
(
m (q∗i )−m(ri)

)
m′ (q∗i ) = 0 (10)

for all i = 1, . . . , I, where we have used that πi = pi and
∑I

i pi(q
∗
i − q∗) = q∗ − q∗ = 0. We

write σ2 for the true reward variance σ2(r) and σ∗2 :=
∑I

i=1 pi (q
∗
i − q∗)2 for the estimated
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variance. We will prove the following claims (see Footnote 7 for the definition of the “order

smaller than” convention o(·)):

Claim 1: Any function that is o(ri − r) or o (q∗i − r) is also o(σ).

Claim 2: q∗ = r + o(σ).

Claim 3: σ∗2 = z(r)2

(1+z(r))2
σ2 + o(σ2).

Claim 4: q∗ = r + 1
2
m′′(r)
m′(r)

(
σ2 +

(
2

z(r)
− 1
)
σ∗2
)
+ o(σ2).

To prove Claim 1, we provide a bound on the distance of ri and q
∗
i from r. It follows from

definition of σ2 that (ri − r)2 ≤ σ2/pi, and thus |ri − r| ≤ σ/
√
pi. Therefore, any function

that is o(ri − r) is also o(σ). Bounding |q∗i − r| is complicated by the fact that q∗ is defined

implicitly. We first establish a bound on |q∗ − r|. Define m′ and m′ to be the minimum

and the maximum of m′(·) on [r, r], respectively, and let z = a∆m′2, z = a∆m′2. We have

0 < m′ ≤ m′ < +∞ and 0 < z ≤ z < +∞ since m′(·) is continuous and strictly positive on

the closed interval [r, r].

For fixed values of r and q∗ define zi ∈ R by

a∆m′ (q∗i )
(
m (q∗i )−mi(ri)

)
= (q∗i − ri) zi

whenever q∗i ̸= ri, and zi := a∆m′2(ri) otherwise. It follows from its definition that zi ≥ z

for all i. Then, equation (10) can be written as

0 = (q∗i − q∗) + (q∗i − ri)zi = (1 + zi)(q
∗
i − q∗)− (ri − q∗)zi,

and thus,

q∗i − q∗ = zi
1+zi

(ri − q∗) = zi
1+zi

(ri − r) + zi
1+zi

(r − q∗). (11)

Summing up the last equation weighted by pi over i gives

0 =
I∑

i=1

(
pi

zi
1+zi

(ri − r)
)
+ (r − q∗)

I∑
i=1

(
pi

zi
1+zi

)
,

in which 0 < z
1+z

≤ zi
1+zi

< 1. The triangle inequality implies

|q∗ − r| ≤ 1+z
z

I∑
i=1

pi|ri − r| ≤ 1+z
z
σ

I∑
i=1

√
pi ≤ 1+z

z
Iσ.
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Returning to equation (11),

|q∗i − r| ≤ zi
1+zi

|ri − r|+ zi
1+zi

|r − q∗|+ |q∗ − r| < |ri − r|+ 2|r − q∗| ≤
(
p
−1/2
i + 21+z

z
I
)
σ.

We conclude that |q∗i −r| ≤
(
p
−1/2
i + 21+z

z
I
)
σ for any r ∈ [r, r]I , and thus any function that

is o(q∗i − r) is also o(σ). This establishes Claim 1.

We will prove the remaining claims by taking first- and second-order approximations of

the first-order condition (10) for σ > 0 small. Since m(·) is twice differentiable, the functions
m and m′ can be expressed using first-order Taylor approximations around r:

m(ri) = m(r) +m′(r)(ri − r) + o(σ),

m(q∗i ) = m(r) +m′(r)(q∗i − r) + o(σ),

m′(q∗i ) = m′(r) +m′′(r)(q∗i − r) + o(σ),

where we used Claim 1 to replace o(ri− r) and o(q∗i − r) by o(σ). Equation (10) then implies

0 = (q∗i − q∗) + a∆
(
m′(r)

(
q∗i − ri

)
+ o(σ)

)(
m′(r) +m′′(r)

(
q∗i − r

)
+ o(σ)

)
= (q∗i − q∗) + a∆m′2(r)(q∗i − ri) + o(σ),

where we used that (q∗i − ri)(q
∗
i − r) = o(σ). The last inline equation can be written as

0 = (q∗i − q∗) + z(r)(q∗i − ri) + o(σ). (12)

Summing up these equations weighted by pi, we get 0 = z(r)(q∗− r)+ o(σ). Thus |q∗− r| ≤
1
z
o(σ), as needed for Claim 2.

We rewrite (12) as

(
1 + z(r)

)
(q∗i − q∗) = z(r)(ri − r) + z(r)(r − q∗) + o(σ) = z(r)(ri − r) + o(σ),

where the second equality follows from Claim 2. Squaring both sides of the equation and

summing up the equations weighted by pi, we get

(1 + z(r))2σ∗2 = z2(r)σ2 + o(σ2),

where we used that z(r) ≤ z and thus z(r)(ri − r)o(σ) is o(σ2). Claim 3 follows.
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To prove Claim 4, we use the second-order Taylor approximation of m(·) around r:

m(q∗i ) = m(r) +m′(r)(q∗i − r) + 1
2
m′′(r)(q∗i − r)2 + o(σ2),

m(ri) = m(r) +m′(r)(ri − r) + 1
2
m′′(r)(ri − r)2 + o(σ2).

This implies the second-order approximation of equation (10),

0 = (q∗i − q∗) + a∆
(
m′(r)

(
q∗i − ri

)
+ 1

2
m′′(r)

(
(q∗i − r)2 − (ri − r)2

)
+ o(σ2)

)
·
(
m′(r) +m′′(r)

(
q∗i − r

)
+ o(σ)

)
,

which we rewrite as

0 = (q∗i−q∗)+z(r)
((
q∗i − ri

)
+ 1

2
m′′(r)
m′(r)

(
(q∗i − r)2 − (ri − r)2

))(
1 + m′′(r)

m′(r)

(
q∗i − r

))
+o(σ2).

Summing up these equations weighted by pi and dividing by z(r), we arrive at

0 = (q∗ − r)− 1
2
m′′(r)
m′(r)

(
σ2 − σ∗2 + 2

I∑
i=1

pi
(
ri − q∗i

)(
q∗i − r

))
+ o(σ2). (13)

Expressing q∗i − ri from (12) allows us to write

I∑
i=1

pi
(
ri − q∗i

)(
q∗i − r

)
= 1

z(r)

I∑
i=1

pi
(
q∗i − r

)2
+ o(σ2) = 1

z(r)
σ∗2 + o(σ2),

where we used that r = q∗+o(σ) for the second equality. Substituting the last inline equation

back into (13) completes the proof of Claim 4.

Finally, substituting for σ∗2 from Claim 3 into the expression from Claim 4 gives

q∗ = r +
1

2

m′′(r)

m′(r)

(
1 +

(
2

z(r)
− 1
) z(r)2

(1 + z(r))2

)
σ2 + o(σ2)

= r +
1

2

m′′(r)

m′(r)

(
1 +

2z(r)− z(r)2

(1 + z(r))2

)
σ2 + o(σ2),

and using 1 + 2z(r)−z(r)2

(1+z(r))2
= 1+4z(r)

(1+z(r))2
, we obtain (4), concluding the proof.

A.4 Proof of Proposition 4

The encoding error m̂Jn −m(rJ) is drawn from N (0, 1/(πJn)). For each n, we set m̂Jn −
m(rJ) := εJ/

√
πJn, where εJ ∼ N (0, 1) is an error factor common across all n, and indepen-
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dent across J . This choice of correlation of the errors across n is without loss of generality

since it does not affect the expected loss for each n (see e.g. Lindvall (2002) for this technique

known in probability theory as coupling).

We extend the inverse encoding function m−1 outside of the interval (m,m) by setting

m−1 (m̂Jn) = r for m̂Jn ≤ m and m−1 (m̂Jn) = r for m̂Jn ≥ m. This allows us to express the

ML estimate of the lottery value as

qn =
∑
J

pJqJn

=
∑
J

pJm
−1

(
m(rJ) +

εJ√
πJn

)
.

We start the proof of Proposition 4 with a lemma that we will use below for an application

of the Dominated Convergence theorem. The lemma establishes an integrable bound on the

rescaled error of the estimated lottery value. Let ε := (εJ)J .

Lemma 2. There exists a function e(ε) such that |
√
n(qn − r)| ≤ e(ε) for all r, ε and n,

and E e2(ε) <∞.

Proof. Let m′ > 0 be a lower bound for m′(r) on [r, r], which exists since m′ is positive and

continuous. Observe a bound on the estimation error for the reward rJ ,

|qJn − rJ | ≤
|εJ |

m′√πJn
, (14)

which holds uniformly for all J , rJ and εJ . To see that (14) holds, note that qJn− rJ and εJ

have a same sign sincem−1 is monotone and qJn = rJ if εJ = 0. Consider positive qJn−rJ (the

negative case is analogous). If m(rJ)+
εJ√
πJn

≤ m, then (14) follows from ∂m−1(·) ≤ 1/m′. If

m(rJ)+
εJ√
πJn

> m, then qJn = r and thus qJn(rJ , εJ)−rJ = qJn(rJ , ε
′
J)−rJ , where ε′J ∈ (0, εJ)

is defined bym(rJ)+
ε′J√
πJn

= m. Then, qJn(rJ , εJ)−rJ = qJn(rJ , ε
′
J)−rJ ≤ |ε′J |

m′√πJn
≤ |εJ |

m′√πJn
,

as needed. We can thus define e(ε) :=
∑

J pJ
|εJ |

m′√πJ
.

For a given r, ε and s, we denote the DM’s loss by

ℓ̃n(r, ε, s) = max {r, s} − 1qn>sr − 1qn≤ss,

which depends on r and ε via qn and r. We introduce substitution s = r + σ√
n
and denote
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the rescaled loss as ℓn(r, ε, σ) :=
√
nℓ̃n

(
r, ε, r + σ√

n

)
. Let

ℓ∗(r, ε, σ) =


σ if 0 ≤ σ ≤

∑
J pJ

εJ√
πJm′(rJ )

,

−σ if 0 ≥ σ ≥
∑

J pJ
εJ√

πJm′(rJ )
,

0 otherwise.

Lemma 3. limn→∞ ℓn(r, ε, σ) = ℓ∗(r, ε, σ) almost everywhere.

Proof. Choice of the DM differs from the optimal choice under complete information if and

only if s attains a value in between r and qn. In such cases, the loss of the DM relative to

the complete-information choice is |s− r|. Therefore,

ℓn (r, ε, σ) =


σ if 0 ≤ σ ≤

∑
J pJ

(
m−1

(
m(rJ) +

εJ√
πJn

)
− rJ

)√
n,

−σ if 0 ≥ σ ≥
∑

J pJ

(
m−1

(
m(rJ) +

εJ√
πJn

)
− rJ

)√
n,

0 otherwise.

The right side converges pointwise to ℓ∗(r, ε, σ), because

lim
n→∞

(
m−1

(
m(rJ) +

εJ√
πJn

)
− rJ

)√
n = ∂m−1(m(rJ))

εJ√
πJ

=
εJ

m′(rJ)
√
πJ
.

To prove Proposition 4, observe that

nL(n) =

∫
[r,r]|P|+1×R|P|

nℓ̃n(r, ε, s)hs(s)
∏
J

(h(rJ)φ(εJ))ds
∏
J

(drJdεJ)

=

∫
ℓn (r, ε, σ)hs

(
r +

σ√
n

)∏
J

(h(rJ)φ(εJ))dσ
∏
J

(drJdεJ),

where we applied substitution s = r + σ√
n
. To apply the Dominated Convergence Theorem,

we note that the last integrand is bounded as follows:

0 ≤ ℓn (r, ε, σ)hs

(
r +

σ√
n

)∏
J

(h(rJ)φ(εJ)) ≤ ℓ (r, ε, σ)hs
∏
J

(h(rJ)φ(εJ)) , (15)
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where hs is an upper bound on the density hs,
22

ℓ (r, ε, σ) =


|σ| if |σ| ≤ e(ε) and r + σ√

n
∈ [r, r],

0 otherwise,

and e(ε) is the bound from Lemma 2. Since e(ε) is an upper bound on the size of the error

of the DM’s estimate, ℓ expands, relative to ℓn, the set of (r, ε, σ) for which the erroneous

choice occurs.

The upper bound in (15) is integrable as needed for the use of the Dominated Convergence

Theorem: ∫
ℓ (r, ε, σ)hs

∏
J

(h(rJ)φ(εJ))dσ
∏
J

(drJdεJ)

≤ hs

∫ ∫ e(ε)

−e(ε)

|σ|dσ
∏
J

(h(rJ)φ(εJ))
∏
J

(drJdεJ)

= hs

∫
e2(ε)

∏
J

(h(rJ)φ(εJ))
∏
J

(drJdεJ)

= hs E e
2 (ε) ,

where the expectation in the last line is finite, as needed, by Lemma 2.

Hence, the Dominated Convergence Theorem, Lemma 3, and continuity of hs imply

lim
n→∞

nL(n) =

∫
ℓ∗ (r, ε, σ)hs(r)

∏
J

(h(rJ)φ(εJ))dσ
∏
J

(drJdεJ)

= E

[∫ ∑
J pJ

εJ√
πJm′(rJ )

0

σhs(r)dσ

]

= E

1
2

(∑
J

pJ
εJ√

πJm′(rJ)

)2

hs(r)



= E

[
1

2

∑
J

p2J
πJm′2(rJ)

hs(r)

]
,

where the first two expectations are over r and ε and the last expectation is over r. The last

22The bound on hs exists since hs continuous and the support is compact.
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step follows from the fact that εJ are iid standard normal and thus E ε2J = 1 and E [εJεJ ′ ] = 0

for all J ̸= J ′.

A.5 Proof of Proposition 5

The next lemma states the first-order conditions to the information-processing problem with-

out imposing unimodality and symmetry on the reward densities. To state the result, define

hJ (r̃) =
h(r̃) E[hs(r)|rJ = r̃]

E[hs(r)]
=

∫
hs(r)h(r̃)

∏
J ′ ̸=J h(rJ ′)drJ ′∫

hs(r)
∏

J ′ h(rJ ′)drJ ′
,

which is the density of reward rJ in state J conditional on a tie r = s.

Lemma 4. The information-processing problem has a unique optimal encoding strategy. This

optimal strategy has the following properties:

1. The encoding function satisfies, for all r̃ ∈ [r, r],

m′(r̃) = m0 ·

(∑
J

p2J
πJ
hJ (r̃)

) 1
3

, (16)

where m0 ∈ R+ is a normalization factor chosen such that
∫ r

r
m′(r̃)dr̃ = m−m.

2. The sampling frequencies satisfy, for all J, J ′ ∈ P,(
pJ
πJ

)2

E

[
1

m′2(rJ)
| r = s

]
=

(
pJ ′

πJ ′

)2

E

[
1

m′2(rJ ′)
| r = s

]
, (17)

where the expectations are over rJ and rJ ′ with respect to the densities hJ and hJ ′,

respectively.

Proof. The objective of the information-processing problem is a functional

L (m′(·), (πJ)J) = E

[∑
J

p2J
πJm′2(rJ)

| r = s

]
.

Since
p2J

πJm′2(rJ )
is convex with respect to (m′ (rJ) , πJ), the functional L is convex. Thus,

considering that the constraints are linear, the first-order conditions are sufficient for a global

minimum of the information-processing problem. Since the objective (6) is strictly decreasing

in m′(·), the constraint (7) is binding. The Lagrangian of the constrained optimization
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problem (6)-(8) is

∑
J

E

[
p2J

πJm′2(rJ)
| r = s

]
+ λ

(∫ r

r

m′(r̃)dr̃ − (m−m)

)
+ µ

(∑
J

πJ − 1

)
=

∑
J

∫ r

r

p2J
πJm′2(r̃J)

hJ(r̃J)dr̃J + λ

(∫ r

r

m′(r̃)dr̃ − (m−m)

)
+ µ

(∑
J

πJ − 1

)
,

where λ and µ are the Lagrange multipliers for (7) and (8), respectively. For any r̃ ∈ [r, r],

summing the derivatives w.r.t. m′(r̃) of all the integrands in the last inline expression gives

the first-order condition

2
∑
J

p2J
πJm′3(r̃)

hJ (r̃) = λ. (18)

Expressing m′(r̃) from (18) gives (16). The first-order condition with respect to each πJ is(
pJ
πJ

)2

E

[
1

m′2(rJ)
| r = s

]
= µ,

which implies (17).

Observe that the optimal m′ is continuous since each hJ as defined above is continuous:

h is continuous and, since hs is continuous on a compact interval, it is uniformly continuous,

and thus the function r̃ 7→ E [hs(r) | rJ = r̃] is continuous as well.

Observe also that, when the DM compares two riskless rewards drawn independently

from the same density h, the first statement of the lemma replicates the optimal encoding

result from Netzer (2009). In this case, (16) implies that m′(r) ∝ h
2
3 (r).

We next state three auxiliary lemmas about unimodal and symmetric random variables.

Definition 1. A real-valued continuous random variable is unimodal and symmetric around

0 if its density function h(x) is strictly decreasing on the positive part of its domain and

h(x) = h(−x) for all x ∈ R.

This property is preserved by summation: the sum of unimodal and symmetric random

variables is unimodal and symmetric, see e.g. Purkayastha (1998).

Definition 2 (Birnbaum (1948)). Let X and Y be two unimodal random variables symmetric

around 0. We say that X is more peaked than Y if P (|X| < α) > P (|Y | < α) for all α > 0

(unless the right side is 1).

Equivalently, for two unimodal symmetric random variables, X is more peaked than Y

whenever the CDF of X is greater than the CDF of Y at any α > 0 from the support of Y .
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For the next two lemmas, let X0, X1, . . . , XI be independent real-valued continuous ran-

dom variables that are unimodal and symmetric around 0, where X1, . . . , XI are identi-

cally distributed while the distribution of X0 may be distinct. Denote by h the density

of each of the variables X1, . . . , XI and let h0 be the density of X0. Let (p1, . . . , pI) ∈
∆({1, . . . , I}) and X :=

∑I
i=1 piXi. We define the density of (X1, . . . , XI)|(X = X0) to be

h(X1)× · · · ×h(XI)×h0(X), up to normalization, and we define Xi|(X = X0) by marginal-

izing it.

Lemma 5. The random variable Xi | (X = X0), i = 1, . . . , I, is unimodal and symmetric

around 0.

Proof. Unimodality together with symmetry is preserved by multiplication by a constant and

by summation, so the variableX−i :=
1
pi
(X0−

∑
k ̸=i pkXk) is unimodal and symmetric around

0. Denote by h−i the density of X−i. Then Xi | (X = X0) is identical to Xi | (Xi = X−i),

and so its density is, up to a normalization constant, h(xi)h−i(xi). This function is unimodal

and symmetric around 0, as needed.

Lemma 6. The random variable Xi | (X = X0) is more peaked than Xj | (X = X0) if and

only if pi > pj.

Proof. Without loss of generality, assume {i, j} = {1, 2} (that is, either i = 1 and j = 2

or i = 2 and j = 1). Define X−12 := X0 −
∑I

k=3 pkXk (if I = 2, then X−12 = X0) and let

h−12 be its density. This is a unimodal random variable symmetric around 0. The random

variable Xi | (X = X0) is identical to Xi | (piXi + pjXj = X−12) and so its density equals

hi(xi) =

∫
R h−12(p1x1 + p2x2)h(x1)h(x2)dxj

E[h−12(p1X1 + p2X2)]
,

where the expectation, which is with respect to X1 and X2, is independent of i. Thus, for

any α > 0,

P (|X1| < α | X = X0) =

∫∫
(−α,α)×R h−12(p1x1 + p2x2)h(x1)h(x2)dx1dx2

E[h−12(p1X1 + p2X2)]
,

and

P (|X2| < α | X = X0) =

∫∫
R×(−α,α)

h−12(p1x1 + p2x2)h(x1)h(x2)dx1dx2

E[h−12(p1X1 + p2X2)]

=

∫∫
(−α,α)×R h−12(p1x2 + p2x1)h(x1)h(x2)dx1dx2

E[h−12(p1X1 + p2X2)]
,
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where we used for the last equation that P (|X1| < α | X = X0) and P (|X2| < α | X = X0)

are both (up to the same normalization constant) integrals of the same function (x1, x2) 7→
h−12(p1x1 + p2x2)h(x1)h(x2), but the first is over the region [−α, α] × R and the second is

over R× [−α, α]. This is equivalent to integrating both over the same region but switching

the roles of x1 and x2. Then,

(P (|X1| < α | X = X0)− P (|X2| < α | X = X0)) · E[h−12(p1X1 + p2X2)] =∫∫
(−α,α)×R

(
h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)

)
h(x1)h(x2)dx1dx2 =

∫∫
(−α,α)×

(
R\(−α,α)

) (h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)
)
h(x1)h(x2)dx1dx2 =

2

∫∫
(−α,α)×[α,+∞)

(
h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)

)
h(x1)h(x2)dx1dx2,

where we used that the integral is 0 on the region (−α, α) × (−α, α) and that h and h−12

are symmetric around 0.

Suppose that p2 > p1, and consider any (x1, x2) ∈ (−α, α)× [α,+∞). It follows from the

identity

p1x1 + p2x2 = (p1x2 + p2x1) + (p2 − p1)(x2 − x1)

that

p1x1 + p2x2 > p1x2 + p2x1,

where the last left side (LS) is always positive. The right side (RS) is either positive or

negative, but smaller in absolute value than the LS. Indeed, if the RS is negative, then

x1 < 0, and

|p1x2+p2x1| = −p1x2+p2|x1| = −p1|x1|+p2x2−(p1+p2)(x2−|x1|) < −p1|x1|+p2x2 = |p1x1+p2x2|,

and due to the symmetry and unimodality of h−12,

h−12(p1x1 + p2x2) < h−12(p1x2 + p2x1),

unless both are zero. It follows that X2 | (X = X0) is more peaked than X1 | (X = X0), as

needed.

Lemma 7. Let a function f be continuous, symmetric (f(x) = f(−x)) and increasing on

R+, and let X1, X2 be unimodal continuous random variables that are symmetric around 0

40



and have bounded support. Then E[f(X1)] < E[f(X2)] whenever X1 is more peaked than X2.

Proof. Denote by hi(x) and Hi(x) the PDF and CDF of Xi, i = 1, 2. Then,

1
2
E[f(Xi)] =

∫ ∞

0

f(x)hi(x)dx

=
[
f(x)(Hi(x)− 1)

]+∞

0
−
∫ ∞

0

(Hi(x)− 1)df(x)

= 1
2
f(0) +

∫ ∞

0

(1−Hi(x))df(x),

where we have used integration by parts for the Stieltjes integral (see e.g. Ok, 2011). If X1

is more peaked than X2, then 1 −H1(x) < 1−H2(x) unless both are zero for all x > 0. It

follows that E[f(X1)] < E[f(X2)].

We now prove Proposition 5. Statement 1 follows from (16) because, by Lemma 5, each

conditional reward density hJ is unimodal with the same mode as that of the unconditional

reward density h. Additionally, m′ is symmetric around rm since each hJ is symmetric

around rm. Now consider Statement 2. Suppose pJ < pJ ′ . By (17) it suffices to show that

E

[
1

m′2(rJ)
| r = s

]
> E

[
1

m′2(rJ ′)
| r = s

]
. (19)

This indeed holds since, by Lemma 6, rJ ′ | (r = s) is more peaked than rJ | (r = s), and

the inequality (19) then follows from Lemma 7 and the fact that 1/m′2(r) is continuous and

symmetric around rm and increasing above rm.
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