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Abstract

In this paper we extend the standard cheap talk model in a minimal way to
capture the possible incentives of polarization. For this, we add one receiver and
one binary payoff irrelevant state variable to the standard model. In contrast to
payoff relevant variable, receivers have different beliefs about payoff irrelevant one.
Besides the equilibria of standard model, our extension admits continuum of new
equilibria and expands the set of sender’s equilibrium payoffs. We characterize a
set of polar equilibria and prove that this set of equilibria spans the sender’s pay-
off space. We also show that in these equilibria, receivers are polarized. Namely,
their posterior beliefs are ordered with first-order stochastic dominance. Moreover,
when ex-ante receivers disagreement rises, then there is more scope for manipu-
lation by the sender. Specifically, the set of aggregate actions and sender payoffs
that can be supported in equilibrium expands as the receivers’ posterior beliefs
diverge. We show that even slight disagreement about payoff irrelevant state is
enough for influential equilibrium to exist for any bias level. When disagreement
increases, the equilibria set expands, and the bias threshold above which there are
no informative equilibria also increases.
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1 Introduction

It is well-documented that public beliefs have polarized on many dimensions in recent

years. (e.g. Alesina, Miano, and Stantcheva (2020)).1 Explanations include the emer-

gence of information bubbles(Allcott, Braghieri, Eichmeyer, and Gentzkow (2020)),2

and tribal affiliations (Gerber and Green (1999) and Autor, Dorn, Hanson, and Majlesi

(2020)). While these sources of polarization are likely important drivers of increasing

polarization, this paper explores the incentives of privately informed agents to induce

public polarization for their own gain. In order to discipline the exercise, we assume that

the audience being polarized is rational and processes all new information using Bayes’

rule. We do believe that cognitive bias’ are not an important source of polarization.

Rather, we believe that rational Bayesian benchmark models of polarization are useful

for understanding the roots of polarization.

To fix ideas, assume we are interested in beliefs about the extent to which human

activity has contributed to climate change. We administer a survey to assess prior beliefs

in a group of subjects. Subjects then get exactly the same set of scientific studies to

read. We then administer the same survey and discover that beliefs have polarized.

Specifically, individuals who believed that climate change was “less than 50% caused by

human activity” in the first survey decrease their estimate of the impact of humans on

the climate in the second survey. While individuals who believed that climate change

was “more than 50% caused by human activity” in the first survey increase their estimate

of the impact of humans on the climate in the second survey.

Such polarization can be explained by invoking confirmatory bias: subjects concen-

trate on studies that support their existing beliefs, but do not account for this selection

effect when they revise their beliefs. Alternatively, we could invoke affiliation theory:

subjects interact with each other and seek to align their beliefs more closely with other

people with similar prior beliefs. But neither of these explanations is required to explain

polarization. Two individuals could read exactly the same studies, process any new in-

formation using Bayes’ rule, and end up becoming more polarized. As Benoit and Dubra

(2019) show, the key to understanding such rational polarization is to recognize that we

live in a complex multidimensional world, but measure beliefs on a smaller (typically

one-dimensional) subset. For an intuition, assume the individuals in the study have dif-

1Also see Boxell, Gentzkow, and Shapiro (2020), Pew Research Center (2014), and Gentzkow,
Shapiro, and Taddy (2019)

2See also Törnberg (2018), Flaxman, Goel, and Rao (2016), Bail, Argyle, Brown, Bumpus, Chen,
Hunzaker, Lee, Mann, Merhout, and Volfovsky (2018), and Melki and Sekeris (2019)
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ferent views about biases in the scientific literature. If individual A believes that climate

scientists are biased toward ascribing increases in global temperatures to human activity

and individual B believes that climate scientists are biased against such findings, then

it can be perfectly rational for these individuals to read the same studies and have A

become more convinced that global warming is not caused by human activity and B

become more convinced that it is.

We embed the above idea in the pure cheap talk communication game of Crawford

and Sobel (1982). We add a second receiver so that belief polarization is meaningful.

In order to distinguish the current model from information bubble explanations of po-

larization, we do not allow the sender to communicate separately with each receiver.

Specifically, the sender must choose one costless, but unverifiable message, publicly ob-

served by both receivers. After observing this common signal the receiver’s update their

beliefs according to Bayes’ rule, and then each takes a separate action. The sender’s

payoff depends on the average action taken, and the state contingent preferences of the

sender and each receiver are not fully aligned. In contrast the receiver’s have identical

state contingent preferences.

In order to allow for rational belief polarization, we assume that the state space is

two dimensional.3 The payoff relevant dimension is a scalar that directly enters the

payoff function for all agents. The payoff irrelevant dimension is a binary variable that

does not directly enter any payoff functions, but nonetheless may affect posterior beliefs.

Receivers agree on the prior distribution of the payoff relevant variable, but their beliefs

about the payoff irrelevant variable are different.

Receivers in our model are rational, but have different beliefs. To avoid contradicting

the agreement theorem in Aumann (1976) we need to either assume that knowledge

about beliefs is not common, or that the receivers “agree to disagree” about their initial

prior on the payoff irrelevant state: we assume they agree to disagree. Formally receiver

1 does not update his belief based on the prior of receiver 2, and vice versa. We assume

that receivers rationally process all new information, despite the initial disagreement.4

Suppose the sender employs a one-dimensional partition; namely, she either fully

reveals the payoff irrelevant state or does not reveal any additional information about

3Similarly to Benoit and Dubra (2019), Jern, Chang, and Kemp (2014), Andreoni and Mylovanov
(2012), Loh and Phelan (2019) show that rational polarization on one dimension is possible with a
two dimensional state space, although the signal generating process in these papers is assumed to be
exogenous, rather than controlled by a motivated agent like our sender.

4Of course, people suffer both from biases in information processing in addition to having different
beliefs about the information generating process. Ours is a benchmark model in which polarization is
driven purely by differences in beliefs about the information generating process.
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this binary variable. The set of equilibria with one-dimensional partitions in the current

model is payoff equivalent to the set of equilibria in the standard cheap talk model

(Proposition 0). However, allowing for the payoff irrelevant dimension, introduces a

continuum of new equilibria, and expands the set of equilibrium payoffs.

In order to fix ideas, consider an application in which receivers decide how much

to contribute to a project. The receivers each believe that the optimal contribution is

uniformly distributed on [0, 100], and wish to minimize the squared deviation between

their actual contribution and the ideal contribution. Without additional information,

they each would contribute 50. Now, imagine that all agents know the sender has com-

missioned two reports from two separate consulting companies, and publicly announces

message 1: ”if consulting company #1 is more reliable, then the optimal contribution

> 80, whereas if consulting company #2 is more reliable, then the optimal contribution

is < 80”, how would receivers process this information? This depends on the receivers’

prior beliefs about the reliability of each consulting company (the payoff irrelevant di-

mension). For simplicity, assume that the first receiver is certain that consulting com-

pany #2 is more reliable, while the second receiver is certain that consulting company

#1 is more reliable. Given message 1, receiver 1 believes that the optimal contribution

is uniformly distributed on [0, 80] and chooses to contribute 40, while the second receiver

will contribute 90 as he believes that optimal contribution is now uniformly distributed

on [80, 100]; and so, the total contribution is 90 + 40 = 130. But why should receivers

trust the sender’s initial announcement? Assume instead that the alternative equilib-

rium announcement was message 2: “if consulting company #1 is more reliable, then

optimal contribution < 80, and if consulting company #2 is more reliable, then optimal

contribution > 80,” this time the first receiver will contribute 40 and the second receiver

will contribute 90, again totalling 130. Altogether, these two messages constitute an

equilibrium: the two messages partition the two-dimensional state space, yield the same

aggregate action (and thus the same payoff for the sender) when receivers best respond

to their beliefs.

Notice the structure of the two messages considered in the consulting company ex-

ample. The payoff relevant state space was partitioned into a low interval and a high

interval. For each message the identity of the reliable consulting firm was associated

with one of the intervals, but the mapping from the identity of the reliable firm to the

payoff relevant interval was swapped between the signals. This is an example of a diag-

onal partition of [0, 1]. In a polar partition the payoff relevant dimension is partitioned

into a finite number of intervals, and then each of these intervals is diagonally parti-
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tioned. It turns out that polar partitions are sufficient from the sender’s point of view.

Specifically, for any equilibrium, there exists an equilibrium with a polar partition that

delivers the same aggregate actions, and thus the same payoff for the sender in every

payoff relevant state (Proposition 1). Given this payoff equivalence, we primarily focus

on polar partitions.

Recall the posterior beliefs in the consulting example: If message 1 is sent, receiver

1’s posterior falls relative to his prior (in first-order stochastic dominance sense), while

receiver 2’s beliefs first order increase. If message 2 is sent then the opposite occurs:

receiver 1’s posterior belief first order rises and receiver 2’s posterior belief first order

falls. An equilibrium is polarizing if every message induces a first order increase in one

receiver’s beliefs and a first order decrease in the other receivers beliefs, and strictly po-

larizing partition if these first order changes are strict for at least one message. Clearly

one-dimensional equilibria are not polarizing. However, every other equilibrium is ag-

gregate action (and sender payoff) equivalent to a strictly polarizing equilibrium (Propo-

sition 2). Furthermore, the equilibrium with the highest ex-ante utility for the sender is

strictly polarizing (Corollary 2).

We show that if ex ante receiver disagreement rises, then there is more scope for

manipulation by the sender. Specifically, the set of aggregate actions (and thus sender

payoffs) that can be supported in equilibrium expands as the posterior beliefs of the

receivers diverge (Proposition 3).

An equilibrium is informative if receiver aggregate actions differ across at least two

messages. A standard result in the cheap talk literature is that informative equilibria

exist, iff the sender’s payoff bias is below some threshold. Intuitively, the sender cannot

send a credible message if the receivers know that the sender has sufficiently extreme

payoff bias. It turns out that it is easier to support informative equilibria with receiver ex

ante belief disagreement. In fact, the sender bias threshold is monotonically increasing

in the receiver ex ante belief disagreement (Proposition 5).

An equilibrium is influential if there exists at least one message for which the aggre-

gate action differs from what the aggregate action would have been had the sender sent

no message (i.e. with actions based only on priors). In the standard cheap talk model,

an equilibrium is informative iff it is influential. But this equivalence no longer holds in

the current model. In fact, when receiver’s have different priors on the payoff irrelevant

variable, influential equilibria always exist for any bounded sender bias.

There is vast descriptive literature on the polarization of attitudes on various issues

and research in experimental economics and psychology, presenting experiments in which
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participants polarize upon observing the same information. For example, Lord and Ross

(1979) show that attitudes toward the deterrent effect of the death penalty became

more extreme after participants were exposed to the same information. Alesina, Miano,

and Stantcheva (2020) documents increased polarization in subjects observing the same

evidence on a number of debatable political topics. Some theoretical models capture

polarization by assuming that people are biased in their processing of information. For

example in FryerJr, Harms, and Jackson (2019), polarization owes to confirmation bias.

This is not the first paper to consider rational polarization. Benoit and Dubra (2019),

Jern, Chang, and Kemp (2014), Loh and Phelan (2019), Andreoni and Mylovanov (2012)

assume that agents optimally process new information, but allow for polarization by

assuming that people have different models of how information is generated. Indeed,

the current model is Crawford and Sobel (1982) with the two-dimensional state space

and receiver disagreement in Benoit and Dubra (2019). Ex ante disagreement about

priors is also found in Van den Steen (2010), den Steen (2010), Morris (1994), Morris

(1995),Alonso and Câmara (2016) and Anderson and Pkhakadze (2020). The last one

is a communication game with two receivers, but not cheap talk. Specifically, their

sender commits to an experiment rather than choosing a message like in Kamenica and

Gentzkow (2011).

Most of the cheap talk models are some type of generalization of the model described

in Crawford and Sobel. Although our work is about cheap talk with multiple agents

and a multidimensional state, our payoff functions and action spaces are most closely

related to single receiver models, such as Crawford and Sobel (1982) and Chakraborty

and Harbaugh (2010). Specifically, we adopt the quadratic loss specification for utility

functions in Crawford and Sobel, which we refer to as the standard model.

Though the model in Chakraborty and Harbaugh (2010) has one receiver and sender

with state-independent preferences, it provides one significant implication for our model.

Their receiver is a consumer who cares about multiple attributes of the sender’s product.

Their sender partitions the space of all attributes so that the receivers’ aggregate valu-

ation of the good on each partition element implies the same utility level to the sender.

Hence, the sender has no incentive to misrepresent in which partition element is the

state. Similarly our sender has to expect the same payoff across messages if conditional

on payoff relevant state, these messages differ only on payoff irrelevant state.

Other multidimensional but single receiver models are Chakraborty and Harbaugh

(2007), Levy and Razin (2004), Levy and Razin (2007), and Sémirat (2019). Chakraborty

and Harbaugh (2007) show how strategies which provide information on the ranking of
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realized states can guarantee credible information transmission when it would not be

possible if the sender were using standard cheap talk across the state dimensions. Levy

and Razin (2007) analyze the effects of informational spillovers, which might reduce

information transmission. They show that in contrast to Chakraborty and Harbaugh

(2007), two separate games, one for each dimension, can transmit more information than

a multidimensional cheap talk game.

There is a literature that considers polarization of voters in the presence of strate-

gic cheap talk from politician. But in contrast to current work, these models induce

polarization by assuming receivers differ in their state contingent preferences, not in

their prior beliefs. For example, Jeong (2019) provides a model in which, depending

on her own preferences, using simple, cheap talk strategy sender can polarize or unify

the voters. For polarization, the sender uses a comparative strategy similar to one in

Chakraborty and Harbaugh (2007).

The rest of the paper is organized as follows. The next section defines the model.

The third section gives an illustrative numerical example to build intuition for a results

to follow. Section 4 characterizes equilibrium partitions as a form of two-stage commu-

nication. In the fifth section, we introduce polar partitions and show that these span

the set of sender payoff functions. Section 6 contains the polarizing results. Section 7

describes how the set of equilibria changes when receivers disagree more about the payoff

irrelevant state. Section 8 concludes. All omitted proofs can be found in the appendix.

2 Model

This section describes the public communication game between a privately informed

sender and two receivers. The sender knows the two dimensional state (t, ω) ∈ Θ =

[0, 1]× {0, 1}. Both receivers share the common prior that t is distributed according to

CDF F with density f(t) > 0 supported on [0, 1]. But they have disparate priors on ω;

namely, qi = Pr(ω = 1) = qi = 1− Pr(ω = 0) with q1 < q2.

While they differ in beliefs, receivers share the same the von Neumann-Morgenstern

utility function conditional on t: U1(a, t) = U2(a, t) = −(a− t)2, where a ∈ [0, 1] is the

receiver’s own action. The Sender’s von Neumann-Morgenstern utility depends on t and

the average action taken by the receivers ā:

Us(ā(a1, a2), t) = −
(
ā− (t+B)

)2
= −

(a1 + a2

2
− (t+B)

)2
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where B ∈ [−1, 1] is sender’s bias. Since ω does not directly enter the utility function for

any player, we will refer to ω as the payoff irrelevant state and t as the payoff relevant

state, henceforth.

The timing is standard: The sender chooses a partition M = {m1, ....mk} of the

state space Θ = [0, 1]× {0, 1}. The sender after learning the state (t, ω) ∈ Θ, she sends

the costless message (element of her partition) m that contains (t, ω). This message is

commonly observed by both receivers, but not verifiable. After observing the message,

the receivers update their beliefs on t and then choose the action that maximizes their

expected utility given their posterior. Note that a∗(Φ) ≡ E(t|Φ) is the unique maximizer

of E(U(a, t)|Φ) if t ∼ Φ.

The sender knows all beliefs and utility functions. The receivers use Bayes’ rule to

update their beliefs based on their prior (F, qi) and the public message m sent by the

sender. However, the receivers “agree to disagree” about ω: receiver i does not update

his belief given qj. We are agnostic about the source of disagreement on the distribution

of ω.5

Definition 1 (Equilibrium). Equilibrium consists of a partition M = {m1, ....mk} of

the state space Θ = [0, 1]×{0, 1} and pair of receiver optimal actions a∗1(m) and a∗2(m),

s.t.

a∗i (m) = arg max
a
E
(
Ui(a, t)

∣∣F, qi, (t, y) ∈ m
)
for i = 1, 2

(t, ω) ∈ mi ⇒ mi ∈ arg max
m∈M

Us(ā(a∗1(m), a∗2(m)), t)

In equilibrium the sender does not have an incentive to misrepresent which part of the

partition the realized state belongs to. Receivers assume the sender’s message is truthful

and best respond to their posterior beliefs. An element mi of partition M = {m1, ....mk},
mi is one-dimensional iff:

∀i ∃bi ⊆ [0, 1], ∃si ⊆ {0, 1} s.t. mi = bi × si

Otherwise we say that mi is two-dimensional.

We call a sender’s partition one dimensional or equivalently we say sender does not use

the second dimension if all elements of the partition are one-dimensional, otherwise we

call a sender’s a partition two-dimensional or we say sender uses the second dimension.

Now note that measure zero changes to a partition do not alter receiver optimal

5Similarly to Alonso and Camara (2016), Van den Steen (2010), and Morris (1994, 1995) and An-
derson and Pkhakadze (2020)
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Figure 1: on the left picture, partition {red, green, blue} ({dashed, solid, dotted}) is
one-dimensional, because blue(dotted) set is [0, a] × {1}, green(solid) set is [0, a] × {0}
and red(dashed) set is [a, 1] × {0, 1} and the partition on the right picture {red, blue}
({dashed, doted}) is two-dimensional

actions; and thus, do not change payoffs. But two partitions can be payoff equivalent

even if they differ on a set of positive measure. Every partition uniquely defines a

mapping from the payoff relevant state t to payoffs for each player. We say that two

equilibrium partitions are equivalent from the player’s point of view if they generate the

same payoff mapping for that player. Two sets of equilibrium payoffs are equivalent

from a player’s point of view if they generate the same set of payoff mappings for that

player.

Proposition 0 (Crawford and Sobel 1982). The set of one-dimensional equilibrium

partitions in the current model is equivalent from all players point of view to the set of

equilibrium partitions in the Crawford and Sobel cheap talk model.6

The goal for the rest of the paper is to characterize two-dimensional equilibria and

understand how the extra dimension changes the set of equilibrium sender values. We

start by exploring a parameterized example that illustrates the core results to come.

3 An Illustrative Example

Assume the receivers believe the payoff irrelevant state is ω = 1 with chances q1 = 0.3

and q2 = 0.8, and they have a common uniform prior on the payoff relevant state t.

We claim that in this case the following two-dimensional partition is an equilibrium

(illustrated in Figure 2):

m1 ∪m2 =
(

[0, 0.8)× {1} ∪ [0.7, 1]× {0}
)
∪
(

[0, 0.7)× {0} ∪ [0.8, 1]× {1}
)

6More precisely, the cartesian product of equilibrium partitions of standard cheap talk model and
any subset of {0,1}.
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Figure 2: Partition of Θ = [0, 1]×{0, 1}. On the figure Θ is union of two lines [0, 1]×{1}
(upper line) and [0, 1] × {0} (lower line). And partition elements are red dashed (m1)
and blue doted lines (m2).

Given this partition, Figure 3 illustrates the posterior CDF on t for each receiver

given each message, assuming the receivers believe that the message is truthful.7

Beliefs have polarized: Given m1 the posterior CDF for receiver 1 first order dominates

the posterior of receiver 2, and this dominance relation is reversed given message m2.

Since each receiver’s payoff is the squared difference between their action and the

true state, each will set their action equal to the expectation of t given their posterior,

i.e. aij =
∫ 1

0
tdF i

j (t) is receiver i′s optimal action when message is mj, which implies:

a1
1 ≈ 0.41, a2

1 ≈ 0.64 a1
2 ≈ 0.61 a2

2 ≈ 0.44

and thus, the aggregate actions for m1 and m2 will be:

ā1 =
a1

1 + a2
1

2
=

1.05

2
= 0.525 and ā2 =

a1
2 + a2

2

2
=

1.05

2
= 0.525

Aggregate actions are the same for each signal, and since the sender’s payoff only depends

on the aggregate action and the state, no sender type can gain by announcing m1 when

the true state is in m2 (or vice versa). Altogether, this partition and the receiver’s best

responses aij constitute an equilibrium. And this is a babbling equilibrium from the point

of view of the sender: her payoff is the same regardless of message sent.

But notice that the equilibrium aggregate action differs from the aggregate action

that receivers would have taken had no communication taken place. That is, if the

receivers had taken actions based on their prior alone; and thus, each taken action 0.5.

7For precise derivation of posteriors check proof of lemma 3
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Figure 3: Receivers’ posterior CDF-s when they know that the state is in m1 (left figure
with red graphs) and when they know that the state is in m2 (right figure with blue
graphs). Receiver 1’s CDF is given by thick lines.

Recall that an equilibrium is influential if there exists at least one message in which

the aggregate action differs from what the aggregate action would have been had the

receivers based their action on their prior alone. In an informative equilibrium the

receiver aggregate actions must differ across at least two messages. In the standard

model; equivalently with a one-dimensional partition, an equilibrium is influential iff it

is informative. But as we see in this example, this equivalence no longer holds, once

we allow for two-dimensional partitions (trivially, informative implies influential for all

types of equilibria).

Next we construct an informative two-dimensional equilibrium. To verify this, we

now construct an informative equilibrium with four messages. Assume q1 = q = 1/3

and q2 = 1 − q = 2/3, and sender bias B = 0.1. For these values in standard model

there is an equilibrium with two partition elements: message t ∈ [0, 0.3) and message

t ∈ [0.3, 1], which would imply respective aggregate actions 0.15 and 0.65. Now consider
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instead the following partition:

m1 = [0, 0.23)× {1} ∪ [0.23, 0.315)× {0} (Blue solid line on figure)

m2 = [0, 0.23)× {0} ∪ [0.23, 0.315)× {1} (Blue dotted line on figure)

m3 = [0.315, 0.81)× {1} ∪ [0.81, 1)× {0} (Red solid line on figure)

m4 = [0.315, 0.81)× {0} ∪ [0.81, 1)× {1} (Red dotted line on figure)

Figure 4: This equilibrium consists of 4 partition elements, blue solid, blue dotted, red
solid and red dotted. Action for same partition elements is the same, but note that
blue and red areas are divided with 0.31 and not 0.3 as in standard game and aggregate
actions are different too

If the receivers assume these messages are truthful, we calculate that the aggregate

action is constant on the blue partition elements m1 and m2 (i.e. t < 0.31) and equal to

ā1 ≈ .16, while for the red partition elements m3 and m4 (i.e. t ≥ 0.31) the aggregate

action is ā2 ≈ 0.67. Altogether, the equilibrium is informative across signal groups

{m1,m2} and {m3,m4}, and babbling within each group.

Figure 5 compares the sender’s interim payoff when B = 0.1 as a function of t across

the four equilibria: babbling with one or two-dimensional partitions on the left and

informative with one or two-dimensional partitions on the right. In each case the sender’s

ex-ante payoff rises when using the second dimension. In particular, in the standard

one-dimensional “Babbling” equilibrium sender’s average (average with F ) utility is

−0.093 and in standard informative with two partition elements sender’s average utility

is −0.041. The same utilities if she uses two dimensional signals are −0.089 and −0.037

respectively.

The partitions and aggregate actions in these examples share a common structure.
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Figure 5: Sender’s utility as a function of t For ”babbling” (left) and informative (right)
equilibrium. Red graph is sender’s utility as a function of t if she uses two dimensional
signal, blue is the graph of sender’s utility if she uses only standard signals

In the first example even though number of partition elements is two, there is unique

aggregate action, while in the second example, the partition size was four, but there were

just two different aggregate actions. These examples could be interpreted as two stage

message. In the first stage, the sender specifies a one dimensional partition element

of type [α, β] × {0, 1} similarly to the standard cheap talk model and in the second

stage, the sender partitions each one dimensional element from the first stage into two

dimensional partition elements so that the aggregate action on each partition element

is the same. The next section establishes that all equilibria in our model have this “two

stage” structure.

4 Equilibrium As a Two Stage Communication

In the previous section, we interpreted the equilibrium partition as two stage communi-

cation. This section defines the class of two stage communication protocols and shows

that all equilibria are in this class.

Let us denote by G the operator which projects subset of state space on payoff

relevant dimension. More formally,

G(X) = G
((
B0 × {0}

)
∪
(
B1 × {1}

))
= B0 ∪B1

Where X =
((
B0 × {0}

)
∪
(
B1 × {1}

))
⊆ Θ is arbitrary subset of state space.

We define two stage communication using this projection operator. Recall that the

second example in the previous section had 4 partition elements but only two different
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aggregate actions. We now consider partitions by aggregate action. Specifically, let

{ā1, ..., ā`} be the set of aggregate actions induced by partition M = {m1,m2, ...,mk}
and ∀i ∈ {1, ..., `} denote the aggregate action partition elements Gi as follows:

Gi = G
( ⋃
j∈Ki

mj
)

Where ∀j ∈ Ki, aggregate action induced on mj is equal to āi.

We will say that partition M = {m1,m2, ...,mk} is a two stage communication pro-

tocol if ∀i ∈ {1, ..., `}, int(Gi) = (xi, xi+1) where 0 = x1 < x2 < ... < x`+1 = 1. For

example, in numerical example in the previous section K1 = {1, 2}, K2 = {3, 4} and{
G1, G2

}
=
{

[0, 0.315); [0.315, 1]
}

Now we are ready to state main result of this section.

Lemma 1. If M is equilibrium partition then M is two stage communication protocol.

Sketch of the proof: In the first step of the proof, we show that if different partition

elements induce posteriors, which give positive probability to some subset of [0, 1], then

the sender must be indifferent between sending these signals. We then construct the

action partition elements as defined above. Finally, we show each element of the action

partition is an interval on the payoff relevant dimension, i.e. [xi, xi+1] × {0, 1}. This

final step critically relies on Crawford and Sobel (1982) Lemma 1.

The idea for the proof is inspired by Chakraborty and Harbaugh (2010). In particular,

since the sender’s utility does not depend on payoff irrelevant state, her signaling strategy

will be credible iff for all values of payoff relevant state t, points of state space (t, 0) and

(t, 1) are either in the same partition element or if they are in different partition elements,

Sender is indifferent between sending these two messages. Otherwise, she would always

choose one with a higher payoff.

Figure 5 illustrates a two-stage communication. The first stage partitions [0, 1] into

{G1, G2, G3}, where

G1 = [0, a), G2 = [a, b) and G3 = [b, 1]

Why would receivers believe that Sender is not lying? The scalars a, b, xi, zi are cho-

sen so that, conditional on the receivers assuming that messages are true, the aggregate

actions induced by green dotted and green solid sets are the same. Similarly, the ag-

gregate action is the same for all red also for all blue messages. Thus, the Sender has
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Figure 6: Final partition consists of 6 elements (red solid and dotted, green solid and
dotted, blue solid and doted). Despite of 6 element in the partition, set of aggregate
actions in equilibrium, consist of only 3 elements. [0, 1] is partitioned into 3 intervals,
red = G1 = [0, a), green = G2 = [a, b) and blue = G3 = [b, 1]. Sender gets private
information about t ∈ [0, 1] and ω ∈ {0, 1}. Just for sake of illustration assume (t, y) ∈
green solid, sender will report that (t, ω) is in green solid element of the partition. Or
it can be interpreted as follows, sender informs receivers that payoff relevant state is
between a and b and if payoff irrelevant state ω = 1, then t is above z2 and if payoff
irrelevant state is ω = 0, then t is below x2.

no incentive to misrepresent the state within any color. What about misrepresentations

across colors? Here the idea is the same as in the canonical cheap talk model. For all

payoff relevant states in the green area (for example), the Sender prefers the aggregate

action induced by given truthful messages.8 Sender will be indifferent between red and

green if t = a and indifferent between green and blue if t = b.

Denote {G1 × {0, 1}, ..., G` × {0, 1}} by Γ and note that Γ is finest one dimensional

coarsening of M and M is a refinement of Γ. Based on this, for every equilibrium

partition M we will call Γ one-dimensional coarsening of M or simply coarsening and

for all i, we will call M i = {mj|j ∈ Ki} ⊆M two dimensional equilibrium refinement of

Gi × {0, 1} or simply refinement where

Gi × {0, 1} =
⋃
j∈Ki

mj

For our figure, Γ = {red, green, blue} is a coarsening and respective {dotted, solid}
sets are refinements.

So we can interpret equilibrium as a two stage communication. On the first stage,

8Here, the language we use is not entirely correct. Equilibrium does not require that receivers need
to know what will be the aggregate action. If we have assumed that qi is not common knowledge and
receivers update qi just based on the received signal(without thinking about Sender’s intentions and
thinking of other receiver’s q), the given example would be still an equilibrium.
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the sender signals to which coarsening element G the payoff relevant state belongs to

and then on the second stage sender reveals which refinement element of G × {0, 1} is

the state (t, ω). Crawford and Sobel (1982) gives all tools to work with one-dimensional

coarsening of M as soon as we know for each coarsening element what aggregate action

can a refinement provide on it.

Lemma 1 has a simple corollary, which gives sufficient condition for two equilibria to

be equivalent from the sender’s point of view.

Corollary 1. Let M and N be two equilibrium partitions. If M and N induce the same

sets of aggregate actions, then M and N are payoff equivalent for all sender types t.

Proof Let {a1, ..., an} be set of aggregate actions induced by equilibrium partitions

M and N . Assume ai < aj when i < j. Then by Lemma 1 ai is induced by every two-

dimensional refinement element mi
j of one-dimensional coarsening element Gi

M × {0, 1}
in equilibrium M and at the same time ai is induced by all two-dimensional refinement

elements nij of one-dimensional coarsening element Gi
N in equilibrium N . Gi

N and Gi
M

are intervals for all i.

Note that if xi = sup(Gi−1
M ) = inf(Gi

M) and yi = sup(Gi−1
N ) = inf(Gi

N) then

Us(ai−1, xi, B) = Us(ai, xi, B)

Given sender’s utility function xi + B must be middle point of ai−1 and ai. Similarly

are determined yi-s. So we get that:

int(Gi
M) = (xi, xi+1) = [yi, yi+1] = int(Gi

N)

Coarsening elements and aggregate actions on this coarsening elements are the same

(not necessarily true for refinement elements), meaning that for every t sender gets the

same utility in both equilibria and M and N are equivalent from her point of view.

Q.E.D.

Our main goal in the next section will be to finalize all equilibria’ characterization,

and for this, we will need to evaluate what aggregate actions can two-dimensional re-

finements provide.
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5 Diagonal Partitions

In the previous sections characterized the structure of equilibrium partitions. We now

introduce an important class of two-dimensional refinements. The refinements in Section

3 share a similar structure, each was of type: t > x if ω = i and t < y if ω = 1− i where

i ∈ {0, 1}.
More generally, For any interval [α, β] ⊆ [0, 1] and any x, y ∈ [α, β], denote the partition

of [α, β]× {0, 1} = m ∪m′ by Sxy(α, β) and call it diagonal partition where

m = [α, y)× {0} ∪ [x, β]× {1} and m′ = [y, β]× {0} ∪ [α, x)× {1}

We will drop the α, β arguments in Sxy(α, β) when they are clear from context. An

equilibrium is a polar equilibrium, if for every one-dimensional coarsening element G,

the two-dimensional equilibrium refinement is a diagonal partition or G× {0, 1}. polar

equilibrium is strictly polar equilibrium if it is not an equilibrium of standard model.

Now we are ready to state one of the main results of the paper.

Proposition 1. For every equilibrium, there exists aggregate action equivalent polar

equilibrium to it. Thus, polar equilibria span the set of sender equilibrium payoffs.

Proof Sketch: For standard equilibria the proposition holds trivially. For other equi-

libria It is enough to show the following: If for any interval [α, β] ⊆ [0, 1] with aggregate

action ā on every element of refinement of [α, β] × {0, 1}, then we can find a diagonal

partition Sxy(α, β) which induces ā on both partition elements. If this true, it is equiva-

lent from sender’s point of view to substitute refinement of [α, β]× {0, 1} with Sxy(α, β)

into the equilibrium partition. By such substitutions one by one on each coarsening

element, we will end up with a polar equilibrium. It remains to show that when it comes

to coarsening element G, from the sender’s point of view it is enough to consider only

diagonal partitions. The remainder of the proof assumes that ā is an aggregate action

on every partition element of [α, β]×{0, 1} and then shows that there exists a diagonal

partition of [α, β]× {0, 1} which induces ā on both partition elements.

The proof relies on the next two lemmas.

Lemma 2. If each element mi of partition of [α, β]×{0, 1} =
⋃n
i=1mi induces aggregate

action a, then there exists partition [α, β]×{0, 1} = m∪m′ inducing the same action a

on both m and m′.
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Lemma 3. If q1 + q2 ≤ 1
(
q1 + q2 ≥ 1

)
, for every x ∈ [α, β]

(
y ∈ [α, β]

)
, then there

exist y(x) ∈ [α, β]
(
x(y) ∈ [α, β]

)
such that diagonal partition Sxy(x)(α, β)

(
Sx(y)
y (α, β)

)
induces the same action on both elements of partition. Moreover,

A = {a
∣∣∃x, y ∈ [α, β], s.t.∀m ∈ Sxy(α, β) a is aggregate action on m} = [min(A),max(A)]

Now return to the proof sketch. The main idea of the rest of the proof is to show that,

the highest and lowest achievable aggregate actions on [α, β] can be achieved by diagonal

partitions and everything in between will then be achievable by Lemma 3. Lemma 2

shows that we can restrict our attention to partitions with only two elements. Namely

we can characterize partition by sets U,D ⊆ [0, 1], where one element of the partition

m = U × {1} ∪D × {0} and another is m′ = Θ \m.

Figure 7: Partition with two elements, Union of red line segments is one partition
elements, the rest is another partition element. What matters is measure of U ad D sets
and average value of t on this set based on F distribution.

Furthermore, this characterization boils down to size u, d of sets U and D and µ and

ν averages on U and D.

u =

∫
U

dF, d =

∫
D

dF µ =

∫
U

t

u
dF ν =

∫
D

t

d
dF

Note that in equilibrium aggregate actions must be the same:

q1uµ+ (1− q1)dν

q1u+ (1− q1)d
+
q2uµ+ (1− q2)dν

q2u+ (1− q2)d
=
τ − (q1uµ+ (1− q1)dν)

1− (q1u+ (1− q1)d)
+
τ − (q2uµ+ (1− q2)dν)

1− (q2u+ (1− q2)d)
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We are looking for values of u, d, µ, ν, such that the above equality holds and the

left-hand side (equivalently right-hand side) is maximal.

Now, assume that the highest aggregate action (same as a left-hand side) is achieved

when U and D sets have given sizes u and d. In this case, finding the partition with

the highest (lowest) achievable aggregate action boils down to choosing µ and ν. The

Maximization (minimization) problem w.r.t µ and ν is linear with linear constraint;

consequently, there is a corner solution. So, for any fixed u and d, we can WLOG

assume either µ or ν is at a corner. The last step of the proof is that, if for a given u and

d, either µ or ν is interior, then this u and d does not give maximum achievable action.

If µ is highest, then U is the rightmost set with size u, and ν is lowest, means that D

is the leftmost set with size d, meaning that the partition we consider is diagonal. This

finishes the sketch of the proof of proposition 1.

Proposition 1 states that, if we consider the equivalence relation: aggregate action

equivalent and partition the set of all equilibria into equivalence classes, in each equiv-

alence class, we will have at least one polar equilibrium. Though there is no guarantee

that the equilibrium of our game will be polar, from the sender’s point of view, nothing

is lost if we ignore all other equilibria.

Corollary 2. If sender’s bias isn’t 0 and she is granted with ability to choose equilibrium,

she will choose the one equivalent to a strict polar equilibrium.

Proof WLOG assume B > 0, and consider a standard equilibrium with best ex-

ante utility. Let it be a defined by a partition 0 = x0 < x1 <, ..., < xn = 1 and with

action āi = E(t|xi1 < t < xi) then ∃ε, 0 < ε < B s.t. using diagonal partitions of

[xi, xi+1] × {0, 1} the sender can achieve b̄i = āi + ε on . The same 0 = x0 < x1 <

, ..., < xn = 1 will define one-dimensional coarsening of equilibrium, because distance

from xi + B is still middle between b̄i and b̄i+1. Before state realizes the best action

for sender in each partition element [xi−1, xi) is āi + B, in standard equilibrium action

on [xi−1, xi) is āi and in polar equilibrium we constructed, action is b̄i = āi + ε which

is by ε closer to her ideal action, thus her overall ex-ante utility will be higher in polar

equilibrium than in the best standard equilibrium and she will chose the strict polar

one.

Q.E.D

In the next section, we’ll talk about the ordering of posterior beliefs.
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6 Polarization

In Section 3 we saw that the equilibrium strategy we highlighted induced posterior beliefs

on the payoff relevant variable which were ordered by First Order Stochastic Dominance.

Moreover, the common prior was “between” the posteriors. We will show in this section

that this result carries over to all two-dimensional polar partitions.

Say that partition element m is (strictly polarizing if one of the receiver’s posterior

on the payoff relevant variable induced by m (strictly) first order dominates the posterior

of the other receiver induced by m i.e.

either F (t|q1,m)(>) ≥ F (t|q2,m) or F (t|q2,m)(>) ≥ F (t|q1,m)9

We’ll say that equilibrium is strictly polarizing if every element m of equilibrium partition

M is polarizing and at least one element of M is strictly polarizing, and the equilibrium

is strongly polarizing if every element of the partition is strictly polarizing.

Every equilibrium we highlighted in Section was strongly polarizing. Recall that one

dimensional partition elements induce the same posteriors, consequently if every element

of the equilibrium partition is one-dimensional then there is no polarization. That is,

equilibria in the standard cheap talk model are not strictly polarizing. However, this is

not the case for the two-dimensional equilibria introduced here.

Proposition 2. Every equilibrium is either equilibrium of standard model or is aggregate

action equivalent to a strictly polarizing equilibrium.

Proof The result follows from Proposition 1 and the following lemma shows that pos-

terior beliefs induced by a diagonal partition element of any [α, β] interval are ordered

by first order stochastic dominance.10

Lemma 4. Let Sxy(α, β) be a diagonal partition of [α, β]× {0, 1} s.t. {x, y} * {α, β},

F (t|q1,m) > F (t|q2,m) ∧ F (t|q1,m
′) < F (t|q2,m

′)

Where F (t|qi, X) = F (t|qi, (t, ω) ∈ X) is receiver i-s posterior distribution after receiving

signal X.

9> here means that strict inequality holds for at least one value of t
10This lemma does not require any distributional assumptions or functional form restrictions for

payoff.

19



Q.E.D.

The final result of this section provides additional restrictions on the equilibrium

relationship between priors and posteriors.

Proposition 3. Let G be a one-dimensional coarsening element of polar equilibrium and

m,m′ be a two-dimensional refinement elements of this polar equilibrium s.t. m ∪m′ =
G× {0, 1} then either(
F (t|q1,m) �SOSD F (t|G) �SOSD F (t|q2,m)

)
∧
(
F (t|q1,m

′) ≺SOSD F (t|G) ≺SOSD F (t|q2,m
′)
)

or(
F (t|q1,m) ≺SOSD F (t|G) ≺SOSD F (t|q2,m)

)
∧
(
F (t|q1,m

′) �SOSD F (t|G) �SOSD F (t|q2,m
′)
)

7 Increasing Disagreement

In this section we’ll explore how the set of equilibrium aggregate actions and sender

payoffs change as the prior disagreement on the payoff irrelevant variable changes. In

particular, we will see that increasing disagreement expands the set of equilibrium actions

and sender payoffs.

For any payoff relevant interval G = [α, β] ⊆ [0, 1] denote by MG(q1, q2) the maxi-

mum achievable aggregate action on G×{0, 1}, similarly denote by MG(q1, q2) minimum

achievable aggregate action on G.

Lemma 5. If q1 < q2, MG is decreasing in q1 and increasing in q2 and MG(q1, q2) is

increasing in q1 and decreasing in q2

Proof Sketch: For simplicity drop index G. Consider two senders. Sender 1 faces

receivers with beliefs q1, q2 and sender 2 faces receivers with beliefs q′1, q2, where q′1 =

q1 − ε < q1 < q2. Assume a = M(q1, q2) and a′ = M(q′1, q2) are the maximum aggregate

actions achievable in some equilibrium. We want to show that a′ > a. To show that M is

increasing in q2, recall that M(q1, q2) = M(q2, q1) = M(1−q2, 1−q1) = M(1−q1, 1−q2),

and we can repeat the proof of a′ > a for M(1− q2, 1− q1).

The idea of the proof is based on the construction of a partition which makes receivers

of the second sender choose exactly the same action as the receivers of sender 1 choose

in the equilibrium with highest aggregate action for sender 1.
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The final results of this section describe how the set of relevant outcomes for the

sender change with q1 or q2. First define the set of possible equilibrium aggregate

actions. For any q1, q2 and B, the set of possible aggregate actions EQ(q1, q2, B) is a

collection of all sets of aggregate actions, which can be induced in some equilibrium.

More formally:

EQ(q1, q2, B) = {A ⊂ [0, 1]| A = {ā(m1), ..., ā(mk)} where {m1, ...mk}

is equilibrium partition and ā(m) is aggregate action induced on m }
Set of all possible equilibrium actions is set of actions which can be induced in some

equilibrium with positive probability. More formally

EQa(q1, q2, B) =
⋃

A∈EQ(q1,q2,B)

A

Proposition 4. If q1 < q2 then EQ(q1, q2, B) is decreasing in q1 and increasing in q2

q′1 ≤ q1 < q2 ≤ q′2 ⇒
(
EQ(q1, q2, B) ⊆ EQ(q′1, q2, B)

)
∧
(
EQ(q1, q2, B) ⊆ EQ(q1, q

′
2, B)

)
Proof: If A ∈ EQ(q1, q2, B) then by Corollary 1, A generates the same one-dimensional

coarsening for all values of payoff irrelevant beliefs. Now, take an arbitrary a ∈ A then a

is the action on some coarsening element G by Lemma 5 the same a could be achieved on

G when believes are q′1, q2 or q1, q
′
2, where q′1 ≤ q1 < q2 ≤ q′2. Since a ∈ A was arbitrary

we can repeat the same for all a ∈ A to get that A ∈ EQ(q′1, q2, B) and A ∈ EQ(q1, q
′
2, B).

This finishes the proof.

Q.E.D

One straightforward corollary of Proposition 4 is that If q1 < q2 then EQa(q1, q2, B)

is decreasing in q1 and increasing in q2 too. Another important corollary is that, sender

is not worse of if beliefs change from q1, q2 to q′1, q
′
2 where q′1 ≤ q1 < q2 ≤ q′2.

Corollary 3. If q′1 ≤ q1 < q2 ≤ q′2, then for every equilibrium of game with beliefs q1, q2

there exist equilibrium of game with beliefs q′1, q
′
2 with the exact same interim and ex-ante

utilities.

Proof Since every A ∈ EQ(q1, q2, B) is repeatable in game with beliefs q′1, q
′
2 and

21



A pins down preparation and aggregate actions on this coarsening, interim and ex-ante

utilities are also fully determined by A.

Q.E.D

To illustrate this result, consider an example with q1 = q, q2 = 1 − q, F = U [0, 1]

and B high enough so that there are no equilibria with more than one one-dimensional

coarsening element (B > 0.375 would guarantee this). When q1 + q2 = 1, then for every

p partition M = m1 ∪m2 where

m1 =
(
[0, p)× {0}

)
∪
(
[p, 1]× {1}

)
and m2 =

(
[0, p)× {1}

)
∪
(
[p, 1]× {0}

)
Induces the same aggregate action on both m1 and m2, i.e. M is equilibrium partition,

and these type of partitions generate all possible aggregate actions. When q′ > q > 1
2
,

[1 − q, q] ⊂ [1 − q′, q′]. On the Figure 8 is given aggregate value as a function of p for

different of values of q. As we see from the graph

EQa(0.7, 0.3, B) = [0.48, 0.52] ⊂ EQa(0.9, 0.1, B) = [0.42, 0.58] ⊂ EQa(1, 0, B) = [0.25, 0.75]

Figure 8: p is measured on horizontal axes. Further is q from 0.5, larger is the set of

aggregate actions. Colored points on the vertical axes indicate highest and lowest values

for each curve.

Before we conclude note that the level of bias above which informative equilibrium
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fail (equilibrium with more than one aggregate action) to exist, also increases with q2

and decreases with q1 when. Denote this threshold by B(q1, q2)

Proposition 5. If B > 0, q′1 ≤ q1 < q2 ≤ q′2 then B(q1, q2) ≤ B(q′1, q
′
2)

Proof Recall that border x between two coarsening elements or similarly border between

two partition elements of standard cheap talk equilibrium is such that x + B is middle

point between actions on the left to x and on the right of x. When B = B(q1, q2), then

x = 0, so B is ā
2

where ā is aggregate action on [0, 1]. Meaning that B(q1, q2) is half of

the highest achievable aggregate action which increases with q2 and decreases with q1 as

shown in Lemma 5.

Q.E.D

Proposition 5 says that, when disagreement increases informative communication be-

comes possible for larger values of B. For example for uniform distribution the threshold

value approaches 3
8

when q1 → 0 and q2 → 1. in standard model it was equal to 1
4
.

If bias is B = 0.25 in standard model there is only one, babbling equilibrium. When

0.4 = q1 = 1− q2 we can construct an informative equilibrium (more than one possible

aggregate action in equilibrium), however it would not be possible for B = 0.26. When

disagreement increases it will become possible for B = 0.26 to have an informative

equilibrium. For example belief values 0.2 = q1 = 1 − q2 allows us construct such

equilibrium.

8 Conclusion

We extended the standard cheap talk model in a minimal way so that it can capture

the incentives of polarization. We added one receiver to be meaningful to talk about

polarization, and then we added one dimension to the state space. The new dimension

is binary and payoff irrelevant, and if it is ignored, the model becomes the standard

cheap talk model. In contrast to payoff relevant variables, receivers have different beliefs

about payoff irrelevant dimension.

This extension of the model increased the set of equilibria. We characterized new

equilibria up to some equivalence relation. Namely, we proved that nothing is lost

from the sender’s point of view if we consider only polar equilibria. The strictly polar

equilibria adds to the set of possible interim utilities the new elements. They can give

higher ex-ante utility to sender. At the same time, it strictly polar equilibrium polarizes
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receivers with positive probability in the first-order stochastic dominance sense. Even

slight disagreement is enough for influential equilibrium to exist, despite of level of Bias.

Moreover, if receivers disagree more, there are more of the new equilibria with higher

ex-ante utilities and the bias threshold above which there are no informative equilibria

also increases.

In future work, it would be interesting to include receivers’ preferences over equilibria

in the analysis and think about ex-ante Pareto dominance relation on the set of equilibria.

Our results depend on functional form assumptions on utility functions and aggregation

rule. Quadratic loss utility allows us to work directly with expectations. What are the

assumptions on utility functions and the distribution of t, which will guarantee the same

results we got or at least some of them? The existence of new and influential equilibria

can be guaranteed for most of the concave supermodular utility functions; however,

whether the role of diagonal partitions will remain the same or not is questionable.
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Appendix

Proof of Proposition 0

Proposition 0 [Crawford and Sobel 1982] Set of equilibrium partitions in which
only one dimensional strategies are used is equivalent from all players point of view to
the set of equilibrium partitions of standard cheap talk model11.

Proof Our model is extension of standard12 cheap talk model from Crawford and
Sobel (1982), we add payoff irrelevant dimension and one receiver. As long as sender
does not communicate privately, if sender will not use the payoff irrelevant dimension,
there is nothing different form standard cheap talk model, since both players will process
one dimensional signals in exactly the same way and posterior would be the same if they
just ignore the second dimension of partition element bi × s and update only using bi.
So their optimal response will be the same and equal to aggregate action and this means
that we are back to standard cheap talk model and partition of [0, 1] consisting of bi as
elements will be equilibrium partition of standard model.

Q.E.D.

Proof of Lemma 1

Lemma 1 If M is equilibrium partition then M is a two stage communication protocol.
Proof On the first step of the proof we will show that if different partition element

induce posteriors which give positive probability to some subset of [0, 1], then sender
should be indifferent between sending these signals. After that we’ll group all partition
elements which induce same action in one group and finally we’ll show that this group
has form [xi, xi+1]× {0, 1}.

Recall that two partitions which are measure 0 deviations from each other are equiv-
alent and each of this partition is equivalent to the partition, elements of which are of
type m =

(
B0×{0}

)
∪
(
B1×{1}

)
, where B0, B1 are Borel sets. WLOG we will consider

only partitions of this type.
One of the key step of the proof is to show that if m and m′ payoff are state disjoint

elements of the equilibrium partition meaning that G(m)∩G(m′) 6= ∅, then they induce
same aggregate action.
Assume opposite. Take t0 ∈ int(G(m) ∩ G(m′)) (due to remark 1 in Model section,
considered interior isn’t empty) , and WLOG assume

U s(ā(a∗1(m), a∗2(m)), t0) > U s(ā(a∗1(m′), a∗2(m′), t0)

11More precisely cartesian product of equilibrium partition of standard cheap talk model and any
subset of {0,1}

12The model they consider in section 4, where F = U [0, 1] and utility function is quadratic loss
functions
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then if state (t0, ω) ∈ m′, sender has incentive to lie and signal m instead of m′. Gen-
erality is not lost, since if ā and ā′ are different but t0 were such that accidentally
U s(ā, t0) = U s(ā′, t0) then we would consider t0 + ε ∈ int(G(m) ∩G(m′)) instead of t0.

Now if A = {ā(m)
∣∣m ∈ {m1, ...,mk}} = {ā1, ..., ā`} is a set of actions in equilibrium

we can rearrange our partition in the following way:

Θ =
⋃

i∈{1,...,k}

mi =
⋃

i={1,...,`}

( ⋃
j∈Ki

mj

)
Where ∀j ∈ Ki, aggregate action induced on mj is equal to āi.
In other words, we can group all partition elements on which the aggregate actions is
the same.
Besides that, equilibrium actions also induce a partition of [0, 1] in the following way:

[0, 1] =
⋃

j={1,...,`}

( ⋃
i∈{Kj}

G(mi
j)
)

:=
⋃

j={1,...,`}

Gj

The fact that set of aggregated actions in equilibrium A = {ā1, ..., ā`}, is a finite set
follows from Lemma 1 in Crawford and Sobel (1982).

So an equilibrium of our game can be described as a partition of [0, 1], into sets

{G1, ..., G`} and then for each j ∈ {1, ..., `}, partition of Gj × {0, 1} into {m1
j , ...,m

kj
j }

Since US
12 > 0 we get that, if for states t1, t2 ∈ Gi, āi is the optimal among {ā1, ..., ā`},

then it should be also optimal for ∀t ∈
(
min(t1, t2),max(t1, t2)

)
, and consequently

∀t ∈ (min(t1, t2),max(t1, t2)), t ∈ Gi

This means that ∃z1, z2, s.t. Gi = [z1, z2] ⊆ [0, 1]

Reinterpret once more an equilibrium, equilibrium strategy, first partition Θ into
pairs of intervals,

Θ =
⋃

j∈{1,...,`}

Gj × {0, 1} =
⋃

i∈{1,...,`}

[zi−1, zi)× {0, 1}

and then partitions each pair of interval into finer two-dimensional sets

Gj × {0, 1} = [zj−1, zj)× {0, 1} =
⋃

k∈{1,...,kj}

mk
j

where ∀k ∈ {1, ..., kj}, message mk
j induces same aggregated action āj

This finishes the proof proposition 1.
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Q.E.D.

Proof of Lemma 2

Lemma 2 If each element mi of partition of [α, β]×{0, 1} =
⋃n
i=1 mi induces aggregate

action a, then there exists partition [α, β]× {0, 1} = m ∪m′ inducing same action a on
both m and m′.

proof: Forthcoming ...

Proof of Lemma 3

Lemma 2 If q1 + q2 ≤ 1
(
q1 + q2 ≥ 1

)
, for every x ∈ [α, β]

(
y ∈ [α, β]

)
, there exist

y(x) ∈ [α, β]
(
x(y) ∈ [α, β]

)
such that diagonal partition Sxy(x)(α, β)

(
Sx(y)
y (α, β)

)
induces same action on both elements of partition. Moreover

A = {a
∣∣∃x, y ∈ [α, β], s.t.∀m ∈ Sxy(α, β) a is aggregate action on m} = [a1, a2]

Where a1 = min(A) and a2 = max(A)
proof: WLOG assume that q1 + q2 ≤ 1 and q1 < q2. Let us consider the following

partition of [0, 1]× {0, 1}:

m = [x, β]× {1} ∪ [α, y)× 0 and m′ = [α, x)× {1} ∪ [β, 1]× 0

And prove that for ∀x ∈ [α, β], ∃y ∈ [α, β] s.t.

ā(a∗1(m(x, y)), a∗2(m(x, y))) = ā(a∗1(m′(x, y)), a∗2(m′(x, y)))

Or we want to show that ∀x ∈ [α, β], ∃y ∈ [α, β] s.t. g(x, y) = 0 where:

g(x, y) = ā(a∗1(m(x, y)), a∗2(m(x, y)))− ā(a∗1(m′(x, y)), a∗2(m′(x, y)))

Note that, for quadratic loss function optimal action for a receiver is equal to expec-
tation of the state according to posterior distribution. Also continuity of g is obvious.

Now note that if Πi = Pr((t, ω) ∈ m|qi, F ) and τ = E(t|F ), then from Bayes
plausibility

Πia
∗
i (m(x, y)) + (1− Πi)a

∗
1(m′(x, y)) = τ

In other words expectation of posterior mean should equal to prior mean.
If F = U[0, 1] is uniform on [0, 1], then

a∗i (m(x, y)) =
qi(1− x) · 1+x

2
+ (1− qi)y · y2

qi(1− x) + (1− qi)y
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a∗i (m
′(x, y)) =

qix · x2 + (1− qi)(1− y) · 1+y
2

qix+ (1− qi)(1− y)

For uniform distribution above condition is quartic equation which is solvable in
closed forms, for any q1 and q2. other distributions we should not expect it to be
solvable in closed forms. We won’t solve it but show that solution exists. For this let us
draw level sets of g corresponding level 0.

g(x, y) =
a∗1(m) + a∗2(m)

2
− a∗1(m′) + a∗2(m′)

2

On Figure 9 we have graphs for fixed q1, q2 and for three different distributions, triangle
distribution with density f(t) = 2− 2t, uniform on [0, 1] and triangle distribution with
density f(t) = 2t.

Figure 9: Grey areas are where g > 0, white areas where g < 0 and on the border we have
equality. This demonstrate existence of equilibrium for these particular distributions.

As we see in all three cases for every x, there is y such that m and m′ induce same
aggregate action. Here q1 + q2 < 1. What we see on the graph besides existence of
solution is that y = x line never intersects the set {(x, y)|g(x, y) > 0} and g(x, 0) > 0
and g(x, 1) > 0 ((x, 0), x, 1 are in grey area). The proof is based on this observation and
not on actually solving equation derived from equilibrium condition.

For general F , it will be more convenient if we rewrite the problem in other variables,
namely in u and d, which are the measures of [x, β] and [α, y) sets, respectively.

u =

∫ β

x

dF d =

∫ y

α

dF ⇒ x = Q(1− u) and y = Q(d)

Where Q = F−1 is inverse of CDF F i.e. quantille function
And receivers actions are:
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a∗i (m(u, d)) =
qiu ·

∫ β
Q(1−u)

t
u
dF + (1− qi)d ·

∫ Q(d)

α
t
d
dF

qiu+ (1− qi)d

a∗i (m
′(u, d)) =

qi(1− u) ·
∫ 1−Q(1−u)

0
t

1−udF + (1− qi)(1− d) ·
∫ β
Q(d)

t
1−ddF

qi(1− u) + (1− qi)(1− d)

Let us rewrite it once more in terms of x and y

a∗i (m(x, y)) =
qiu(x) · µ(x) + (1− qi)d(y)ν(y)

qiu(x) + (1− qi)d(y)

a∗i (m
′(x, y)) =

qi(1− u(x)) · µ′(x) + (1− qi)(1− d(y)) · ν ′(y)

qi(1− u(x)) + (1− qi)(1− d(y))

Where

µ(x) =

∫ β

x

t

1− F (x)
dF ν(y) =

∫ y

0

t

F (y)
dF,

µ′(x) =

∫ 1−x

0

t

F (x)
dF, ν ′(y) =

∫ 1

1−y

t

1− F (y)
dF

We’ll omit argument in µ, ν, u, d whenever it’s clear what is the argument.
Note that Bayesian plausibility13 implies uµ + (1 − u)µ′ = τ and dν + (1 − d)ν ′ = τ ,
Using this we can get rid of µ′, ν ′ in g(x, y)

g(x, y) =
q1uµ+ (1− q1)dν

q1u+ (1− q1)d
+
q2uµ+ (1− q2)dν

q2u+ (1− q2)d
−

−τ − (q1uµ+ (1− q1)dν)

1− (q1u+ (1− q1)d)
− τ − (q2uµ+ (1− q2)dνd)

1− (q2u+ (1− q2)d)

Now our goal would be to show that ∀x ∃y1, y2 s.t. g(x, y1) > 0 > g(x, y2). More
precisely we’ll find two different y1-s.
For arbitrary x ∈ [α, β] consider three different y-s, y = 0, y = 1 and y = x. m in these
three cases looks as on the picture bellow.

What will be sign of g(x, y) for different y-s above? .
Let’s start from g(x, 0). Both receivers’ action for partition element m is

a1(m(x, 0)) = a2(m(x, 0)) = µ(x) =

∫ β

x

t

1− F (x)
dF > τ

From Bayesian plausibility we’ll get that actions of both receivers in m′ will be less than
τ , hence g(x, 0) > 0.

13see Kamenica and Gentzkow (2011)
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Figure 10: Three different y-s, y = β, y = α and y = x

Similarly for g(x, 1), both receivers’ action for partition element m′ is

a1(m′(x, 1)) = a2(m′(x, 1)) = µ′(x) =

∫ 1−x

0

t

F (x)
dF < τ

From Bayesian plausibility we’ll get that actions of both receivers in m will be more
than τ , hence g(x, 1) > 0

And now the most difficult and main part, y = x, what will be the sign of g(x, x)?
As we saw for uniform and triangle distributions g(x, x) < 0, does this hold for other
distributions too?
We need to compare a∗1(m(x, x)) + a∗2(m(x, x)) to a∗1(m′(x, x)) + a∗2(m′(x, x)). Recall
that:

2ā(m) = a∗1(m(x, x))+a∗2(m(x, x)) =
q1uµ+ (1− q1)(1− u)ν

q1u+ (1− q1)(1− u)
+
q2uµ+ (1− q2)(1− u)ν

q2u+ (1− q2)(1− u)

and

2ā(m′) = a∗1(m′(x, x))+a∗2(m′(x, x)) =
q1(1− u)ν + (1− q1)uµ

q1(1− u) + (1− q1)u
+
q2(1− u)ν + (1− q2)uµ

q2(1− u) + (1− q2)u

Where

µ =

∫ β

x

t

1− F (x)
dF ν =

∫ x

0

t

F (x)
dF

Now note that both ā(m) and ā(m′) are weighted sums of µ and ν where µ > ν, thus
ā(m) will be higher if it gives higher weight to µ and lower if it gives lower weight to µ.
g(x, x) ≤ 0 iff ā(m) ≤ ā(m′). Weights of µ in ā(m) and ā(m′) are as follows:

w =
q1u

q1u+ (1− q1)(1− u)
+

q2u

q2u+ (1− q2)(1− u)
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and

w′ =
(1− q1)u

q1(1− u) + (1− q1)u
+

(1− q2)u

q2(1− u) + (1− q2)u

And we want to show that w ≤ w′

w ≤ w′

m
q1u

q1u+ (1− q1)(1− u)
+

q2u

q2u+ (1− q2)(1− u)
≤ (1− q1)u

q1(1− u) + (1− q1)u
+

(1− q2)u

q2(1− u) + (1− q2)u

m (divide both sides on u, if u = 0, then w = w′)

q2

q2u+ (1− q2)(1− u)
− (1− q2)

q2(1− u) + (1− q2)u
≤ (1− q1)

q1(1− u) + (1− q1)u
− q1

q1u+ (1− q1)(1− u)

m
(1− u)(q2

2 − (1− q2)2)(
q2u+ (1− q2)(1− u)

)(
q2(1− u) + (1− q2)u

) ≤ (1− u)((1− q1)2 − q2
1)(

q1(1− u) + (1− q1)u
)(
q1u+ (1− q1)(1− u)

)
Now note that q1 + q2 < 1 and q1 < q2, meaning that q1 <

1
2
, hence q1 < 1 − q1.

If q2 ≤ 1
2
, than left hand side of the last inequality is non-positive and right hand side

is positive, so inequality holds. So consider only q2 > 1
2
. Also divide both sides of

inequality on 1− u. If u = 1 (weak)inequality holds.

m

2q2 − 1

u(1− u)(q2
2 + (1− q2)2) + (u2 + (1− u)2)(q2(1− q2))

≤

≤ 1− 2q1

u(1− u)(q2
1 + (1− q1)2) + (u2 + (1− u)2)(q1(1− q1))

(1)

To prove (1) first note that 2q2 − 1 cannot be more than 1− 2q1 since

2q2 − 1 > 1− 2q1 ⇒ 2q2 + 2q1 > 2 contradicts q1 + q2 < 1.

So, inequality (1) will be proved if we show that denominator of the right hand side is
smaller than denominator of left hand side.

(1)

⇑ (using 2q1 − 1 < 1− 2q1)

u(1−u)(q2
2+(1−q2)2)+(u2+(1−u)2)(q2(1−q2)) ≥ u(1−u)(q2

1+(1−q1)2)+(u2+(1−u)2)(q1(1−q1))

m

u(1− u)
(
q2

2 − q2
1 + (1− q2)2 − (1− q1)2

)
+ (u2 + (1− u)2)

(
q2(1− q2)− q1(1− q1) ≥ 0
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m

u(1− u)
(

(q2 − q1)
(
2(q1 + q2)− 2

))
+ (u2 + (1− u)2)

(
(q2 − q1)

(
1− (q1 − q2)

))
≥ 0

m

−u(1− u)
(

(q2 − q1)
(
2− 2(q1 + q2)

))
+
u2 + (1− u)2)

2

(
(q2 − q1)

(
2− 2(q1 − q2)

))
≥ 0

m(
(q2 − q1)

(
2− 2(q1 + q2)

))(u2 + (1− u)2)

2
− u(1− u)

)
≥ 0

m (using q1 < q2 and q1 + q2 < 1)

u2 + (1− u)2)

2
− u(1− u) ≥ 0⇔ u2 − 2u(1− u) + (1− u)2)

2
≥ 0

m(
u− (1− u)

)2

≥ 0 holds ∀u

This finishes the proof of inequality (1) which in turn means that w ≤ w′, implying that
ā(m(x, x)) ≤ ā(m′(x, x)), hence g(x, x) ≤ 0.
∀x, g(x, y) as function of y is continuous and we got that g(x, 0) > 0 and g(x, 1) > 0 and
g(x, x) ≤ 0 and using intermediate value theorem we can say that ∃y1, y2 s.t. g(x, y1) =
g(x, y2) = 0 and if g(x, x) = 0 than x = y1 = y2.
So we proved that ∀x ∈ [α, β] there is at least one y s.t. aggregate actions on m and m′

are the same, where

m = [x, β]× {1} ∪ [α, y)× 0 and m′ = [α, x)× {1} ∪ [β, 1]× 0

if q1 + q2 > 1 we need to just reverse roles of x and y and repeat the proof.

Q.E.D

Proof of Proposition 1

Proposition 1 For every equilibrium there exists aggregate action equivalent polar equi-
librium to it.
Or in other words, polar equilibria are enough from sender’s point of view.

Proof First we will show that:
Considering only one coarsening interval [α, β] is enough.
Note that it’s enough to show the following. If ā is aggregate action on arbitrary in-
terval [α, β] for every element of two-dimensional refinement element of [α, β] × {0, 1},
then we can find a diagonal partition Sxy(α, β) which induces ā on both partition ele-
ments. If this true, it’s equivalent from sender’s point of view to substitute refinement
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of [α, β] × {0, 1} with Sxy(α, β) in equilibrium partition. By such substitutions one by
one on each one-dimensional coarsening element we will end up with polar equilibrium.
So remains to show that when it comes to coarsening element G, from sender’s point of
view it’s enough to consider only diagonal partitions. For remainder of the proof assume
that ā is a aggregate action on every partition element of [α, β]×{0, 1} and we want to
show that there exists diagonal partition of [α, β]× {0, 1} which induces ā

It’s enough to show that we can achieve highest and lowest possible ag-
gregate action with just diagonal partitions
WLOG assume that q1 + q2 ≤ 1 and note that from Lemma 2, we have that diagonal
partitions can generate any aggregate in [a1, a2], where a1 is minimum achievable value
of aggregate action induced by some diagonal partition a2 is maximum achievable value
of aggregate action induced by some diagonal partition. If we show that for any aggre-
gate action ā which can be induced by some partition, a1 ≤ ā ≤ a2, then ā also can be
achieved by diagonal partition.

Based on Lemma 1 we can claim that for any aggregate equilibrium action a there
exist partition N,N ′

[α, β]× {0, 1} = N ∪N ′

s.t. induced aggregate action on both N and N ′ is a.
Rewriting the problem in other variables

Assume that
N = U × {1} ∪D × {0}

Where U and D are measurable subsets of [α, β] with measures u ∈ [α, β] and d ∈ [α, β]
respectively. Let us denote receiver i’s perceived probability of state being in N by Πi,

Πi = qiu+ (1− qi)d

Now introduce the following notations:

µ = E(t|t ∈ U) and ν = E(t|t ∈ D)

µ is average on U and ν is average on D. Note that, µ and ν are the same for both
receivers.

Now note that by Bayesian plausibility

µ× u+ µ′ × (1− u) = τ and ν × d+ ν ′ × (1− d) = τ

where:
µ′ = E(t|t /∈ U) and ν ′ = E(t|t /∈ D)

So

µ′ =
τ − µu
1− u

and ν ′ =
τ − νd
1− d
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Receiver i’s action ai when state is in N is:

ai(µ, ν, u, d) =
qiuµ+ (1− qi)dν
qiu+ (1− qi)d

And when state is in N ′ receiver i’s action is:

a′i(µ, ν, u, d) =
qi(1− u)µ′ + (1− qi)(1− d)ν ′

qi(1− u) + (1− qi)(1− d)
=
qi(1− u) τ−µu

1−u + (1− qi)(1− d) τ−νd
1−d

qi(1− u) + (1− qi)(1− d)
=

=
τ − (qiuµ+ (1− qi)dν)

1− (qiu+ (1− qi)d)

If {N,N ′} is equilibrium partition then aggregate action for both N and N ′ must be
the same:

ā(µ, ν, u, d) = ā′(µ, ν, u, d)⇒ a1(µ, ν, u, d) + a2(µ, ν, u, d)

2
=
a′1(µ, ν, u, d) + a′2(µ, ν, u, d)

2
⇒

⇒ q1uµ+ (1− q1)dν

q1u+ (1− q1)d
+
q2uµ+ (1− q2)dν

q2u+ (1− q2)d
=
τ − (q1uµ+ (1− q1)dν)

1− (q1u+ (1− q1)d)
+
τ − (q2uµ+ (1− q2)dν)

1− (q2u+ (1− q2)d)

Note that, ā depends on µ, ν, u, d, on the lengths of U and D sets and on averages
on these sets not on set itself (Any two set with identical size and average will give same
aggregate action).
Let us fix u and d and consider ā as function of µ and ν. What can we say about µ and
ν if are looking for extreme values (highest and lowest possible) of ā?

Figure 11: strategy with two partition elements, the one element of the partition is is
union of U and D sets and another is the rest of the Θ.

Set N looks something like U ∪D on picture above and U and D does not have to
be intervals, but WLOG we can assume that they are intervals.
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So, the questions is for given sizes of sets U and D (u and d respectively), what are
the values of µ and ν which maximizes or minimizes ā.
One obvious constraint on µ and ν are imposed by distribution and sizes of sets, namely:

L(u) ≤ µ ≤ R(u)

L(d) ≤ ν ≤ R(d)

Where

L(u) =

∫ Q(u)

α

t

u
dF L(d) =

∫ Q(d)

α

t

d
dF R(u) =

∫ β

Q(1−u)

t

u
dF R(d) =

∫ β

Q(1−d)

t

d
dF

Where Q is quantile function. For uniform distribution constraint looks as follows:

u

2
≤ µ ≤ 1− u

2

d

2
≤ ν ≤ 1− d

2

Another constraint on µ and ν is equilibrium condition (ā = ā′) and finally we get
following optimization problem:

max
µ,ν

ā or min
µ,ν

ā

subject to :

ā1(µ, ν) + ā2(µ, ν) = ā1
′(µ, ν) + ā2

′(µ, ν)

L(u) ≤ µ ≤ R(u)

L(d) ≤ ν ≤ R(d)

(2)

For fixed u and d optimization problem is linear
Note that a1, a2, a

′
1, and a′2 are linear in µ and ν. So the objective function ā is linear in

µ and ν and constraint ā1(µ, ν) + ā2(µ, ν) = ā1
′(µ, ν) + ā2

′(µ, ν) is also linear in µ and
ν. So we can rewrite our optimization problem in the following way:

max
µ,ν

or min
µ,ν

A1µ+ A2ν

subject to :

B1µ+B2ν = B

L(u) ≤ µ ≤ R(u)

L(d) ≤ ν ≤ R(d)

(3)

Where A1, A2, B1, B2 and B depend on u, d and q1, q2, but are constants w.r.t µ, ν.
Also note that A1 + A2 = 2 and (ν, µ) = (τ, τ) always satisfy B1µ+ B2ν = B, meaning
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that B = τ(B1 +B2). Our optimization problem rewrites as follows:

max
µ

or min
µ

A1µ+ A2 ×
B −B1µ

B2

= µ(A1 −
A2B1

B2

) +
A2B

B2

subject to :

L(u) ≤ µ ≤ R(u)

L(d) ≤ B −B1µ

B2

≤ R(d)

(4)

Depending on the sign of A1 − A2B1

B2
, for maximum µ should be largest possible or

smallest possible and reversed for minimum.
If for extreme value of µ (L(u) or R(u)), L(d) ≤ B−B1µ

B2
≤ R(d) holds, then up to differ-

ence of measure 0, U = [0, y] or U = [x, 1] where y = Q(u), x = Q(1− u).

Now, if for extreme values of µ (L(u), or R(u)), L(d) ≤ B−B1µ
B2

≤ R(d) does not

hold then µ should be at highest or lowest possible (depending on sign of A1 − A2B1

B2

and whether we maximize or minimize )for which L(d) ≤ B−B1µ
B2

≤ R(d) condition holds
with equality on one side and this means that ν will be at extreme, meaning that up to
difference of measure 0, D = [0, y] or D = [x, 1] where y = Q(d), x = Q(1− d)

All in all conclusion here is that for fixed values of measure of U and D, to reach
highest and lowest values of ā, at least one of U and D should be extreme right interval
[x, 1], or extreme left interval [0, y].

Possible scenarios of solution of above linear programming problem
Figure 12 summarizes 4 possible cases when only U or D is extreme right or left inter-
val, i.e. when only one of µ, ν reaches maximum possible and is not constrained with
equilibrium condition. For convenience graphs are made for uniform distribution (what
changes with distribution are highest and lowest possible values of µ and ν and average
τ),

Negatively sloped red line is constraint corresponding to the equilibrium condition
(aggregate action on both N and N ′ should be the same). Negatively sloped green lines
are indifference curves of sender’s utility function (as a function of µ and ν for given u
and d), and depending on relation of slopes of green line and red line point of minimum
and point of maximum is determined. On 1 and 2, at optimal points µ reaches its highest
and lowest possible points (µ = R(u) or µ = L(u) meaning that U is extreme right or
left interval) but ν does not and it’s reversed on 3 and 4 (meaning that D is extreme
right or left interval )
Note that these lines are drawn for fixed u and d, choosing µ and ν is equivalent to
choosing location of sets of sizes u and d. Slopes of objective function (A1µ + A2ν)
and constraints (both equilibrium constraint and distributional limitation of µ and ν)
changes with u and d.
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Figure 12: For fixed lengths u and d of U and D sets, optimization problem becomes
linear program w.r.t µ and ν
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Idea of the proof is to show that for none of the cases (1,2,3,4) on the picture, can
describe scenario for optimal u and d. Instead it must look like 5 or 6 on the Figure 13
bellow.

Figure 13: Both, µ and ν bind

On (5) and (6) both distributional constraints bind. One up and another down.

L(u) < µ = R(u) and L(d) = ν < R(d)

or
L(u) = µ < R(u) and L(d) < ν = R(d)

WLOG we can ignore cases 3 and 4, since it will differ from 1 and 2 just by labeling.
We will show that for optimal u and d graph 1 on the picture above is impossible (case
for graph 2 is analogous and we’ll omit it) and instead we have (5).

Construction profitable perturbation when either µ or ν isn’t binding
For this assume that case is 1 and look for perturbation of u and d s.t. sender can

achieve higher aggregate action.
For clarity let us draw case 1 again.

This perturbation is simply marginal increase of d and keeping u the same. With
increase of d constraint becomes steeper. We will show this little bit later, for the
moment assume so. What happens’ with A1, A2?.Recall the expressions for A1, A2

A1 =
q1u

q1u+ (1− q1)d
+

q2u

q2u+ (1− q2)d)
=
q1u

Π1

+
q2u

Π2
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Figure 14: Leftmost U gives highest aggregate action

A2 =
(1− q1)d

q1u+ (1− q1)d
+

(1− q2)d

q2u+ (1− q2)d
=

(1− q1)d

Π1

+
(1− q2)d

Π2

Note A1 is decreasing in d and A2 is increasing in d. So objective function will also
become little more steep. With the increase of d our picture would look like one on
Figure 15

A2 =
(1− q1)d

q1u+ (1− q1)d
+

(1− q2)d

q2u+ (1− q2)d
=

(1− q1)

q1
u
d

+ (1− q1)
+

(1− q2)

q2
u
d

+ (1− q2)
↑d

Also note here that A1 + A2 = 2
µ will remain the same, ν will increase to ν ′. Since ν > L(d) was not binding we can

make small enough change in d so that ν ′ > L(d′). A1 decreased to A′1 but A2 increased
to A′2. What would happen to the value of objective function? If it increases then our
perturbation is profitable.

A′1µ+A′2ν
′−
(
A1µ+A2ν

)
= A′1µ+A′2

(
τ − B

′
1

B′2
(µ− τ)

)
−
(
A1µ+A2

(
τ − B

′
1

B′2
(µ− τ

))
=

= (A′1 − A1)µ+ (A′2 − A2)τ +
(A2B1

B2

− A′2B
′
1

B′2

)
(µ− τ) =
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Figure 15: Solid lines are before increase of d, dashed lines are after increase of d

= (2− A′2 − (2− A2))µ+ (A′2 − A2)τ +
(A2B1

B2

− A′2B
′
1

B′2

)
(µ− τ) =

= (A2 − A′2)(µ− τ) +
(A2B1

B2

− A′2B
′
1

B′2

)
(µ− τ) =

=
(
µ− τ

)
×
(
A2

(B1

B2

+ 1
)
− A′2

(B′1
B′2

+ 1
))

Since µ > τ , the last expression will be positive if A2

(B1

B2

+ 1
)

is decreasing in d. Below

we’ll show this. Recall that we haven’t proved that constraint becomes steeper.
Since constraint always passes through (τ, τ) steeper is equivalent that intercept on

ν axes decreases. Intercept is

τ(B1(u, d) +B2(u, d))

B2(u, d)
↓d⇔

B1(u, d)

B2(u, d)
↓d

But we won’t prove that B1(u,d)
B2(u,d)

is decreasing, instead we’ll show that

A2(u, d)
(B1(u, d)

B2(u, d)
+ 1
)
↓d

Since A2 is increasing B1(u,d)
B2(u,d)

must be decreasing in this case.
Recall expressions for B1, B2.
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B1 =
q1u

q1u+ (1− q1)d
+

q2u

q2u+ (1− q2)d
+

q1u

(1− (q1u+ (1− q1)d))
+

q2u

1− (q2u+ (1− q2)d)
=

q1u

Π1

+
q2u

Π2

+
q1u

1− Π1

+
q2u

1− Π2

= A1 +
q1u

1− Π1

+
q2u

1− Π2

B2 =
(1− q1)d

q1u+ (1− q1)d
+

(1− q2)d

q2u+ (1− q2)d
+

(1− q1)d

(1− (q1u+ (1− q1)d))
+

(1− q2)d

1− (q2u+ (1− q2)d)
=

=
(1− q1)d

Π1

+
(1− q2)d

Π2

+
(1− q1)d

1− Π1

+
(1− q2)d

1− Π2

= A2 +
(1− q1)d

1− Π1

+
(1− q2)d

1− Π2

Prove that A2(u, d)
(B1(u, d)

B2(u, d)
+ 1
)

is decreasing in d

A2(u, d)
(B1(u, d)

B2(u, d)
+1
)

=
A2

B2

(
B1+B2

)
=
A2

B2

(
2+

Π1

1− Π1

+
Π2

1− Π2

)
=
A2

B2

( 1

1− Π1

+
1

1− Π2

)
=

1
B2

A2

( 1

1− Π1

+
1

1− Π2

)
=

1

1 +
d( 1−q1

1−Π1
+ 1−q2

1−Π2
)

d(1−q1
Π1

+ 1−q2
Π2

)

( 1

1− Π1

+
1

1− Π2

)
=

1−q1
Π1

+ 1−q2
Π2

1−q1
Π1(1−Π1)

+ 1−q2
Π2(1−Π2)

× 1− Π1 + 1− Π2

(1− Π1)(1− Π2)
=

(1− q1)Π2 + (1− q2)Π1

(1− q1)Π2(1− Π2) + (1− q2)Π1(1− Π1)
×
(

1− Π1 + 1− Π2

)
=

1 +
(1− q1)Π2(1− Π1) + (1− q2)Π1(1− Π2)

(1− q1)Π2(1− Π2) + (1− q2)Π1(1− Π1)

So A2(u, d)
(B1(u, d)

B2(u, d)
+ 1
)

is decreasing in d is equivalent to that the following ex-

pression is decreasing in d

(1− q1)Π2(1− Π1) + (1− q2)Π1(1− Π2)

(1− q1)Π2(1− Π2) + (1− q2)Π1(1− Π1)
↓d (denote by

Z(d)

Q(d)
)

Let’s find first Z ′ and Q′

Z ′(d) = (1− q1)(1− q2)(1−Π1)− (1− q1)2Π2 + (1− q1)(1− q2)(1−Π2)− (1− q2)2Π1 =

(1−q1)(1−q2)(1−Π1 +1−Π2)−(1−q1)2Π2−(1−q2)2Π1 ≡ Y −(1−q1)2Π2−(1−q2)2Π1

Q′(d) = (1−q1)(1−q2)(1−Π2)−(1−q1)(1−q2)Π2+(1−q1)(1−q2)(1−Π1)−(1−q1)(1−q2)Π2 ≡
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≡ Y − (1− q1)(1− q2)Π2 − (1− q2)(1− q1)Π1

Z(d)

Q(d)
↓d⇔ Z ′(d)Q(d)− Z(d)Q′(d) < 0

m

Y (1−q1)Π2(1−Π2)+Y (1−q2)Π1(1−Π1)−Y (1−q1)Π2(1−Π1)−Y (1−q2)Π1(1−Π2)−

−(1− q1)3Π2
2(1− Π2) + (1− q1)2(1− q2)Π2

2(1− Π1)−

−
((((((((((((((((

(1− q1)2(1− q2)Π1Π2(1− Π1) +
((((((((((((((((

(1− q1)2(1− q2)Π1Π2(1− Π1)−

−
((((((((((((((((

(1− q1)(1− q2)2Π1Π2(1− Π2) +
((((((((((((((((

(1− q1)(1− q2)2Π1Π2(1− Π2)−

−(1− q2)3Π2
1(1− Π1) + (1− q2)2(1− q1)Π2

1(1− Π2) < 0

m

Y
(

Π1 − Π2

)(
(1− q1)Π2 − (1− q2)Π1

)
+

+
((

(1− q1)Π2

)2 −
(
(1− q2)Π1

)2
)(

(1− q2)(1− Π1)− (1− q1)(1− Π2)
)
< 0

m(
(1− q1)Π2 − (1− q2)Π1

)
×

×
(
Y
(
Π1 −Π2

)
+
(

(1− q1)Π2 + (1− q2)Π1

)(
(1− q2)(1−Π1)− (1− q1)(1−Π2)

))
< 0

m substitute Y = (1− q1)(1− q2)(1− Π1 + 1− Π2)

u(q2 − q1)×

×

((
(1− q1)(1− q2)(1− Π1 + 1− Π2)

)(
Π1 − Π2

)
+

+
(

(1− q1)Π2 + (1− q2)Π1

)(
(1− q2)(1− Π1)− (1− q1)(1− Π2)

))
< 0

m Since q2 > q1

Π1(1−Π1)
(

(1− q2)2 + (1− q1)(1− q2)
)
−Π2(1−Π2)

(
(1− q1)2 + (1− q1)(1− q2)

)
< 0

m(
1− q1 + 1− q2

)
×

(
(1− q2)Π1(1− Π1)− (1− q1)Π2(1− Π2)

)
< 0

m since q1 < q2 ≤ 1, if q2 = 0 inequality hodls, so assume q2 < 1
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(1− q2)Π1(1− Π1)− (1− q1)Π2(1− Π2) < 0

So we need to show that (1− q2)Π1(1−Π1)− (1− q1)Π2(1−Π2) < 0. As a function of
d, this is a quadratic function with coefficient in front of d2 equal to:

−(1− q2)(1− q1)2 + (1− q1)(1− q2)2 < 0 since q1 < q2

So as a function of d, (1 − q2)Π1(1 − Π1) − (1 − q1)Π2(1 − Π2) < 0 reaches it’s highest
value at the vertex of the parabola. Let us find the vertex.

∂((1− q2)Π1(1− Π1)− (1− q1)Π2(1− Π2))

∂d
= 0⇔ Π1 = Π2

and when Π1 = Π2 = Π

(1− q2)Π1(1− Π1)− (1− q1)Π2(1− Π2) = Π(1− Π)
(
(1− q2)− (1− q1)

)
< 0

So the even at the maximum (1−q2)Π1(1−Π1)−(1−q1)Π2(1−Π2) is negative which ends

the prove of A2(u, d)
(B1(u, d)

B2(u, d)
+ 1
)

is decreasing in d and since A2(u, d) is increasing

in d,
B1(u, d)

B2(u, d)
is also decreasing in d. So slight increase of d and adjusting ν so that

equilibrium condition holds, increases aggregate value. Note that even though we used
q1 < q2, the proof is independent from this assumption. If we assume reversed than
parabola we considered will have a minimum which is positive.

Also note that, when ν is binding too, we cannot guarantee that when we perturb d
in this way we can keep same µ, fact that ν was not binding allowed us to do so. This
finishes the proof.

Q.E.D

Proof of Lemma 4

Lemma 4 Let Sxy(α, β) be a diagonal partition of [α, β] × {0, 1} s.t. {x, y} * {α, β},
then

q1 < q2 ⇒

⇒ F (t|q1, (t, ω) ∈ m) > F (t|q2, (t, ω) ∈ m)
∧

F (t|q1, (t, ω) ∈ m′) < F (t|q2, (t, ω) ∈ m′)

Where F (t|qi, (t, ω) ∈ X) is receiver i-s posterior distribution after receiving signal X. .
Proof Assume q1 < q2. For simplicity, without loss of generality we’ll assume

[α, β] = [0, 1]. When message is m = [0, y)× {0} ∪ [x, 1]× {1}, then if x < y posteriors
are:
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Fi(t|m) =



(1− qi)F (t)

Πi

0 ≤ t ≤ x

F (t)− qiF (x)

Πi

x ≤ t ≤ y

qiF (t)− qiF (x) + (1− qi)F (y)

Πi

y ≤ t ≤ 1

Where Πi = (1− qi)y + qi(1− x))

F1(t|m) > F2(t|m)

m((1− q1)F (t)

Π1

>
(1− q2)F (t)

Π2

when0 ≤ t ≤ x
)
∧

∧
(F (t)− q1F (x)

Π1

>
F (t)− q2F (x)

Π2

when x ≤ t ≤ y
)
∧

∧
(

1− F2(t|m) > 1− F1(t|m) when y ≤ t ≤ 1
)

For the first part of the conjunction we have:

(1− q1)F (t)

Π1

>
(1− q2)F (t)

Π2

⇔ Π2(1− q1) > Π1(1− q2)

m(
(1− q2)y + q2(1− x)

)
(1− q1) >

(
(1− q1)y + q1(1− x)

)
(1− q2)

m

q2(1− x) > q1(1− x) holds because q1 < q2 and 1− x > 0

Now let us do the third part of the conjunction. Note that 1 − Fi(T |m) = Pr(T >

t|qi,m) = qi(1−F (T ))
Π

.

1− F2(t|m) > 1− F1(t|m)⇔ q2(1− F (T ))

Π2

>
q1(1− F (T ))

Π1

m

q2Π1 > qΠ2 ⇔ q2y > q1y holds since q2 > q1 and y > 0

For the second part of the conjunction we have:

F (t)− q1F (x)

Π1

>
F (t)− q2F (x)

Π2

⇔ F (t)(Π2 − Π1) > F (x)(q1Π2 − q2Π1)

m
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F (t)(q2 − q1)(1− x− y) > −F (x)(q2 − q1)y

m if 1− x− y ≥ 0 inequality holds consider 1− x− y < 0

F (t)(1− x) > (F (t)− F (x))y

m Note F (t) > F (x) if (F (t) = F (x) inequality holds

1− x
y

> 1− F (x)

F (t)

Note that by the third part of the conjunction F1(y) > F2(y) and since all this transitions
from one inequality to another was equivalencies we have that

F1(y) > F2(y)⇒ 1− x
y

> 1− F (x)

F (y)

But, since F (t) is CDF it’s increasing and since t < y, F (t) < F (y)

1− x
y

> 1− F (x)

F (t)
<

1− x
y

> 1− F (x)

F (t)
<

1− x
y

This finishes the proof of case when x < y. Let us consider now the case when x ≥ y.
In this case posteriors are:

Fi(t|m) =



(1− qi)F (t)

Πi

0 ≤ t ≤ y

(1− qi)F (y)

Πi

y ≤ t ≤ x

1− qi(1− F (t))

Πi

x ≤ t ≤ 1

Now if t ∈ [0, y] and t ∈ [x, 1] are the same as first and third parts of conjunction
of x < y case. As for t ∈ [y, x] it is same as t ∈ [0, y], F (t) is just replaced with F (y)
which cancels anyway.
the message is m′, we just replace qi with (1 − qi) and this time 1 − q1 > 1 − q2 and
hence F2 > F1. This finishes the proof of Lemma 4.

Q.E.D

Proof of Proposition 3

Proposition 3 Let G be a one-dimensional coarsening element of polar equilibrium and
m,m′ be a two-dimensional refinement elements of this polar equilibrium s.t. m∪m′ =
G× {0, 1} then either(
F (t|q1,m) �SOSD F (t|G) �SOSD F (t|q2,m)

)
∧
(
F (t|q1,m

′) ≺SOSD F (t|G) ≺SOSD F (t|q2,m
′)
)
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or(
F (t|q1,m) ≺SOSD F (t|G) ≺SOSD F (t|q2,m)

)
∧
(
F (t|q1,m

′) �SOSD F (t|G) �SOSD F (t|q2,m
′)
)

Proof Without loss of generality we’ll assume G = [0, 1], so F (t|G) = F (t) When
message is m = [0, y)× {0} ∪ [x, 1]× {1}.

We’ll use the theorem, which state that if CDF -s H1 and H2 of two distribution of
positive random variable cross just once, and H1(x) ≤ H2(x) before intersection, then
E(x|H1) ≥ E(x|H2) implies that H1 �SOSD H2. We’ll show that our posteriors are
either above prior or intersect at most once, and equilibrium condition will make sure
that expectations also satisfy condition which allows us to apply theorem.

First consider the case when x < y. In this case Posterior for message m for receiver
i is:

Fi(t|m) =



(1− qi)F (t)

Πi

0 ≤ t ≤ x

F (t)− qiF (x)

Πi

x ≤ t ≤ y

qiF (t)− qiF (x) + (1− qi)F (y)

Πi

y ≤ t ≤ 1

Where Πi = (1− qi)y + qi(1− x))
If 1−qi

Πi
> 1 then for t ∈ [0, x], Fi(t|m) > F (t) and since F ′ > 0, F ′i > F ′ too.

This means that at first discontinuity point of Fi, t = x, Fi(x) > F (x). In the range
of t ∈ [x, y], F ′i > F ′, so Fi will still higher than F on [x, y]. Now on interval [y, 1],
Fi(y) > F (y) and Fi(1) = F (1) = 1, so Fi − F > 0 at y and 0 at t = 1. If for some
point between y and 1 Fi−F < 0. Since both Fi and F are differentiable on [y, 1] there
should be a local minimum point where F ′(t) − F ′i (t) = 0 ⇒ qi

Π
= 1, but this means

that F ′(t)−F ′i (t) = 0 for all t ∈ [y, 1] and in this case Fi(y) > F (y) and change in same
rate so they cannot intersect, event at 1, meaning that Fi remains above F on [y, 1]. All
in all, if 1−qi

Π1
> 1, then Fi(t|m) > F meaning that posterior of receiver i dominates F .

Now we cannot have that for both i = 1, 2, 1−qi
Π1

> 1 since in this case both a1 and a2

(actions of receivers when message is m) will be less than τ , and this cannot happen in
equilibrium.

Now consider Fi(t|m′) when x < y

Fi(t|m′) =



qiF (t)

1− Πi

0 ≤ t ≤ x

qiF (x)

1− Πi

x ≤ t ≤ y

1− (1− qi)(1− F (t))

1− Πi

y ≤ t ≤ 1

Now if both qi
1−Πi

< 1, then Fi is below F up to point y, and then similarly to
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F (t|m) it is obvious that Fi stays below F , meaning that Fi dominates F with first
order stochastic dominance. Now we cannot have that for both i = 1, 2, qi

1−Π1
< 1 since

in this case both a′1 and a′2 (actions of receivers when message is m′) will be more than
τ , and this cannot happen in equilibrium.
qi

1−Πi
< 1 ⇔ 1−qi

Π)i
< 1. So we cannot have at the same time 1−qi

Πi
< 1 for both receivers.

Meaning that we have have either:

1− q1

Π1

< 1 <
1− q2

Π1

and
q1

1− Π1

< 1 <
q2

1− Π2

< 1

or
1− q1

Π1

> 1 >
1− q2

Π1

and
q1

1− Π1

> 1 >
q2

1− Π2

< 1

or qi = 1− Πi. WlOG assume that it’s the second case.
Now consider again Fi(t|m) and case 1−qi

Πi
< 1. In this case when t ∈ [0, x], Fi is

bellow F . Now note that F (1) − Fi(1) = 1 and if F and Fi intersect twice between x
and 1, there should be at least 2 local extreme points for function F − Fi on [x, 1], if
we exclude kink of Fi which is at t = y, at least for one point F ′(t) − F ′i (t) = 0. This

cannot happen on [x, y] interval, since F ′i (t) =
F ′(t)

Π
> F ′(t) and if F ′(t)−F ′i (t) = 0 for

some t ∈ [y, 1], then qi = Pi and F (t) = Fi(t) for all t ∈ [y, 1]. So we have that Fi and
F cross each other at most once.

So we have that when x < y, q1
1−Π1

> 1 and F1(t|m) is above F and q2
1−Π2

< 1 and
F2(t|m) intersect with F at most once. F1(t|m) > F (t) ⇒ a1 < τ ⇒ a2 > tau. Then
using theorem about single crossing CDF-s we can say that F2(t|m) �SOSD F (t) and

F1(t|m) > F (t)⇒ F1(t|m) ≺FOSD F (t)⇒ F1(t|m) ≺SOSD F (t)

What about F (t|m′)? We have
q1

1− Π1

> 1 > fracq21− Π2 < 1. In exactly similar

way as for Fi(t|m′) we’ll get that F1(t|m′) is initially higher than F (t) and intersects
at most once. Also from lemma 3 we get that F1(t|m′) > F2(t|m′) and respectively
a′1 < a′2 ⇒ a′1 < τ < a′2. Again using theorem about single crossing CDF-s we can say
that F1(t|m′) ≺SOSD F (t).

F2(t|m′) is initially lower than F (t) and remains so up until 1 So we’ll get that

F2(t|m′) < F (t)⇒ F2(t|m′) �FOSD F (t)⇒ F2(t|m′) �SOSD F (t)

As for the case when x ≥ y, Since we have not used any assumptions on q1, q2 we
can repeat the same proof 1 − q1, 1 − q2 which just relabels the problem. This finishes
the proof of proposition 4.

Q.E.D
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Proof of Lemma 5

lemma 5 If q1 < q2, MG is decreasing in q1 and increasing in q2 and MG(q1, q2) is
increasing in q1 and decreasing in q2

Proof For simplicity we’ll drop index G. Consider two senders. The first on (call
her sender 1 ) faces pair of receivers with beliefs q1, q2 and the second one (call her
sender 2) faces pair of receivers with beliefs q′1, q2, where q′1 = q1 − ε < q1 < q2. Assume
a = M(q1, q2) and a′ = M(q′1, q2) are maximum aggregate actions achievable in equilib-
rium. We want to show that a′ > a. To show that M is increasing in q2, recall that
M(q1, q2) = M(q2, q1) = M(1 − q2, 1 − q1) = M(1 − q1, 1 − q2), and we can repeat the
proof of a′ > a for M(1− q2, 1− q1).
For sake of simplicity, when we speak about partition which induces highest achiev-
able action, we’ll say ”sender is choosing the strategy or partition which induces highest
aggregate action as if it’s her goal”

Stating problem in terms of u, d, µ and ν and then translating it in terms
of Π1,Π2, H1, H2

Now recall that, equilibrium strategy (partition N0, N1) can be characterized by sets of
U ⊂ [α, β]× {1}, D ⊂ [α, β]× {1} or equivalently by lengths of U and D sets, u and d
and averages on this sets µ0 = E(t|t ∈ U) and ν0 = E(t|t ∈ D). Let µ1 = E(t|t /∈ U)
and ν1 = E(t|t /∈ D) and τ = E(t), then u, d, µ0, ν0, µ1, ν1 describe equilibrium strategy
if following condition holds:

q1uµ0 + (1− q1)dν0

q1u+ (1− q1)d
+
q2uµ0 + (1− q2)dν0

q2u+ (1− q2)d
=

=
q1(1− u)µ1 + (1− q1)(1− d)ν1

q1(1− u) + (1− q1)(1− d)
+
q2(1− u)µ1 + (1− q2)(1− d)ν1

q2(1− u) + (1− q2)(1− d)

m using µ0u+ µ1(1− u) = τ and ν0d+ n1(1− d) = τ

q1uµ0 + (1− q1)dν0

q1u+ (1− q1)d
+
q2uµ0 + (1− q2)dν0

q2u+ (1− q2)d
=
τ − (q1uµ0 + (1− q1)dν0)

1− (q1u+ (1− q1)d)
+
τ − (q2uµ0 + (1− q2)dν0)

1− (q2u+ (1− q2)d)

Now note that it’s equivalent to consider Π1 and Π2 instead of u and d, where Πi

is receiver i’s perceived probability of state being in N0 and 1 − Πi of state being in
N1. The reason is that for given q1, q2, Π1 and Π2 uniquely determine u and d from the
following system of equation:

Π1 = q1u+ (1− q1)d and Π2 = q2u+ (1− q2)d

⇓

u =
Π2(1− q1)− Π1(1− q2)

q2 − q1

and d =
Π1q2 − Π2q1

q2 − q1

Now, note that we are allowed to have only u ≥ 0 and d ≥ 0, these translates to Π1
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and Π2 in the following way:

q1

q2

≤ Π1

Π2

≤ 1− q1

1− q2

and
q1

q2

≤ 1− Π1

1− Π2

≤ 1− q1

1− q2

So sender 1 is free to choose any Π1,Π2 (and then matching µ0, ν0) which satisfies
above conditions and sender 2 can choose any Π1,Π2 for which,

Sender 2 is less restricted in her choice of Πi, let her choose same Πi as
sender 1 and prove that associated u′, d′, µ, ν are feasible.

q′1
q2

≤ Π1

Π2

≤ 1− q′1
1− q2

and
q′1
q2

≤ 1− Π1

1− Π2

≤ 1− q′1
1− q2

Since, q′1 < q1 sender 2’s condition on Π1,Π2, is less restrictive. Consequently if sender
1 can choose Π1,Π2, sender 2 can choose those Π1,Π2 too.
Now assume that for sender 1, maximum achievable aggregate action is achieved by
some partition N0, N1. Assume actions when state is in N0 is described by µ0, ν0, u, d in
the following way:

a0
i (µ0, ν0, u, d) =

qiuµ0 + (1− qi)dν0

qiu+ (1− qi)d
=
Hi

Πi

For state in N1 action as a function of µ0, ν0, u, d is given in following way:

a1
i (µ0, ν0, u, d) =

τ − (qiuµ0 + (1− qi)dν0)

1− (qiu+ (1− qi)d)
=
τ −Hi

1− Πi

Note that because of Proposition 2, without loss of generality we can assume that
µ0 = R(u) and ν0 = L(d) and d > u. Where

R(x) =

∫ β

Q(1−x)

t

x
dF (t) average on the right tail of size x

L(x) =

∫ Q(x)

α

t

x
dF (t) average on the left tail of size x

and Q is quantile function of distribution F . Can we construct an equilibrium strategy
for sender 2, with the same actions as a0

i and a1
i ?

Finding sender 2’s u, d, µ, ν
Similarly to sender 1, sender 2 also can use Π1,Π2, then in this case lengths of U and D
sets for sender 2 will be:

u′ =
Π2(1− q′1)− Π1(1− q2)

q2 − q′1
and d′ =

Π1q2 − Π2q
′
1

q2 − q′1
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Before we continue note that if A,B,A1, B1, x are positive then:

A+ A1x

B +B1x
≥ A

B
⇔ BA1x ≥ AB2x ⇔ A1

B1

≥ A

B

u′ =
Π2(1− q′1)− Π1(1− q2)

q2 − q′1
=

Π2(1− q1)− Π1(1− q2) + Π2ε

q2 − q1 + ε

and u =
Π2(1− q1)− Π1(1− q2)

q2 − q1

⇓

u′ ≥ u⇔ u ≤ Π2 = q2u+ (1− q2)d

And since u < d, u < Π2, hence u′ > u. Similarly for d′, we have:

d′ =
Π1q2 − Π2q

′
1

q2 − q′1
=

Π1q2 − Π2q
′
1 + Π2ε

q2 − q′1 + ε

and d =
Π1q2 − Π2q1

q2 − q1

⇓

d′ ≥ d⇔ d ≤ Π2 = q2u+ (1− q2)d

And since u < d, d > Π2 and consequently d′ < d.
Given, u′ and d′, sender 2 can choose µ′0 from [L(u′), R(u′)] and ν ′0 from [L(d′), R(d′)].

Note here that
Now if sender 2 choose Π1,Π2, can she choose µ′0, ν

′
0 so that following holds?

q′1u
′µ′0 + (1− q′1)d′ν ′0 = H1 and q2u

′µ′0 + (1− q2)d′ν ′0 = H2

⇓

ν ′0 =
H1q2 −H2q

′
1

d′(q2 − q′1)
=
H1q2 −H2q

′
1

Π1q2 − Π2q′1

and

µ′0 =
H2(1− q′1)−H1(1− q2)

u′(q2 − q′1)
=
H2(1− q′1)−H1(1− q2)

Π2(1− q′1)− Π1(1− q2)

Here note that for sender 1, or before q1 changed to q′1

ν0 =
H1q2 −H2q1

Π1q2 − Π2q1

and µ0 =
H2(1− q1)−H1(1− q2)

Π2(1− q1)− Π1(1− q2)

Feasibility of new µ, ν
If we show that µ′0 ∈ [L(u′), R(u′)] and ν ′0 ∈ [L(d′), R(d′)]. then effectively we constructed
strategy for sender 2 which induces same actions for her as N0, N1 were inducing for
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sender 1 (or when receivers beliefs were q1, q2), i.e a0
i and a1

i .
Recall that, µ0, ν0 were optimal for sender 1 and because of Proposition 1, µ0 =

R(u) > R(u′) (R(u) is decreasing and we showed u′ > u) and ν0 = L(d) > L(d′). (L(d)
is increasing and we showed that d′ < d).
If we show that ν ′0 > ν0, since ν0 = L(d) > L(d′), we’ll get ν ′0 > L(d′). To show ν ′0 > ν0,
note that:

ν0 =
H1q2 −H2q1

Π1q2 − Π2q1

and

ν ′0 =
H1q2 −H2q

′
1

Π1q2 − Π2q′1
=
H1q2 −H2q1 +H2ε

Π1q2 − Π2q1 + Π2ε

⇓

ν ′0 ≥ ν0 ⇔ ν0 ≤
H2

Π2

=
(1− q2)d

q2u+ (1− q2)d
× ν0 +

q2u

q2u+ (1− q2)d
× µ0

Since µ0 is average on rightmost interval and ν0 is average on leftmost interval µ0 > τ >
ν0 and consequently weighted sum of µ0 and ν0 (a2 = H2

Π2
is weighted sum of µ0 and ν0)

is more than ν0, so ν ′0 > ν0.
For ν ′0 < R(d′) note that ν0, d, µ0, u are continuous functions of q1, q2 (they depend and
are continuous in Hi,Πi too, but we keep them fixed) and ν0 = L(d) < R(d) we can
always take ε small enough so that ν ′0 < R(d) < R(d′).

For µ′0 < R(u′) we cannot repeat the same what we did for ν ′0 > L(d′) since both µ′0
and R(u′) are more than µ0 = R(u), but we can repeat the same for µ′1 and L(1− u′).

Similarly to

ν0 =
H1q2 −H2q1

Π1q2 − Π2q1

and µ0 =
H2(1− q1)−H1(1− q2)

Π2(1− q1)− Π1(1− q2)

We have:

ν1 =
(τ −H1)q2 − (τ −H2)q1

(1− Π1)q2 − (1− Π2)q1

and µ1 =
(τ −H2)(1− q1)− (τ −H1)(1− q2)

(1− Π2)(1− q1)− (1− Π1)(1− q2)

Hence,

µ′1 =
(τ −H2)(1− q1)− (τ −H1)(1− q2) + (τ −H2)ε

(1− Π2)(1− q1)− (1− Π1)(1− q2) + (1− Π2)ε

Now note that

a1
2 =

τ −H2

1− Π2

=
(1− q2)(1− d)

q2(1− u) + (1− q2)(1− d)
× ν1 +

q2(1− u)

q2(1− u) + (1− q2)(1− d)
× µ1
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Since µ1 is average on leftmost interval and ν1 is average on rightmost interval µ1 < τ <
ν1 and consequently weighted sum of µ1 and ν1 (a1

2 = τ−H2

1−Π2
is weighted sum of µ1 and

ν1) is more than ν1, so µ′1 > µ1.
We also got that u′ > u, hence

L(1− u′) < L(1− u) = µ1 < µ′1

So remains to show that if (1− u)µ′1 + uµ′0 = τ and L(1− u′) < µ′1 then µ′0 < R(u′).
For this note that:

(1− u′)µ′1 + u′µ′0 = τ and (1− u)L(1− u′) + u′R(u′) = τ

⇓

(1− u′)
(
µ′1 − L(1− u′)

)
= u′

(
R(u′)− µ′0

)
Left hand side of last equality is positive and consequently we must have R(u′) > µ′0.
As for µ′0 > L(u′) we can use similar argument what we have used for ν ′0 < R(d′), by
choosing small enough ε µ′0 > L(u′) can be guaranteed.

To summarize the proof, we took arbitrarily small deviation from q1, q′1 = q1 − ε
and proved that for q′1, q2 there is equilibrium strategy in which receivers take exactly
same actions as they took when beliefs were q1, q2 and aggregate actions were highest.
Moreover based on lemma 2, since ν0 > L(d′) we know that equilibrium partition gen-
erated by (µ0, ν0, d

′, u′) does not give maximum achievable aggregate action for beliefs
q′1, q2. Thus, maximum achievable aggregate action for beliefs q′1, q2 is higher than same
for q1, q2. This finishes the proof of lemma 4.

Q.E.D
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