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Abstract

This paper shows how to estimate agents’ intensive and participation margin re-

sponses to nonlinear incentive schemes such as taxes, subsidies, and prices. The pro-

posed semi-nonparametric estimator allows evaluating nonlinear incentive schedules

when existing kink and discontinuity methods are inapplicable due to the presence

of both margins. The paper’s first contribution is to show that agents’ reactions to

kinks or discontinuities in an incentive scheme identify responses at both margins si-

multaneously. The only observable needed for estimation is the distribution of agents’

choices, making the estimator widely applicable. The paper’s second contribution is to

evaluate the German subsidy for solar panels, which is a cornerstone in the country’s

energy-transition efforts. I find sizable elasticities along both margins and an optimal

subsidy that is close to linear.
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1 Introduction

The German subsidy for rooftop solar panels is a cornerstone of the country’s transition to-

wards a carbon-free economy. Although successful in incentivizing households and firms

in adopting solar panels, the subsidy is very costly. The yearly payments amount to 0.6%

of total government spending.1 To curtail costs, the government uses a subsidy that is non-

linear in adopted capacity.2 The German subsidy is piecewise linear and has several kinks.

The marginal subsidy rates decrease discontinuously at the kink points, which reduces pay-

ments to very profitable large adoptions.

In this paper, I evaluate the cost-effectiveness of the German subsidy programme. Con-

cretely, the paper focuses on two questions. First, are the kinks in the German subsidy

schedule effective at reducing the programme’s costs without compromising the govern-

ment’s total capacity goal?3 Second, what is the most cost-efficient nonlinear subsidy

schedule to achieve a specific total capacity goal? The answers to both questions depend

on how adopters react to the subsidy. There are two possible margins of reaction: the par-

ticipation margin, which determines how many adopters participate in the scheme, and the

intensive margin, which determines the capacity choice of participants.4 The novel estima-

tor proposed in this paper exploits the kinks in the subsidy schedule to estimate adopters’

responses at both margins. The estimates allow me to evaluate the current subsidy scheme

and to solve for the most cost-efficient nonlinear subsidy. I find that the government’s strat-

egy to curtail costs is barely effective. In fact, the most cost-efficient scheme is very close

to linear, a result driven by adopters’ responses at the participation margin.

More generally, nonlinear incentive schemes have a wide range of policy applications

in subsidy programmes, taxation, product pricing, and public transfers. A challenge in their

optimal design is to reliably estimate how agents react to them at the participation and in-

tensive margins. When agents react only at the participation margin, kinks in the incentive

scheme can be used to estimate their response applying the regression kink design (Card,

Lee, Pei, and Weber, 2015). Correspondingly, when there is only an intensive margin re-

1According to the official report from the entity responsible for the payment, Übertragungsnetzbetreiber
(2016), total payments in 2016 were 9 billion euros.

2The capacity of a solar panel is the amount of electricity it produces under standardized conditions. It
depends on the size and efficiency of the adopted panel.

3The total capacity is the sum of the capacity of installations in a given period.
4The participation margin is also called the extensive margin.
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sponse, the bunching estimator (Saez, 2010) can be used. However, when both margins

are present, it is necessary to estimate both responses to evaluate an incentive scheme. The

mentioned estimators are not applicable because each margin biases the estimate of the

other margin.

This paper’s methodological contribution is to propose a quasi-experimental estimator

for agents’ responses at both margins. The estimator exploits the effect of kinks in an incen-

tive scheme to identify the two margins jointly. Kinks have two effects on the observable

distribution of agents’ choices. First, they are responsible for bunching, i.e., a discrete mass

of agents at the kink point. Second, they cause a slope change in the choice-distribution

at the kink point. Both effects are observable and depend on the magnitude of the two

reaction-margins. I exploit the distinct impact of the two reaction-margins on the two ob-

servable effects in the distribution to estimate both margins simultaneously.

Using administrative data from 2004 to 2008, I estimate both response margins at each

of the two kink points in the subsidy scheme. The first kink point is at a mid-range capacity

of 30 kWp, while the second kink point is at a large capacity of 100 kWp.5 The estimate

of the intensive margin elasticity is 4.8 at both points. The estimate of the participation

margin elasticity is much higher at the mid-range capacity than at the large capacity (65

vs. 1). This result is intuitive. Net of fixed costs, profits increase in capacity. The higher

the profitability, the lower the probability that the fixed cost is high enough to prevent an

adoption. Therefore, the participation elasticity decreases in capacity.

Together with global assumptions on adopters’ variable and fixed costs, the estimates

allow the computation and evaluation of public costs under various counterfactual subsi-

dies.6 I assume the government wishes to implement a given total capacity of solar panels

at minimal public costs. I use the observed total capacity as the government’s capacity goal.

Contrary to a pure Pigouvian analysis, where the optimal marginal subsidy is equal to the

marginal environmental benefit, I explicitly take into account the social cost of distributing

information rents to adopters.7

5The unit kWp (kilowatt peak) is the physical unit of capacity.
6As suggested by the results, I assume an isoelastic variable-cost function and a log-normal and indepen-

dent distribution of fixed costs.
7Note that evaluating the policy choice of solar subsidies per se is an interesting question for future

research but outside the scope of this paper.
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The counterfactual exercises provide four crucial insights. First, the nonlinearities in-

troduced by the government are barely effective in reducing costs. To arrive at this con-

clusion, I solve for the optimal linear subsidy and use it as a benchmark. Relative to the

linear benchmark, the scheme used by the government is only 0.016 per cent less costly.

Second, the optimal subsidy scheme is very close to linear. Compared to the linear bench-

mark, the optimal scheme reduces costs by 0.055 per cent. Optimal cost reduction is by a

factor 3.5 larger than under the government’s scheme; however, the relative effect is still

very small. The result shows that the room for cost reductions through nonlinear pricing

is very limited. Third, it is the large participation margin response that drives this result.

To arrive at this conclusion, I solve for the optimal nonlinear subsidy assuming there are

no responses at the participation margin. I find that the optimal scheme is 7.6 per cent

less costly than the benchmark. In this case, the government implements relatively low

marginal subsidy rates for small capacities and high marginal rates for large capacities. As

a consequence, big adopters choose large capacities because they face high marginal in-

centives. Simultaneously, their aggregate subsidy payment is low because they earn less

profit on inframarginal units. In contrast, when there are participation margin responses,

this strategy to extract profits is not effective. Low marginal subsidy rates for small capac-

ities affect larger adopters by reducing their profit margins and triggering responses at the

participation margin. Importantly, implementing this schedule, when in fact adopters react

at both margins, has sizable adverse effects. Costs increase by 3.7 per cent compared to the

benchmark instead of decreasing. This result gives a fourth insight: it is crucial to consider

the participation margin when designing the policy.

Methodologically, the estimation of adopters’ responses poses several challenges. First,

price and subsidy variation over time is unsuitable for identification because they are en-

dogenous to adoption behaviour. Second, the solar industry is fast-changing, making it

necessary to reestimate adopters’ behaviour over time. Third, there is considerable un-

observable heterogeneity among adopters since heterogeneous costs, discount rates, local

climate conditions, and the roof characteristics influence the adoption decisions. The esti-

mator proposed in this paper addresses these challenges.

The identification relies on the smoothness of the counterfactual distribution of agents’

choices, i.e., the choice-distribution under a counterfactual linear subsidy without a kink.

More precisely, I assume the distribution is locally representable by a convergent power
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series. This assumption avoids the need for parametric restrictions on the counterfactual

to identify the two margins. Blomquist, Newey, Kumar, and Liang (2017) criticize the use

of such a parametric assumption in the bunching literature because it may lead to specifi-

cation bias. The smoothness assumption in this paper addresses this critique and is robust

to specification bias. The estimation method is semi-nonparametric and uses sieve estima-

tion (see Chen, 2007 for a review).8 Minimizing the mean-squared error of the estimates,

the nonparametric specification is data-driven. Additionally, using untreated data, I test

the specification and the identifying smoothness assumption. The estimator circumvents

the need for exogenous variation, or instrumental and control variables, and only uses the

easily observable distribution of agents’ choices. These low informational and identifying

requirements increase its potential applicability. The adaptation to notches, i.e., disconti-

nuities in average incentives, is straightforward.

Related literature. Methodologically, this paper contributes to the bunching and the

regression kink design literature. Both methods exploit kinks in an incentive scheme. The

bunching estimator (see Saez, 2010; Kleven and Waseem, 2013; Kleven, 2016) estimates

intensive margin responses using bunching at kink and notch points in the budget set. The

excess bunching mass at the kink or notch point identifies the intensive margin. This litera-

ture does not consider participation margin responses. I find that ignoring the participation

margin leads to a 20% downward bias in the intensive margin estimate in my application.

Moreover, it is essential to consider both margins because both are relevant for optimal

policy-design.

In the bunching literature, Gelber, Jones, Sacks, and Song (2020) estimate intensive

and participation margin responses for workers close to retirement. Marx (2018) estimates

both responses for charitable organizations. Both papers use additional information, com-

ing from their data’s panel dimension. The missing panel dimension in my application

makes such an approach infeasible. An advantage of the simultaneous estimation in my

paper is that only the distribution of adoptions is needed to estimate both margins.

The participation margin responses at kink points can be estimated using a regression

kink design (RKD), proposed by Nielsen, Sørensen, and Taber (2010) and generalized by

Card, Lee, Pei, and Weber (2015). They show that the difference between the slopes to the

8Following Chen (2007), I call a model semi-nonparametric if the parametric and the nonparametric part
of the model are of interest.
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left and the right of the kink point identifies the participation margin elasticity. However,

if there is a positive intensive margin, this estimator suffers from endogeneity since agents

select into treatment. So far, the regression kink design literature uses bunching to detect

endogenous sorting. The classical RKD is applicable only when sorting is rejected.

In the closely related context of a regression discontinuity design, Gerard, Rokkanen,

and Rothe (2020), Bachas and Soto (2018), and Caetano, Caetano, and Nielsen (2020)

propose methods to correct for endogenous sorting. Gerard et al. (2020) use partial identi-

fication. Combining the bunching approach with a regression discontinuity design, Bachas

and Soto (2018) correct for sorting when decomposing the tax-elasticity of corporate prof-

its into a revenue and cost elasticity. Caetano et al. (2020) correct for endogenous sorting

in data with a censored assignment variable. These papers do not consider participation

margin responses. Their methodologies are not applicable when both margins are present.

The reason is that each margin is responsible for the bias in the estimate of the other mar-

gin. As a consequence, the simultaneous estimation of both margins is necessary.

Potentially, the bunching estimator, the regression kink design, and structural models

using nonlinear budget sets suffer from specification bias. Blomquist, Newey, Kumar, and

Liang (2017) and Bertanha, McCallum, and Seegert (2019) point out that the bunching lit-

erature uses parametric functional form assumptions on the counterfactual to identify the

intensive margin elasticity. Under a misspecified functional form, the estimates are incon-

sistent. Ganong and Jäger (2018) and Ando (2017) point out that the regression kink design

suffers from a related issue. Being very sensitive to the specification, the RKD can badly

estimate nonlinearities in the counterfactual as a slope change. I address these issues by

using a nonparametric method and by testing the specification on untreated data. In a re-

lated paper, using nonlinear budget sets, Beffy, Blundell, Bozio, Laroque, and To (2019)

estimate a structural model of labour supply under hours constraints. I use a local nonpara-

metric approach, which is robust to the potential specification bias of structural models.

This paper also contributes to the literature evaluating subsidies for solar panels. To the

best of my knowledge, it is the first paper to evaluate the cost-effectiveness of nonlinear

solar subsidies. I find that nonlinearities are not very effective at reducing the costs of the

German programme. One strand of the solar literature focuses on the dynamics of the adop-

tion decision (Burr, 2016; De Groote and Verboven, 2019; Feger, Pavanini, and Radulescu,
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2017; Reddix, 2015; Gerarden, 2017). Methodologically, these papers use structural mod-

els. Hughes and Podolefsky (2015) use geographical discontinuities in California to study

adoption behaviour. Such discontinuities are not available in Germany. Germeshausen

(2018) uses a difference-in-difference approach to estimate the treatment effect of the in-

troduction of a new kink in Germany in the year 2013. Although, possible in principle, the

paper does not aim to estimate elasticities or evaluate the nonlinear scheme. Methodolog-

ically, Germeshausen (2018) follows Best and Kleven (2017). Kleven, Landais, Saez, and

Schultz (2013), Slemrod, Weber, Shan, and Sachs (2012) and Besley, Meads, and Surico

(2014) are similar. All these papers use a difference-in-difference approach, controlling

for or using bunching. Difference-in-difference is a powerful quasi-experimental method

for estimating the treatment effect after a policy reform. However, the method relies on a

parallel trend assumption. If conditions for different adopters change distinctly over time,

it cannot be used to reestimate adopters’ behaviour over time. The solar industry is a fast-

changing industry, which is confirmed by my estimates. My identification strategy does

not rely on a parallel trend assumption.

Section 2 shows graphical evidence for responses at the two margins; Section 3 presents

the empirical model; Section 3.3 discusses identification. Section 4 describes the German

subsidy and the data in more detail. Section 5 shows the estimation method. Section

6 presents the results and discusses the robustness. Section 7 evaluates the policy, and

Section 8 concludes.
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2 Graphical evidence

The German subsidy for solar panels, illustrated in Figure 1, has several kink points.

Figure 1: The subsidy payment S as a function of capacity q

qK1 qK2

S(q)

q

Note: The figure illustrates the kinked subsidy in Germany. The two kink points are marked
by qK1 and qK2 .

The variable q on the x-axis is the capacity of an adopted solar panel. The subsidy

payment S(q) on the y-axis is the present discounted value of all subsidy payments an

adopter receives when installing capacity q. The capacity of a solar panel is the amount

of electricity it produces under standardized conditions. The subsidy is piecewise linear,

with decreasing marginal rates. Adopters are households or firms. Over the sample period,

households and firms sell the produced solar energy to the government at a subsidized rate.

Therefore, you can think of them as firms producing capacity for the government. A de-

tailed description of the policy is in Section 4.
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Figure 2 shows the histogram of all solar panel adoptions in the year 2004 around

the kink point at capacity 30 kWp. The unit kWp (kilowatt peak) is the physical unit of

capacity. Typically, adopters only adopt once. 2004 is the first year that the government

introduced kinks in the subsidy, and 30 kWp is the kink point around which there have been

the most adoptions.

Figure 2: The histogram of adoptions in 2004
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Note: The red line marks the kink point at 30 kWp. There is a visible mass point, i.e.,
bunching, at the kink point.

The x-axis shows the capacity in kWp. The y-axis shows the number of adopters in

each column of the histogram. The red line marks the kink point at 30 kWp. The figure

shows that a large number of adoptions are bunched at the kink point. In Section 3, I show

that bunching is reduced-form evidence for an intensive margin response of adopters. The

intensive margin response of adopters is a response in the capacity-choice. The higher the

marginal subsidy rate, the larger is the capacity a certain adopter installs.
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Figure 3 shows the same histogram on a logarithmic scale. The number of observations

in a bin is normalized by the bin size.

Figure 3: Histogram of adoptions in 2004 (logarithmic scales)
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Note: The red line marks the kink point at 30 kWp. At the kink point, there is a visible
mass point and slope change in the distribution. The number of observations in a bin is
normalized by the bin size.

There is a visible slope change in the distribution at the kink point. In Section 3, I

show that the slope change is evidence for a participation margin response. Participation

depends on the total subsidy payment. The higher is the payment, the more households

and firms adopt solar panels. Additionally, note that the distribution is close to linear in the

logarithmic scale except for the kink point. This shape is evidence for a distribution close

to a Pareto distribution.
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Figure 4 compares the same plot to observations in 2003. In 2003 the subsidy is linear,

and the subsidy rate is lower than in 2004.

Figure 4: Histogram of adoptions in 2003 and 2004
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Note: The red line marks the kink point. Scales are logarithmic. Under the linear subsidy
in 2003, there is no significant mass point or visible slope change in the distribution.

The distribution is smooth around the future kink point. There is no significant bunch-

ing mass or visible slope change as in 2004. It suggests that the slope change and bunching,

present in 2004, are indeed caused by the kink, hence evidence for responses at the two

margins. Again, the distribution is close to linear in the logarithmic scale, which is more

evidence for a distribution close to a Pareto distribution.

One could suspect that the slope change in the distribution in 2004 is caused by a trend

that adds concavity to the distribution over time. Figure 5 shows the histogram of adoptions

for the years 2000 to 2002. I pool years to have a sufficiently large sample size. The figure

shows no graphical evidence for a time trend in the concavity of the distribution.
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Figure 5: Histogram of adoptions in the years 2000 to 2002
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Note: The red line marks the kink point. Scales are logarithmic. As in 2003, there is no
significant mass point or visible slope change in the distribution.

Figure 6 shows that the histogram in 2005 has the same pattern as the histogram in

2004. Therefore, the pattern in 2004 is not a particularity of that year.

Figure 6: Histogram of adoptions in 2005
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Note: The red line marks the kink point. Scales are logarithmic. As in 2004, there is a
visible mass point and slope change in the distribution.
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3 The model

This section shows that when economic agents react to incentives at the intensive and the

participation margins, a kink in the incentive scheme causes a mass point and a slope

change in the distribution of agents’ choices. This statement is true under a very gen-

eral model of economic behaviour. Quantitatively, the magnitude of the two responses is

related to the size of the mass point and the slope change. I exploit this property to identify

the two margins.

There is a mass of heterogeneous adopters indexed by i. They produce capacity q for

which they receive subsidy payments. The expected present discounted value of subsidy

payments S(q) is a function of the adopted capacity q. Adopters solve a standard maxi-

mization problem:

πiv = max
q
{S(q)− civ(q)}, (1)

and participate if and only if

πiv ≥ cif . (2)

The function civ(q) denotes the variable cost of adopter i to adopt capacity q, the variable πiv
denotes the optimal variable profit of adopter i, and the variable cif denotes the fixed cost

of adopter i. The fixed and variable costs are heterogeneous among adopters and contain

all monetary and non-monetary costs net unobservable benefits. In practice, the German

subsidy for solar panels is paid as a feed-in tariff. A feed-in tariff is a guaranteed fixed price

for produced electricity. Therefore, it is equivalent to a subsidy payment. See Section 4 for

a detailed description of the policy. Appendix A.6 shows that Problem (1) encompasses a

subsidy payment via feed-in tariffs. In particular, the cost function accounts for all adopter

specific heterogeneity due to climate conditions and discounting of future payments.

The variable and fixed costs fully determine the adopters’ behaviour. Therefore, I fol-

low a sufficient statistics approach. It suffices to study the properties of the variable and

fixed costs instead of their components’ properties. For example, these components are:

warm-glow preferences for solar panels, the opportunity and aesthetic costs of using space

on the roof, opportunity costs of time and money,9 and direct benefits from consuming

9Opportunity costs of money are relevant if the adopter is credit constraint at the time point of adoption.
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electricity produced by the solar panel.

An adopter can increase capacity by using more area on the roof or by adopting panels

of higher efficiency (i.e., higher capacity per area). The variable cost function civ(q) is con-

tinuous, and increasing. I do not assume the function is convex everywhere. There can be

ranges of increasing returns to scale. However, adopters face space constraints. Moreover,

the cost of increasing capacity through more efficient panels is convex.10 Therefore, the

function civ(.) is convex for q large enough. Note that the optimal choice of q is always in

the convex range of civ(.). For an example of heterogenous fixed costs, consider two firms

with the same roof size. Firm one, e.g., a start-up, is very productive and has high opportu-

nity costs of time. Firm two, e.g., a farm, is not very productive. The opportunity costs of

time are low, and the firm is already familiar with the administrative process of receiving

subsidy payments.

The subsidy S(q) can take two forms: the observed kinked subsidy Sk(q) and the coun-

terfactual linear subsidy Sl(q). The kinked subsidy Sk(q) is:

Sk(q) = slq, for q ≤ qK ; (3)

Sk(q) = slq
K + (q − qK)ρsl, for q > qK . (4)

The kink point is denoted by qK ; sl is the marginal subsidy rate below the kink point, and

ρ sl is the marginal subsidy rate above the kink point, where ρ < 1 is the relative change in

subsidy rates. The counterfactual linear subsidy Sl(q) is:

Sl(q) = slq, for all q. (5)

Figure 7 illustrates both subsidies.

10The more efficient a panel, the higher are the resource costs to increase its efficiency further. Therefore,
the price of panels is convex in efficiency.
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Figure 7: The kinked subsidy Sk and the counterfactual subsidy Sl

qK

S(q)

q

sl

ρ sl

Note: The thick solid line shows the kinked subsidy Sk. The dashed line shows the counter-
factual subsidy Sl. The variable sl denotes the marginal subsidy rate below the kink point;
qK denotes the kink point, and ρ denotes the relative change in the marginal subsidy rate
at the kink point.

Denote by fk(.) the observable distribution of adopters’ choices under the kinked sub-

sidy Sk and by fl(.) the counterfactual distribution of adopters’ choices under the linear

counterfactual subsidy Sl. Technically, fl(.) and fk(.) are measures. For any interval of

capacity [q1, q2],
∫ q2
q1
fx(q)dq is the mass of adopters in the interval under the subsidy Sx(.),

where x stands for l or k. Intuitively, both functions are densities but do not integrate to

one.

15



3.1 The graphical intuition behind identification

In this section, I give graphical intuition on how the distribution of adoptions depends on

the intensive and the participation margin. Suppose the counterfactual linear subsidy Sl is

in place. Figure 8 illustrates a possible measure of adoptions fl.

Figure 8: The counterfactual measure fl(q)

qK

fl(q)

q

Note: The counterfactual measure fl(.) is the distribution of adoptions under the counter-
factual linear subsidy Sl(.). Its key property is its smoothness around the hypothetical kink
point.

Without loss of generality, I depict a decreasing measure. The exact shape is not es-

sential. The only important property for the results presented later in this section is the

smoothness of the counterfactual measure around the hypothetical kink point. I will state

the precise smoothness assumption (Assumption 3) later in this section.

In comparison, suppose the kinked subsidy Sk, illustrated in Figure 7, is in place. I ex-

plain its effect on the distribution of adoptions using a hypothetical change in the subsidy

schedule from Sl to Sk. Note that this is a thought experiment to illustrate the effect of

the kink. To estimate the two response margins, I do not exploit a change in the subsidy

schedule over time because these changes are endogenous to adoption behaviour. Instead,

I exploit the effect of the kinked scheme on the cross-section of adopters in a given period.
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Figure 9: The effect of the kinked scheme Sk on adopters well above the kink point

qK

sl

S ′(q)

civ
′
(q)

q

∆π

πk

Note: The thick black line depicts the kinked marginal subsidy S ′k, and the dashed line
depicts the linear marginal subsidy S ′l . The thin purple line illustrates the marginal cost
curve civ

′ of an adopter. The capacity-choice under the kinked scheme, depicted by the full
dot, is lower than the choice under the linear scheme, depicted by the empty dot. The two
coloured areas depict the variable profit under the linear subsidy. The light green area πk
depicts the variable profit under the kinked subsidy, and the dark green area ∆π depicts
the change in profit.

Depending on their production choice under the linear subsidy, the kink affects adopters

differently. There are three groups of adopters. The first group of adopters produces more

than the kink point under both subsidy schemes. The thin purple line in Figure 9 illustrates

the marginal cost curve of such an adopter locally around the kink point. Additionally,

the figure depicts the kinked marginal subsidy as a solid black line and the linear marginal

subsidy as a dashed line. The change in subsidy has two effects on the adopter. First,

they face a lower marginal subsidy under the kinked scheme than under the linear scheme.

Therefore, they adopt less capacity. Note that the optimal choice under each scheme is

where the marginal cost curve crosses the marginal subsidy curve. The empty dot depicts

the optimal choice under the counterfactual; the full dot depicts the optimal choice under

the kinked scheme. The figure shows that the optimal capacity is lower under the kinked

scheme than under the linear scheme. Second, the total subsidy payment under the kinked

scheme is lower than under the linear scheme. Therefore, adopters earn less variable profit.

Fixed costs are heterogeneous, and therefore, some adopters stop participating. Note that

the variable profit is the area between the marginal cost and the marginal subsidy curve.

Figure 9 depicts the variable profit under the linear scheme as the total coloured area. The
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light green area πk is the variable profit under the kinked scheme. The dark green area ∆π

is the reduction in profit under the kinked subsidy.

Figure 10: The effect of the kinked scheme Sk on adopters just above the kink point

qK

sl

S ′(q)

civ
′
(q)

q

∆π

πk

Note: The thick black line depicts the kinked marginal subsidy S ′k, and the dashed line
depicts the linear marginal subsidy S ′l . The thin purple line illustrates the marginal cost
curve civ

′ of an adopter. The capacity-choice under the kinked scheme, depicted by the
full dot, is exactly at the kink point. It is lower than the choice under the linear scheme,
depicted by the empty dot. The two coloured areas depict the variable profit under the
linear subsidy. The light green area πk depicts the variable profit under the kinked subsidy,
and the dark green area ∆π depicts the change in profit.

The second group of adopters produces above but close to the kink point under the

linear scheme. The thin purple line in Figure 10 illustrates the marginal cost curve of

such an adopter locally around the kink point. Their marginal cost curves cross the kinked

marginal subsidy precisely between the two marginal subsidy rates. Again, the change in

subsidy has two effects on them. First, they reduce production exactly to the kink point,

i.e., they bunch at the kink point. Second, they lose profit ∆π, depicted as the dark green

area in Figure 10. Again, due to heterogeneous fixed costs, some stop participating under

the kinked scheme.
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Figure 11: The effect of the kinked scheme Sk on adopters below the kink point

qK

sl

S ′(q)

civ
′
(q)

q

πv

Note: The thick black line depicts the kinked marginal subsidy S ′k, and the dashed line
depicts the linear marginal subsidy S ′l . The thin purple line illustrates the marginal cost
curve civ

′ of an adopter. The full dot depicts the choice under both subsidies. The coloured
area depicts the variable profit under both subsidies.

The third group of adopters produces less than the kink point under both subsidy

schemes. The thin purple line in Figure 11 illustrates the marginal cost curve of such

an adopter locally around the kink point. Their marginal cost curves cross both marginal

subsidy schemes below the kink point. Therefore, they are not affected by a change in

the scheme. They produce the same amount and earn the same profit under both schemes.

Their participation does not change.
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Figure 12: The observable measure fk when there is only an intensive margin response

qK

fk(q)

q

B

Note: The part of the measure above the kink point shifts to the left. It consists of adopters
illustrated in Figure 9. At the kink point, there is a mass point B, i.e., the bunching mass. It
consists of adopters illustrated in Figure 10. The part of the measure below the kink point
is not affected by the kink. It consists of adopters illustrated in Figure 11.

The distinct effect of the kinked subsidy on these three groups of adopters affects the

distribution of adoptions. In a first step, to better understand the effect on the distribution,

consider the case where fixed costs are homogeneous and equal to zero. As a consequence,

there are no participation responses. This case is considered by Saez (2010). Figure 12

depicts the observable measure of adoptions under the kinked subsidy fk. Above the kink

point, the change in schemes has two effects on the measure. First, the measure shifts to the

left because adopters reduce production; second, the measure changes shape because the

distribution of adopters’ mass changes. Depending on the exact response, the mass in each

interval increases or decreases because mass needs to be conserved. These are the standard

effects of a change-in-variable on a measure.11 At the kink point, there is a mass point

B, i.e., the bunching mass. It consists of adopters from the second group. These adopters

reduce production; however, when doing so, they hit the kink point qK . By reaching the

kink point, they are no longer affected by the subsidy change. Therefore, they "bunch"

precisely at the kink point. The measure is the same under the two subsidy schemes below

the kink point because adopters in this range are not affected by the change in schemes.

11The second effect is the effect of the Jacobian.
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Figure 13: Identification when there is only an intensive margin response
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Note: The left part of the figure shows the marginal buncher. Her marginal cost curve
crosses the lower marginal subsidy rate exactly at the kink point. She reduces capacity
by ∆q. The right part of the figure shows the marginal buncher in the measure of adop-
tions. Adopters to her left bunch at the kink point. The bunching mass B is approximately
proportional to the response of the marginal buncher ∆q.

How is the measure of adoptions, as illustrated in Figure 12, useful to identify the in-

tensive margin response? Consider the adopter depicted by the thin purple marginal cost

curve in the left part of Figure 13. Her marginal cost crosses the lower marginal subsidy

rate exactly at the kink point. The literature calls this adopter the "marginal buncher" (see

Saez, 2010). In response to the change in marginal subsidy, the adopter reduces production

by ∆q. The right part of Figure 13 shows the marginal buncher in the measure of adop-

tions. All adopters to her left "bunch" at the kink point. Therefore, the bunching mass is

approximately proportional to the reduction in the marginal buncher’s production ∆q. The

bunching mass identifies the response ∆q, which, under an additional assumption on the

cost function, identifies the intensive margin elasticity.
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Figure 14: The observable measure fk when there are responses at both margins

qK

fk(q)

q

B

∆f ⇐ ∆π

Counterfactual
Only intensive margin
Both margins

Note: The change in profit ∆π causes a change in participation ∆f . Above the kink point,
the change in profit increases in capacity. Therefore, the change in participation increases
in capacity, causing a slope change in the density. Adopters at the kink point also react at
the participation margin. Therefore, there is less bunching.

Next, consider the case when fixed costs are present and heterogeneous. Figure 14 il-

lustrates the consequent participation effects on the measure of adoptions. The blue line

illustrates the measure when there are responses at both margins. In comparison, the red

dash-dotted line illustrates the measure when there is a response only at the intensive mar-

gin; the black dashed line illustrates the counterfactual. Again, the range below the kink

point is not affected by the subsidy change. At the kink point, adopters from the second

group suffer from a loss in profit. Due to heterogeneous fixed costs, some of them stop

participating. The bunching mass B decreases from the empty red dot to the full blue dot.

Above the kink point, adopters from the first group suffer from a loss in profit as well. The

loss ∆π causes a drop in the participating mass ∆f . The larger is capacity q, the larger is

the loss in profit ∆π. Therefore, the larger is capacity q, the larger is the drop in partici-

pation ∆f . This effect is responsible for the slope change in the measure. The theoretical

prediction, illustrated in Figure 14, is perfectly consistent with the observed adoption be-

haviour, depicted in Figure 3 and Figure 6.

Contrary to the counterfactual, the measure under the kinked subsidy is observable. The

observable bunching mass and the slope change distinctly depend on the magnitudes of

both margins. Under some assumptions, it is possible to formalize the dependence of each
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part of the distribution on the magnitude of the two margins. Two observable features of

the distribution, bunching, and the slope change, are then sufficient to identify the unknown

magnitudes of the two margins. The next section carries out this exercise.

3.2 The formal derivation of the distribution of adoptions

This section derives formally how the observed distribution of adoptions under the kinked

subsidy depends on the three unknowns: the intensive margin elasticity, the participation

margin elasticity, and the counterfactual distribution. The counterfactual distribution is the

capacity-distribution under a counterfactual linear subsidy without a kink. Following the

non-structural econometric literature, I use the three unknowns as the primitives of my

model. However, I show that a structural approach, explicitly specifying a cost function

and a type distribution as primitives, is equivalent. It is the distinct dependence of different

parts of the distribution on each of the three unknowns, which I exploit for joint identifica-

tion.

Denote by qi(s) the optimal choice of adopter i under a linear subsidy with rate s.

Define the intensive margin elasticity of adopter i under a linear subsidy with rate s by

εi(s) =
d ln qi(s)

d ln s
. (6)

In the next step, I impose an assumption on the cost function. I formulate the assumption as

a reduced form and a structural assumption and show that the two formulations are equiv-

alent.

Assumption 1 (Locally isoelastic intensive margin response). .

1a (Reduced form assumption):

For small variations in the subsidy and for points close to the kink point, the intensive mar-

gin elasticity is constant.

Mathematically, for all marginal subsidy rates s in the interval [sl, slρ] and for all adopters

i such that their capacity-choice under the counterfactual subsidy qi(sl) is in an interval

[q, q] around the kink point qK , it holds that the elasticity εi(s) = ε, where ε is a constant.
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1b (Equivalent structural assumption):

The cost function is locally isoelastic.

Mathematically, for all adopters i such that their capacity-choice under the linear sub-

sidy qi(sl) is in the interval [q, q], and for all quantities q in the interval [qi(slρ), qi(sl)], it

holds that the variable cost function civ(.) is equal to

civ(q) = θiq1+
1
ε , (7)

where θi is the variable cost type.

Assumption 1a is a reduced form assumption on an endogenous object, i.e., a high-level

assumption. However, Lemma 1 in appendix A.1 shows that it is equivalent to Assump-

tion 1b, which is a structural assumption on the cost function. Assumption 1 is standard

in the bunching literature.12 It is a local parametric approximation to the nonparametric

cost function. As noted by Kleven (2016), if ρ is close to 1, and qi(sl) is close to the kink

point, Assumption 1 is approximately true.13 Suppose Assumption 1 does not hold. The

closer ρ is to one, the smaller is the misspecification introduced by Assumption 1. In my

application, ρ is greater or equal to 0.95. Additionally, in my application, I estimate the

intensive margin elasticity ε at two kink points. I find that the elasticity is not significantly

different at the two kink points, which is strong evidence that Assumption 1 holds.

Denote the choice of adopter i under the counterfactual subsidy Sl by qil , where l stands

for linear:

qil = qi(sl). (8)

Similarly, denote the total cost of adopter i under the counterfactual subsidy Sl by cit, where

t stands for total:

cit = civ(q
i
l) + cif . (9)

Corollary 1. For each adopter i, there is a one to one mapping from the variable and fixed

12In the bunching literature, the assumption can be generalized to heterogeneous ε. I leave such a general-
ization in my case for future research.

13The approximation still relies on homogeneity in the elasticity, i.e., for all i with equal qi(sl), εi is equal.
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cost type (θi, cif ) to the choice and total cost under the counterfactual subsidy (qil , c
i
t):

θi =
sl

qil
1
ε

ε

1 + ε
, (10)

cif = cit − qilsl
ε

1 + ε
. (11)

Therefore, locally, the total cost function is equal to

c(q, ql, ct) =
sl

ql
1
ε

ε

1 + ε
q1+

1
ε︸ ︷︷ ︸

variable cost

+ ct − qlsl
ε

1 + ε︸ ︷︷ ︸
fixed cost

. (12)

The type parameter (ql, ct) captures all relevant adopter-specific heterogeneity.

The proof of Corollary 1 is in appendix A.2. Using (ql, ct) has the advantage that the

type parameter has direct economic meaning. The type is equal to the choice and cost un-

der the counterfactual subsidy. The mapping between (θ, cf ) and (ql, ct) depends on the

counterfactual subsidy rate sl. However, sl is observable and fixed. Note that from now on

I drop the adopter specific index i.

The next paragraph imposes the corresponding isoelasticity assumption for the partici-

pation margin. Denote by ft|ql(.|ql) and Ft|ql(.|ql) the density and the CDF of the total cost

ct conditional on the type ql. Define a function η(S, q) as

η(S, q) =
ft|ql(S(q)|q)
Ft|ql(S(q)|q)

S(q), (13)

where S(.) is a general subsidy function. The participation margin elasticity under the

counterfactual subsidy is η(Sl, ql). Note that, in general, η(S, q) is not the participation

margin elasticity under subsidy S(q) because ct is defined with respect to the counterfac-

tual.

Assumption 2 (Locally isoelastic participation margin response). .

2a (Reduced form assumption):

For small variations in the subsidy and for points close to the kink point, the participation

margin elasticity is constant.
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Mathematically, for all subsidy functions S(q) such that Sl(q) ≥ S(q) ≥ Sk(q) and for all

quantities q in an interval [q, q] around the kink point, it holds that the function η(S, q) = η,

where η is the constant participation margin elasticity.

2b (Equivalent structural assumption):

The conditional CDF of the total cost is locally isoelastic.

Mathematically, for all values ct in the interval [Sk(ql), Sl(ql)], the conditional CDF of

of the total cost is equal to

Ft|ql(ct|ql) =

(
ct

ct(ql)

)η
, (14)

where η is the constant participation margin elasticity, and ct(ql) is a normalization term.

Lemma 2 in appendix A.3 shows the equivalence.

Proposition 1. The observable measure fk(.) under the kinked subsidy Sk(.) is a function

of three unknowns: the intensive margin elasticity ε, the participation margin elasticity η,

and the counterfactual measure fl(.). Three parts of the observable measure fk(.) depend

distinctly on the three unknowns:

fk(q) = fl(q), for q < qK ; (15)

fk(q) = fl(q) +B for q = qK ; (16)

fk(q) = R(q ρ−ε, ε)ηfl(q ρ
−ε)ρ−ε, for q > qK . (17)

At the kink point qK there is a mass point with bunching mass B:

B =

∫ qKρ−ε

qK
R(ql, ε)

ηfl(ql)dql. (18)

Note: The variable qK denotes the kink point; ρ denotes the relative change in marginal subsidy

rates, and the function R(., ε) is the net subsidy payment of an adopter under the kinked scheme

relative to the subsidy payment under the counterfactual scheme. The exact definition and derivation

of R(., ε) is in Lemma 5 in appendix A.4.

The proof of Proposition 1 is in appendix A.4. Below the kink point, the observable
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measure fk(.) depends only on the counterfactual measure fl(.). At the kink point, there

is an observable mass point with mass B. The mass depends on all three unknowns. The

measure above the kink point depends on all three unknowns as well. However, both ob-

servables depend on the three unknowns distinctly, a property crucial for identification.

3.3 Identification

This section shows under which conditions the observed measure fk(.) identifies the three

unknowns. The pseudo-parameter fl(.) in Proposition 1 is infinite dimensional. Equation

(15) shows that below the kink point the observable measure fk(.) is equal to fl(.). There-

fore, fl(.) is identified for values smaller than qK . However, fl(.) is part of Equation (17)

and (18) evaluated at values larger than qK . The function is unobservable at these points.

Identification is only possible if fl(.) is smooth enough such that the observations below

the kink point identify the function also for values larger than the kink point. Therefore, an

additional assumption is necessary.

Assumption 3. The counterfactual measure fl(.) or one of its transformations is locally

holomorphic: Mathematically, for all quantities q in a large enough interval [q, q] around

the kink point it holds that the counterfactual measure fl(.) or one of its transformations

has a convergent power series representation.

Note that Assumption 3 is not a high level assumption on an endogenous object; by

Corollary 1, ql is a structural parameter. Therefore, the measure fl(.) is a structural param-

eter. Assumption 3 is a smoothness assumption. A set of functions satisfying Assumption

3 are functions which are complex differentiable on [q, q]. Blomquist, Newey, Kumar, and

Liang (2017) point out that the bunching literature uses parametric functional form as-

sumptions on fl to identify the intensive margin elasticity. They show that the assumption

of only finite differentiability of fl at the kink point does not identify the intensive margin

elasticity. Proposition 2 below shows that under Assumption 3 the intensive margin elas-

ticity ε, the participation margin elasticity η, and the counterfactual choice-distribution fl
are jointly identified.

Equations (15)-(18) form a simultaneous, nonlinear system of equations. The system

must not be colinear, to identify the parameters of interest. Denote the right hand side

of Equation (17) as a function f(q, ε, η, fl) and the bunching mass in Equation (18) as a
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function B(ε, η, fl):

f(q, ε, η, fl) = R(q ρ−ε, ε)ηfl(q ρ
−ε)ρ−ε, (19)

B(ε, η, fl) =

∫ qKρ−ε

qK
R(ql, ε)

ηfl(ql)dql. (20)

Condition 1. Equation (17) and Equation (18) are not colinear. Mathematically, there

exists a q such that

∂B(ε,η,fl)
∂ε

−∂B(ε,η,fl)
∂η

6=
∂f(q,ε,η,fl)

∂ε

−∂f(q,ε,η,fl)
∂η

. (21)

Condition 1 is a rank condition that holds generically. To see that, note that the condi-

tion does not hold if

∂B(ε,η,fl)
∂ε

−∂B(ε,η,fl)
∂η

=
∂f(q,ε,η,fl)

∂ε

−∂f(q,ε,η,fl)
∂η

for all q. (22)

Equation (22) implicitly defines a function f̃l. Condition 1 is violated only if fl = f̃l. Since

any particular function fl has measure zero, this is a zero probability event. However,

even if Condition 1 holds, identification could be weak if the two sides of the condition

are almost equal. I verify Condition 1 ex-post estimation and find that it holds by a large

amount (see Section 6.1.1 for the estimates and a more detailed discussion).

Proposition 2. Under Assumption 3 and Condition 1, the observable measure fk(.) iden-

tifies the counterfactual density fl(.), the intensive margin elasticity ε, and the participa-

tion margin elasticity η. Observations below the kink point nonparametrically identify the

counterfactual. Observations at the kink point and observations above the kink point jointly

identify the two response margins. They are locally identified.

The proof is in appendix A.5. Contrary to methods using an exogenous variation, I

make no assumption for qK , sl, and ρ, except for their observability. They can be random

or endogenous. Because Condition 1 holds generically, ε, η, and fl are generically identi-

fied.

Theoretically, I cannot prove global identification, i.e., for a given observable fk(.)

several pairs (ε, η) may solve Equation (17) and (18). However, I verify the uniqueness

of the solution ex-post estimation. Additionally, simulating the system for many values of
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fl, ε, and η suggests that the system has a unique solution. The simulations show that the

bunching massB depends mainly on the intensive margin elasticity, while the slope change

in the measure depends mainly on the participation margin elasticity.

4 Description of the German policy

The German subsidy for solar panels was introduced on 1 April 2000. The subsidy is a

guaranteed feed-in-tariff, paid per kWh (kilowatt-hour) of electricity produced. Once an

agent decides to adopt, a constant tariff rate is guaranteed for 20 years. Typically, agents

only adopt once. Rates depend on the time point of adoption. They decreased over time, as

did the price for solar panels. From 2004 onwards, rates also depended on the capacity of

the system. The subsidy is paid as a fixed rate per kWh if the system has a capacity smaller

than 30 kWp. Because production is linear in peak capacity, the subsidy is equivalent to a

subsidy linear in peak capacity. If the system has a peak capacity higher than 30 kWp, the

proportion of electricity produced by the higher capacity is remunerated by a smaller rate

per kWh. Imagine the installed system has 60 kWp, then 50% of the produced electricity

is paid the higher rate and 50% the lower rate. A subsidy of this form is piecewise linear in

capacity, with a kink at 30 kWp (see appendix A.6.1 for the exact formula). A second kink

was located at 100 kWp. In 2009, an additional kink was introduced at 1000 kWp. In 2012

the kinks changed to 10, 40, 1,000, and 10,000 kWp. From 2009 onwards the kink overlaps

with other policy changes at 30 kWp and 100 kWp. Therefore, I focus on the years 2004

to 2008.

The data used in this paper are administrative and contain all solar panels connected

to the grid and receiving subsidy payments. Since there is no reason for investing in solar

panels and not claiming the subsidy, the data set is very likely complete. An adopter may

be a household or a firm. The unit of observation is the aggregated capacity installed by

an adopter at a certain location. Therefore, it is not possible to exploit the nonlinearities in

the subsidy by splitting a large system into smaller ones and asking for separate payments

for each of them. Additionally, when an adopter adds capacity to a preexisting system,

the policymaker takes the preexisting capacity into account. Therefore, it is not possible

to exploit the nonlinearities by splitting up a large adoption into smaller ones over time.

The data provides information on the time point of adoption, the location, the electricity

production, the applied subsidy rates, and the system’s capacity. Table 1 shows the number
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of adoptions in different years. The number is increasing for most years.

Table 1: Number of adoptions per year

Year Number of adoptions Relative proportion [%]
Until 2001 30, 934 9.5

2002 14, 073 4.3
2003 15, 137 4.6
2004 35, 077 10.8
2005 49, 678 15.3
2006 44, 990 13.8
2007 54, 160 16.6
2008 81, 508 25.0

All years 325, 557 100.0

Column 2 in Table 2 shows some values of the CDF of the number of adoptions. The

distribution is highly skewed to the left. 65% of adoptions are smaller than 10 kWp. The

third column in Table 2 shows the proportion in the aggregate capacity of adopters smaller

than the threshold. For example, adoptions smaller than 10 kWp account for 27 % of ag-

gregate capacity. The table shows that the distribution of aggregate capacity is less skewed

to the left than the distribution of the number of adoptions.

Table 2: Relative number of adoptions and aggregate capacity below certain thresholds

Threshold [kWp] Relative number of adoptions [%] Relative aggregate capacity [%]
5 33 8.9
10 65 27
30 93 70

100 99.5 91
150 99.8 94

Note: The number in the column "Relative number of adoptions" shows the fraction of
adopters with a capacity smaller than the value in the column "Threshold." The number in
the column "Relative aggregate capacity" shows the fraction of total capacity from instal-
lations smaller than the value in the column "Threshold."

5 Estimation

I closely follow Chetty, Friedman, Olsen, and Pistaferri (2011) in the estimation proce-

dure. First, I construct an empirical histogram by choosing bins and counting the number

of adopters in each bin. Normalization, by the bin-size and the total number of adopters,
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gives the observed density f̂(qj) at point qj , where the index j in {1, 2, ..., N} is the index

of the bin and N is the total number of bins.

Theory predicts that the bunching mass is located precisely at the kink point. How-

ever, in practice, the excess mass is scattered around the kink point. The literature calls

this phenomenon non-sharp bunching. To account for non-sharp bunching, it is standard

in the bunching literature to choose a bunching interval [qL, qH ] around the kink point after

visual inspection of the histogram (see Kleven, 2016). The observed bunching mass B̂ is

the normalized number of adopters in the bunching interval. I test for the robustness of the

estimates regarding the choice of the bunching interval in appendix A.12.4

The next step is the choice of transformation for the infinite-dimensional parameter

fl(.). I use a logarithmic transformation on fl(.) and q:

ln fl(q) =
∞∑
p=0

γp
1

p!
ln(q/qK)p. (23)

The logarithmic transformation of the density and the argument is natural because both

variables are defined over a positive domain. To use the logarithm guarantees that the den-

sity is non-negative and restricted to the domain of q. Additionally, the logarithmic series

expansion in Equation (23) contains the uniform distribution, the Pareto distribution, and

the log-normal distribution as special cases. These are common distributions for variables

with a positive domain. Figure 4 illustrates that, except at the kink point, the capacity-

distribution is very close to linear in the logarithmic scale. This shape is visual evidence for

a counterfactual distribution, which is close to a Pareto distribution. I test the log-log trans-

formation against a specification without transformation and a logarithmic transformation

on fl(.) only. To this end, I use pretreatment data and treated data, excluding observations

around the kink. The details are in appendix A.11. The log-log transformation approxi-

mates the distribution best.14

14fl could also be developed using a different transformation. Typically, the bunching literature does not
use a transformation and directly assumes a power series. This approach has the disadvantage that many
common distributions such as the exponential distribution, the normal distribution, the Pareto distribution,
or the log-normal distribution are not special cases of the specification. Polynomial densities, which would
be special cases of the expansion, are very uncommon. Additional restrictions need to be implemented to
ensure that the expansion fulfils a density’s standard properties, such as non-negativity and integrability.
Alternatively, one can use a logarithmic transformation on the density but not on the argument (log-density
estimation; see Stone (1990)). This transformation is a natural approach when the argument’s domain is the
real line, which is not the case in my application. It contains the exponential distribution and the normal
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It is impossible to estimate infinitely dimensional pseudo-parameters such as fl(.) be-

cause, in practice, sample sizes are finite. Nonparametric methods address this problem

by estimating a restricted number of parameters that grow with the sample size. I use a

semi-nonparametric sieve estimator (see Chen, 2007 for a review). The idea behind this

estimation method is to use a finite series, where the order of the series increases in sample

size:

ln fl(q) =

P (N)∑
p=0

γp
1

p!
ln(q/qK)p. (24)

P (N) is the order of the series and goes slowly to infinity as the number of bins N goes to

infinity. I discuss the choice of P (N) below. For a given P , I use a parametric M-estimator.

I use the logarithm of f̂(qj) as the dependent variable. Using the logarithm does not af-

fect consistency; however, it introduces a small sample bias. To reduce the impact the bias,

I use bias correction techniques. The details are in appendix A.8. The variable ̂ln f(qj) de-

notes the bias-corrected dependent variable. The transformation corresponds to an econo-

metric model of the form

̂ln f(qj) = ln fk(qj | η, γ, ε) + uj, (25)

where uj is the noise term. The logarithmic model has several advantages over the additive

model

f̂(qj) = fk(qj | η, γ, ε) + uj. (26)

First, the observed density is positive by definition in the logarithmic model. In the addi-

tive model, the density is negative for large negative errors. Therefore, only the logarithmic

model is logically consistent. Second, besides sampling noise, the noise term uj may cap-

ture additional random disturbances. For some random reasons certain capacities may be

more or less frequent in the data than predicted by fk. It is more natural to think about these

additional disturbances as proportional to fk, corresponding to specification (25), and not

as additive, corresponding to (26).

distribution as special cases.
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The logarithm makes it necessary to have a least one observation in each bin because the

logarithm of zero is not defined. Additionally, even after bias correction, the small sample

bias caused by the logarithm decreases in each bin’s number of observations. Therefore,

it is preferable to avoid bins with a small number of observations. The observed density

is decreasing in capacity q. As a consequence, the expected number of observations in

an interval decreases in capacity. To counteract this effect, I use bins with a bin-size that

increases in capacity.15 The exact specification of the binning function is in Equation (110)

in appendix A.9. An additional advantage of this binning procedure is that it equalizes the

variance of the dependent variable ̂ln f(qj). Therefore, it avoids the need for a weighting

matrix in the estimation.

For the estimation, I follow the same two-step least square procedure as Chetty et al.

(2011). First, I minimize the square distance between the model and the observed density

outside the bunching interval:

min
η,γ

∑
qj /∈[qL,qH ]

(
̂ln f(qj)− ln fk(qj | η, γ, ε1)

)2
. (27)

I choose an initial guess for ε denoted by ε1. Second, I use the estimates η̂1 and γ̂1, and I

minimize the square distance between the observed bunching mass and the model

min
ε

(
l̂nB − ln

∫ qH

qL

fk(q | η̂1, γ̂1, ε)dq
)2

. (28)

The minimum is the estimate ε̂2. I repeat the procedure until η̂, γ̂, ε̂ converge. The estimates

are consistent and asymptotically normal; the proof is in appendix A.9. Following Chetty

et al. (2011), I estimate the standard errors using nonparametric bootstrap.

As in any nonparametric estimation, the estimates have a bias and a variance. Both

depend on the specification of the nonparametric estimation, giving rise to the classic bias-

variance trade-off. There are two specification-parameters: The first parameter is the order

of the polynomial P . The higher is the order P , the lower is the bias, and the larger is

the variance of the estimates. The second parameter is the bandwidth b = [q, q]. It is the

interval of values around the kink point used for estimation. The smaller is b, the lower is

15 Note that such a binning procedure does not affect consistency because f̂(qj) is equal to the number of
observations in bin j normalized by the bin-size and the total number of observations.
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the bias, and the larger is the variance of the estimates. Note that for the estimates to be

consistent, it suffices that P goes to infinity as the sample size goes to infinity. A smaller b

reduces the bias for any given P ; however, b does not have to go to zero for the estimates to

be consistent. As standard in nonparametric estimations, I choose P and b to minimize the

estimates’ mean squared error. The estimate of the participation margin η̂ is more sensitive

to the specification than the estimate of the intensive margin ε̂. Therefore, I use an estimate

of the mean squared error of η̂ to choose the specification. Appendix A.10 discusses the

estimator of the mean squared error. Appendix A.12 shows the estimates and the optimal

specification.

6 Results

Figure 15 shows the normalized histogram at 30 kWp for the year 2004. The blue line

depicts the estimated model. The purple dashed line depicts the counterfactual distribution.

The red line marks the kink point normalized to zero; scales are logarithmic. The black bar

depicts the bunching mass in the bunching interval.

Figure 15: Histogram in 2004 at 30 kWp with estimated model and counterfactual
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Note: The x-axis shows the normalized logarithm of capacity. The y-axis shows the log-
arithm of the density. The red line marks the kink point. The estimation minimizes the
distance between the data in black and the model in blue.
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Table 3 shows the results at 30 kWp for all years until 2011.

Table 3: Results for the kink point at 30 kWp

Year ε (σε) η (ση)
2004 2.3 (0.2) 91 (3)
2005 3.9 (0.2) 71 (3)
2006 4.4 (0.3) 55 (4)
2007 5.2 (0.3) 60 (3)
2008 5.2 (0.2) 49 (2)
2009 7.7 (0.2) 30 (2)
2010 7.8 (0.2) 15 (1)
2011 7.9 (0.1) 0.00 (0.01)

2004-2011 6.72 (0.06) 20.2 (0.5)

Note: The table reports the estimated elasticities with standard errors in brackets. The last
row reports the aggregate estimates pooling all years.

The intensive margin elasticity is increasing over time, while the participation margin

elasticity is decreasing over time. As already mentioned in the introduction, the partici-

pation margin in the first years is substantial. Since 2004 is early in the solar adoption

programme, the mass of adopters just on the margin of participation is large compared to

the mass of adopters that already adopted. Although the magnitude of the elasticity is sur-

prising, the fact that the elasticity is larger than elasticities measured in saturated markets

is not.16 The fact that the elasticity decreases over time as the market saturates is consis-

tent with this explanation. However, the aggregated long-run elasticity is still considerable.

Additionally, the profitability of the programme increases rapidly over time since costs for

solar panels decrease. It is reflected by the rapid increase of adoptions from 2000 to 2011.

The fixed cost becomes less and less relevant, reflected in the decrease in the participation

margin elasticity.

Table 4 shows the results at the 100 kWp kink point for the aggregate data in the years

2004 to 2008. It compares them with the results at 30 kWp for the same period. The scatter

plots and exact specifications of the two estimations are in appendix A.13.

16By a saturated market I mean a market where the number of potential buyers relative to the number of
buyers is small.
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Table 4: Aggregate results for the two kink points in the years 2004 to 2008

Capacity ε (σε) η (ση)
30 kWp 4.8 (0.1) 65 (1)
100 kWp 4.4 (0.8) 1.1 (10)

Note: The table reports the estimated elasticities with standard errors in brackets. The
estimation pools all years.

I estimate the elasticities at 100 kWp on the aggregated data from 2004 to 2008 be-

cause the sample size is small. I cannot use later years because the cutoff of 100 kWp

is used as a cutoff for other policies influencing the adoption capacity. For the same rea-

sons, I do not use any other kink points or years. The results suggest that the intensive

margin elasticity is the same for adopters of different capacities, while the participation

margin elasticity rapidly decreases with capacity. This evidence is not surprising. On the

one hand, the primary intensive adjustment margin is the quality of the solar panel. Low

capacity adopters have access to the same quality choices as high capacity adopters. There-

fore, their responses have the same elasticity. On the other hand, the participation margin

elasticity depends on the profit net of the fixed cost. The higher this profit, the lower is the

participation margin elasticity. Large capacity systems are very profitable. Therefore, the

fixed cost plays only a small role in the adoption decision. Only very few adopters have

such high fixed costs to make adoption of a large capacity unprofitable. In contrast, the

adoption of low capacity systems depends crucially on fixed costs. Many adopters have a

fixed cost equal to the net profit. It follows that many adopters are close to indifferent in

terms of participating. As a consequence, a small increase in the subsidy payment incen-

tivizes many adopters to participate.

The assumption of a locally constant participation elasticity is convenient for the es-

timation, but it is at odds with the empirical evidence. The estimates show that the par-

ticipation elasticity is decreasing in variable profits. The most straightforward assumption

consistent with this evidence is a log-normal and independent distribution of fixed costs.

By definition, fixed costs are positive. The log-normal density is a simple bell curve defined

over the positive support. Another advantage of the log-normal distribution is that it has

only two parameters. Two elasticities, observed at two different capacity levels, are suffi-

cient to calibrate the distribution. I use the results in Table 4 to calibrate the distribution in

Figure 16.
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Figure 16: The calibrated density of fixed costs
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Note: The figure shows the density of fixed costs fc(πv(ql)) as a function of the counter-
factual variable profit πv at capacity ql.17 Therefore, the function shows the mass of agents
indifferent to participation at a certain capacity level under the counterfactual subsidy.

Figure 17: The implied elasticity of the calibrated distribution of fixed costs
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Note: The figure shows the participation elasticity at capacity ql under the counterfactual
subsidy, implied by the calibrated distribution of fixed costs.

The calibrated mean and variance of the logarithmic fixed costs are equal to (2.3, 0.26).

Figure 16 shows the calibrated density of fixed costs fc(πv(ql)) as a function of the coun-

terfactual variable profit πv at capacity ql. Therefore, the function shows the mass of agents
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indifferent to participate at a certain capacity level under the counterfactual subsidy. Fig-

ure 17 illustrates the implied participation elasticity. It decreases in variable profit, and

therefore, in capacity.

6.0.1 Ignoring the participation margin or the intensive margin in the estimation

Given a certain amount of bunching, ignoring the participation margin biases the estimate

of the intensive margin elasticity downwards. This effect is due to the participation margin

response. Instead of bunching, some agents stop participating in the programme, which

decreases the bunching mass. Wrongly, ignoring this effect attributes the smaller bunching

mass to a smaller intensive margin response. To evaluate this bias, I estimate an intensive

margin elasticity ε̃, ignoring the participation margin, but using the rest of the parameters

from the correct estimation (27):

ε̃ = arg min
ε

(
l̂nB − ln

∫ qHρ
−ε

qL

fl(q | γ̂, ε)dq

)2

, (29)

where γ̂ is the same estimate as in (27). Correspondingly, ignoring the intensive margin

biases the estimate of the participation margin elasticity. To evaluate the bias, I proceed

correspondingly to above:

η̃ = arg min
η

(∑
j

̂ln f(qj)− ln fk(qj|ε = 0, η, γ̂)

)2

. (30)

Table 5 summarizes the results for the estimates at 30 kWp in the years 2004 to 2008:

Table 5: Biased estimates ignoring the other margin

Parameter Unbiased Estimate Biased Estimate Relative Difference
ε 4.76 (0.11) 3.82 (0.09) - 20 %
η 65 (1) 69 (1) + 6 %

Note: The table shows the correct estimates in the second column. The third column shows
the biased estimates ignoring the other margin. The fourth column shows the relative
magnitude of the bias.

The result shows that ignoring participation introduces a downward bias of 20 % in

the estimate of the intensive margin elasticity. It suggests that considering participation is

essential, at least in this application. Ignoring the intensive margin introduces an upward

bias of 6 % in the estimate of the participation margin elasticity.
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6.1 Robustness

I report robustness tests for the aggregate estimates of the two margins.

6.1.1 Rank condition and global identification

Table 6 shows the rank condition evaluated at the estimated values. The standard errors are

in brackets:

Table 6: Co-linearity condition evaluated at the estimated values

∂B(ε̂,η̂,f̂l)

∂ε

− ∂B(ε̂,η̂,f̂l)

∂η

6=
∂f(qK,ε̂,η̂,f̂l)

∂ε

− ∂f(q
K,ε̂,η̂,f̂l)

∂η

qK = 30 124 (5) 6= 0.67 (0.30)

qK = 100 3290 (1121) 6= 51 (9)

Note: The table shows the rank condition (Condition 1) evaluated at the estimated values.
The standard errors are in brackets. The condition holds by a large amount.

The table shows that Condition 1 holds in sample.

Moreover, there is an economic argument why Condition 1 holds. On the one hand, the

bunching mass B depends strongly on ε, as ε determines the mass of adopters who bunch.

That is the reason why the upper bound of the integral in Equation (18) is a function of ε.

Additionally, B depends only very weakly on η. The dependence is through the power of

R, where R is very close to one. This is the case because R is roughly one minus the profit

loss from re-optimization. As a consequence of the Envelope Theorem, the profit loss is of

second-order and hence very small. The strong dependence on ε and the weak dependence

on η imply that

∂B(ε,η,fl)
∂ε

−∂B(ε,η,fl)
∂η

(31)

is large. On the other hand, f mainly depends on η. To see that, consider the elasticity E of

the function fk.18 From equation (17) it follows that:

Efk(q) = Efl(q ρ−ε) + η ER(q ρ−ε). (32)

18The definition of the elasticity of a function g(q) is Eg(q) = d ln g(q)
d ln q .
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In my application fl is close to a Pareto distribution, and therefore, Efl is approximately

constant. For reasonable values of ε, and q close to qK , ER is approximately −(1 − ρ).

Therefore, it is approximately constant as well. Denoting the right hand side of Equation

(32) by Ef , it follows that ∂Ef(q,ε,η,fl)
∂ε

is close to zero. These properties of B and Ef make

it very likely that Condition 1 holds.

The estimation converges to the same estimates for starting values ε0 × η0 ∈ [0, 200]×
[0, 1000], which is strong evidence for global identification.

6.1.2 Specification and placebo test

One concern is the violation of Assumption 2 because of irregularities in the counterfac-

tual. On the one hand, there might be an excessive mass of adopters at the kink point for

other reasons than the subsidy’s kink. Not or only hardly predictable from observations to

the left of the kink point, the irregularity may be a mass point or a continuous bump. This is

a general concern in the bunching literature and was raised by Blomquist, Newey, Kumar,

and Liang (2017). It leads to an upward bias in the intensive margin estimate. Additionally,

even if Assumption 2 holds, in small samples, choosing an inefficient series approximation

may considerably bias the results. I select the specification, which minimizes the estimates’

mean squared error; however, the remaining bias may still be a problem.

On the other hand, there might be a slope change at the kink point for other reasons

than the subsidy’s kink, introducing a bias in the participation margin estimate. This effect

is a general concern in the regression kink design literature. Additionally, it is easy to

mistakenly estimate a concavity in the distribution as a change in slope, which would again

bias the results. It is crucial to evaluate if the chosen specification is picking up one of these

biasing effects. To address these issues, I run a placebo test on the density in the years 2000

to 2003. From 2000 until 2003, there was no kink in the subsidy. If any of the concerns

just raised are an issue, the estimates in 2000 to 2003 should be significant. The Figure 18

shows the density in 2000 to 2003, with the estimated model and the linear counterfactual.

I use the same bunching interval as in 2004 to 2008.
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Figure 18: Histogram in the years 2000 to 2003 with estimated model (placebo)
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Note: The figure shows the placebo test. The x-axis shows the normalized logarithm of
capacity. The y-axis shows the logarithm of the density. The red line marks the kink point.
The estimated model in blue is equal to the counterfactual in purple. The estimates are not
significant.

Table 7: Results for the untreated data in the years 2000 to 2003 (placebo)

Year ε (σε) η (ση)
2000-2003 0.2 (0.3) −0.5 (6)

Note: The table shows the results of the placebo test. The standard errors are in brackets.
The estimates are not significant.

The selected specification does not estimate significant parameters in the untreated data.

It shows that the chosen specification estimates the effects on the distribution correctly. Ad-

ditionally, it shows that the counterfactual distribution is smooth enough not to mistakenly

estimate an effect. The result is robust to changes in the bandwidth. Appendix A.14 reports

the same robustness check for the estimates at 100 kWp. Again, ε and η are not significant.
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7 Policy evaluation

This section uses the estimates to evaluate and optimize the subsidy. As in existing kink and

discontinuity methods, the estimates are locally correct at each kink point. It is necessary

to make global assumptions to use them for policy evaluation. I restrict the policy analysis

to the years 2004 to 2008 since the local estimates at two different capacity levels give the

best available information about global properties. In line with the empirical evidence in

Table 4, I assume an isoelastic cost function and a log-normally distributed fixed cost.

Assumption 4 (Isoelastic cost function). .

The cost function is isoelastic with intensive margin elasticity ε:

c(q, ql, cf ) =
sl

q
1
ε
l

ε

1 + ε
q1+

1
ε + cf , (33)

where (ql, cf ) is the two-dimensional type-parameter.

Assumption 5 (Log-normal fixed cost). .

The distribution of the fixed cost cf is log-normal and independent of ql:

ln(cf ) ∼ N(µf , σf ), (34)

with CDF Ff (cf ) and density ff (cf ) .

I set ε equal to the observed intensive elasticity and calibrate (µf , σf ) to match the ob-

served participation elasticities. It follows that (µf , σf ) = (2.3, 0.26). The model can be

solved for any counterfactual subsidy scheme using these assumptions. Note that, in line

with the bunching literature, I used the term counterfactual for the linear subsidy without

a kink. In this section, I call any subsidy different from the observed kinked subsidy, a

counterfactual subsidy. I normalize the linear rate sl to one, which corresponds to a choice

of monetary unit. As a consequence, all monetary variables are to be interpreted relative

to sl. For simplicity, I assume that the distribution of ql is log-normal. The assumption is

simple and fits the lower part of the distribution well. This part is responsible for the bulk

of adopted capacity. Note, however, this assumption is easy to relax when needed, as one

can invert any estimate of fk(q) by using the global assumptions about the reaction margins.
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7.1 The government’s objective

Assume the government’s objective is to incentivize the adoption of the observed aggregate

capacity QT at a minimal public cost:

min
S(.)

∫
S(q)dFc(q), (35)

such that∫
q dFc(q) ≥ QT , (36)

where Fc(q) is the implied counterfactual distribution of adoptions. While Objective (35)

is appealing for its simplicity, it is a simplification of real governmental preferences. Ob-

jective (35) implicitly assumes that the government does not want to distribute rents to

adopters of solar panels. Typically, only households in the upper part of the income dis-

tribution can adopt solar panels, which gives a rationale for such governmental preferences.

The estimates of both reaction margins can also be used to maximize a much more

general governmental objective. Appendix A.15 discusses an objective with general redis-

tributive preferences, a general valuation of aggregate capacity, and an optimal tax on other

sources of income. I derive under which conditions Objective (35) follows from the gen-

eral objective. For example, it is the case if the redistributive preferences are Rawlsian, the

lowest income households cannot adopt solar panels because they do not own roofs, and

the government only values capacity up to an aggregate capacity goal QT . The appendix

derives the theoretical solution to the general objective. It is necessary to know the gov-

ernment’s redistributive preferences and its valuation of aggregate capacity to evaluate the

general solution quantitatively. Such an exercise is beyond the scope of this paper. There-

fore, I use the simpler objective (35) for the quantitative exercises in the following sections.

However, a government can use its real preferences and valuation together with the general

solution in appendix A.15 to implement a subsidy.

A prominent possible subsidy scheme is the Pigouvian subsidy. The Pigouvian subsidy

is a linear subsidy where the marginal subsidy rate is equal to the marginal social ben-

efit of the public good. It is also known as the Samuelson rule (Samuelson, 1954). To

implement the Pigouvian subsidy, it is not necessary to know how adopters react to the

subsidy. However, the optimal solution to Problem (35) is not the Pigouvian subsidy. For
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the general objective in appendix A.15, the Pigouvian subsidy is only optimal if the govern-

ment is indifferent in distributing rents to adopters. The German government already uses

a nonlinear subsidy scheme, showing that it is not indifferent in distributing rents. Even

if an optimal income tax is available, Kaplow (1996) shows that the Pigouvian subsidy is

optimal only if preferences are separable, and the only relevant heterogeneity is earnings

ability. Intuitively, in this case, the income tax is sufficient to redistribute optimally, and

the choice of the public good is, therefore, not distorted. Kaplow (2008) shows that this

result breaks down when agents’ heterogeneity is more than one-dimensional. Importantly,

in my application, the heterogeneity determining the capacity choices of adopters and in-

come from other sources is two-dimensional (see appendix A.15 for an explicit model of

this heterogeneity). Therefore, the Pigouvian subsidy is not optimal even if income is taxed

optimally. Intuitively, if the heterogeneity determining income and capacity choices cor-

relate positively, agents in the upper part of the income distribution profit more from the

subsidy programme. Because they have a low marginal social welfare weight, it is optimal

to limit their rents through a nonlinear subsidy. A detailed discussion on why the Pigouvian

subsidy is not optimal is in appendix A.15.

7.2 The optimal linear subsidy

In a first experiment, I solve for the optimal linear subsidy that keeps aggregate installed

capacity constant. I compare its public cost with the cost of the observed subsidy. Denote

by ρl the marginal subsidy rate. Note that, as I normalized sl to one, ρl’s interpretation

is relative to sl. It means that a linear subsidy with the rate of ρlsl would incentivize for

the same aggregate adoption behaviour as the actual kinked subsidy. By the first order

condition of the decisions problem, the choice q of type ql under subsidy ρl is

q(ql, ρl) = qlρ
ε
l . (37)

Denote by cv(q, ql) the variable part of the cost function:

cv(q, ql) = c(q, ql, cf )− cf . (38)

Denote the variable profit of type ql under subsidy rate ρl as

πv(ql, ρl) = ρlq(ql, ρl)− cv(q(ql, ρl), ql). (39)
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Given the estimate of fl(ql), the unconditional type distribution fu(ql) is

fu(ql) =
fl(ql)

Ff (ql − cv(ql, ql))
. (40)

It follows that ρl is the solution to

∫ ∞
0

q(ql, ρl)Ff (πv(ql, ρl))fu(ql)dql = QT , (41)

where QT is the observed aggregate capacity. Numerically, I find that ρl = 0.9998. The

public cost of the linear policy is QTρl. The policy is only 0.016 per cent more expen-

sive than the actual subsidy. Therefore, it shows that the nonlinearities introduced by the

government are barely effective in reducing costs.

7.3 The optimal nonlinear subsidy

In this section, I solve for the optimal nonlinear policy using mechanism design. The

analysis follows the monopoly pricing problem in Rochet and Stole (2002). I rewrite the

government’s objective (35) as a Lagrangian and a mechanism design problem. The gov-

ernment maximizes

max
ψ,q(.),πv(.)

∫ ∞
0

(ψq(ql)− πv(ql)− cv(q(ql), ql))Fc(πv(ql))fu(ql)dql − ψQT , (42)

such that for all ql

π′v(ql) = −∂cv(q(ql), ql)
∂ql

and q(.) is not decreasing. (43)

(43) is the incentive-compatibility constraint. The variable ψ denotes the Lagrange mul-

tiplier. I substituted the subsidy paid to type ql using the definition: S(q(ql)) = πv(ql) +

cv(q(ql), ql). Problem (42) is equivalent to Problem (35). The government chooses func-

tions q(ql) and πv(ql) instead of a subsidy S(q). The interpretation is as follows. Imagine

the government asks an agent to reveal her type ql. The agent reports the type; the gov-

ernment asks the agent to produce q(ql) and pays variable profit πv(ql) as a compensation.

An incentive-compatible mechanism are two functions q(.), πv(.), under which each agent

has the incentive to report her type truthfully. Therefore, the objective of the government

is finding two such functions, which maximize its objective. The incentive-compatibility
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constraint (43) follows from the standard revealed preference argument in mechanism de-

sign. As standard in the literature, I neglect the monotonicity constraint on q(.) and verify

it ex-post. Define as

L(πv, π
′
v, ql) =

(
qlψ(π′v(1 + ε))

ε
1+ε − πv − qlεπ′v

)
Fc(πv)fu(ql), (44)

which is the integrand of Problem (42). I used Equation (43) to substitute for the function

q(.). The problem simplifies to finding an optimal function πv(.). I suppress the arguments

of the functions πv(.), π′v(.) for better readability. By calculus of variation it follows that

the optimal function πv satisfies

∂L(πv, π
′
v, ql)

∂π
=

d

dql

∂L(πv, π
′
v, ql)

∂π′
for all ql, (45)

and

∂L(π, π′, ql)

∂π′
= 0 for ql = 0 and ql =∞. (46)

For each ψ, the Equations (45) and (46) define a nonlinear second order differential equa-

tion with boundary values. I fix ψ, solve the differential equation numerically, and evaluate

the capacity constraint Q = QT . I iterate over ψ until the constraint holds.
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7.3.1 The optimal solution

Using the first order condition and the solution π′v(ql), I solve for the optimal nonlinear

marginal subsidy S ′(q). Figure 19 shows the optimal marginal subsidy schedule in com-

parison to the linear benchmark and the observed marginal subsidy. The optimal marginal

subsidy is u-shaped and very close to constant. Therefore, the optimal subsidy S(q) is close

to linear.

Figure 19: The observed and the optimal marginal subsidies
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Note: The figure compares the observed marginal subsidy with the optimal linear and the
optimal nonlinear marginal subsidies. The marginal subsidy rate of the optimal linear
subsidy is normalized to one.

Using the definition of the variable profit, it follows that the total public costs are∫ ∞
0

(πv(ql) + cv(q(ql), ql))Fc(πv(ql))fu(ql)dql. (47)

Compared to the benchmark, cost savings are by a factor 3.5 larger than the cost savings

of the actual subsidy. However, the optimal subsidy is still only 0.055 per cent less costly

than the benchmark. This result shows that the benefits of nonlinear prices are very small

due to the high reaction margins.

7.4 Zero participation

In this section, I assume the participation elasticity is equal to zero. This thought exper-

iment will answer several questions: What is the optimal subsidy without a participation

margin? Would a nonlinear subsidy perform well under these circumstances? Can the par-

ticipation margin be safely ignored for the counterfactual analysis?
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Without participation it is possible to use standard mechanism design to solve for the

optimal subsidy. It follows that the optimal capacity q(ql) as a function of type ql solves

∂cv(q(ql), ql)

∂q
= ψ +

1− Fl(ql)
fl(ql)

∂2cv(q(ql), ql)

∂q∂ql
. (48)

Inverting the function q(.) and using the first order condition gives the optimal marginal

subsidy:

S ′(q) =
∂cv(q, q

−1
l (q))

∂q
. (49)

Figure 20 compares the optimal marginal subsidy without participation to the optimal

marginal subsidy with participation.

Figure 20: The optimal marginal subsidy with and without participation
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Note: The figure compares the optimal marginal subsidy without participation with the
optimal marginal subsidy with participation. The marginal subsidy without participation is
much farther from the linear benchmark. When both margins are present, the participation
margin is responsible for an optimal scheme that is close to linear.

The marginal subsidy schedule is increasing, and the distance to the linear benchmark is

much more significant. This result shows that it is the large participation margin which lim-

its the role of nonlinearities. Without participation margin, the optimal nonlinear subsidy

would be 7.6 per cent less costly than the benchmark. Again, it is the large participa-

tion margin, which makes nonlinearities ineffective at reducing costs. The shapes of the

marginal subsidy rates in Figure 20 follow from simple intuition. First, consider the opti-

mal schedule without participation, depicted by the orange dotted line. The marginal rates
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are increasing with capacity. It is optimal to pay a high marginal rate to large adopters.

Reacting only to marginal rates, large adopters install larger capacities than under the lin-

ear benchmark. In contrast, the marginal rate paid to small adopters is low. They adopt

lower quantities than under the linear benchmark. The total payment to large adopters

is the integral under the orange curve. The low marginal rates for small adopters extract

profit from large adopters without affecting their choice of adoption. For this reason, it is

optimal to pay low rates to small adopters, and therefore, to have an increasing marginal

schedule. When there are participation margin responses, the same logic does not apply

anymore. Due to the participation margin, the total subsidy payments and the marginal

subsidy rates are relevant for the adoption decision. Reducing the marginal rate for small

adopters reduces the profit for larger adopters. Therefore, it affects participation negatively

and is not optimal. This effect limits the room for rent extraction through nonlinear pricing.

The results in Figure 20 show that the participation margin changes the shape of the

optimal marginal subsidy. However, is it counterproductive to ignore participation when,

in reality, such a margin is present? To answer this question, I calculate the real responses

- intensive and participation - to the schedule in Equation (49). I keep aggregate capacity

constant, which allows for a meaningful comparison to the other experiments. I find that

the schedule in Equation (49) would increase costs by 3.7 per cent instead of decreasing

them. The experiment shows that ignoring participation would have a sizable adverse effect

on costs. Therefore, it is crucial to take the participation margin into account.

8 Conclusion

This paper proposes an estimator, which simultaneously estimates the intensive and the

participation margin response of solar panel adopters to the nonlinear subsidy. I find that

reactions along both margins are important. The nonlinearities in the current schedule are

not effective in reducing the public costs of the programme. The optimal subsidy schedule

is very close to linear. Not taking the participation margin into account when optimizing the

policy has a sizable adverse effect on costs. The results are driven by adopters’ large par-

ticipation margin reactions, limiting the scope of cost-savings through price discrimination.

The method proposed here is applicable whenever the bunching estimator is insuffi-

cient because there is a participation margin response of interest, or the regression kink
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design cannot be used because there are reactions along both margins. Kinked incentive

schemes are a popular form of mechanisms, and often, both margins are present and of in-

terest. Governments or other principals have to implement nonlinear mechanisms without

having detailed information on the agents’ behaviour. The limited information results in

suboptimal choices, even within the limited class of piecewise linear schemes. The method

outlined in this paper can be used to increase welfare in these situations. Possible further

applications are problems of optimal taxation, optimal nonlinear pricing, and policy evalu-

ation.

The method is not limited to kinked incentive schemes. Close relatives of the bunch-

ing estimator using kinks and the regression kink design are the bunching estimator using

notches and the regression discontinuity design. These methods are applicable when there

is a discrete jump in the incentive scheme instead of a kink. However, whenever both

margins are present, the problems are the same as with the kink bunching estimator and

the regression kink design: the notch bunching estimator cannot estimate both margins;

the regression discontinuity design is inapplicable when there is an intensive margin re-

sponse. An extension of the method of this paper to discontinuous incentive schemes is

straightforward.
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A Appendix

A.1 Lemma 1

Lemma 1 (Equivalence intensive margin). Assumption 1a is equivalent to Assumption 1b.

PROOF Lemma 1:

Assumption 1a⇒ Assumption 1b:

By Assumption 1a and the definition of the elasticity

ε =
qi
′
(s) s

qi(s)
, for all s in [slρ, sl]. (50)

By the first order condition of the adopters’ problem:

civ
′
(qi(s)) = s, (51)

and by differentiating the FOC

qi
′
(s) =

1

civ
′′(qi(s))

. (52)

It follows that for all q in [qi(slρ), qi(sl)]

ε =
civ
′
(q)

civ
′′(q) q

. (53)

Denote the choice of adopter i under the counterfactual subsidy Sl by qil = qi(sl), where

l stands for linear. Denote the total cost of adopter i under the counterfactual subsidy Sl
by cit = civ(q

i
l) + cif , where t stands for total. By the FOC civ

′
(qil) = sl and by definition

civ(q
i
l) + cif = cit. These two equalities together with the ordinary differential equation (53)

form an initial value problem with solution

civ(q) + cif =
sl

qil
1
ε

ε

1 + ε
q1+

1
ε︸ ︷︷ ︸

variable cost

+ cit − qilsl
ε

1 + ε︸ ︷︷ ︸
fixed cost

. (54)
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The result follows by defining

θi =
sl

qil
1
ε

ε

1 + ε
, (55)

cif = cit − qilsl
ε

1 + ε
. (56)

Assumption 1b⇒ Assumption 1a:

By the FOC

qi(s) =

(
ε

(1 + ε)θi

)ε
sε. (57)

Using the definition of εi(s), it follows that εi(s) = ε.

qed.

A.2 Proof Corollary 1

The cost function is equal to

civ(q) = θiq1+
1
ε .

By the first order condition and the definition of qil

θi =
sl

qil
1
ε

ε

1 + ε
.

By the definition of cit and plugging qil and θi into the cost function

cif = cit − qilsl
ε

1 + ε
.

Changing variable in Equation (7) gives the result.

qed.

55



A.3 Lemma 2

Lemma 2 (Equivalence participation margin). Assumption 2a is equivalent to Assumption

2b .

PROOF:

Assumption 2a⇔ Assumption 2b:

By Assumption 2a, for all S(q) such that Sl(q) ≥ S(q) ≥ Sk(q), and for all q in [q, q] ,

η =
ft|ql(S(q)|q)S(q)

Ft|ql(S(q)|q)
. (58)

It is equivalent to the following statement: For all ct such that ct is in [Sk(ql), Sl(ql)]

η =
ft|ql(ct|ql)ct
Ft|ql(ct|ql)

. (59)

The solution of this partial differential equation is

Ft|ql(ct|ql) =

(
ct

ct(ql)

)η
, (60)

where ct(ql) is a normalization term.

qed.

A.4 Proof of Proposition 1

The variable ql is the choice of an adopter under the linear subsidy and qk is the choice of

the same adopter under the kinked subsidy.

Lemma 3. The choice under the kinked subsidy qk as a function of the choice under the

linear subsidy ql is

qk(ql) = ql, for ql < qK ; (61)

qk(ql) = qK , for ql ∈ [qK , qKρ−ε]; (62)

qk(ql) = qlρ
ε, for ql > qKρ−ε. (63)
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PROOF:

By Equation (12) and the first order condition of the adopters’ maximization problem

q(s, ql) = ql

(
s

sl

)ε
. (64)

Below the kink point s = sl. Therefore,

qk(ql) = ql, for ql < qK . (65)

Adopters well above the kink point produce the same as under a linear subsidy with marginal

rate s = slρ. It follows that

qk(ql) = qlρ
ε, for ql � qK . (66)

In general, adopters above the kink point reduce their production and produce qlρε. How-

ever, for adopters in the interval ql ∈ (qK , qKρ−ε) it would mean to reduce the production

below qK . As soon as they reduce production to qK , they are not affected by the lower

marginal price any more, and therefore it cannot be optimal to reduce below qK . It follows

that all adopters in this interval chose to produce exactly qK ; they "bunch" at qK .

qed.

Denote the difference in cost of an adopter ql between the kinked and the linear subsidy

by ∆c(ql) = c(qk(ql), ql, ct)− ct.

Lemma 4. The difference in cost ∆c(ql) of adopter ql between the kinked and linear subsidy

is

∆c(ql) = 0, for ql < qK ; (67)

∆c(ql) =
1

1 + ε−1
sl

q
1/ε
l

((qK)1+ε
−1 − q1+ε−1

l ), for ql ∈ [qK , qKρ−ε]; (68)

∆c(ql) =
1

1 + ε−1
slql(ρ

ε+1 − 1), for ql > qKρ−ε. (69)

PROOF:
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By Corollary 1

c(q, ql, ct) = ct +

[
q1+1/ε

q
1/ε
l

− ql

]
sl

1 + 1/ε
. (70)

By definition and Lemma 3

∆c(ql) = c(qk(ql), ql, ct)− ct = c(ql, ql, ct)− ct for ql < qK ; (71)

= c(qK , ql, ct)− ct for ql ∈ [qK , qKρ−ε]; (72)

= c(qlρ
ε, ql, ct)− ct for ql > qKρ−ε. (73)

Use Equation (70) in Equation (71)-(73) to get Equation (67)-(69).

qed.

Define the function R(ql) as the net subsidy of adopter ql under the kinked scheme as a

fraction of the subsidy under the linear scheme:

R(ql) =
Sk(qk(ql))−∆c(ql)

Sl(ql)
. (74)

Lemma 5. The function R(ql) is:

R(ql) = 1, for ql < qK ; (75)

R(ql) =
qK

ql
+

ε

1 + ε

(
1−

(
qK

ql

) 1+ε
ε

)
, for ql ∈ [qK , qKρ−ε]; (76)

R(ql) = (1− ρ)
qK

ql
+

ε

1 + ε

(
1 +

ρε+1

ε

)
, for ql > qKρ−ε. (77)

PROOF:

By definition

R(ql) =
Sk(qk(ql))−∆c(ql)

Sl(ql)
, (78)

which together with Lemma 3 and 4 gives Equation (75)-(77).

qed.
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Lemma 6. The mass of participating adopters under the kinked subsidy as a function of ql
is

R(ql)
ηfl(ql), (79)

where fl is the density of capacity under the linear subsidy.

PROOF:

An adopter participates if its cost is smaller than the received subsidy: c(qk(ql), ql, ct) ≤
Sk(qk(ql)). Using definitions, this is equivalent to ct ≤ Sk(qk(ql))−∆c(ql). Given a certain

ql, the mass of adopters participating as a function of ql is

Ft|ql(Sk(qk(ql))−∆c(ql)|ql)
Ft|ql(Sl(ql)|ql)

fl(ql), (80)

where fl is the hypothetical density of ql under the linear subsidy. By Assumption 2

Ft|ql(ct|ql) =

(
ct

ct(ql)

)η
, for all ct in [Sk(ql), Sl(ql)]. (81)

Note that by revealed preference Sk(ql) ≤ Sk(qk(ql))−∆c(ql). It follows that

Ft|ql(Sk(qk(ql))−∆c(ql)|ql)
Ft|ql(Sl(ql)|ql)

fl(ql) =

(
Sk(qk(ql))−∆c(ql)

Sl(ql)

)η
fl(ql), (82)

which together with the definition of R gives the result.

qed.

PROOF of Proposition 1:

Change variable in Equation (79) using Lemma 3 to derive Equation (15) and (17). Inte-

grate Equation (79) over
[
qK , qKρ−ε

]
to derive Equation (18).

qed.
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A.5 Proof of Proposition 2

By Assumption 3

gf (fl(q)) =
∞∑
p=0

γp
1

p!

(
gq(q)− gq(qK)

)p
, (83)

where gf is the transformation of fl and gq is the transformation of q. I assume the trans-

formation is known. I discuss the choice of transformation in the estimation stage. The

density fl is identified because all γp are identified from the left limit

γp = lim
q−→qK

dpgf (fk(q))
d(gq(q)− gq(qK))p

, for all p. (84)

The elasticities ε and η are jointly identified as the simultaneous solution to Equation

(18) and (17). By Condition 1, the solution is locally unique. It is important that the interval

[q, q] is large enough. It needs to hold that the lower bound q < qK and the upper bound

q > qKρ−ε. The upper bound depends on the unknown parameter. For most applications, it

is safe to assume that ε is bounded, i.e., the elasticity ε is an element of a bounded interval

[0, ε). It follows that it suffices to assume q = qKρ−ε. For unbounded ε, it is necessary to

assume q =∞.

qed.

A.6 Heterogeneous discounting and radiation exposure

The German subsidy for solar panels is paid as a feed-in tariff. A feed-in tariff is a guar-

anteed fixed price for produced electricity. The subsidy payment depends on the installed

capacity and the produced electricity. Electricity production is a function of the adopter’s

specific location and capacity. The location matters, since climate conditions vary across

locations. Moreover, adopters may have heterogeneous discount rates when evaluating fu-

ture streams of income. Discounting matters because adopters take the adoption decision

based on the present discounted value of the income stream produced by the solar panel.
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All these factors transform the decision problem of adopters to

πiv = max
q
{ζ iS(q)− civ(q)}, (85)

and participate if and only if

πiv ≥ cif , (86)

where ζ i is an additional individual-specific factor that depends on individual-specific dis-

counting and location. The derivation of Equation (85) is in Section A.6.1 below. Normal-

ization by ζ i shows the equivalence of Problem (85) and Problem (1). Therefore, the model

outlined in Section 3 encompasses individual-specific discounting and location.

A.6.1 Derivation Equation (85)

A household installing capacity qi produces electricity eit in a given year:

eit = witq
i, (87)

where wit is the efficiency of the panel in year t which depends on weather conditions and

the location. The electricity eit is remunerated according to the following subsidy scheme,

which depends on the installed capacity:

Sk(q, eit) = sl eit, for q ≤ qK ; (88)

Sk(q, eit) = sl eit
qK

q
+ slρeit

q − qK

q
, for q > qK . (89)

It follows that the subsidy payment in a certain year as a function of q is:

Sk(q, wit) = sl wit q, for q ≤ qK ; (90)

Sk(q, wit) = slwitq
K + slρwit(q − qK), for q > qK . (91)

It follows that Sk(q, eit) = witSk(q). An agent evaluates the present discounting value

of all future subsidy payments when taking the adoption decision. The expected present

discounted value of all payments is
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Ei

[
20∑
t=0

βtiwitSk(q)

]
= Sk(q)Ei

[
20∑
t=0

βtiwit

]
= Sk(q)ζ

i. (92)

The subsidy is payed for 20 years and I assume that panels break down after that period.

Note that the discount factor, weather conditions, and the expectations may be agent spe-

cific. I assume agents are risk neutral. This assumption is reasonable for two reasons.

Random weather conditions are observable and we can expect that financial markets are

complete. Risk averse adopters can insure against weather fluctuations. For small adopters

the income fluctuation generated from random solar earnings is very small compared to

other income shocks. We expect them to self insure against these shocks using precaution-

ary savings. The adopter’s decision problem is

πiv = max
q
{ζ iSk(q)− civ(q)}, (93)

and participate if and only if

πiv ≥ cif , (94)

which is Problem (85). Since the individual factor ζ i is multiplicative, normalize Problem

(85) to reduce it to Problem (1).

A.7 Convergence of ln f̂(q), Lemma 7:

Denote by n the sample size and denote by Qι a single observation. The variable qj is

the center of a bin. Denote by N̂j the number of observations in a bin. The variable hj is

the bin-size. It is a function of n and goes to zero as n goes to infinity. The constructed

dependent variable is

f̂(qj) =
N̂j

nhj
. (95)

Lemma 7. f̂(qj) converges to fk(qj) in probability, which is also true in logarithms:

f̂(qj)
p→ fk(qj); (96)

ln f̂(qj)
p→ ln fk(qj). (97)
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The corresponding result holds for B̂.

PROOF:

Write f̂(qj) as

f̂(qj) =
1

n

n∑
ι=1

1[qj − hj/2 ≤ Qι < qj + hj/2]

hj
. (98)

Using the law of large numbers it follows that

1

n

n∑
ι=1

1[qj − hj/2 ≤ Qι < qj + hj/2]

hj

p→ 1

hj

∫ qj+hj/2

qj−hj/2
fk(q)dq. (99)

As hj goes to zero when n goes to infinity

1

hj

∫ qj−hj/2

qj+hj/2

fk(q)dq = fk(qj). (100)

By the continuous mapping theorem it follows that

ln f̂(qj)
p→ ln fk(qj). (101)

The same arguments hold for B̂.

A.8 Bias and bias-correction of ln f̂(qj)

While ln f̂(qj) converges to ln fk(qj), E
[
ln f̂(qj)

]
is not equal to ln fk(qj). Therefore,

using the logarithm introduces a small-sample bias. I use bias correction techniques to

correct for this bias. Instead of directly using ln f̂(qj) I use

̂ln f(qj) = ln f̂(qj) +
1

2N̂j

. (102)

Note that ̂ln f(qj) denotes the bias corrected variable, while ln f̂(qj) denotes the loga-

rithm of the histogram. Using a Taylor approximation of the functions of random variables
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around the expected value of the random variable it follows that

E
[
̂ln f(qj)

]
= ln fk(qj) +O

(
1

N2
j

)
, (103)

where Nj is the expected value of N̂j .

PROOF:

Taylor approximate all functions of random variables in Equation (102) around their ex-

pected values and use fk(qj) n hj = Nj:

̂ln f(qj) ≈ ln fk(qj) +
1

Nj

(N̂j −Nj)−
1

2N2
j

(N̂j −Nj)
2 +

1

3N3
j

(N̂j −Nj)
3+

+
1

2Nj

− 1

2N2
j

(N̂j −Nj) +
1

2N3
j

(N̂j −Nj)
2. (104)

Take the expectation on both sides above. Note that, because N̂j follows a Binomial distri-

bution, E(N̂j −Nj) = 0, E(N̂j −Nj)
2 = Nj , and E(N̂j −Nj)

3 = Nj .

qed.

A.9 Asymptotic normality

The histogram is asymptotically normal:

lim
n→∞

√
nhj(n)

(
f̂(qj)− fk(qj)

)
∼ N(0, fk(qj)). (105)

By the delta method the log-histogram is asymptotically normal:

lim
n→∞

√
nhj(n)

(
̂ln f(qj)− ln fk(qj)

)
∼ N(0,

1

fk(qj)
). (106)

I choose the binning function such that the variance of the log-histogram is constant. Ap-

proximately hj ≈ h0(n) 1
fk(qj)

, and h0(n) decreases slowly with sample size. It follows that

asymptotically

lim
n→∞

√
nh0(n)

(
̂ln f(qj)− ln fk(qj)

)
∼ N(0, 1). (107)
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Write

̂ln f(qj) = ln fk(qj|ε, η) + uj (108)

where

uj ∼ N(0,
1

nh0(n)
). (109)

The errors uj are approximately uncorrelated for n large enough. Chen (2007) shows that

the nonlinear least square estimate of Equation (108), where the nonparametric function

ln fk(qj|ε, η) is replaced by ln fk(qj|ε, η, γP ) and P goes slowly to infinity as sample size

goes to infinity, gives consistent and asymptotically normal estimates ε̂ and η̂.

In practice I use the following binning function

qj = qK(1− jc0(n))−
1
ω , (110)

where qj is the left border of a bin and c0(n) is a constant that goes to zero as n goes to

infinity. The justification for this binning function is the following. The variance of the

log-histogram depends on the number of observations in each bin. Approximately, the log-

histogram has constant variance if the number of observations is approximately constant.

The distribution of observations is close to a Pareto-distribution. It follows that the expected

number of observations in a bin is approximately equal to

φ0

(
qj
qK

)−φ1
− φ0

(
qj+1

qK

)−φ1
, (111)

where φ0 and φ1 are the parameters of the Pareto-distribution. If ω is equal to φ1, it follows

that the above expression is equal to φ0c0(n), which is constant.

A.10 Estimation of the mean squared error

The bias and the variance of the estimates depend on the order of the polynomial P and

the bandwidth b. It is standard in nonparametric estimations to choose a specification that

minimizes the estimates’ mean squared error. As the estimate of the participation margin

η̂ is more sensitive to the specification than the intensive margin ε̂, I use an estimate of

its mean squared error to choose the specification. Denote by z = (P, b) the vector of

specification parameters. The estimate η̂(z, n) is a function of the specification-parameters
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and the sample size n. The mean squared error is defined as

MSE = E(η̂(z, n)− η)2, (112)

where η is the true value. Define

η̃(z) := lim
n→∞

η̂(z, n), (113)

where z is kept constant. Note that if z changes accordingly with sample size, η̃ converges

to the true value η. However, that is not true if the specification is kept constant. In a

sense, η̃ is the true value of the parametric estimation. As I use bias correction methods

for all small-sample biases arising from the parametric part of the estimation, it is true that

Eη̂(z, n) ≈ η̃(z). It follows that the mean squared error is equal to

MSE = E(η̂(z, n)− η̃(z))2︸ ︷︷ ︸
variance

+ (η̃(z)− η)2︸ ︷︷ ︸
bias2

. (114)

The mean squared error is the sum of the "parametric variance" and the estimator’s square-

bias. Note that all parts of the expression are unknown and need to be estimated. The

bootstrap provides an estimate for the variance. The main challenge is that to estimate the

bias, one needs an estimate of η̃ and the true value η. An unbiased and consistent estimate

of η̃ is the estimate η̂ itself. The big challenge is to estimate the true value η. I use an out of

sample estimation on untreated data to estimate the bias. This approach has the advantage

that absent the treatment, the true value of η is known and equal to zero. The bias estimate

becomes simply

b̂ias(η̂) = η̂nt, (115)

where η̂nt is the estimate of the participation margin on untreated data. This approach re-

lies on the assumption that absent the treatment, the treated data is similar to the untreated

data. Intuitively, any effect estimated on the untreated data is a bias due to the specification.

More specifically, the distributions are similar if the two counterfactual distributions of

the treated and untreated data are similar. Suppose there exists a certain order of the series

expansion of the two distributions, such that all coefficients above that order are equal. In

that case, one can use the estimated coefficient on the untreated data to estimate the bias on
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the treated data.19 Mathematically, by Assumption 3

gf (f
x
l (q)) =

∞∑
p=0

γxp
1

p!

(
gq(q)− gq(qK)

)p
, (116)

where x is either t (treated) or nt (untreated) and denotes the respective counterfactual

density. Assume there exists an order j∗ such that for all j ≥ j∗ the coefficients are equal:

γtj = γntj . In this case, the estimated coefficient η̂nt is an estimate for the bias of the

coefficient η̂t. I use observations from 2000 to 2003 and observations far from the kink

points as untreated data. The details of the estimation are in Section A.12.

A.11 The choice of the series expansion

In this section, I discuss the choice of the series extension for fl(.). By Assumption 3

gf (fl(q)) =
∞∑
p=0

γp
1

p!

(
gq(q)− gq(qK)

)p
, (117)

where gf (.) is the transformation of fl(.) and gq(.) is the transformation of q. The goal is

to find transformations gf (.) and gq(.) such that the Series (117) converges fast. In order to

choose the transformations, I regress a low order approximation of the above series on the

observed histogram of capacities on pre-treatment data and on treated data excluding the

kink points.

Formally, I regress

gf (f̂(qj)) =
P∑
p=0

γp
1

p!

(
gq(qj)− gq(qK)

)p
+ uj, (118)

where uj is the error term. I run the regression for P = 1 and P = 2, which gives a low

order approximation of the Series (117). I consider three combinations of transformations:

1. id-id transformation: gf (.) and gq(.) are equal to the identity function (no transfor-

mation).
19An additional problem arises from eventual nonlinearities in the estimation. Strictly speaking, the above

statement is only correct for linear estimations. However, because my estimation is close to linear, I neglect
this problem.
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2. log-id transformation: gf (.) is equal to the natural logarithm and gg(.) is equal to the

identity function.

3. log-log transformation gf (.) and gq(.) are equal to the natural logarithm.

I run the estimations on the pre-treatment data containing observations from 2000 to

2003. I use data in the capacity-range 10 to 90, because it corresponds to the optimal

bandwidth selected in Section A.12. For the treated data, I exclude capacities close to the

kink points. Consistent with the optimal bandwidths selected in Section A.12, I run the

regression on the intervals [10, 26.5], [35, 95], and [105, 4000]. I use R2 as a measure of fit.

Tables 8-11 summarize the results.

Table 8: R2 for untreated data in the years 2000-2003 and capacity range [10, 90]

Order of the series P Transformation R2

P=1 id-id 0.4938
log-id 0.8120
log-log 0.8811

P=2 id-id 0.6911
log-id 0.8769
log-log 0.8812

Note: Number of bins: N=57. Number of observations: n=4,979.

Table 9: R2 for treated data in the years 2004 to 2008 and capacity range [10, 26.5]

Order of the series P Transformation R2

P=1 id-id 0.3254
log-id 0.3647
log-log 0.3982

P=2 id-id 0.4265
log-id 0.4205
log-log 0.4343

Note: Number of bins: N=131. Number of observation: n=73,693.
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Table 10: R2 for treated data in the years 2004 to 2008 and capacity range [35, 95]

Order of the series P Transformation R2

P=1 id-id 0.5631
log-id 0.7659
log-log 0.7928

P=2 id-id 0.7031
log-id 0.7966
log-log 0.7968

Note: Number of bins: N=210. Number of observation: n=10,263.

Table 11: R2 for treated data in the years 2004 to 2008 and capacity range [105, 4000]

Order of the series P Transformation R2

P=1 id-id 0.2323
log-id 0.3655
log-log 0.5444

P=2 id-id 0.3630
log-id 0.4679
log-log 0.5535

Note: Number of bins: N=63. Number of observation: n=1,515.

The log-log transformation has the highest measure of fit for all specifications. It out-

performs the other transformations particularly well for P = 1 and when the capacity-range

is large.

A.12 Optimal specification

I use the estimates from the pooled sample of the years 2004 to 2008 for the counterfac-

tual analysis. Therefore, I choose the optimal specification for this time-range. The two

kink points are at 30 kWp and 100 kWp. For simplicity, I use this specification also for

the yearly estimates in Table 3. After the histogram’s visual inspection, I choose the two

bunching intervals [26.5, 31.5] and [95, 102.5]. The intervals are asymmetric because there

is more non-sharp bunching before the kink point than after. I test for the robustness of this

choice in section A.12.4

As discussed in Section A.10, for each kink point, I need a range of untreated data to

estimate the biases of the main estimates. A natural choice is observations in the years
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2000 to 2003. In these years, the subsidy was linear. Therefore, there should be no de-

tectable impact of the kink on the distribution of capacities when estimating the model.

Any detected impact is an estimate of the bias coming from the specification. This bias is

a valid estimate for the main estimate’s bias as long as the counterfactual distributions are

similar in the sense discussed in Section A.10. I test the similarity of the two distributions

in Section A.12.3.

For the kink point a 100 kWp, the pre-treatment data is not a satisfactory choice to

estimate the bias. It is due to two reasons. First, the number of observations above 100

kWp is very low in these years. Second, in the years 2000-2003, I do not observe if a solar

panel is installed on a rooftop or the ground. From 2004 onwards, I observe where a panel

is installed. I do only consider rooftop panels in my analysis. Ground panels are only a

very small share of overall installations. Also, the subsidy for ground panels is linear in all

years. In 2004, I observe that close to capacity 30, only very few panels are ground panels.

Therefore, the fact that the sample from 2000-2003 contains ground panels does not pose

a big problem for using these years to estimate the bias discussed above. However, this is

not true for capacities close to 100 kWp. There is a significant number of ground panel

installations exactly at 100 kWp in the years after 2004. It indicates that there is round

number bunching for ground panels. For these reasons, I cannot use observations around

100 kWp in the years 2000-2003 for the estimation of the bias.

Alternatively, I will use observations around a point similar to 100 kWp in the years

2004-2008. On the one hand, for the counterfactual distribution to be similar, the point

should be close enough to 100 kWp. On the other hand, it should be far enough from 100

to not include observations affected by the kink. I choose the point 250 kWp, because it

satisfies these requirements. Like the point 100 kWp, the point 250 kWp is a focal point

(it is a quarter of 1,000 kWp). As discussed in Section A.10, the estimate of the bias is

valid if the higher-order terms in the counterfactual distribution are equal above a certain

order of the series. For observations from the same sample at different points, this property

can only be true if the terms above a certain order a zero. I test this hypothesis in Section

A.12.3.
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A.12.1 The binning function

As discussed in Section A.9, the binning function should guarantee a constant variance and

sufficiently many observations in each bin. I use the binning function in Equation (110). To

select its parameters, I preselect a maximal range of bandwidths for the analysis. For the

estimation at 30 kWp, I use a maximal bandwidth of [9.5, 95]. The interval is symmetric

around 30 in the logarithmic scale, and the upper limit is such that the sample does not

contain observations from the second kink point at 100.

For the estimation at 100 kWp, I use the interval [42, 1600]. The proportional interval

around 250 kWp is [105, 4000].20 The lower limit for the interval around 250 is 105 - and

therefore in proportion 42 around 100 - to keep a distance from the next kink point at 100.

The upper limit is 4,000 - and therefore in proportion 1,600 - because there are only very

few observations above 4,000 kWp. To increase sample size, I use asymmetric intervals.

In the next step, I choose the size of the bin at the kink point h0 and the scaling parame-

ter ω. I choose the two parameters such that there are at least five observations in each bin,

and the variance of the residuals of an auxiliary estimation is constant. By Equation (103),

five observations guarantee that the bias introduced by the logarithm is of the order 1
25

. The

procedure gives the following specification:

Table 12: Selected bin size h0 and scaling parameter ω.

Years Interval Bin size h0 Scaling parameter ω
2004-2008 [9.5, 95] 0.18 -0.35

[42, 1600] 1.7 1.2
[105, 4000] 10 1.5

2000-2003 [9.5, 95] 1.2 0.35

Note: The table shows the selected bin size h0 and scale parameter ω of the binning func-
tion in Equation (110). The parameters guarantee a minimum of 5 observations in each
bin and a variance that is approximately constant.

A.12.2 Estimates of the mean squared error

As discussed above, I estimate the mean squared error by using the variance estimate from

the treated sample and the bias estimate from the untreated sample. To estimate the vari-

ance, I use the nonparametric bootstrap. The untreated sample for the estimation at 30
20 42 250

100 = 105 and 1600 250
100 = 4000.
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kWp is the sample with the same bandwidth in the years 2000 to 2003. Table 13 shows the

estimated mean squared error (MSE) for different bandwidths and orders P of the series.

Table 13: Estimated mean squared error of η̂30

Bandwidth MSE, P=1 MSE, P=2 MSE, P=3
[16, 55] 113 14,722 1,013
[15, 60] 504 6,906 457
[14, 65] 146 1,491 1,176
[13, 70] 299 300 184
[12, 75] 195 142 598
[11, 80] 149 572 209

[10.5, 85] 13 1,230 2,479
[10, 90] 1.8 1,079 2,501
[9.5, 95] 546 546 3,831

Note: The table reports the mean squared error (MSE) of η̂30 for different bandwidths b and
orders of the series P . The mean squared error is the lowest for P = 1 and b = [10, 90].

The optimal bandwidth for the estimation at 30 kWp is [10, 90]; the optimal order of

the series is P = 1.

For the kink at 100 kWp, I use data around the point 250 kWp as untreated data. I use

a proportional bandwidth for the estimation by multiplying the lower bound and the upper

bound of the bandwidth used at 100 with 250
100

. Table 14 shows the estimated mean squared

error (MSE) for different bandwidths and orders P of the series.

Table 14: Estimated mean squared error of η̂100

Bandwidth MSE, P=1 MSE, P=2 MSE, P=3
[67, 150] 5,782 36,975 46,739
[50, 200] 1,544 16,171 20,575
[42, 400] 3,276 7,952 11,771
[42, 700] 5,528 1,973 10,743

[42, 1000] 5,904 1,434 15,163
[42, 1300] 4,746 544 163
[42, 1600] 4,765 569 226

Note: The table reports the mean squared error (MSE) of η̂100 for different bandwidths b
and orders of the series P . The mean squared error is the lowest for P = 3 and b =
[42, 1300].

The optimal bandwidth for the estimation at 100 kWp is [42, 1300]; the optimal order

72



of the series is P = 3.21

For both kink points, the optimal bandwidth is relatively large, and the series’ optimal

order is low. It shows that the counterfactual distribution is very close to a Pareto distribu-

tion.

A.12.3 Test untreated data

For the estimation at 30 kWp, the optimal order of the series is P = 1. To test if the un-

treated counterfactual in the years 2000 to 2003 can be used to estimate the estimate’s bias

in 2004 to 2008, I test if the second-order parameters γt2 and γnt2 of the two series are not

significantly different in both samples. The indices t and nt denote the parameter of the

treated and untreated data, respectively. I restrict the elasticities to their optimally estimated

values and use a series of order P = 2 in an additional estimation. I cannot find a significant

different between the two estimates: γ̂t2 − γ̂nt2 = 0.125 (0.09). In brackets is the standard

error of the difference. The p-value for testing the null hypothesis H0 : γt2 − γnt2 = 0 is

0.184. The hypothesis cannot be rejected.

As the discussed above, to use the data around 250 kWp, the last significant parameters

in both series need to be equal. Table 15 shows the estimates of γ for the treated and the

untreated data using the optimal specification:

Table 15: Estimates of the series parameters γ for the estimation at 100 kWp

Kink Point γ̂1 γ̂2 γ̂3
100 kWp (treated) -2.8 (0.06) -0.06 (0.06) 0.03 (0.04)

250 kWp (untreated) -2.9 (0.4) 0.2 (0.3) 0 (0.1)

Note: The table shows the estimates of the parameters of the series γ̂. The last significant
estimates in the two series need to be equal to use data from the point around 250 kWp
as untreated data for the estimation at 100 kWp. The table shows that the last significant
parameter in both series is γ̂1. The two estimates of γ̂1 are not significantly different from
each other.

The two parameters γ̂1 are not significantly different from each other. All other param-

eters are not significantly different from 0. The distribution fulfils the requirement.

21Note that for the estimation of the variance the estimate η̂ is restricted to be positive. Theoretically, the
elasticity η cannot be negative. Therefore, the restriction reduces the variance of the estimate.
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A.12.4 Robustness bunching interval

This section reports the robustness of the estimates to changes in the bunching interval.

Table 16: Estimates at 30 kWp for various bunching intervals

Bunching Window η̂ ε̂
[25.50, 32.250] 65.9 (1.3) 4.57 (0.11)
[25.75, 32.125] 65.1 (1.2) 4.76 (0.12)
[26.00, 32.000] 65.3 (1.6) 4.71 (0.12)
[26.25, 31.875] 64.8 (1.4) 4.78 (0.12)
[26.50, 31.750] 65.0 (1.4) 4.76 (0.11)
[26.75, 31.625] 65.8 (1.3) 4.60 (0.10)
[27.00 31.500] 65.2 (1.3) 4.72 (0.10)
[27.25, 31.375] 66.6 (1.4) 4.35 (0.10)
[27.50, 31.250] 67.3 (1.4) 4.22 (0.09)

Note: The table shows estimates of the two elasticities for different bunching intervals. The
estimates do only react weakly to changes in the bunching interval.

The estimates at 30 kWp are robust to changes in the bunching interval.

Table 17: Estimates at 100 kWp for various bunching intervals

Bunching Window η̂ ε̂
[90, 105.0] 0.1 (3) 5.8 (1.0)
[91, 104.5] 0 (1) 5.5 (0.9)
[92, 104.0] 0 (1) 5.5 (0.9)
[93, 103.5] 0.1 (2) 5.6 (0.9)
[94, 103.0] 0.9 (8) 4.4 (0.8)
[95, 102.5] 1.1 (10) 4.4 (0.8)
[96, 102.0] 0.9 (8) 4.5 (0.7)
[97, 101.5] 0.6 (6) 4.9 (0.6)
[98, 101.0] 0.6 (6) 4.9 (0.6)

Note: The table shows estimates of the two elasticities for different bunching intervals. The
estimates do only react weakly to changes in the bunching interval.

The estimates at 100 kWp are robust to changes in the bunching interval.

74



A.13 Estimation aggregate data years 2004 to 2008

The optimal specification, derived in Section A.12, for the estimation at 30 kWp is: bin-

size h0 = 0.18, scaling parameter ω = −0.35, bandwidth b = [10, 90], bunching window

[26.5, 31.74], and series order P = 1. Figure 21 shows the histogram with the estimated

model and the counterfactual. The results are in Table 4.

Figure 21: Histogram in the years 2004 to 2008 at 30 kWp with estimated model and
counterfactual
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Note: The x-axis shows the normalized logarithm of capacity. The y-axis shows the log-
arithm of the density. The red line marks the kink point. The estimation minimizes the
distance between the data in black and the model in blue.
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The optimal specification, derived in Section A.12, for the estimation at 100 kWp is:

bin-size h0 = 1.7, scaling parameter ω = 1.2, bandwidth b = [42, 1600], bunching window

[95, 102.5], and series order P = 3. Figure 22 shows the histogram with the estimated

model and the counterfactual. The results are in Table 4.

Figure 22: Histogram in the years 2004 to 2008 at 100 kWp with estimated model and
counterfactual
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Note: The x-axis shows the normalized logarithm of capacity. The y-axis shows the log-
arithm of the density. The red line marks the kink point. The estimation minimizes the
distance between the data in black and the model in blue.
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A.14 Placebo test 100 kWp

I run the placebo test for the estimation at 100 kWp on the data around 250 kWp in the

years 2004 to 2008. For a discussion of this choice, see Section A.12.

Figure 23: Histogram at 250 kWp with estimated model (placebo)
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Note: The figure shows the placebo test. The x-axis shows the normalized logarithm of
capacity. The y-axis shows the logarithm of the density. The red line marks the kink point.
The model in blue is equal to the counterfactual in purple. The estimates are not significant.

Table 18: Results for the untreated data at 250 kWp

Data ε (σε) η (ση)
250 kWp 0 (1) 0 (99)

Note: The table shows the results of the placebo test. The standard errors are in brackets.
The estimates are not significant.

Both estimates are insignificant.
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A.15 The general welfare function and the optimal subsidy

Assume the utility of an adopter is equal to

u ((S(q)− cv(q, ql)− cf )1 (S(q)− cv(q, ql) ≥ cf ) + y − T (y)− cl(y, a)) , (119)

where u(.) is increasing and concave, S(.) is the subsidy function, cv(q, ql) is the vari-

able cost of type ql to adopt capacity q, and cf is the fixed cost. The variable y denotes

other income such as labour income. The function T (.) is an income tax, and cl(y, a) is

the cost of producing income y for an agent with ability a. The type θ of an adopter is

three dimensional: θ = (ql, cf , a) with density fθ(θ). The symbol 1(.) denotes the indica-

tor function. Agents only adopt if they make positive profit. Note that q is a function of

adopter type ql. I will not explicitly denote this dependence to avoid an overloaded nota-

tion. The adopter type ql contains all characteristics which determine the intensive margin

decision. In particular, it is determined by the characteristics of the adopter’s roof and the

adopter’s preference for using her roof. Income y is a function of ability a. Again, I will

not explicitly denote this dependence. For simplicity, I use a quasi-linear utility function.

It rules out income effects and complementaries between income and solar adoption.

Consider the following objective function of the government:

max
S(.)

∫
G
(

(S(q)− cv(q, ql)− cf )1 (S(q)− cv(q, ql) ≥ cf ) +

+ y − T (y)− cl(y, a)
)
fθ(θ)dθ + V (Q), (120)

such that∫
q 1 (S(q)− cv(q, ql) ≥ cf ) fθ(θ)dθ = Q, (121)

and∫
T (y)− S(q)1 (S(q)− cv(q, ql) ≥ cf ) fθ(θ)dθ −R = 0. (122)

The variable Q denotes the aggregate capacity; V (.) is the government’s value of aggre-

gate capacity. The function G(.) weights agents’ utilities and represents the redistributive

preferences of the government. It is increasing and concave. In the special case where

G(.) = u(.), the government is utilitarian. Equation (122) is the government’s budget con-

straint. The variable R denotes other government’s spending.
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Objective (120) assumes that the government sets the subsidy S(q) independently of

income y. This assumption is not without loss of generality. In general, a subsidy S(q, y)

that depends on adopted capacity and income may achieve higher social welfare than a sub-

sidy that does only depend on capacity. However, I follow this approach for three reasons.

First, I do not observe the income of adopters. Joint information about adoption decisions

q and income y is necessary to solve for the optimal joint subsidy S(q, y). Due to this data

limitation, I will focus on the optimal separable problem, where subsidy payments are only

a function of capacity q. Second, the observed subsidy is independent of income. Arguably,

a subsidy conditional on income is complicated to implement. Therefore, the government

did choose a subsidy that only depends on capacity q. Third, Problem (120) is a multi-

dimensional screening problem. The type parameter determining the choice of capacity q

and income y is two dimensional. Theoretically, these problems are difficult to solve be-

cause local incentive-compatibility constraints are, in general, not sufficient to determine

the optimal schedule (see Rochet and Chone (1998) for a detailed discussion). Treatment

of the multidimensional screening problem is an interesting direction for future research

beyond this paper’s scope. I do not make any assumption on the income tax T (y) except

for the requirement that the government’s budget is balanced. In particular, the income tax

may be optimal.

A.15.1 Derivation of the optimality condition

I use a mechanism design approach to solve for the optimal subsidy. Denote by q(ql) the

capacity q produced by type ql. Define the variable profit πv(ql) of type ql as

πv(ql) = S(q(ql))− cv(q(ql), ql). (123)

The government chooses functions q(.) and πv(.) instead of choosing S(.) directly. The in-

terpretation is as follows. Imagine the government asks an agent to reveal her type ql. The

agent reports the type; the government asks the agent to produce q(ql) and pays variable

profit πv(ql) as a compensation. An incentive-compatible mechanism are two functions

q(.), πv(.), under which each agent has the incentive to truthfully report her type. There-

fore, the objective of the government is finding two such functions, which give the highest

payoff. Using standard mechanism design, a mechanism is incentive compatible if and
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only if

π′v(ql) = −∂cv(q(ql), ql)
∂ql

, (124)

and q(.) non-decreasing. As standard in the literature, I neglect the monotonicity constraint

on q(.). It can be verified ex-post. Equation (124) defines a function q(π′v). Therefore, the

government’s problem reduces to choosing a function πv(.):

max
πv(.)

∫
G ((πv − cf )1 (πv ≥ cf ) + y − T (y)− cl(y, a)) fθ(θ)dθ + V (Q), (125)

s.t.∫
q 1 (πv ≥ cf ) fθ(θ)dθ = Q, (126)

and∫
T (y)− (πv + cv(q, ql))1 (πv ≥ cf ) fθ(θ)dθ −R = 0. (127)

For better readability, I suppress the arguments of the functions πv(.), π′v(.), and q(.). I

solve Problem (125) by using calculus of variation.

A.15.2 The general optimality condition

It follows that in the optimum∫ ∞
ql

[ ∫ πv

0

(∫ ∞
0

G′(πv − cf + y − T (y)− cl(y, a))

λ
f(a|cf , q̃l)da− 1

)
f(cf |q̃l) dcf+

+

(
V ′(Q)

λ
q − πv − cv(q(π′v), ql)

)
f(πv|ql)

]
f(q̃l)dq̃l =

=

(
V ′(Q)

λ
− ∂cv(q, ql)

∂q

)
dq

dπ′v
F (πv|ql)f(ql) (128)

and(
V ′(Q)

λ
− ∂cv(q, ql)

∂q

)
dq

dπ′v
F (πv|ql)f(ql) = 0 for ql = 0 and ql =∞ . (129)

The variable λ is the marginal cost of public funds. Equation (128) is a second order

differential equation in the function πv(.) with two boundary conditions (129). The optimal

rent πv(.) is the solution to this system.
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A.15.3 The Pigouvian subsidy (i.e., the Samuelson rule)

The Pigouvian subsidy is the linear subsidy where S ′(q) = V ′(Q)
λ

for all q. This solution is

also known as the Samuleson rule (Samuelson, 1954). It is optimal only if∫ πv

0

(∫ ∞
0

G′(πv − cf + y − T (y)− cl(y, a))

λ
f(a|cf , q̃l)da− 1

)
f(cf |q̃l) dcf = 0,

(130)

for all capacity types ql. The see this result, guess and verify the solution, using the first

order condition of adopters ∂cv(q,ql)
∂q

= V ′(Q)
λ

. However, in general, Condition (130) does

not hold. The condition depends in particular on the marginal social weight of adopters

G′(.) relative to the marginal cost of public funds λ. If the possibility to adopt solar panels

is positively correlated with ability a, and the tax T (y) does not fully equalize marginal

social welfare weights, then Condition (130) does not hold. The term to the left of the

condition is smaller than zero in this case. Importantly, in general, even an optimal income

tax does not equalize marginal social welfare weights. Consider the optimality condition

for the optimal income tax. Following Saez (2001), I solve for the optimal tax using the

variational approach:∫ ∞
y

(
1−

∫
G′ ((πv − cf )1 (πv ≥ cf ) + ỹ − T (ỹ)− cl(ỹ, a−1(ỹ)))

λ
×

× f(cf , ql|ỹ)dcfdql

)
f(ỹ)dỹ + T ′(y)

dy

dT ′
f(y) = 0 (131)

As long as there are behavioural responses to taxation, the government does not equalize

marginal welfare weights G′(.).

A.15.4 The relation to the simple objective (35)

Consider redistributive preferences G(.) such that the marginal welfare weight for income

above a certain level y is zero. Additionally, assume only agents with income higher than y

can adopt solar panels. For instance, this could be the case since only agents with income

higher than y own buildings. It follows that Condition (130) is equal to −1. Importantly,

only high-income agents adopt solar panels because of the correlation of earning ability a

and capacity type ql, not because of an income effect. There are no income effects since I

use quasi-linear preferences. These preferences and correlation patterns, together with the
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assumption that the government values aggregate capacity only up to the capacity goal QT ,

reduce Problem (120) to Problem (35). For example, it is the case if the redistributive pref-

erences are Rawlsian, and households with the lowest incomes cannot adopt solar panels.
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