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Abstract

The literature on temptation and self-control is motivated by ev-
idence of a preference for commitment. This literature has typically
put forth models for preferences over menus of lotteries that satisfy
the Independence axiom. Independence requires that the ranking of
two menus is not affected if each is mixed (probabilistically) with a
common third menu. In particular, the preference for commitment is
invariant under Independence. We argue that intuitive behavior may
require that the preference for commitment be affected by such mix-
ing, and hence be mixture-dependent. To capture such behavior, we
generalize Gul and Pesendorfer (2001) by replacing their Independence
axiom with a suitably adapted version of the Mixture-Betweenness ax-
iom of Chew (1989)-Dekel (1986). Axiomatizing the model involves
a novel extension of the Mixture Space Theorem to preferences that
satisfy Mixture-Betweenness.
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1 Introduction

1.1 Overview

A key motivation for the literature on temptation and self-control problems
comes from evidence of a preference for commitment (Bryan et al. (2010),
Gul and Pesendorfer (2007) and Laibson (1997)). For instance a dieter might
strictly prefer to eat at a salad bar rather than at a restaurant that offers both
salad (s) and burgers (b). Identifying a restaurant with the set of alternatives
it offers, this agent therefore exhibits

{s} � {s, b}.

In a seminal paper, Gul and Pesendorfer (2001) (henceforth GP) provide an
axiomatic model of temptation and self-control that characterizes a prefer-
ence over menus (of lotteries) in a manner that permits such preference for
commitment. A distinct feature of GP is that it maintains the Independence
axiom (appropriately adapted to the domain). We observe that Indepen-
dence implies that preference for commitment must be mixture independent
in the following sense:

{s} � {s, b} =⇒ {αs+ (1− α)i} � {αs+ (1− α)i, αb+ (1− α)i},

where αs + (1 − α)i and αb + (1 − α)i are lotteries that yield s and b with
probability α respectively and dish i with probability (1− α).

The main motivation of this paper is the idea that preference for com-
mitment may in fact be mixture-dependent. To illustrate, consider a frugal
vacationer who is planning a trip and needs to choose a hotel room. Dur-
ing her trip, she expects to use the room only to sleep. Hence, she strictly
prefers a conventional room (c) to a fancy room (f). The vacationer can
either choose to reserve the room in advance and commit to staying in the
room she reserved, or choose the room once she arrives at the hotel. She
believes that if she waits until she arrives, she will not feel tempted to choose
f ; after all, she is very careful with her spending and will only be using the
room to sleep. Hence,

{c} ∼ {c, f}.

However, being a preferred member of the hotel, she receives a promotion:
her name will be added to a raffle where the prize is a free night in the fancy
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room, which we will denote by f ′, with full reimbursements if necessary. If
she waits until she arrives at the hotel to choose a room, then she will face
a choice between two lotteries: αc + (1 − α)f ′ and αf + (1 − α)f ′ where
(1−α) is the probability she wins the raffle. Since there is a possibility that
she might be able to stay in the fancy room for free, she will be dreaming
about it for the rest of the day. Hence, if she waits to choose the room
until she arrives, by then she will find the fancy room tempting. Thus, in
order to avoid temptation and stick to her budget, she would rather book
the conventional room in advance:

{αc+ (1− α)f ′} � {αc+ (1− α)f ′, αf + (1− α)f ′}.

Notice that the traveler’s preference for commitment changed once the alter-
natives in {c, f} were mixed with f ′. Therefore, her preference for commit-
ment is mixture-dependent.

Building on GP, we provide a novel axiomatic model of temptation and
self-control. Like GP, our model characterizes preference over menus of lot-
teries. The key difference is that our model can accommodate mixture-
dependent preference for commitment; it does do so by weakening Indepen-
dence to a property we refer to as Mixture-Betweenness which adapts the
Mixture-Betwenness axiom of Chew (1983) and Dekel (1986).

More specifically, let ∆(X) be the set of all lotteries with payoffs in X.
GP consider a preference � over the set of all menus of lotteries (subsets of
∆(X)). The interpretation is that at an unmodeled second stage, a lottery
is selected from the menu chosen ex-ante according to �. GP axiomatize the
following utility function for �,

V (x) = max
p∈x
{u(p) + v(p)−max

q∈x
v(q)},

for all menus x, where u and v are vNM utility functions over lotteries.
For singleton menus, V ({p}) = u(p) and thus u describes preference under
commitment, which we interpret as describing the agent’s normative view.
The function v describes the agent’s urges at the second stage. In the absence
of commitment, there is a temptation to maximize v and hence to deviate
from the choices that would be prescribed by u. Temptation can be resisted
but at a cost described by v(p)−max

q∈x
v(q). A balance between the normative

preference and the cost of self-control is achieved by choosing a lottery ex-
post that maximizes u + v. Since u and v are vNM utility functions, they
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satisfy the standard Independence axiom. This is imposed for reasons of
analytical convenience rather than descriptive validity in view of the widely
documented descriptive violations of the Independence axiom.1

The fact that in GP’s model the normative and temptation utilities are
linear precludes their model from accommodating mixture-dependent prefer-
ence for commitment. In fact this limitation exists also in subsequent gener-
alizations of GP in the literature (Dekel et al. (2009), Chatterjee and Krishna
(2009), Noor and Takeoka (2010, 2015), Stovall (2010) and Kopylov (2012)).
In order to accommodate mixture-dependent preference for commitment we
need to allow for non-linear u and v.

This motivates us to consider the Chew (1983)-Dekel (1986) model for
preference over risk. Their model is motivated by the descriptive failure of
the Independence axiom and generalizes vNM utility theory. In particular, it
is an implicit utility model in which the utility γ of a lottery p is the unique
solution of

γ = u(p, γ),

where u(., γ) is a vNM utility function over lotteries for all γ. The main
ingredient in the characterization of the model is the Mixture-Betweenness
axiom which is a weakening of Independence that is compatible with behavior
such as the Allais paradox.

Our model combines GP and Chew-Dekel. The result is an implicit utility
model in which the utility of a menu x is defined as the unique γ that solves

γ = max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
v(q, γ)},

where u(., γ) and v(., γ) are vNM utility functions over lotteries for all γ.
Notice that our model is inherently non-linear. Hence, standard tools cannot
be used to axiomatize it because they rely on the Mixture Space Theorem
(Herstein and Milnor (1953)) at a fundamental level. Thus, we are forced
to take a different approach. In particular, we develop a novel extension of
the Mixture Space Theorem. Since the Mixture Space Theorem is central
to decision theory, our extension is potentially useful for addressing issues in
economics other than temptation. Hence, we view it as a separate contribu-
tion of the paper.

1See the surveys by Camerer (1995) and Starmer (2000).
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The paper proceeds as follows: The introduction concludes with a review
of the relevant literature. Axioms and the implied representation of utility
are described in Sections 2 and 3 respectively. Section 4 contains a discus-
sion of mixture-dependent preference for commitment as well as axiomatic
foundations for two special cases of the model. Section 5 concludes with
our version of the Mixture Space Theorem and a discussion of its potential
applications. The proof of the new Mixture Space Theorem is provided in
Appendix A. The remaining proofs are collected in Appendix B.

1.2 Literature Review

This paper contributes to the axiomatic literature on temptation and self-
control (Gul and Pesendorfer (2001), Dekel et al. (2001), and for a survey of
the subsequent literature see Lipman and Pesendorfer (2013)). The closest
papers to ours are Noor and Takeoka (2010, 2015) and Liang et al. (2019).
They also generalize GP by weakening Independence. Noor and Takeoka
(2010) extends GP to a model with a convex self-control cost, a feature shared
by the non-axiomatic model of Fudenberg and Levine (2006). Liang et al.
(2019) enrich GP by endowing the agent with a stock of willpower that cannot
be exceeded by the cost of self-control in any menu.2 In both models the
agent’s normative and temptation utilities satisfy the Independence axiom
thereby ruling out mixture-dependent preference for commitment.

Dillenberger and Sadowski (2012) provide a model of shame for prefer-
ences over menus of monetary divisions between two agents, a dictator and
a recipient. Their model adapts and extends GP, and can accommodate the
following experimental finding: when subjects are presented with a menu of
monetary divisions, they tend to behave altruistically whenever the recipient
can observe the menu from which they are making the choice. However, at
an ex-ante stage that is not observed by the recipient, some subjects are
willing to give up part of their payoff in exchange for the removal of the
altruistic monetary divisions so that in the second stage they can choose
“unfair” divisions without feeling any shame. Since the objects of choice in
their set up are menus of deterministic alternatives, their analysis is silent
about mixture-dependence.

Following Dillenberger and Sadowski (2012) and GP, Saito (2015) devel-

2A closely related paper, Masatlioglu et al. (2020) deals with menus of abstract alter-
natives rather than menus of lotteries.
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ops a model of impure shame and impure altruism (that is, shame and altru-
ism driven by temptation) for preferences over menus of lotteries. His model
satisfies the Independence axiom and thus, cannot accommodate mixture-
dependent preference for commitment.

Dekel et al. (2009), Chatterjee and Krishna (2009), Stovall (2010) and
Kopylov (2012) also generalize GP. Their models satisfy the Independence
axiom. We believe that our Mixture Space Theorem and the arguments used
in the proof of Theorem 3.1 can be used to generalize these models in the
same way that we generalize GP.

Finally, outside the temptation literature but within the menus of lotteries
literature, Ergin and Sarver (2010) derive a utility representation of costly
contemplation. The model assumes that the agent chooses from a menu
with imperfect knowledge of her preference over lotteries. In particular, the
agent considers a set of possible preferences over lotteries where each of them
satisfies the standard Independence axiom. Their key axiom, referred to as
Aversion to Contingent Planning, is a weakening of our adaptation of the
Mixture-Betweenness axiom.

2 Axioms

Let X be a finite set of cardinality n. A lottery is a probability measure
over X. The set of all lotteries is denoted ∆(X) and X denotes the set of all
of its non-empty closed subsets. We endow X with the topology generated
by the Hausdorff metric.3 A menu is an element of X . Generic menus will
be denoted by x, y and z and generic lotteries will be denoted by p, q and
r. Each lottery p can be identified with the singleton menu {p} ∈ X . Thus,
where it does not cause confusion we will abuse notation and write p instead
of {p} and ∆(X) instead of {{p}|p ∈ ∆(X)}.

Our primitive is a preference � over X . We impose four axioms on � of
which the first three are from GP.

Weak Order � is complete and transitive.

Hausdorff Continuity {y|x � y} and {y|y � x} are closed for all x ∈ X .

3Let d be any metric on ∆(X). For any x, y ∈ X and p, q ∈ ∆(X), define d(p, y) ≡
inf
q∈y

d(p, y) and dh(x, y) = max{sup
p∈x

d(p, y), sup
q∈y

d(q, x)}. The topology generated by dh is

the Hausdorff metric topology.
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Set-Betweenness x � y implies x � x ∪ y � y.

Set-Betweenness admits an interpretation in terms of temptation and self-
control. To illustrate, consider the ranking {p} � {p, q} � {q}. The ranking
{p} � {p, q} is referred to as preference for commitment, it suggests that
the agent expects to be temped by q if she faces {p, q}. Thus, {p, q} � {q}
implies that the agent expects to be able to resist temptation if she faces
{p, q}, but it will require costly self-control. Similarly, {p} � {p, q} ∼ {q}
suggests that the agent expects to be overwhelmed by temptation if she faces
{p, q}. Finally, the lack of preference for commitment in {p} ∼ {p, q} � {q}
suggests that the agent does not expect to be tempted by q if she faces {p, q}.

Whenever x ⊂ y and x � y we say � has preference for commitment
at y. Under the temptation and self-control interpretation, preference for
commitment at y reveals that there is some element in y that the agent
expects to be tempted by and thus, would like to remove from the feasible
set she will face in the second stage.

For any two menus x, y and α ∈ [0, 1], define the mixture αx + (1− α)y
as the menu generated by the point-wise mixtures:

αx+ (1− α)y = {r ∈ ∆(X)|r = αp+ (1− α)q, p ∈ x, q ∈ y}.

GP’s fourth axiom formulates the standard vNM Independence axiom in the
menus of lotteries setting.

Independence x � y implies αx+ (1−α)z � αy+ (1−α)z for all α ∈ [0, 1]
and z ∈ X .

GP, Dekel et al. (2001) and the literature that followed them adopt this
axiom because of its normative appeal and the analytical convenience it of-
fers. To understand their motivation consider an extension of the preference
to the set of lotteries over X , the interpretation being that randomization
over menus is resolved before the second stage. Suppose that this extended
preference satisfies the standard vNM Independence axiom: the preference
between a lottery that yields with probability α a menu x and with probabil-
ity 1−α a menu z (denoted by α◦x+(1−α)◦z) and α◦y+(1−α)◦z is the
same as the preference between x and y. If the agent is indifferent between
uncertainty being resolved before the second stage or after the second stage,
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then she satisfies Reduction:

α ◦ x+ (1− α) ◦ y ∼ αx+ (1− α)y for all x, y ∈ X and α ∈ [0, 1].

Observe that vNM Independence and Reduction imply Independence. How-
ever, we claim that temptation may lead to violations of vNM Independence.
Recall the rankings in our example:

{c} ∼ {c, f}
{αc+ (1− α)f ′} � {αc+ (1− α)f ′, αf + (1− α)f ′}.

(1)

The intuition behind these rankings implies that the agent would strictly
prefer α ◦ {c}+ (1−α) ◦ {f ′} to α ◦ {c, f}+ (1−α) ◦ {f ′} because once there
is a possibility she might be able to stay in the fancy room for free, she will
think about it extensively. Hence, if the lottery α ◦ {c, f} + (1 − α) ◦ {f ′}
yields {c, f}, she will feel tempted to choose f .

More generally, Independence implies that preference for commitment is
mixture independent: if � has preference for commitment at y, then � also
has preference for commitment at αy+ (1−α)z for all α ∈ (0, 1] and z ∈ X .
This follows from the fact that under Independence,

x � y =⇒ αx+ (1−α)z � αy + (1− α)z

and

x ⊂ y =⇒ αx+ (1−α)z ⊂ αy + (1− α)z.

Hence, Independence needs to be weakened. We weaken it to Mixture-
Betweenness.

Mixture-Betweenness
x � y implies x � αx+ (1− α)y � y for all α ∈ (0, 1), and
x ∼ y implies x ∼ αx+ (1− α)y ∼ y for all α ∈ (0, 1).

Mixture-Betweenness requires that if an agent prefers x to y, then the
mixture between x and y has to be between these two menus in terms of
preference. In particular, if an agent is indifferent between two menus, then
any mixture of these two is equally good. Hence, it implies that the indiffer-
ence sets are convex. Next, we consider what Mixture-Betweenness permits
and what it rules out.
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Mixture-dependent preference for commitment is permitted by Mixture-
Betweenness. For instance, the rankings in (1) are consistent with Mixture-
Betweenness because the latter is silent about behavior that involves more
than two menus. However, it does rule out a specific class of mixture-
dependent preference for commitment. To illustrate, consider a dieter who
prefers to go to a salad bar rather than a restaurant that offers salads (s)
and burgers (b):

{s} � {s, b} � {b}. (2)

Suppose now that there is a small new restaurant that also offers salads and
burgers, but its burgers are so popular that it sometimes runs out of them.
Therefore, its menu offers salads and a lottery between burgers and salads.
Mixture-Betweenness would then require that the dieter would also expect
to feel temptation if she goes to the new restaurant because its menu is equal
to a mixture between the salad bar and the restaurant. In particular, it is
equal to

{s, αs+ (1− α)b},

where α is the probability that the restaurant runs out of burgers. Hence,

{s} � {s, b} =⇒ {s} � {s, αs+ (1− α)b}.

In general, Mixture-Betweenness requires that if x ⊂ y and x � y, then
x � αx + (1 − α)y. Thus, it implies that if the agent has preference for
commitment at y, then the agent’s preference for commitment is mixture
independent whenever the mixture is with any subset of y that she would
prefer to commit to.

Mixture-Betweenness also imposes some structure on the agent’s self-
control. To illustrate, consider again the dieting agent. Suppose now that
there are two restaurants that belong to the same chain and assume that
one is smaller than the other. The smaller restaurant does not have a fixed
menu. Rather, its menu its picked randomly by the chef (chef’s pick). It
can either be a salad or a burger. The larger restaurant not only offers the
chef’s pick, but in addition it has a fixed burger selection. Consistent with
the preference for commitment she exhibited in (2), she prefers to go to the
smaller restaurant. Hence,

{αs+ (1− α)b} � {αs+ (1− α)b, b}
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where α is the probability that the chef’s pick is a salad. If the dieter exerted
costly self-control in {s, b} (that is, if {s, b} � {b} in (2)), then since the
menu at the larger restaurant is a mixture between {s, b} and {b}, Mixture-
Betweenness implies that

{αs+ (1− α)b, b} � {b}.

Thus, if the dieter expects to resist temptation when facing {s, b}, then she
must also expect to resist temptation when facing {αs+ (1−α)b, b}. Hence,
whenever her preference for commitment is preserved in a mixture with the
tempting alternative, so is her ability to resist temptation.

As a matter of fact, Mixture-Betweenness also requires the lack of self-
control to be mixture independent for certain mixtures. For instance, suppose
that the dieter thinks she will be overwhelmed by temptation if she goes to
the old restaurant that offers salads and burgers (that is, if {s, b} ∼ {b} in
(2)). Suppose now that she is also considering the large chain restaurant.
Since the menu at the large chain restaurant is a mixture between {s, b} and
{b}, Mixture-Betweenness requires that

{αs+ (1− α)b, b} ∼ {b}.

Thus, if the dieter expects to be overwhelmed by temptation when facing
{s, b}, then she must also expect to be overwhelmed by temptation when
facing {αs+(1−α)b, b}. Hence, her lack of self-control is mixture independent
when mixing with the overwhelming alternative.

We see therefore that the agent’s self-control is mixture independent in a
limited sense:

If {s} � {s, b}, then {s, b} � {b} if and only if {αs+ (1− α)b, b} � {b}.

This suggests that Mixture-Betweenness imposes a form of linearity of self
control costs. In contrast, the model of convex self-control costs of Noor and
Takeoka (2010) allows for mixture dependent self-control. In particular, their
model can accommodate behavior of the following type:

{s} � {s, b} ∼ {b}
{αs+ (1− α)b, b} � {b}.

(3)

The reason is that in their model, the marginal cost of self-control is in-
creasing in the exertion of self-control. Hence, achieving “small” deviations
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from the tempting alternative is easier than large deviations. In terms of
the rankings in (3), their model permits the dieter to believe that she will
be able to choose αs + (1 − α)b in the presence of b even if she expects to
choose b from {s, b} for a small enough α. Therefore Mixture-Betweenness
rules out convex self-control costs. Similarly, Mixture-Betweenness also rules
out behavior related to concave self-control costs:

{s} ∼ {s, b} � {b}
{s} � {s, αs+ (1− α)b}.

3 Results

3.1 Representation Theorem

Say that � is non-trivial if there exists x, y ∈ X such that x � y.

The central result of the paper is the following axiomatization of utility
over menus.

Theorem 3.1. A non-trivial preference � satisfies Weak Order, Hausdorff
Continuity, Set-Betweenness and Mixture-Betweenness if and only if there
exist u, v : ∆(X)× [0, 1]→ R such that:

1. u(., γ) and v(., γ) are vNM expected utility functions for all γ ∈ [0, 1].

2. u is continuous in its second argument on the interval (0, 1).

3. u(p, γ) = 1 and u(p, γ) = 0 for all γ ∈ [0, 1] for some p, p ∈ ∆(X).

4. � can be represented by a continuous utility function V : X → [0, 1]
where, for each x ∈ X , V (x) is the unique γ ∈ [0, 1] that solves

γ = max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
v(q, γ)}.

One feature of our model that is not shared by any other model in the
menus literature is that it does not reduce to expected utility over lotteries,
that is, for menus that offer commitment: x = {p} for some p ∈ ∆(X).
Rather, it reduces to the Chew-Dekel model for preference under risk:

V ({p}) = u({p}, V ({p})).
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Say that (u, v) represents � if it satisfies the conditions of Theorem 3.1.
Note that it is not the case that any (u, v) that satisfies conditions 1-3 in
Theorem 3.1 implicitly defines a utility function V as in condition 4. In Ap-
pendix E we provide a set of sufficient conditions for (u, v) which guarantees
the existence of an implicit utility representation.

3.2 Uniqueness

To state the uniqueness properties of our model we require some additional
terminology. Given any pair of functions f, g : ∆(X) → R, we say that f is
a positive affine transformation of g if there exist a, b ∈ R such that a > 0
and f = ag + b. Similarly, f is a negative affine transformation of g if there
exist a, b ∈ R such that a < 0 and f = ag + b.

Theorem 3.2. Let (u, v) and (u′, v′) be such that u(p, γ) = u′(p, γ) = 1
and u(p, γ) = u′(p, γ) = 0 for all γ ∈ [0, 1] for some p, p ∈ ∆(X). Then both
(u, v) and (u′, v′) represent � if and only if for all γ ∈ (0, 1), u(., γ) = u′(., γ)
and:

1. If v(., γ) is a positive affine transformation of u(., γ) or a constant,
then v′(., γ) is a positive affine transformation of v(., γ) or a constant.

2. If v(., γ) = −aγu(., γ) + bγ for some aγ ≥ 1 and bγ ∈ R, then
v′(., γ) = a′γv(., γ) + b′γ for some a′γ ≥ 1

aγ
and b′γ ∈ R.

3. If v(., γ) is not a constant or a positive affine transformation of u(., γ)
and the condition in 2 does not hold, then v′(., γ) = v(., γ) + bγ for
some bγ ∈ R.

The uniqueness properties of u are completely characterized by the re-
striction of � to ∆(X). In particular, for every p ∈ ∆(X), V (p) is the unique
γ ∈ [0, 1] that solves

γ = u(p, γ),

where u(p, γ) = 1 and u(p, γ) = 0 for all γ ∈ [0, 1]. Dekel (1986) shows that
such representations are unique.

Because u is completely characterized by the restriction of � to menus
that offer commitment, we interpret the utility function implicitly defined by
u as the agent’s commitment preferences.
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To aid intuition for the uniqueness properties of v we describe why the
conditions in Proposition 3.2 are sufficient. Assume (u, v) represents � and
fix γ ∈ (0, 1). If v(., γ) is a constant or a positive affine transformation of
u(., γ), then for all x ∈ X ,

arg max
p∈x

v(p, γ) = arg max
p∈x
{u(p, γ) + v(p, γ)},

and

max
p∈x
{u(p, γ) + v(p, γ)−max

p∈x
v(p, γ)} = max

p∈x
u(p, γ).

Thus, replacing v(., γ) with a constant or one of its positive affine transfor-
mations does not affect the representation. If v(., γ) = −aγu(., γ) + bγ for
some aγ ≥ 1, then for all x ∈ X ,

arg max
p∈x
{v(p, γ)} = arg min

p∈x
{u(p, γ)}

and

arg min
p∈x
{u(p, γ)} ⊆ arg max

p∈x
{u(p, γ) + v(p, γ)}.

To see this, note that for any aγ ≥ 1 and p, q ∈ ∆(X) such that u(p, γ) ≥
u(q, γ),

u(p, γ)− u(q, γ) ≤ aγ(u(p, γ)− u(q, γ))

u(p, γ)− aγu(p, γ) + bγ ≤ u(q, γ)− aγu(q, γ) + bγ

u(p, γ) + v(p, γ) ≤ u(q, γ) + v(q, γ).

Hence,

q ∈ arg min
p∈x
{u(p, γ)} =⇒ q ∈ arg max

p∈x
{u(p, γ) + v(p, γ)},

and

max
p∈x
{u(p, γ) + v(p, γ)−max

p∈x
v(p, γ)} = min

p∈x
{u(p, γ)},

for all x ∈ X . Thus, if we replace v(., γ) with v(., γ) = a′γv(., γ) + b′γ for
some a′γ ≥ 1

aγ
, then v′(., γ) is also a negative affine transformation of u(., γ)

in which the coefficient multiplying −u(., γ) is greater than or equal to one.
Thus, the representation is not affected. Finally, note that if v(., γ) is not a
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constant or a positive affine transformation of u(., γ) and the condition in 2
does not hold, then for any bγ ∈ R,

max
p∈x
{u(p, γ) + v(p, γ) + bγ −max

p∈x
{v(p, γ) + bγ}} = max

p∈x
{u(p, γ) + v(p, γ)

−max
p∈x

v(p, γ)}.

Hence, replacing v(., γ) with v(., γ) + bγ does not affect the representation.

3.3 Illustration

We conclude this section by illustrating our model in the context of our
motivating example. Details concerning the calculations below can be found
in Appendix D. Recall the rankings in our motivating example:

{c} ∼ {c, f} � {f}
{αc+ (1− α)f ′} � {αc+ (1− α)f ′, αf + (1− α)f ′}.

Consider the special case of our model in which the normative utility is linear
and independent of the overall level of utility. Let

u(f ′) = 1, v(f ′, γ) = 1

u(c) =
1

2
, v(c, γ) =

1− γ
2

u(f) = 0, v(f, γ) =
γ

2

for all γ ∈ [0, 1]. For any lottery p ∈ ∆({c, f, f ′}), we will abuse notation and
write u(p) and v(p, γ) instead of

∑
a∈{c,f,f ′} p(a)u(a) and

∑
a∈{c,f,f ′} p(a)v(a, γ).

This special case of the model can accommodate the intuition behind
the rankings in the example. The reason is that for x = {c, f} and y =
{αc+ (1− α)f ′, αf + (1− α)f ′},

V (x) = u(p)

V (y) = u(p′) + v(p′, V (y))− v(q, V (y)),

where p = c, p′ = αc+ (1− α)f ′ and q = αf + (1− α)f ′. Hence, the model
predicts that the agent does not expect to feel any temptation if she faces
{c, f} in the second stage. However, if she faces {αc+(1−α)f ′, αf+(1−α)f ′},

13



then it suggests that she expects to choose αc+ (1−α)f and be tempted by
αf + (1− α)f ′. Further,

V ({f ′}) > V ({c}) = V ({c, f}) > V ({f})
V ({αc+ (1− α)f ′}) > V ({αc+ (1− α)f ′, αf + (1− α)f ′}),

where

V ({f ′}) = 1, V ({c}) =
1

2
, V ({c, f}) =

1

2
, V ({f}) = 0

V ({αc+ (1− α)f ′}) = 1− α

2
, V ({αc+ (1− α)f ′, αf + (1− α)f ′}) =

1

1 + α
.

Hence, the model accommodates our motivating example.

3.4 Specialization

To the extent that a systematic study of temptation calls for us to attribute
any non-standard behavior to temptation, it is natural to attribute Inde-
pendence violations to temptation and self-control rather than to normative
preferences. Accordingly, we study a specialization of our model that re-
tains linearity of normative preference and attributes non-standard effects of
randomization to temptation preferences. Consequently, we consider:

Commitment Independence
{p} � {q} implies α{p}+ (1− α){r} � α{q}+ (1− α){r}
for all α ∈ [0, 1] and r ∈ ∆(X).

Commitment Independence requires that the agent’s commitment pref-
erence satisfy the Independence axiom. Hence, a decision maker who views
Independence over lotteries as an appealing normative property will satisfy
it. Further, it does not restrict behavior over non-singleton menus and allows
for violations of Independence.

Proposition 3.1. Suppose � satisfies the axioms of Theorem 3.1.
Then � also satisfies Commitment Independence if and only if it admits a
representation as in Theorem 3.1 in which u(., γ) = u(., γ′) for all
γ, γ′ ∈ [0, 1].

Apart from being appealing from a modeling perspective, the illustration
in the previous section shows that it is also analytically convenient.
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4 Commitment and Mixtures

4.1 General Self-Control Models

In the introduction we claimed that GP cannot accommodate mixture-dependent
preference for commitment because of the linearity of the normative and
temptation preferences. Here we show that in fact, any temptation model
that maintains linearity of the normative and temptation preferences, and
that satisfies Set-Betweenness cannot accommodate mixture-dependent pref-
erence for commitment.

Recall that � has preference for commitment at y if there exists x ⊂ y
such that x � y. Noor and Takeoka (2010, 2015) show that any temptation
model that satisfies Set-Betweenness and maintains linearity of the normative
and temptation preference can be written in the following way:

V (x) = max
p∈x
{u(p)− c(p,max

q∈x
v(q))},

for all menus x, where u and v are vNM utility functions over lotteries and
c satisfies the following three properties:

1. c is weakly increasing in its second argument and continuous in both
arguments.

2. c(p, v(q)) > 0 implies v(q) > v(p).

3. u(p) > u(q) and v(p) < v(q) implies c(p, v(q)) > 0.

Intuitively, properties 1, 2 and 3 are the minimal properties c must possess in
order to be interpretable as a self-control cost function. In particular, prop-
erty 1 says that the higher the temptation, (weakly) higher the self-control
is needed to resist it. Property 2 requires that if p is costly to choose in the
presence of q, then it must be that q offers higher temptation utility. Prop-
erty 3 provides a converse in that if q provides more temptation utility than
p and there is conflict with the normative utility, then the cost of choosing p
must be strictly positive.

Noor and Takeoka (2010) refer to this class of models as general self -
control models, and identify them with the tuple (u, v, c).
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Proposition 4.1. Let (u, v, c) be a general self-control model and � the
preference it represents. Then for all x, y ∈ X :

1. If � has preference for commitment at x, then � has preference for
commitment at αx+ (1− α)y.

2. Suppose there is no preference for commitment at y. If � does not have
a preference for commitment at x, then � does not have preference for
commitment at αx+ (1− α)y.

To illustrate why mixture-dependent preference for commitment neces-
sitates a violation of linearity of at least v, consider the following possible
rankings involving binary menus:

(∗) {p} � {p, q} � {q} and {αp+ (1− α)r} ∼ {αp+ (1− α)r, αq + (1− α)r}
(∗∗) {p} ∼ {p, q} � {q} and {αp+ (1− α)r} � {αp+ (1− α)r, αq + (1− α)r}.

Let (u, v, c) be a general self-control model and � the preference over
menus it represents. Noor and Takeoka (2015) show that

{p } � {p , q } � {q } =⇒ v(q) > v(p)

{p′} ∼ {p′, q′} � {q′} =⇒ v(p′) ≥ v(q′).

Hence, the rankings in (∗) imply

v(q) > v(p)

v(αp+ (1− α)r) ≥ v(αq + (1− α)r).

Thus, by linearity of v, v(q) > v(p) and v(q) ≤ v(p), an impossibility. Simi-
larly, the rankings in (∗∗) imply

v(p) ≥ v(q)

v(αq + (1− α)r) ≥ v(αp+ (1− α)r).

Hence, by linearity of v, v(q) ≥ v(p) and v(q) < v(p), another impossibility.

4.2 Mixture Monotone Preference for Commitment

Here we specialize the model by focusing on the preference for commitment.
In particular, we characterize two monotone patterns it can take under Com-
mitment Independence and an additional assumption. In Appendix B we
provide the corresponding results for the general model.
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Mixture-Increasing Preference for Commitment

For all p and x such that � has preference for commitment at
αx+ (1− α){p} for some α ∈ [0, 1]:

I If {p} � x, then � has preference for commitment at βx+(1−β){p}
for all 0 < β < α.

II If x � {p}, then � has preference for commitment at βx+(1−β){p}
for all β > α.

Mixture-Increasing Preference for commitment restricts how preference
for commitment can vary along mixtures. Indeed, Part I implies that if �
has preference for commitment at x, then � has preference for commitment
at any mixture between x and a superior menu that offers commitment {p}.
On the other hand, Part II requires that if the agent has preference for
commitment at a mixture between a menu that offers commitment {p} and
a superior menu x, then increasing the weight on the superior menu does not
affect preference for commitment.

The special case of our model described in Section 3.3 satisfies this axiom
(see Appendix D for a proof). Hence, it is compatible with our motivating
example. Recall that in the example, the agent had preference for commit-
ment at a mixture between {c, f} and the superior menu {f ′} but not at
{c, f}:

{αc+ (1− α)f ′} � {αc+ (1− α)f ′, αf + (1− α)f ′}
{c} ∼ {c, f}.

Thus, the axiom only requires that the agent has preference for commitment
at {βc+ (1−β)f ′, βf + (1−β)f ′} for all 0 < β < α which is consistent with
the behavior prescribed by the model in Section 3.3.

To state the next result, we require some additional notation. Let p∗, p∗
denote a fixed pair of lotteries such that {p∗} � x � {p∗} for all x ∈ X .
Given our axioms such lotteries always exist.4

4Weak Order and Continuity imply that the ordering over singleton menus has a best
and worst menu. Thus, by Set-Betweenness, all finite menus are between these two menus
in terms of preference. Hence, by Continuity the same holds for any menu.
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Theorem 4.1. Assume � satisfies the axioms of Proposition 3.1 and {p∗} ∼
{p∗, p∗}. Then � satisfies Mixture-Increasing Preference for Commitment if
and only if there exists (u, v) that represents � such that 0 < γ′ < γ <
1 implies that there exists bγ,γ′ ∈ R such that v(., γ′) + bγ,γ′ is a convex
combination of u and v(., γ).

The assumption that {p∗} ∼ {p∗, p∗} implies that the agent does not
expect to be tempted by p∗ if she faces {p∗, p∗} in the second stage. This
assumption guarantees that for each γ ∈ [0, 1], v(., γ) is not a negative affine
transformation of u. Theorem 4.1 shows that Mixture-Increasing Preference
for Commitment forces the following concrete relationship between u and v
across different levels of utility: as utility decreases, u and v(., γ) get “closer
together”.

The following axiom characterizes the opposite case: as utility decreases,
u and v(., γ) move “further apart”.

Mixture-Decreasing Preference for Commitment

For all p and x such that � has preference for commitment at
αx+ (1− α){p} for some α ∈ [0, 1]:

I If x � {p}, then � has preference for commitment at βx+(1−β){p}
for all 0 < β < α

II If {p} � x, then � has preference for commitment at βx+(1−β){p}
for all β > α.

An agent modeled after this axiom would have mixture independent pref-
erence for commitment when mixing with inferior menus that offer commit-
ment. Its interpretation is analogous to the interpretation of the previous
axiom.

Part II of this axiom is inconsistent with the rankings in our motivating
example. In particular, an agent that satisfies II that has preference for
commitment at {αc + (1 − α)f ′, αf + (1 − α)f ′} would have preference for
commitment at {c, f}. However, it can be motivated by similar examples.
To illustrate, consider again the traveler but assume now that she wishes to
stay at the fancy room but thinks that if she waits to choose the room until
she arrives at the hotel, then she will be tempted to choose the conventional
room to save money. Hence,

{f} � {c, f}.
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Assume she receives the same promotion as in the motivating example: her
name will be added to a raffle in which the prize is a free night in the fancy
room. The possibility of staying for free in the fancy room makes her dream
about it for the rest of the day. Hence, if she waits until she arrives to choose
the room, by then she will not find the cheap room tempting. Hence,

{αf + (1− α)f ′} ∼ {αc+ (1− α)f ′, αf + (1− α)f ′}.

This type of behavior is permitted by Mixture-Decreasing Preference for
Commitment. The reason is that this axiom is silent about behavior that
involves a mixture between a menu in which the agent has preference for
commitment ({c, f}) and a superior menu that offers commitment ({f ′}).
However, it is inconsistent with Part I of Mixture-Increasing Preference for
Commitment. In particular, an agent that satisfies Part I of that axiom that
has preference for commitment at {c, f} would have preference for commit-
ment at {αc+ (1− α)f ′, αf + (1− α)f ′}.

Theorem 4.2. Assume � satisfies the axioms of Proposition 3.1 and {p∗} ∼
{p∗, p∗}. Then � satisfies Mixture-Decreasing Preference for Commitment if
and only if there exists (u, v) that represents � such that 0 < γ′ < γ < 1 im-
plies that there exists bγ,γ′ ∈ R such that v(., γ)+bγ,γ′ is a convex combination
of u and v(., γ′).

5 Betweenness Mixture Space Theorem

In the introduction we briefly discussed that one of the contributions of the
paper is to provide a novel extension of the main result of Herstein and Milnor
(1953), commonly known as the Mixture Space Theorem. Here we provide
our extension.

A mixture space is a non-empty setM which is endowed with an opera-
tion π,

π : [0, 1]×M×M→M
(a, x, y)→ πa(x, y),

where π satisfies the following three properties:
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(A1) π1(x, y) = x.

(A2) πa(x, y) = π1−a(y, x) for all a ∈ [0, 1].

(A3) πa(πb(x, y), y) = πab(x, y) for all a, b ∈ [0, 1].

Basically, a mixture space is an abstract version of a convex set.

Let � be a binary relation over a mixture space (M, π). Consider the
following axioms:

Weak Order � is complete and transitive.

Continuity x � y � z implies that there exist a, b ∈ (0, 1) such that
πa(x, z) � y � πb(x, z).

Independence x � y implies πa(x, z) � πa(y, z) for all z ∈M
and a ∈ [0, 1].

Theorem 5.1. (Mixture Space Theorem) Let � be a binary relation on a
mixture space (M, π). Then the following two statements are equivalent:

a) � satisfies Weak Order, Continuity and Independence.

b) There exists a utility function Φ :M→ R that represents � such that

∀x, y ∈M and a ∈ [0, 1], Φ(πa(x, y)) = aΦ(x) + (1− a)Φ(y). (4)

Further, Φ is unique up to a positive affine transformation.

Say that a function Φ : M → R is mixture-linear if it satisfies (4).
The Mixture Space Theorem provides necessary and sufficient conditions for
a preference to have a mixture-linear utility representation. Our theorem
characterizes a representation where Φ instead conforms to an analogue of
the Chew-Dekel utility representation. However, it is less general than the
Mixture Space Theorem in the sense that it only applies to mixture spaces
that satisfy the following additional property:

(A4) πa(πb(x, y), z) = πab(x, πa(1−b)
1−ab

(y, z)) ∀a, b ∈ [0, 1] such that ab 6= 1.
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A4 requires that the order of the mixture does not matter. Hence, it is an
associative property. Thus we refer to any mixture space that satisfies A4
as an associative mixture space. Not all mixture spaces are associative (see
Mongin (2001) for an example). However, any space that is isomorphic to
a convex subset of a linear space is an associative mixture space (examples
include the frameworks employed in Anscombe and Aumann (1963), Dekel
et al. (2001) and the probability simplex).5 Not all associative mixture spaces
have this feature. In particular, Stone (1949) and Mongin (2001) show that
the missing ingredient is the following property.

(A5) For any a ∈ (0, 1) and x ∈M, y 7→ πa(x, y) is injective.

Theorem 5.2. (Stone-Mongin) Let (M, π) be an associative mixture space.
Then the following two statements are equivalent:

a) (M, π) satisfies A5.

b) (M, π) is isomorphic to a convex subset of a linear space.

Thus, even though our result is not as general as the Mixture Space Theorem,
it applies to settings that are more general than convex subsets of linear
spaces.

In our version of the Mixture Space Theorem, we replace the Indepen-
dence axiom with the following two axioms.

Mixture-Betweenness
x � y implies x � πa(x, y) � y for all a ∈ (0, 1), and
x ∼ y implies x ∼ πa(x, y) ∼ y for all a ∈ (0, 1).

Strict Best and Worst There exist x, x such that x � x � x for all x ∈
M\{x, x}.

To state our result we require some additional terminology. Say that a func-
tion V : M → R is mixture-continuous if for all x, y ∈ M, V (πa(x, y)) is
continuous as a function of a.

5To the best of our knowledge, every mixture space employed in the Decision Theory
literature is associative.
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Theorem 5.3. Let � be a binary relation on an associative mixture space
(M, π). Then the following two statements are equivalent:

a) � satisfies Weak Order, Continuity, Mixture-Betweenness and Strict
Best and Worst.

b) There exists Φ :M× (0, 1)→ R such that

1.- Φ is continuous in its second argument on the interval (0, 1).

2.- Φ is mixture linear in its first argument for all γ ∈ (0, 1).

3.- Φ(x, γ) = 1,Φ(x, γ) = 0 for all γ ∈ (0, 1).

4.- Φ(x, γ) = γ has a unique solution for all x ∈M\{x, x}.
5.- � can be represented by a mixture-continuous function V :M→

[0, 1] such that

V (x) =


1 x = x,

Φ(x, V (x)) x ∈ X\{x, x},
0 x = x.

Further, Φ(., γ) is unique for all γ ∈ (0, 1).

Mixture-Betweenness is obviously weaker than Independence. However,
Strict Best and Worst is unrelated to Independence and limits the generality
of our theorem. In the supplemental appendix (Payro (2020)) we show that
it can be deleted if the associative mixture space is a compact and convex
subset of a linear space and Continuity is replaced with the following axiom.

Strong Continuity The sets {y|y � x} and {y|x � y} are closed for all
x ∈M.

The proof of Theorem 5.3 is similar in spirit to the proofs in Chew (1989),
Dekel (1986) and Conlon (1995). However, they exploit properties of the
probability simplex that have no evident analog in our framework. More
specifically, Chew (1989) and Dekel (1986) use its geometric properties and
Conlon (1995) uses its topological properties. Hence, to prove the theorem
we were forced to develop novel arguments.

Due to its generality, Theorem 5.3 has several potential applications. In
particular, it can be used to derive a natural counterpart of Dekel (1986)
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for the Anscombe-Aumann domain (Anscombe and Aumann (1963)). In
this setting with uncertainty as opposed to risk, the result is a non-standard
model of beliefs. More specifically, let Ω be a finite state space. Consider
a preference � over F = {f : Ω → ∆(X)}, set of all AA acts. In ongoing
work, we use Theorem 5.3 as a stepping stone in the axiomatization of a
representation for � in which the utility of an AA act f is the unique γ that
solves

γ =

∫
Ω

u(f(ω))µ(dω, γ), (5)

where u is a vNM utility function over lotteries and µ(., γ) is a probability
measure over Ω for all γ.

In a separate project, we use our result to generalize Dekel et al. (2001)
and therefore also Kreps (1979). In particular, we derive a counterpart of (5)
in which the state space is subjective. To be precise, we axiomatize a utility
representation for preferences over menus of lotteries in which the utility of
a menu x is the unique γ that solves

γ =

∫
S

sup
p∈x

u(p, s)µ(ds, γ),

where S is a non-empty set (subjective state space), u(., s) is a vNM utility
function over lotteries for all s ∈ S and µ(., γ) is a probability measure over
S for all γ.

Appendix A: Mixture Space Theorem

Preliminaries

Lemma 5.1. Let � be a binary relation over a Mixture Space (M, π) that
satisfies Weak Order, Continuity and Mixture-Betweenness. Then:

1. x � y and 0 ≤ a < b ≤ 1 implies πb(x, y) � πa(x, y).

2. For all x, y and z the following sets are closed:

{a|πa(x, y) � z} and {a|z � πa(x, y)}.

3. If x � z � y, then there exists a unique a ∈ (0, 1) such that z ∼
πa(x, y).
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The proof of this lemma is provided in Appendix C.

Sufficiency

Lemma 5.1 shows that for each x ∈ M there exists a unique γ(x) ∈ [0, 1]
such that x ∼ πγ(x)(x, x). Define

V (x) ≡ γ(x).

Then, V is mixture-continuous and represents �. Now we proceed with the
construction of Φ.

For each γ ∈ (0, 1), let xγ denote πγ(x̄, x) and I(γ) = {x|x ∼ xγ}. Our
goal is to construct a mixture-linear Φ(., γ) such that it represents an ar-
tificial preference that has indifference curves that are “parallel” to I(γ).
Informally, x, y are in a “higher” artificial indifference curve parallel to I(γ)
if πa(x, x) ∼ xγ and πa(y, x) ∼ xγ. The following figure illustrates this idea.

x

x

x
y

πa(x, x)

πa(y, x)

I(γ)

Similarly, x, y are in a “lower” artificial indifference curve parallel to I(γ) if
πa(x, x) ∼ xγ and πa(y, x) ∼ xγ.

Consider the mapping λ :M× (0, 1)→ [0, 1] given by

λ(x, γ) =


a|πa(x, x) ∼ xγ V (x) > γ

1 V (x) = γ

b|πb(x, x̄) ∼ xγ V (x) < γ.
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By Lemma 5.1, λ is well defined. λ can be used to define an artificial
preference that has indifference curves parallel to I(γ): if either x, y � xγ or
xγ � x, y, then x, y are in the same artificial indifference curve if and only if
λ(x, γ) = λ(y, γ). Φ(., γ) would represent such artificial preference. Hence,
mixture linearity of Φ(., γ) and the definition of λ would imply that if x � xγ,

Φ(πλ(x,γ)(x, x), γ) = Φ(xγ, γ)

λ(x, γ)Φ(x, γ) = γ
γ

λ(x, γ)
= Φ(x, γ).

A similar argument shows that if xγ � x, then

Φ(x, γ) = 1− 1− γ
λ(x, γ)

.

Hence, Φ(., γ) most have the following form:

Φ(x, γ) ≡


γ

λ(x,γ)
V (x) > γ

γ V (x) = γ

1− 1−γ
λ(x,γ)

V (x) < γ.

Notice that Φ(x, γ) = γ if and only if V (x) = γ. Further,

V (x), V (y) ≥ γ =⇒ Φ(x, γ) ≥ Φ(y, γ) ⇐⇒ λ(x, γ) ≤ λ(y, γ)

V (x) ≥ γ ≥ V (y) =⇒ Φ(x, γ) ≥ Φ(y, γ)

V (x), V (y) ≤ γ =⇒ Φ(x, γ) ≥ Φ(y, γ) ⇐⇒ λ(x, γ) ≥ λ(y, γ).

We will show that Φ(., γ) is mixture linear and continuous in its second
argument. In our proof we employ the following lemma that describes several
properties of λ.
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Lemma 5.2. If � satisfies the axioms of Theorem 5.3, then λ satisfies the
following properties:

1. V (x), V (y) ≥ γ =⇒ λ(πa(x, y), γ) = λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

for all a ∈ [0, 1].

2. V (x), V (y) ≤ γ =⇒ λ(πa(x, y), γ) = λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

for all a ∈ [0, 1].

3. V (x), V (y) > γ > V (z) and λ(x, γ) < λ(y, γ)
=⇒ λ(πa(x, z), γ) = λ(y, γ) for a unique a ∈ (0, 1).

4. V (x), V (y) < γ < V (z) and λ(x, γ) < λ(y, γ)
=⇒ λ(πa(x, z), γ) = λ(y, γ) for a unique a ∈ (0, 1).

5. V (x), V (y) > γ > V (z), λ(x, γ) = λ(y, γ) and πa(x, z) ∼ xγ
=⇒ πa(y, z) ∼ xγ.

6. V (x), V (y) < γ < V (z), λ(x, γ) = λ(y, γ) and πa(x, z) ∼ xγ
=⇒ πa(y, z) ∼ xγ.

The proof is provided in Appendix C. Here we provide two figures that
illustrate properties 3 (Figure 1) and 5 (Figure 2).

Notice that properties 1 and 2 imply that if x, y are both above or both
below I(γ) in terms of preferences, then

λ(πa(x, y), γ) = (aλ(x, γ)−1 + (1− a)λ(y, γ)−1)−1.

Hence, λ(πa(x, y), γ) is the harmonic weighted mean of λ(x, γ) and λ(y, γ).

πb(y, z)

x

πb(x, z)

z

λ(πd(x, z), γ) = λ(y, γ)

πd(x, z)

x

x

x

y
I(γ)

Figure 1 Figure 2

I(γ)
y

x

x

z
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Φ(., γ) is Mixture Linear

Fix x, y ∈ X , γ ∈ (0, 1) and a ∈ (0, 1). Assume WLOG that V (x) ≥ V (y).
Then, by Mixture-Betweenness, V (x) ≥ V (πa(x, y)) ≥ V (y). We will show
that

Φ(πa(x, y), γ) = aΦ(x, γ) + (1− a)Φ(y, γ).

There are four possible cases to consider:
(i) V (x) ≥ V (y) ≥ γ. (ii) γ ≥ V (x) ≥ V (y).
(iii) V (x) ≥ V (πa(x, y)) ≥ γ ≥ V (y). (iv) V (x) ≥ γ ≥ V (πa(x, y)) ≥ V (y).
Since the proofs of (i) and (ii) are analogous, and the proofs of (iii) and (iv)
are analogous we only consider (i) (Lemma 5.3) and (iii) (Lemma 5.4).

Lemma 5.3. V (x), V (y) ≥ γ =⇒ Φ(πa(x, y), γ) = aΦ(x, γ)+(1−a)Φ(y, γ).

Proof. First note that if V (x) = V (y) = γ, then there is nothing to prove.
Assume V (x) > V (y) ≥ γ. Then, by Mixture-Betweenness, V (πa(x, y)) > γ.
Thus,

Φ(πa(x, y), γ) =
γ

λ(πa(x, y), γ)

=
γ

λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

=
γ

λ(x, γ)λ(y, γ)
(aλ(y, γ) + (1− a)λ(x, γ))

= a
γ

λ(x, γ)
+ (1− a)

γ

λ(y, γ)

= aΦ(x, γ) + (1− a)Φ(y, γ).

where the second equality follows from Part 1 of Lemma 5.2.

Lemma 5.4. V (x) > γ > V (y) and V (πa(x, y)) ≥ γ =⇒
Φ(πa(x, y), γ) = aΦ(x, γ) + (1− a)Φ(y, γ).

Proof. Let b ∈ (0, 1) be such that

πb(x, y) ∼ xγ.

The proof of this lemma is done in two steps.
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Step 1: Calculate Φ(πa(x, y), γ)

The following figure illustrates the argument for this step.

x

x

I(γ)

x

y

πa(x, y)

πb(x, y)

πc(x, πb(x, y))

πa(x, y) � xγ implies a ≥ b. Let c = a−b
1−b ≤ 1. We claim that πa(x, y) =

πc(x, πb(x, y)). To prove this claim note that

πc(x, πb(x, y)) = π1−c(π1−b(y, x), x)

= π(1−c)(1−b)(y, x)

= π1−(1−c)(1−b)(x, y).

Further,

1− (1− c)(1− b) = 1− (1− a− b
1− b

)(1− b)

= 1− (1− b− (a− b)))
= a.

Hence, πa(x, y) = πc(x, πb(x, y)). Since V (x), V (πb(x, y)) ≥ γ, by Part 1 of
Lemma 5.2,

λ(πc(x, πb(x, y)), γ) =
λ(x, γ)

c+ (1− c)λ(x, γ)

=
λ(x, γ)

a−b
1−b + (1− a−b

1−b)λ(x, γ)

= (1− b) λ(x, γ)

(a− b) + (1− a)λ(x, γ)
.
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Hence,

Φ(πa(x, y), γ) = Φ(πc(x, πb(x, y)), γ)

= γ
1

λ(πc(x, πb(x, y)), γ)

= γ
1

(1− b) λ(x,γ)
(a−b)+(1−a)λ(x,γ)

= γ
a− b+ (1− a)λ(x, γ)

(1− b)λ(x, γ)
.

Step 2: Calculate aΦ(x, γ) + (1 − a)Φ(y, γ) and show it is equal to
Φ(πa(x, y), γ)

To calculate aΦ(x, γ) + (1 − a)Φ(y, γ) we first need to derive the relation
between λ(y, γ), λ(x, γ), γ and b. In particular, we need to show that

λ(y, γ) =
(1− b)λ(x, γ)(γ − 1)

λ(x, γ)(γ − 1)− b(γ − λ(x, γ))
. (6)

To prove (6) we need to distinguish between two cases: (i) λ(x, γ) > λ(x, γ)
and (ii) λ(x, γ) ≤ λ(x, γ). The proof of both cases is analogous. Thus, we
only consider (i).

Assume λ(x, γ) > λ(x, γ). By Part 3 of Lemma 5.2 there exists a unique
d ∈ (0, 1) such that λ(πd(y, x), γ) = λ(x, γ). First we show that λ(y, γ) =
1− b(1− d). The following figure illustrates why this is true.

x

x

I(γ)
x

y

πa(x, y)

πd(y, x)

πb(πd(y, x), y)
πb(x, y)

29



By Part 5 of Lemma 5.2, πb(πd(y, x), y) ∼ xγ. Hence πλ(y,γ)(y, x) = πb(πd(y, x), y).
Further,

πb(πd(y, x), y) = πb(π1−d(x, y), y)

= πb(1−d)(x, y)

= π1−b(1−d)(y, x).

Thus,

λ(y, γ) = 1− b(1− d).

Next, we need to replace d in λ(y, γ) = 1− b(1− d) with eλ(y, γ) where

e = γ−λ(x,γ)
λ(x,γ)(γ−1)

. The following figure illustrates how we do this.

πd(y, x)

y

I(γ)

x

x

πλ(y,γ)(y, x)

πe(πλ(y,γ)(y, x), x)

First we show that e ∈ (0, 1) and πd(y, x) = πe(πλ(y,γ)(y, x), x). To prove
this, first note that γ = λ(x, γ) so λ(x, γ) > λ(x, γ) and γ ∈ (0, 1) imply
e > 0. Further, λ(x, γ) ∈ (0, 1). Thus,

γ > λ(x, γ)γ

γ − λ(x, γ) > λ(x, γ)γ − λ(x, γ)

γ − λ(x, γ)

λ(x, γ)(γ − 1)
< 1.

Next, note that

πe(πλ(y,γ)(y, x), x) = πeλ(y,γ)(y, x).
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Thus, by Part 1 of Lemma 5.2,

λ(πe(πλ(y,γ)(y, x), x), γ) =
λ(x)

eλ(x, γ) + (1− e)
.

Notice that if e = γ−λ(x,γ)
λ(x,γ)(γ−1)

, then

πe(πλ(y,γ)(y, x), x) =
λ(x, γ)

( γ−λ(x,γ)
λ(x,γ)(γ−1)

)λ(x, γ) + γ(λ(x,γ)−1)
λ(x,γ)(γ−1)

=
γλ(x, γ)(γ − 1)

γ(γ − λ(x, γ)) + γ(λ(x, γ)− 1)

=
λ(x, γ)(γ − 1)

(γ − λ(x, γ)) + (λ(x, γ)− 1)

= λ(x, γ).

Hence by the uniqueness in Part 3 of Lemma 5.2, d = eλ(y, γ). Thus,

λ(y, γ) = 1− b(1− d)

= 1− b(1− eλ(y, γ))

=
1− b
1− be

=
(1− b)λ(x, γ)(γ − 1)

λ(x, γ)(γ − 1)− b(γ − λ(x, γ))
.

Hence, (6) holds.

Finally, we finish the proof of this step by showing aΦ(x, γ)+(1−a)Φ(y, γ) =
Φ(πa(x, y)).

aΦ(x, γ) + (1− a)Φ(y, γ) = a
γ

λ(x, γ)
+ (1− a)(1− 1− γ

λ(y, γ)
)

= a
γ

λ(x, γ)

+ (1− a)(1− (1− γ)
λ(x, γ)(γ − 1)− b(γ − λ(x, γ))

(1− b)λ(x, γ)(γ − 1)
)

= a
γ

λ(x, γ)
+ (1− a)(1− (1− γ)

b(γ − λ(x, γ))− λ(x, γ)(γ − 1)

(1− b)λ(x, γ)(1− γ)
)
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= a
γ

λ(x, γ)

+ (1− a)(
(1− b)λ(x, γ)− (b(γ − λ(x, γ))− λ(x, γ)(γ − 1))

(1− b)λ(x, γ)
)

= a
γ

λ(x, γ)
+

1− a
(1− b)λ(x, γ)

(λ(x, γ)γ − bγ)

=
γ

λ(x)(1− b)
(a− ab+ λ(x, γ)− b− aλ(x, γ) + ab)

= γ
(a− b) + λ(x, γ)(1− a)

λ(x, γ)(1− b)
= Φ(πa(x, y), γ).

Φ is continuous in its second argument

To show that Φ is continuous in its second argument it is enough to show
that λ is continuous in its second argument.

Lemma 5.5. λ is continuous in its second argument.

Proof. Fix x ∈ M, γ ∈ (0, 1) and γn such that γn → γ. There are three
possible cases: (i) V (x) > γ, (ii) V (x) < γ and (iii) V (x) = γ. The proof of
the three cases is analogous. Hence, we only consider (i).

Assume V (x) < γ. By standard arguments it is without loss to assume
γn > V (x) for all n. Let λn = λ(x, γn) and assume towards a contradiction
that λn 6→ λ(x, γ). Then, there exists a neighborhood B(λ(x, γ)) such that
λn 6∈ B(λ(x, γ)). Let λm denote the corresponding subsequence. Since λm is a
subsequence in [0, 1], there exists a convergent subsequence λl with limit λ∗ 6=
λ(x, γ). Then, either πλ∗(x, x) � πλ(x,γ)(x, x) or πλ(x,γ)(x, x) � πλ∗(x, x). The
proof that either case leads to a contradiction is analogous. Hence, we only
consider the case in which πλ∗(x, x) � πλ(x,γ)(x, x).

By Continuity there exists z such that πλ∗(x, x) � z � πλ(x,γ)(x, x).
Further, by Lemma 5.1, there exists N such that l > N implies πλl(x, x) � z.
Since πλl(x, x) ∼ πγl(x, x) for all l and πλ(x,γ)(x, x) ∼ xγ, then by Lemma 5.1,
πγl(x, x) � z for all l > N and γl → γ implies πγ(x, x) � z a contradiction.
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Necessity: Mixture-Betweenness

Say that Φ represents � if it satisfies the conditions of Theorem 5.3.

Preliminaries

Lemma 5.6. Assume Φ represents �. Then for any x such that V (x) ∈
(0, 1), the following two properties hold:

1. Φ(x, γ) < γ implies V (x) < γ.

2. Φ(x, γ) > γ implies V (x) > γ.

Proof. Assume towards a contradiction that there exists γ and x such that
V (x) ≥ γ and Φ(x, γ) < γ. If V (x) = γ, then by the unique solution property
Φ(x, γ) = γ, a contradiction. Thus, V (x) > γ. Since Φ(x, γ) < γ < 1, there
exists a ∈ (0, 1) such that aΦ(x, γ) + (1− a) = γ. Hence, V (πa(x, x)) = γ <
V (x) < 1. Since V is mixture-continuous, there exists b ∈ (0, 1) such that
V (πb(x, x)) = V (x), Hence, V (x) = bΦ(x, V (x)) + (1− b) = bV (x) + (1− b),
a contradiction.

Property 2 Follows from an analogous argument, the only difference is
that one needs to use x instead of x to derive a contradiction.

Next, we complete the proof. Showing that V (x) = V (y) implies V (x) =
V (πa(x, y)) = V (y) for all a ∈ (0, 1) is straight forward. Assume V (x) > V (y)
and let γ = V (πa(x, y)). Then

γ = aΦ(x, γ) + (1− a)Φ(y, γ).

Notice that if γ = V (x) or γ = V (y), then the unique solution property
implies a contradiction of V (x) > V (y). Further, if γ > V (x), then by Lemma
5.6, γ > Φ(x, γ),Φ(y, γ). Thus, γ = aΦ(x, γ) + (1− a)Φ(y, γ) does not have
a solution. Similarly, if γ < V (y), then by Lemma 5.6 γ < Φ(x, γ),Φ(y, γ)
and γ = aΦ(x, γ) + (1 − a)Φ(y, γ) does not have a solution. Hence, γ ∈
(V (y), V (x)).
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Uniqueness

Preliminaries

The proof will employ the following lemma which states that if two pref-
erences that satisfy Weak Order, Continuity and Independence share an in-
difference curve, then they are equal.

Lemma 5.7. Let � and �′ be two binary relations on a Mixture Space (M, π)
that satisfy Weak Order, Continuity and Independence. Assume

1. {x|x ∼ πa(x, x)} = {x|x ∼′ πa(x, x)} for some a ∈ (0, 1).

2. x � x and x �′ x.

Then �=�′.

Proof. Assume towards a contradiction that there exist x, y such that x � y
and y �′ x. Since � is complete, then there are two possible cases: y �
πa(x, x) and πa(x, x) � y. The proof that either case leads to a contradiction
is analogous. Hence, we only consider the case in which y � πa(x, x).

Assume y � πa(x, x). Then there exists b such that πb(y, x) ∼ πa(x, x).
Hence, πb(y, x) ∼′ πa(x, x). Since x � y and y �′ x, by Independence,

πb(x, x) � πb(y, x) ∼ πa(x, x) and πa(x, x) ∼ πb(y, x) �′ πb(x, x)

Thus, there exists c < b such that πc(x, x) ∼ πa(x, x) and πa(x, x) �′ πc(x, x)
a contradiction.

Next, we complete the proof. First we show that if Φ and Φ′ represent �,
then V = V ′. To see this, note that

V (πγ(x, x)) = γ

V ′(πγ(x, x)) = γ

for all γ ∈ (0, 1). Hence, V (x) and V ′(x) are the unique γ such that x ∼
πγ(x, x). Thus, V = V ′.

To see that Φ = Φ′ let �γ and �γ′ be the preference represented by Φ(., γ)
and Φ′(., γ) respectively. Then,

{x|x ∼ πγ(x, x)} = {x|x ∼′ πγ(x, x)}.
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Thus, by Lemma 5.7, �γ=�′γ. By the Mixture Space Theorem, Φ(., γ) is
the unique mixture-linear representation of �γ in which Φ(x, γ) = 1 and
Φ(x, γ) = 0. Hence, Φ = Φ′.

Appendix B

Proof of Theorem 3.1

Preliminaries

∆(X) compact implies X is compact (Aliprantis and Border 1999, Theorem
3.71(3)). Let K(∆(X)) denote the set of all closed and convex menus of
lotteries. By the Blaschke Selection Theorem, K(∆(X)) is compact.

Lemma 5.8. K(∆(X)) is an associative mixture space.

Proof. By Lemmas S.2 and S.3 in Dekel et al. (2007), there exists a bijection
from K(∆(X)) to a convex subset of a linear space. Further, the bijection
is mixture preserving. Hence, by Theorem 5.2, K(∆(X)) is an Associative
Mixture Space.

We conclude the preliminaries by introducing some notation. Let p, p ∈
∆(X) denote a fixed pair of lotteries such that {p} � x � {p} for all x ∈ X .
Given our axioms, such lotteries always exist (see footnote 4). Further, for
each γ ∈ (0, 1), let {pγ} denote γ{p}+ (1− γ){p}.

Sufficiency

Define V and Φ as in the proof of Theorem 5.3 using {p} and {p} as the
best and worst menus. Then, Φ(., γ) is mixture linear for all γ ∈ (0, 1) and,
Φ({p}, γ) = 1 and Φ({p}, γ) = 0 for all γ ∈ [0, 1]. Further, for all x such that
{p} � x � {p}, V (x) = γ is the unique solution of

γ = Φ(x, γ).

An identical argument to the one in the proof of Theorem 1.1 in the sup-
plemental material (Payro (2020)) shows that Φ(., γ) and V are continuous
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for all γ ∈ (0, 1). In what follows we will use Φ(., γ) to construct the rep-
resentation in Theorem 3.1 for the case in which γ ∈ (0, 1). Afterwards we
construct the representation for the case in which γ = 1 and γ = 0.

Step 1: Extend V and Φ(., γ) to X .

For each menu x ∈ X , let ch(x) denote its convex hull. Extend V by letting
V (x) = V (ch(x)) for all x ∈ X\K(∆(X)). We claim that V represents �.
To prove this, it is enough to show that our axioms imply x ∼ ch(x) for all
x ∈ X .

Lemma 5.9. Let � be a binary relation over X that satisfies Weak Order,
Continuity and Mixture-Betweenness. Then x ∼ ch(x) for all x ∈ X .

Proof. Let K = |X| and assume, by way of contradiction, that there exists
x such that x 6∼ ch(x). Then, by Mixture-Betweenness, αx+ (1−α)ch(x) 6∼
ch(x) for all α ∈ (0, 1). This is a contradiction. In particular, Lemma S.6
in the supplemental appendix of Dekel et al. (2007) shows that αx + (1 −
α)ch(x) = ch(x) for all α ∈ [0, 1

K
].

Extend Φ by letting Φ(x, γ) = Φ(ch(x), γ) for all x ∈ X\K(∆(X)). Then,

Φ(αx+ (1− α)y, γ) = Φ(ch(αx+ (1− α)y), γ)

= Φ(αch(x) + (1− α)ch(y), γ)

= αΦ(ch(x), γ) + (1− α)Φ(ch(y), γ)

= αΦ(x, γ) + (1− α)Φ(y, γ)

for all x, y ∈ X and α ∈ [0, 1]. Thus, the extension of Φ is also mixture linear
in its first argument and continuous in its second.

Step 2: Show that Φ(., γ) satisfies Set-Betwenness.

Fix x, y ∈ X and γ ∈ (0, 1). Assume WLOG that Φ(x, γ) ≥ Φ(y, γ). There
are three possible cases:
(i) Φ(x, γ) ≥ Φ(y, γ) ≥ γ. (ii) Φ(x, γ) ≥ γ ≥ Φ(y, γ).
(iii) γ ≥ Φ(x, γ) ≥ Φ(y, γ).
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(i) Φ(x, γ) ≥ Φ(y, γ) ≥ γ.

By Lemma 5.6, V (x), V (y) ≥ γ. Thus, by Set-Betweenness, V (x ∪ y) ≥ γ.
By construction, Φ(x, γ) ≥ Φ(y, γ) if and only if λ(x, γ) ≤ λ(y, γ) so

λ(x, γ)x+ (1− λ(x, γ)){p} ∼ {pγ} � λ(x, γ)y + (1− λ(x, γ)){p}.

Hence, by Set-Betweenness,

λ(x, γ)x+ (1− λ(x, γ)){p} � λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p}
� λ(x, γ)y + (1− λ(x, γ)){p}.

However, note that

λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p} ∼ λ(x, γ)(x ∪ y) + (1− λ(x, γ)){p}

because their convex hulls are equal. Thus,

{pγ} � λ(x, γ)(x ∪ y) + (1− λ(x, γ)){p}.

Hence, λ(x ∪ y, γ) ≥ λ(x, γ) so Φ(x, γ) ≥ Φ(x ∪ y, γ). To see that
Φ(x ∪ y, γ) ≥ Φ(y, γ), note that

λ(y, γ)x+ (1− λ(y, γ)){p} � {pγ} ∼ λ(y, γ)y + (1− λ(y, γ)){p}.

Thus, by Set-Betweenness,

λ(y, γ)x+ (1− λ(y, γ)){p} � λ(y, γ)x+ (1− λ(y, γ)){p} ∪ λ(y, γ)y + (1− λ(y, γ)){p}
� λ(y, γ)y + (1− λ(y, γ)){p}.

However,

λ(y, γ)x+ (1− λ(y, γ)){p} ∪ λ(y, γ)y + (1− λ(y, γ)){p} ∼ λ(y, γ)(x ∪ y) + (1− λ(y, γ)){p}.

Thus, λ(y, γ)(x ∪ y) + (1 − λ(y, γ)){p} � {pγ} and λ(x ∪ y, γ) ≤ λ(y, γ) so
Φ(x ∪ y, γ) ≥ Φ(y, γ).
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(ii) Φ(x, γ) ≥ γ ≥ Φ(y, γ).

By Lemma 5.6, V (x) ≥ γ ≥ V (y). Hence, by Set-Betweenness,
V (x) ≥ V (x∪y) ≥ V (y). There are two cases: V (x∪y) ≥ γ or γ ≥ V (x∪y).

If V (x ∪ y) ≥ γ, then, by Lemma 5.6, Φ(x ∪ y, γ) ≥ Φ(y, γ). Hence, we
only need to show Φ(x, γ) ≥ Φ(x ∪ y, γ). By Mixture-Betweenness,

λ(x, γ)x+ (1− λ(x, γ)){p} ∼ {pγ} � λ(x, γ)y + (1− λ(x, γ)){p}.

Thus, by Set-Betweenness,

λ(x, γ)x+ (1− λ(x, γ)){p} � λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p}
� λ(x, γ)y + (1− λ(x, γ)){p}.

However,

λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p} ∼ λ(x, γ)x ∪ y + (1− λ(x, γ)){p}.

Therefore,

λ(x, γ)x+ (1− λ(x, γ)){p} � λ(x, γ)x ∪ y + (1− λ(x, γ)){p}
� λ(x, γ)y + (1− λ(x, γ)){p}.

Hence, λ(x ∪ y, γ) ≥ λ(x, γ) so Φ(x, γ) ≥ Φ(x ∪ y, γ).

Next, assume γ ≥ V (x∪ y). Then, by Lemma 5.6, Φ(x, γ) ≥ Φ(x∪ y, γ). By
Mixture-Betweenness,

λ(y, γ)x+ (1− λ(y, γ)){p} � λ(y, γ)y + (1− λ(y, γ)){p} ∼ {pγ}.

Hence, by Set-Betweenness,

λ(y, γ)x+ (1− λ(y, γ)){p} � λ(y, γ)x+ (1− λ(y, γ)){p} ∪ λ(y, γ)y + (1− λ(y, γ)){p}
� λ(y, γ)y + (1− λ(y, γ)){p}.

However,

λ(y, γ)x+ (1− λ(y, γ)){p} ∪ λ(y, γ)y + (1− λ(y, γ)){p} ∼ λ(y, γ)x ∪ y + (1− λ(y, γ)){p}.
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Therefore,

λ(y, γ)x+ (1− λ(y, γ)){p} � λ(y, γ)x ∪ y + (1− λ(y, γ)){p}
� λ(y, γ)y + (1− λ(y, γ)){p}.

Hence, λ(x ∪ y, γ) ≥ λ(y, γ) and Φ(x ∪ y, γ) ≥ Φ(y, γ).

(iii) γ ≥ Φ(x, γ) ≥ Φ(y, γ).

By Lemma 5.6, γ ≥ V (x), V (y). Thus, by Set-Betweenness, γ ≥ V (x ∪ y).
Φ(x, γ) ≥ Φ(y, γ) implies λ(x, γ) ≥ λ(y, γ) so

λ(y, γ)x+ (1− λ(y, γ)){p} � {pγ} ∼ λ(y, γ)y + (1− λ(y, γ)){p}.

Thus, by Set-Betweenness,

λ(y, γ)x+ (1− λ(y, γ)){p} � λ(y, γ)x+ (1− λ(y, γ)){p} ∪ λ(y, γ)y + (1− λ(y, γ)){p}
� λ(y, γ)y + (1− λ(y, γ)){p}.

However,

λ(y, γ)x+ (1− λ(y, γ)){p} ∪ λ(y, γ)y + (1− λ(y, γ)){p} ∼ λ(y, γ)(x ∪ y) + (1− λ(y, γ)){p}.

Hence,

λ(y, γ)x+ (1− λ(y, γ)){p} � λ(y, γ)(x ∪ y) + (1− λ(y, γ)){p}
� λ(y, γ)y + (1− λ(, γ)){p}.

Therefore, λ(x ∪ y, γ) ≥ λ(y, γ) and Φ(x ∪ y, γ) ≥ Φ(y, γ). To see that
Φ(x, γ) ≥ Φ(x ∪ y, γ) note that

λ(x, γ)x+ (1− λ(x, γ)){p} ∼ {pγ} � λ(x, γ)y + (1− λ(x, γ)){p}.

Further, by Set-Betweenness,

λ(x, γ)x+ (1− λ(x, γ)){p} � λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p}
� λ(x, γ)y + (1− λ(x, γ)){p}.

However,

λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p} ∼ λ(x, γ)(x ∪ y) + (1− λ(x, γ)){p}.
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Hence, λ(x, γ) ≥ λ(x ∪ y, γ) and Φ(x, γ) ≥ Φ(x ∪ y, γ).

Step 3: Show that there exists u(., γ) and v(., γ) such that for all
γ ∈ (0, 1) and x ∈ X ,

Φ(x, γ) = max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
v(q, γ)}.

Restrict � to ∆(X), then by Proposition 1 in Dekel (1986) there exists
a unique u : ∆(X) × (0, 1) → R such that u(., γ) is a vNM utility function
for all γ ∈ [0, 1], u is continuous on its second argument on the open interval
(0, 1), u(p, γ) = 1, u(p, γ) = 0 and V ({p}) is the unique γ ∈ [0, 1] that solves

γ = u(p, γ).

Hence, Φ({p}, γ) = u(p, γ) for all p ∈ ∆(X) and γ ∈ (0, 1).

By Lemmas 2, 4 and 5 in GP, there exists a vNM function v(., γ) such that

Φ(x, γ) = max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
v(q, γ)}

for all x ∈ X .

Step 4: Construct v(., 1) and v(., 0).

The construction of v(., 0) and v(., 1) are analogous. Thus, we only show
the latter and specify how to adapt the argument for the former. Our con-
struction of v(., 1) is similar to the construction in the proof of Theorem 2
in Noor and Takeoka (2015).

If {p} � {p, q} for all p, q ∈ ∆(X) such that q 6= p, let v(., 1) = −u(., 1).
Otherwise, let P = {p|{p} � {q} for all q}. If {p, q} ∼ {p} for all p ∈ P and
q 6∈ P , let u(., 1) = 0. Otherwise, define �T over ∆(X) as follows

p �T q if and only if {p} ∼ {p, q} � {q} and p ∈ P
q �T p if and only if {p} � {p, q} and p ∈ P .

We will show that there exists a vNM utility function v(., 1) such that
p �T q implies v(p, 1) ≥ v(q, 1) and q �T p implies v(q, 1) > v(p, 1). We
claim that if such function exists, then

1 = max
p∈x
{u(p, 1) + v(p, 1)−max

q∈x
v(q, 1)} (7)
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if and only if V (x) = 1.

Since � satisfies Set-Betweenness, it is enough to prove the claim for bi-
nary menus. Let x = {p, q}.

V (x) = 1: If {p}, {q} ∼ {p}, then u(p, 1) = u(q, 1) = 1. Thus the RHS of
(7) must be equal to 1 because it satisfies Set-Betweenness. Assume WLOG
{p} ∼ {p} � {q}. Then, {p, q} � {q} so by construction v(p, 1) ≥ v(p, 1).
Hence, the RHS is equal to u(p, 1) which is equal to 1. Thus, (7) holds. Fi-
nally, note that if {p} � {p}, {q}, then by Set-Betweenness V (x) < 1. Thus,
we have shown that V (x) = 1 implies (7) holds.

V (x) < 1: If {p} � {p}, {q}, then u(p, 1), u(q, 1) < 1. Thus, since the
RHS of (7) satisfies Set-Betweenness, then it is strictly less than 1. Thus,
(7) does not hold. Assume WLOG {p} ∼ {p} � {q}. Then, {p} � {p, q} so
by construction, v(q, 1) > v(p, 1). Thus, the RHS of (7) is equal to either

u(p, 1) + v(p, 1)− v(q, 1) or u(q, 1),

either way (7) is strictly less than 1 and (7) does not hold. Finally, note
that if {p}, {q} ∼ {p}, then V (x) = 1. Thus, we have shown that (7) holds
implies V (x) = 1.

Next, we show that there exists a vNM utility function that represents �T .
The proof of the existence of such function is done in four steps.

Let T = cl(ch({λ(p − q)|λ > 0, p � q or p �T q}). Then, T is the closed
convex cone generated by {(p− q)|p �T q or p �T q}. Let 0 denote the zero
vector.

Step 4.1: Show that if {pt} ∼ {pt, qt} for t = 1, ..., n and pt ∈ P for all
t, then {

∑n
t λtpt} ∼ {

∑n
t λtpt,

∑n
t λtqt} for all λ ∈ ∆({1, ..., n}).

The proof is by induction.

Base case: Fix p1, p2 ∈ P such that {p1} ∼ {p1, q1} and {p2} ∼ {p2, q2}. By
Mixture-Betweenness, {λp1 + (1− λ)p2} � x for all x ∈ X . Assume towards
a contradiction that {λp1 + (1− λ)p2} � {λp1 + (1− λ)p2, λq1 + (1− λ)q2}.
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By Mixture-Betweenness,

{p2, q2} � {λq1 + (1− λ)p2, λq1 + (1− λ)q2}
{p1, q1} � {λp1 + (1− λ)q2, λq1 + (1− λ)q2}.

Thus, by Set-Betweenness,

{p2, q2} � {λq1 + (1− λ)p2, λq1 + (1− λ)q2, λp1 + (1− λ)q2}.

Assume WLOG that

{λq1 + (1− λ)p2, λq1 + (1− λ)q2, λp1 + (1− λ)q2} � {λp1 + (1− λ)p2, λq1 + (1− λ)q2}.

Thus, By Set-Betweenness,

{p2, q2} � {λq1 + (1− λ)p2, λq1 + (1− λ)q2, λp1 + (1− λ)q2, λp1 + (1− λ)p2}.

However,

{λq1 + (1− λ)p2, λq1 + (1− λ)q2, λp1 + (1− λ)q2, λp1 + (1− λ)p2} = λ{p1, q1}+ (1− λ){p2, q2}

a contradiction.

Induction step: Suppose the result is true for n. We will now show it holds
for n+ 1.

Fix pt ∈ P such that pt ∼ {pt, qt} for all t = 1, ..., n + 1. By the induc-
tion hypothesis {

∑n
t=1

λt∑n
t λt

pt} ∼ {
∑n

t=1
λt∑n
t λt

pt,
∑n

t=1
λt∑n
t λt

qt}. Hence, by

the base case, {
∑n+1

t=1 λtpt} ∼ {
∑n+1

t=1 λtpt,
∑

t λtqt}

Step 4.2: Show that if {pt} � {pt, qt} t = 1, ..., n and pt ∈ P for all t,
then {

∑n
t=1 λtpt} � {

∑n
t=1 λtpt,

∑
t λtqt}.

The proof is by induction.

Base case: Fix p1, p2 ∈ P such that {p1} � {p1, q1} and {p2} � {p2, q2}. By
Mixture-Betweenness, {λp1 + (1−λ)p2} � {λp1 + (1−λ)p2, λq1 + (1−λ)q2}.
Assume towards a contradiction that {λp1+(1−λ)p2} ∼ {λp1+(1−λ)p2, λq1+
(1− λ)q2}. First note that

λ→ 1 =⇒ {λp1 + (1− λ)p2, λq1 + (1− λ)q2} → {p1, q1}
λ→ 0 =⇒ {λp1 + (1− λ)p2, λq1 + (1− λ)q2} → {p2, q2}.
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Thus, there exist α > λ > β such that

{λp1 + (1− λ)p2, λq1 + (1− λ)q2} � {αp1 + (1− α)p2, αq1 + (1− α)q2}
{λp1 + (1− λ)p2, λq1 + (1− λ)q2} � {βp1 + (1− β)p2, βq1 + (1− β)q2}

Let η be such that

η(αp1 + (1− α)p2) + (1− η)(βp1 + (1− β)p2) = λp1 + (1− λ)p2

Thus, by Mixture-Betweenness,

{λp1 + (1− λ)p2, λq1 + (1− λ)q2} �
η{αp1 + (1− α)p2, αq1 + (1− α)q2}+ (1− η){βp1 + (1− β)p2, βq1 + (1− β)q2}.

However,

η{αp1 + (1− α)p2, αq1 + (1− α)q2}+ (1− η){βp1 + (1− β)p2, βq1 + (1− β)q2} =

{λp1 + (1− λ)p2, η(αp1 + (1− α)p2) + (1− η)(βq1 + (1− β)q2), λq1 + (1− λ)q2,

η(αq1 + (1− α)q2) + (1− η)(βp1 + (1− β)p2)}.

Further, for ν = λ−(1−η)β
λ

{λp1 + (1− λ)p2, η(αp1 + (1− α)p2) + (1− η)(βq1 + (1− β)q2)} =

ν{λp1 + (1− λ)p2}+ (1− ν){λp1 + (1− λ)p2, λq1 + (1− λ)q2}
and

{λp1 + (1− λ)p2, η(αq1 + (1− α)q2) + (1− η)(βp1 + (1− β)p2)} =

(1− ν){λp1 + (1− λ)p2}) + ν{λp1 + (1− λ)p2, λq1 + (1− λ)q2}.

Hence, by Set-Betweenness and Mixture-Betweenness,

{λp1 + (1− λ)p2, η(αp1 + (1− α)p2) + (1− η)(βq1 + (1− β)q2), λq1 + (1− λ)q2,

η(αq1 + (1− α)q2) + (1− η)(βp1 + (1− β)p2)} ∼ {p1}

a contradiction.

Induction step: Suppose the result is true for n. We will show it is true
for n+ 1.
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Fix {pt} ∈ P such that {pt} � {pt, qt} for t = 1, ..., n + 1. By the in-
duction hypothesis {

∑n
t=1

λt∑n
t λt

pt} � {
∑n

t=1
λt∑n
t λt

pt,
∑n

t=1
λt∑n
t λt

qt}. Hence,

by the base case, {
∑

t λtpt} � {
∑

t λtpt,
∑

t λtqt}.

Step 4.3: show that 0 6∈ T .

We only show that 0 6∈ int(T ) because Continuity implies that if 0 6∈ int(T ),
then 0 6∈ T .

Fix λ(p− q) ∈ T , then

λ(p− q) =
n∑
t=1

λtαtpt +
N∑

t=n+1

λtαtq
′
t −

n∑
t=1

λtαtqt −
N∑

t=n+1

λtαtp
′
t

where pt ∼ {pt, qt} for all t = 1, ..., n and p′t � {p′t, q′t} for all t = 1, ..., N . Let

p =
∑
t

λtαt∑N
t=1 λtαt

pt and p′ =
N∑

t=n+1

λtαt∑N
t=1 λtαt

p′t,

q =
n∑
t=1

λtαt∑N
t=1 λtαt

qt and q′ =
N∑

t=n+1

λtαt∑N
t=1 λtαt

q′t.

Assume λ(p− q) = 0 and let λ∗ =
∑n

t=1
λtαt∑N
t=1 λtαt

. Then, λ∗p + (1− λ∗)q′ =

λ∗q + (1− λ∗)p′.

Note that by steps 4.1 and 4.2, {p} ∼ {p, q} and {p′} � {p′, q′}. Hence,
by Mixture-Betweenness,

{λ∗p+ (1− λ∗)p′} � λ∗{p}+ (1− λ∗){p′, q′}
= {λ∗p+ (1− λ∗)p′, λ∗p+ (1− λ∗)q′}
= {λ∗p+ (1− λ∗)p′, λ∗q + (1− λ∗)p′}
= λ∗{p, q}+ (1− λ∗){p′} ∼ {λ∗p+ (1− λ∗)p′}

a contradiction.

Step 4.4: Finish the proof
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By step 4.3 if {p} � {p, q}, then p − q 6∈ T . Thus, 0 6∈ T so by the
hyperplane separation theorem there exists v(., 1) such that q �T p implies
v(q, 1) ≥ v(p, 1). Further, since T is a closed cone and v is linear, v(p−q) ≥ 0
for all p− q ∈ T . Next, we will that q �T p implies v(q, 1) > v(p, 1).

Suppose {p} � {p, q} and v(p, 1) = v(q, 1). By construction, v(., 1) is not
a constant. Hence, there exists p′ ∈ P , q′ 6∈ P such that v(p′, 1) < v(q′, 1).
Thus, by Continuity and steps 4.2-4.3, for a large enough α,

{αp+ (1− α)p′} � {αp+ (1− α)p′, αq + (1− α)q′}.

Thus, αq + (1− α)q′ − αp+ (1− α)p′ ∈ T . Hence,

v(αq + (1− α)q′ − αp+ (1− α)p′, 1) < 0,

a contradiction.

To conclude the proof we outline the construction of v(., 0). If {p, q} �
{p} for all p, q ∈ ∆(X)\{p}, let v(r, 0) = 0 for all r ∈ ∆(X). Otherwise, let
Q = {q ∈ ∆(X)|{q} ∼ {p}}. If {p, q} ∼ {q} for all q ∈ Q and p ∈ ∆(X),
then let v(r, 0) = −u(r, 0). Otherwise, define �T over ∆(X) as follows:

p �T q if and only if {p} � {p, q} ∼ {q} and q ∈ Q
q �T p if and only if {p, q} � {q} and q ∈ Q.

An identical argument to the one in the construction of v(., 1) shows there
exists v′ such that p �T q implies v′(p) ≥ v′(q), p �T q implies v′(p) > v(q).
Let v(., 0) = −u(., 0) + v′, we will now show that

0 = max
p∈x
{u(p, 0) + v(p, 0)−max

q∈x
v(q, 0)} (8)

if and only if V (x) = 0.

As in the v(., 1) case, it is WLOG to only consider binary menus x = {p, q}.

V (x) > 0: If {p}, {q} � {p}, then u(p, 0), u(q, 0) > 0. Thus the RHS of
(8) must be positive because it satisfies Set-Betweenness. Assume WLOG
{p} � {q} ∼ {p}. Then, u(p, 0) > 0 and v(p, 0) > v(q, 0). Thus, the RHS of
(8) is equal to

v′(p)− v′(q) or u(p),
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either way, (8) does not hold. Hence, (8) holds implies V (x) = 0.

V (x) = 0: Then, either {p} ∼ {p} or {q} ∼ {p}. If both hold, then
u(p, 0) = u(q, 0), thus by Set-Betweenness, (8) holds. Assume WLOG {p} �
{q} ∼ {q}, then V (x) = 0 implies {p} � {p, q} ∼ {q}, thus v′(q) ≥ v′(p).
Then, the RHS of (8) is equal to

v′(q)−max{v′(q), v′(p)− u(p, 0)}.

{p} � {p} implies u(p, 0) > 0. Thus, since v′(q) ≥ v(p), then max{v′(q), v′(p)−
u(p, 0)} = v′(q). Hence, V (x) = 0 implies (8) holds.

Necessity: Set-Betweenness

Assume (u, v) represent �, then for any menu z ∈ X , V (z) = V ({pz, qz}) for
any pz, qz ∈ z such that

pz ∈ arg max
p∈z
{u(p, V (z)) + v(p, V (z))}

qz ∈ arg max
q∈z

v(q, V (z)).

To see this, note that

V (z) = max
p∈z
{u(p, V (z)) + v(p, V (z))−max

q∈z
{v(q, V (z))}}

= max
p∈{pz ,qz}

{u(p, V (z)) + v(p, V (z))− max
q∈{pz ,qz}

{v(q, V (z))}}.‘

Hence, by the unique solution property, V (z) = V ({pz, qz}).

Fix x, y such that V (x) ≥ V (y) and

pz ∈ arg max
p∈z
{u(p, V (z)) + v(p, V (z))}

qz ∈ arg max
q∈z

v(q, V (z))

for z ∈ {x, y, x ∪ y}. Then, V (z) = V ({pz, qz}) for all z ∈ {x, y, x ∪ y}. We
will show that V ({px, qx}) ≥ V ({px∪y, qx∪y}) ≥ V ({py, qy}).

Note that for z = x ∪ y, pz and qz can be either in x or in y. Hence,
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there are 4 possible cases: (i) px∪y, qx∪y ∈ x. (ii) px∪y, qx∪y ∈ y. (iii)
px∪y ∈ x\y, qx∪y ∈ y\x. (iv) px∪y ∈ y\x, qx∪y ∈ x\y.

If px∪y, qx∪y ∈ x, then V (x) = V (x ∪ y) and if px∪y, qx∪y ∈ y, then
V (x ∪ y) = V (y). Hence we only consider cases (iii) and (iv).

(iii) px∪y ∈ x\y, qx∪y ∈ y\x.

First note that

qx∪y ∈ arg max
q∈x∪y

v(q, V (x ∪ y)) and qx∪y ∈ y

=⇒ v(qx, V (x ∪ y)), v(px∪y, V (x ∪ y)) ≤ v(qx∪y, V (x ∪ y))

Thus,

u(px∪y, V (x ∪ y)) + v(px∪y,V (x ∪ y))− v(qx, V (x ∪ y)) ≥ V (x ∪ y).

Hence,

max
p∈{px∪y ,qx}

{u(p, V (x ∪ y)) + v(p, V (x ∪ y))} − max
q∈{px∪y ,qx}

v(q, V (x ∪ y)) ≥ V (x ∪ y).

Thus, by Lemma 5.6, V ({px∪y, qx}) ≥ V ({px∪y, qx∪y}). Moreover,

u(px, V (x)) + v(px, V (x)) ≥ u(px∪y, V (x)) + v(px∪y, V (x)).

Hence,

V (x) ≥ u(px∪y, V (x)) + v(px∪y, V (x))− v(qx, V (x)).

Thus, by Lemma 5.6, V ({px, qx}) ≥ V ({px∪y, qx}). Hence, V ({px, qx}) ≥
V ({px∪y, qx∪y}). To see that V ({px∪y, qx∪y}) ≥ V ({py, qy}) note that px∪y ∈ x
implies that

V (x ∪ y) ≥ u(py, V (x ∪ y)) + v(py,V (x ∪ y))− v(qx∪y, V (x ∪ y))

and

V (x ∪ y) ≥ u(qx∪y, V (x ∪ y)) + v(qx∪y,V (x ∪ y))− v(qx∪y, V (x ∪ y)).

Hence,

V (x ∪ y) ≥ max
p∈{py ,qx∪y}

{u(p, V (x ∪ y)) + v(p, V (x ∪ y))} − max
q∈{py ,qx∪y}

v(q, V (x ∪ y)).
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Thus, by Lemma 5.6, V ({px∪y, qx∪y}) ≥ V ({py, qx∪y}). Finally, since qx∪y ∈
y, then

u(py, V (y)) + v(py, V (y))− v(qx∪y, V (y)) ≥ V (y).

Hence, by Lemma 5.6, V ({py, qx∪y}) ≥ V ({py, qy}).

(iv) px∪y ∈ y\x, qx∪y ∈ x\y.

First note that

V (y) ≥ u(px∪y, V (y)) + v(px∪y, V (y))− v(qy, V (y))

and

V (y) ≥ u(qy, V (y)) + v(qy, V (y))− v(qy, V (y)).

Hence,

V (y) ≥ max
p∈{px∪y ,qy}

{u(p, V (y)) + v(p, V (y))} − max
q∈{px∪y ,qy}

v(q, V (y)).

Thus, by Lemma 5.6, V (py, qy) ≥ V ({px∪y, qy}). Next, note that

qx∪y ∈ arg max
q∈x∪y

{v(q, V (x ∪ y))}

=⇒ V (x ∪ y) ≤ u(px∪y, V (x ∪ y)) + v(px∪y, V (x ∪ y))− v(qy, V (x ∪ y))

Hence,

V (x ∪ y) ≤ max
p∈{px∪y ,qy}

{u(px∪y, V (x ∪ y)) + v(px∪y, V (x ∪ y))} − max
q∈{px∪y ,qy}

v(px∪y, V (x ∪ y))

Thus, by Lemma 5.6, V ({px∪y, qy}) ≥ V ({px∪y, qx∪y}). However,

V (x ∪ y) ≥ u(px, V (x ∪ y)) + v(px, V (x ∪ y))− v(qx∪y, V (x ∪ y)).

Thus, by Lemma 5.6, V ({px∪y, qx∪y}) ≥ V ({px, qx∪y}). Moreover,

V (x) ≤ u(px, γ + v(px, V (x))− v(qx∪y, V (x)).

Hence,

V (x) ≤ max
p∈{px,qx∪y}

{u(p, V (x)) + v(p, V (x))} − max
q∈{px,qx∪y}

v(q, V (x)).

48



Thus, by Lemma 5.6, V ({px, qx}) ≤ V ({px, qx∪y}). Hence,

V ({px, qx}) ≥ V ({py, qy}) ≥ V ({px∪y, qy})
≥ V ({px∪y, qx∪y}) ≥ V ({px, qx∪y})
≥ V ({px, qx})

Thus, V (x) = V (y) = V (x ∪ y).

Uniqueness

Sufficiency is given in the text. Here we prove necessity.

Assume (u, v) and (u′, v′) represent �. Fix γ ∈ (0, 1) and let

Φ(x, γ) = max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
{v(q, γ)}}

Φ′(x, γ) = max
p∈x
{u(p, γ) + v′(p, γ)−max

q∈x
{v′(q, γ)}}.

By an identical argument to the one in the uniqueness part of Theorem
5.3, Φ(x, γ) = Φ′(x, γ) for all x ∈ K(∆(X)) and γ ∈ (0, 1). In particular,
Φ({p}, γ) = Φ′({p}, γ) for all p ∈ ∆(X) and γ ∈ (0, 1). Hence, u = u′.
Denote �γ and �γ′ the preference over menus represented by Φ(., γ) and
Φ′(., γ) respectively. Fix γ ∈ (0, 1). If v(., γ) is a constant or a positive affine
transformation of u(., γ). Then,

Φ(x, γ) = max
p∈x
{u(p, γ)}

for all x ∈ X. Hence, for all x there exists p ∈ x such that x ∼γ {p}. Thus,
by GP (p. 1414), either v′(., γ) is a constant or a positive affine transforma-
tion of u(., γ).

If v(., γ) is not a constant or a positive affine transformation of u(., γ).
Then, by GP (p.1414), there are two cases: either there exist p, q such that
Φ({p}, γ) > Φ({p, q}, γ) > Φ({q}, γ) or Φ({p}, γ) > Φ({p, q}, γ) = Φ({q}, γ)
for all p, q such that Φ({p}, γ) > Φ({q}, γ). If there exist p, q such that
Φ({p}, γ) > Φ({p, q}, γ) > Φ({q}, γ), then since u(., γ) is unique, by GP’s
Theorem 4, v′(., γ) = v(., γ) + bγ. If Φ({p}, γ) > Φ({p, q}, γ) = Φ({q}, γ)
for all p, q such that Φ({p}, γ) > Φ({q}, γ), then by GP (p.1414), v(., γ) is
a negative affine transformation of u(., γ). Hence, we only need to rule out
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the case in which v(., γ) = −aγu(., γ) + bγ and aγ ∈ (0, 1). To see that this
is impossible let pγ be such that γ = u(pγ, γ). Then, u(p, γ) = 1 > u(pγ, γ).
Hence, Φ({pγ, p}, γ) = γ. However, if aγ < 1, then

u(p, γ)− aγu(p, γ) = 1− aγ > u(pγ, γ)− aγu(pγ, γ) = γ − aγγ.

Hence,

Φ({pγ, p}, γ) = 1− aγ + aγγ 6= γ.

Therefore, aγ ≥ 1.

Commitment and Mixtures

Proof of Proposition 4.1

Let (u, v, c) represent �. Then, by Theorem 1 in Noor and Takeoka (2010),
� satisfies Commitment Independence and Set-Beteenness. Since general
self-control models are continuous, it is enough to show the result for finite
menus. In what follows we will use the following property of c (Noor and
Takeoka (2010 p.134)): c(p, v(p)) = 0 for all p ∈ ∆(X). For any menu x,
let px and qz denote an arbitrary element of arg max

p∈x
u(p) and arg max

p∈x
v(p)

respectively.

Part 1: Suppose � has preference for commitment at x. Then, by Set-
Betweenness (applied repeatedly), for all px and qx it must be the case that

u(px) > u(qx) and c(px, v(qx)) > 0,

so by Property 2

v(px) < v(qx).

Further,

αu(px) + (1− α)u(pz) ≥ αu(p) + (1− α)u(p′)

for all p ∈ x and p′ ∈ z. By linearity of u and v,

v(qx) > v(px) and v(qz) ≥ v(pz) =⇒ αv(qx) + (1− α)v(qz) > αv(px) + (1− α)v(pz)

u(px) > u(qz) and u(pz) ≥ u(qz) =⇒ αu(px) + (1− α)u(pz) > αu(qz) + (1− α)u(qz).
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Hence, by Property 3, 0 < c(αpx + (1 − α)pz, αv(qx) + (1 − α)v(qz)) =
c(αpx + (1− α)pz, max

q∈αx+(1−α)z
v(q)). Finally, by linearity of u,

arg max
p∈αx+(1−α)z

u(p) = α arg max
p′∈x

u(p′) + (1− α) arg max
p′′∈z

u(p′′).

Hence, � has preference for commitment at αx+ (1− α)z.

Part 2: Assume � does not have preference for commitment at y and z
but has preference for commitment at αy + (1 − α)z. Fix qy. Since �
does not have preference for commitment at y, then there exists py such
that c(py, v(qy)) = 0 and {py} ∼ y. Similarly, there exists pz such that
c(pz, v(qz)) = 0. Further, αu(py) + (1 − α)u(pz) ≥ αu(p) + (1 − α)u(p′)
for all p ∈ y, p′ ∈ z. Thus, since � has preference for commitment at
αy + (1 − α)z, c(αpy + (1 − α)pz, αv(qy) + (1 − α)v(qz)) > 0 so by Prop-
erty 2, αv(qy) + (1− α)v(qz) > αv(py) + (1− α)v(pz).

There are two cases: (i) v(qy) > v(py) or (ii) v(qz) > v(pz).

(i) v(qy) > v(py)

Notice that if u(qy) = u(py), then we can replace py with qy in the above
argument and rule out this case. If u(py) > u(qy), then by Property 3
c(py, qy) > 0 a contradiction.

(ii) v(qz) > v(pz)

Similarly, if u(qz) = u(pz), then we can replace pz with qz in the above
argument and rule out this case. If u(pz) > u(qz), then by Property 3
c(pz, qz) > 0 a contradiction.

Notation

For the rest of Appendix B, for any γ ∈ (0, 1), define

Φ(x, γ) ≡ max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
v(q, γ)}

and let �γ denote the preference over menus it represents.
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Mixture Monotone Preference for Commitment without Commit-
ment Independence

Here we provide the counterparts of Theorems 4.1 and 4.2 for the case in
which the preference need not satisfy Commitment Independence. The proof
for the case in which the preference satisfies Commitment Independence is
almost identical; it requires one extra step which we provide at the end of
the proof of the general case.

To state the theorems we require additional terminology. Let f, g, f ′, g :
∆(X)→ R. Say that (f, g) are a joint positive affine transformation of (f ′, g′)
if there exists a ∈ R++, bf , bg ∈ R such that f = af ′ + bf and g = ag′ + bg.

Theorem 5.4. Assume � satisfies the axioms of Theorem 3.1 and {p∗} ∼
{p∗} ∼ {p∗, p∗}. Then � satisfies Mixture-Increasing Preference for Commit-
ment if and only if there exists (u, v) that represents � such that γ, γ′ ∈ (0, 1)
and γ′ < γ implies that there exists a joint possitive affine transformation
of (u(., γ), v(., γ)) such that u(., γ) is a convex combination of u(., γ′) and
v(., γ′), and v(., γ) is a convex combination of u(., γ′) and v(., γ′).

Theorem 5.5. Assume � satisfies the axioms of Proposition 3.1 and {p∗} ∼
{p∗} ∼ {p∗, p∗}. Then � satisfies Mixture-Decreasing Preference for Com-
mitment if and only if there exists (u, v) that represents � such that γ, γ′ ∈
(0, 1) and γ ∈ (0, 1) and γ, γ′ ∈ (0, 1), γ′ < γ implies that there exists a
joint positive affine transformation of (u(., γ′), v(., γ′)) such that u(., γ′) is a
convex combination of u(., γ) and v(., γ), and v(., γ′) is a convex combination
of u(., γ) and v(., γ).

The proof of Theorem 5.4 is analogous to the proof of Theorem 5.5. Thus,
we only show the proof of Theorem 5.5.

Sufficiency

Let (u, v′) be the representation of � constructed using {p∗} and {p∗} as the
best and worst menus. Then, p = p∗ and p = p∗. By the uniqueness prop-
erties of (u, v′) there exists v such that (u, v) represents � and if v′(., γ) is a
constant or a positive affine transformation of u(., γ), then v(., γ) = u(., γ).
First we show that v(., γ) is not a negative affine transformation of u(., γ).
By GP (p. 1414) it is enough to show that for each γ ∈ (0, 1) either there
exists y such that {p} �γ y �γ {p′} for some p, p′ ∈ y.
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Fix γ ∈ (0, 1), Note that since {p, p} ∼ {p}. Then, by Mixture-Betweenness
{αp + (1 − α)p, p} � {p} for all α > 0. Fix γ ∈ (0, 1), then by Lemma 5.1,
there exists α such that

{αp+ (1− α)p, p} ∼ {γp+ (1− γ)p}.

Further, by Set-Betweenness

{αp+ (1− α)p} � {αp+ (1− α)p, p} � {p}.

Hence, by Lemma 5.6, Φ({αp + (1 − α)p}, γ) ≥ Φ({αp + (1 − α)p, p}, γ) =
γ > Φ({p}, γ).

Next we prove the result. Fix γ > γ′ and y ∈ X such that �γ has pref-
erence for commitment at y. There two possible cases: (i) V (y) ≥ γ or (ii)
V (y) ≤ γ.

(i) V (y) ≥ γ

�γ has preference for commitment at y implies � has preference for
commitment at λ(y, γ)y+ (1− λ(y, γ)){p}. Thus by Part I, and � has
preference for commitment at λ(y, γ′)y + (1− λ(y, γ′)){p}

(ii) V (y) ≤ γ

�γ has preference for commitment at y implies � has preference for
commitment at λ(y, γ)y + (1 − λ(y, γ)){p}. Thus, by Part II � has
preference for commitment at λ(y, γ′)y+ (1−λ(y, γ′)){p} if γ′ > V (y).
If γ′ ≤ V (y), then by Part II, � has preference for commitment at y,
thus by Part I � has preference for commitment at λ(y, γ′)y + (1 −
λ(y, γ′)){p}

Hence if �γ has preference for commitment at y, �γ′ has preference for com-
mitment at y. Now, there are two cases: v(., γ′) = u(., γ′) or v(., γ′) 6= u(., γ′).
If v(., γ′) = u(., γ′), then it must be the case that v(., γ) = u(., γ′), otherwise
there would exists y such that �γ has preference for commitment at y and
thus �γ′ would also have preference for commitment at y so v(., γ′) 6= u(., γ′),
a contradiction. If v(., γ′) 6= u(., γ′), then by GP Theorems 4 and 8 there ex-
ists a joint positive affine transformation of (u(., γ), v(., γ)) such that u(., γ)
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is a convex combination of u(., γ′) and v(., γ′), and v(., γ) is a convex combi-
nation of u(., γ′) and v(., γ′).6

Commitment Independence: If � satisfies Commitment Independence,
then in the case in which u 6= v(., γ) the application of GP Theorems 4 and
8 implies that u is a convex combination of a joint positive affine transfor-
mation of u and v(., γ). However, if the coefficient multiplying u of the joint
affine transformation of (u, v(., γ)) is different from 1, then we can write v as
an affine transformation of u which is an impossibility as {p∗} ∼ {p∗, p∗} im-
plies v(., γ) is not a negative affine transformation of u and v(., γ) was chosen
such that either v(., γ) = u or v(., γ) is not a positive affine transformation
of u.

Necessity

Part I: Note that by GP Theorem 8 the conditions in the theorem imply that
if γ > γ′ > 0, then if �γ has preference for commitment at y, then �γ′ also
has preference for commitment at y. Assume x � {p} and � has preference
for commitment at αx+ (1− α){p}. Then there exists y ⊆ αx+ (1− α){p}
such that y � αx+ (1− α){p}. Thus, by Lemma 5.6,

Φ(y, V (αx+ (1− α){p})) > Φ(αx+ (1− α){p}, V (αx+ (1− α){p})).

Hence, �V (αx+(1−α){p}) has preference for commitment at αx + (1 − α){p}.
Fix 0 < β < α, then since x � {p}, by Lemma 5.1, V (βx + (1 − β){p}) <
V (αx+(1−α){p}). Hence, by the observation at the beginning of the proof,
�V (βx+(1−β){p}) has preference for commitment at αx + (1 − α){p}. Thus,
there exists px ∈ x such that Φ({αpx + (1 − α)p}, V (βx + (1 − β){p})) >
Φ(αx+ (1−α){p}, V (βx+ (1−β){p})). Finally, since Φ is mixture linear in
its first argument, then Φ({βpx + (1− β)p}, V (βx+ (1− β){p})) > Φ(βx+
(1−β){p}, V (βx+(1−β){p})) = V (βx+(1−β){p}). Hence, by Lemma 5.6,
{βpx + (1 − β)p} � βx + (1 − β){p} and � has preference for commitment
at βx+ (1− β){p}.

Part II: Assume {p} � x and � has preference for commitment at αx +
(1 − α){p}. Then, there exists y ⊆ αx + (1 − α){p} such that y � αx +
(1 − α){p}. Hence, by Lemma 5.6, Φ(y, V (αx + (1 − α){p})) > Φ(αx +
(1 − α){p}, V (αx + (1 − α){p})). Hence, �V (αx+(1−α){p}) has preference for

6Here we are citing the version of GP Theorem 8 in Gul and Pesendorfer (2004).
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commitment at αx + (1 − α){p}. Since {p} � x, then for any β > α,
V (αx + (1 − α){p}) > V (βx + (1 − β){p}). Hence, by the observation
at the beginning of the proof of Part I, �V (βx+(1−β){p}) has preference for
commitment at αx+(1−α){p}. Thus, there exists px ∈ x such that Φ({αpx+
(1− α)p}, V (βx + (1− β){p})) > Φ(αx + (1− α){p}, V (βx + (1− β){p})).
Finally, since Φ is mixture linear in its first argument, then Φ({βpx + (1 −
α)p}, V (βx + (1 − β){p})) > Φ(βx + (1 − β){p}, V (βx + (1 − β){p})) =
V (βx+(1−β){p}). Hence, by Lemma 5.6, {βpx+(1−α)p} � βx+(1−β){p}.
Hence, � has preference for commitment at βx+ (1− β){p}.

Appendix C: Proofs of Lemma 5.1 and 5.2

Preliminaries

Lemma 5.10. Assume (M, π) is an Associative Mixture Space. Then, for
all x, y, z ∈M and a, b, c ∈ [0, 1] such that ca+ (1− c)b 6= 0,

πc(πa(x, y), πb(z, y)) = πca+(1−c)b(π ca
ca+(1−c)b

(x, z), y).

Proof. Fix x, y, z ∈M and a, b, c ∈ [0, 1] such that ca+ (1− c)b 6= 0. Then,

πc(πa(x, y), πb(z, y)) = πca(x, π c(1−a)
1−ac

(y, πb(z, y))

= πca(x, π 1−c
1−ac

(πb(z, y), y)

= πca(x, π b(1−c)
1−ac

(z, y)

= πca+(1−c)b(π ca
ca+(1−c)b

(x, z), y)

Where the first inequality follows from (A4), the second from (A2), the third
from (A3) and the fourth from (A4).

Proof of Lemma 5.1

Part 1: If a = 0 or b = 1, then Mixture-Betweenness implies πb(x, y) �
πa(x, y). Suppose 0 < a < b < 1. Then, there exists c ∈ (0, 1) such
that cb = a. By Mixture-Betweenness, πb(x, y) � y. Further, Mixture-
Betweenness also implies πb(x, y) � πc(πb(x, y), y) = πa(x, y).

Part 2: Fix x, y, z ∈ M and let A = {a|πa(x, y) � z}. WLOG assume
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x � y. If A = ∅ or a singleton, then there is nothing to prove. Assume
A 6= ∅ and |A| > 1. Define a∗ = inf A. If a∗ ∈ A, then by Part 1 A = [a∗, 1].
Hence, A is closed. Assume towards a contradiction that a∗ 6∈ A. Thus,
z � πa∗(x, y). Since |A| > 1, then x � z � πa∗(x, y). Hence, by Continuity,
there exists b such that

z � πb(x, πa∗(x, y)) = π1−b(π(1−a∗)(y, x), x) = π(1−b)(1−a∗)(y, x) = π1−(1−b)(1−a∗)(x, y).

Note that 1−(1−b)(1−a∗) = a∗+b(1−a∗) > a∗. Hence, z � π1−(1−b)(1−a∗)(x, y)
and 1−(1−b)(1−a∗) > a∗, a contradiction of the fact that a∗ is the infimum.

The proof that {a|z � πa(x, y)} is closed is analogous, the only difference
is that instead of using the infimum to derive a contradiction, one needs to
use the supremum.

Part 3: Follows from Part 2.

Proof of Lemma 5.2

The proofs of Parts 2, 4 and 6 are analogous to the proofs of Parts 1, 3 and
5 respectively. Hence, we only prove Parts 1,3 and 5.

Part 1: Fix x, y such that V (x), V (y) ≥ γ and a ∈ (0, 1). Then, by Mixture-
Betweenness, V (πa(x, y)) ≥ γ. Further,

πλ(x,γ)(x, x) ∼ xγ ∼ πλ(y,γ)(y, x).

Hence, by Mixture-Betweenness, πc(πλ(x,γ)(x, x), πλ(y,γ)(y, x)) ∼ xγ for all
c ∈ (0, 1). Notice that if for some c ∈ (0, 1)

πc(πλ(x,γ)(x, x), πλ(y,γ)(y, x)) = π λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

(πa(x, y), x)

=⇒ λ(πa(x, y), γ) =
λ(x, γ)λ(y, γ)

aλ(y, γ) + (1− a)λ(x, γ)
.

Thus, it is enough to show that the first equality holds.

By Lemma 5.10, for all c ∈ [0, 1]

πc(πλ(x,γ)(x, x), πλ(y,γ)(y, x)) = πcλ(x,γ)+(1−c)λ(y,γ)(π cλ(x,γ)
cλ(x,γ)+(1−c)λ(y,γ)

(x, y), x).

In particular, if c = aλ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

, then
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cλ(x, γ) + (1− c)λ(y, γ) =
aλ(y, γ)λ(x, γ)

aλ(y, γ) + (1− a)λ(x, γ)
+

(1− a)λ(x, γ)λ(y, γ)

aλ(y, γ) + (1− a)λ(x, γ)

=
λ(x, γ)λ(y, γ)

aλ(y, γ) + (1− a)λ(x, γ)

and

cλ(x, γ)

cλ(x, γ) + (1− c)λ(y, γ)
=

aλ(y,γ)λ(x,γ)
aλ(y,γ)+(1−a)λ(x,γ)

aλ(y,γ)λ(x,γ)
aλ(y,γ)+(1−a)λ(x,γ)

+ (1−a)λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

= a.

Hence, πc(πλ(x,γ)(x, x), πλ(y,γ)(y, x)) = π λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

(πa(x, y), x).

Part 3: Fix x, y, z ∈ X such that V (x), V (y) > γ > V (z) and λ(x, γ) <
λ(y, γ). Let b ∈ (0, 1) be such that

πb(x, z) ∼ xγ.

Then, by Part 1,

λ(πa(x, πb(x, z))) =
λ(x, γ)

a+ (1− a)λ(x, γ)
.

Define φ(a) = λ(x,γ)
a+(1−a)λ(x,γ)

. Then, φ(0) = 1, φ(1) = λ(x) and φ′(a) < 0 for

all a ∈ [0, 1]. Hence, there exists a unique a ∈ (0, 1) such that φ(a) = λ(y, γ).

Part 5: Let a1 and a2 be such that

xγ ∼ πa1(x, z)

xγ ∼ πa2(y, z).

Assume towards a contradiction that a2 > a1. Then, πa2(x, z) � xγ and
λ(πa2(x, z), γ) < 1. Since λ(x, γ) = λ(y, γ), then by Part 1, for all c ∈ (0, 1)

λ(πc(x, πa2(y, z)), γ) = λ(πc(y, πa1(x, z)), γ).

However,

πc(x, πa2(y, z) = π1−c(πa2(y, z), x)

= π(1−c)a2(y, π (1−c)(1−a2)
1−(1−c)a2

(z, x))

= π(1−c)a2(y, π c
1−(1−c)a2

(x, z)).
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Thus, for c = a2
1+a2

,

πc(x, πa2(y, z) = π a2
1+a2

(y, πa2(x, z))

and

πc(y, πa1(x, z)) = π a2
1+a2

(y, πa1(x, z)).

Thus, λ(π a2
1+a2

(y, πa2(x, z)), γ) = λ(π a2
1+a2

(y, πa1(x, z)), γ) implies

λ(y, γ)λ(πa2(x, z))

c+ (1− c)λ(y, γ)
=

λ(y, γ)

c+ (1− c)λ(y, γ)

λ(πa2(x, z)) = 1,

a contradiction.

Appendix D: Details for Section 3.3

First we show that the special case of the model considered in Section 3.3
satisfies Mixture-Increasing Preference for Commitment.

Note that for all γ ∈ [0, 1],

v(., γ) = (1− γ)u(.) + γv(., 1).

Hence, for any γ > γ′, v(., γ′) is a convex combination of u and v(., γ).
Hence, by Theorem 4.1, the preference represented by (u, v) satisfies Mixture-
Increasing Preference for Commitment.

Next, we calculate the utility of each menu involved in the motivating
example. It is easy to see that V (c) = 1

2
, V (f) = 0 and V ({αc+(1−α)f}) =

1− α
2
. Consider V ({c, f}). Notice that for all γ,

u(c) + v(c, γ) ≥ u(f) + v(f, γ).

Hence,

2γ =
1

2
+ 1− max

q∈{c,f}
v(q, γ).
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Further,

max
q∈{c,f}

v(q, γ) =
1− γ

2
=⇒ V ({c, f}) =

1

2

max
q∈{c,f}

v(q, γ) =
γ

2
=⇒ V ({c, f}) =

1

2
.

Thus, V ({c, f}) = 1
2

and

V ({c}) = V ({c, f}) > V ({f}).

Next, consider V ({αc+ (1−α)f ′, αf + (1−α)f ′}). Notice that for all γ,

u(αc+ (1− α)f ′) + v(αc+ (1− α)f ′, γ) ≥ u(αf + (1− α)f ′) + v(αf + (1− α)f ′, γ).

Hence,

γ = 2− α− αγ

2
− max

q∈{αc+(1−α)f ′,αf+(1−α)f ′}
v(q, γ)

If γ ≥ 1
2
, then

max
q∈{αc+(1−α)f ′,αf+(1−α)f ′}

v(q, γ) =
αγ

2
+ (1− α)

=⇒ V ({αc+ (1− α)f ′, αf + (1− α)f ′}) =
1

1 + α
≥ 1

2
.

If γ < 1
2
, then

max
q∈{αc+(1−α)f ′,αf+(1−α)f ′}

v(q, γ) = α
(1− γ)

2
+ (1− α)

=⇒ V ({αc+ (1− α)f ′, αf + (1− α)f ′}) = 1− α

2
>

1

2
,

a contradiction. Hence, V ({αc+ (1− α)f ′, αf + (1− α)f ′}) = 1
1+α

.

Finally, 1− α
2
> 1

1+α
if and only if α > α2. Hence,

V ({αc+ (1− α)f ′}) > V ({αc+ (1− α)f ′, αf + (1− α)f ′}).
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Appendix E: Sufficient Conditions on (u, v)

The following proposition provides sufficient conditions on (u, v) such that
an implicit representation as in Theorem 3.1 exists.

Proposition 5.1. Let u, v : ∆(X)×[0, 1]→ R be such that u(., γ) and v(., γ)
are vNM utility functions for all γ ∈ [0, 1]. Then, the following are sufficient
for (u, v) to represent some preference �.

1. u, v are continuous in their second argument on [0, 1]

2.

1 = max
x∈X

max
p∈x
{u(p, 1) + v(p, 1)−max

q∈x
v(q, 1)}

3.

0 = min
x∈X

max
p∈x
{u(p, 0) + v(p, 0)−max

q∈x
v(q, 0)}

4. For all x ∈ X

φ(γ) = γ −max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
v(q, γ)}

is strictly increasing in [0, 1]

Proof. Notice that if for every x there exists a unique γ such that

γ = max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
v(q, γ)},

then 1 implies the utility function defined by the above equation is continu-
ous. Hence, we only need to show that for any x, the solution exists and it
is unique. Define

Φ(x, γ) = max
p∈x
{u(p, γ) + v(p, γ)−max

q∈x
v(q, γ)}.

Then, condition (1) implies Φ(x, .) is continuous. Further, conditions 2 and
3 imply Φ(x, 0) ≥ 0 and Φ(x, γ) ≤ 1. Thus, if Φ(x, 0) > 0 and Φ(x, γ) < 1,
continuity implies that a solution exists. Thus, to finish the proof we only
need to show it is unique. To see this, note that if Φ(x, γ) = γ, then φ(γ) = 0.
Thus, by condition 4 φ(γ′) > 0 for all γ′ > γ and φ(γ′) < 0 for all γ′′ < γ.
Hence, the solution is unique.
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