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1 Introduction

Technology giants often acquire innovative start-ups with high growth potential.1 To-

day, many such acquisitions escape antitrust scrutiny, or are cleared, because merger

control focuses on the size of the firms at the time of the takeover, and these target

firms are often still small.2 In the last decade, however, this established approach has

increasingly been called into question. Critics argue that it is ill suited to innovative

industries, where the acquisition of small entrants may impede Schumpeterian com-

petition (i.e., the replacement of market leaders by new firms) and stifle innovation.3

Advocates of the permissive policy counter that the prospect of such buyouts height-

ens the incentive to innovate for small enterprises that lack the assets required to

effectively bring their innovations to the market —the so-called invention-for-buyout

effect.4

The entrenchment of monopoly. To contribute to this debate, we propose

a Schumpeterian model of repeated innovation and acquisition in which acquisi-

tions have both pro- and anti-competitive consequences. The former stem from the

invention-for-buyout mechanism, while the latter derive from a mechanism that we

define as entrenchment of monopoly.

The entrenchment-of-monopoly effect occurs when an acquisition increases the

incumbent’s market dominance, its competitive advantage over potential challengers.

This effect may follow from different specific mechanisms, but in general tends to

arise when the incumbent’s strength depends on its past levels of activity. This may

be due to such factors as consumer inertia, dynamic economies of scale, exclusive

access to more and better data, and the like, all of which imply that acquisitions

may strengthen the incumbent’s market dominance in the future by increasing its

1Recent examples include Facebook’s acquisition of WhatsApp and Istagram, Google’s acqui-
sition of Youtube and Waze, and Microsoft’s acquisition of Linkedin. These prominent cases are
just the tip of the iceberg. Focusing only on the “big five”, Motta and Peitz (2021) report 42
acquisitions by Amazon, 33 by Apple, 21 by Facebook, 48 by Google, and 53 by Microsoft in the
period 2015-2020.

2Wallmann (2019) refers to acquisitions that slip under the radar of antitrust agencies as “stealth
consolidation.”

3See e.g. Cremer et al. (2019), Furman et al. (2019), Scott Morton et al. (2019).
4After Rasmusen’s (1988) “entry-for-buyout.”
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size today. This obstructs the entry of future inventors, reducing their incentives to

innovate. And this is the case even if future inventors are acquired in their turn,

because the entrenchment of monopoly worsens their outside options and therefore

reduces the share of innovative rents they can negotiate in the bargaining with the

incumbent over the price of acquisition.

The results. Our main result is that the effects of acquisitions depend on the time

horizon. In the short run, they heighten the incentive to innovate because of the

invention-for-buyout effect. In the longer run, however, if the entrenchment effect

is strong enough they reduce both the rate of innovation and consumers’surplus.

In other words, the buyout effect dominates in the short run, but the entrenchment

effect may prevail in the long run.

We also show that the optimal policy on acquisitions may be state dependent:

permissive as long as market dominance is weak and restrictive once repeated acqui-

sitions have made it too strong.

Policy implications. Our results carry significant implications for policy. Method-

ologically, they imply that acquisitions should not be assessed singly, in isolation.

This myopic approach, which in our model would produce a lenient policy, is generally

sub-optimal. Instead, forward-looking policymakers should consider the cumulative

dynamic effects of alternative policy rules.5

On substantive grounds, our analysis offers a theory of harm that can be used

to block acquisitions that might otherwise go unchallenged. In particular, prohibit-

ing acquisitions benefits consumers if policymakers are suffi ciently patient and the

entrenchment effect suffi ciently strong. The analysis also clarifies the role of other

factors, such as the inventors’bargaining power vis-à-vis the incumbent, or the speed

with which innovations are imitated.

The literature. Although the risk of entrenchment of monopoly is often cited in
5This marks an important difference with respect to Nocke and Whinston (2010), where a myopic

merger policy based on consumer surplus as a welfare criterion is optimal also in a dynamic setting
where a series of mergers may be proposed over time. The reason for this difference is that the
entrenchment effect makes our model intrinsically more dynamic: acquisitions affect not only the set
of active firms but also future demand, degree of market dominance, and the incentives to innovate.
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the acquisition policy debate,6 to the best of our knowledge this paper is the first

formal analysis of this possibility.7 Previous research on the impact of acquisitions

on innovation8 has either focused on static models of isolated innovations or else

posited that the degree of market dominance is time-invariant. In these settings, the

entrenchment effect cannot arise.

Models of isolated innovations are the simplest analytical setting in which the

invention-for-buyout effect can be demonstrated: see, for instance, Mason and Weeds

(2013), Phillips and Zhdanov (2013), and Letina et al. (2020).9 Static models have

also been used to uncover various adverse effects of acquisitions. In an important

contribution, Cunningham et al. (2021) have shown, both theoretically and empir-

ically, the profitability of “killer acquisitions,” in which the new owner suppresses

one or more research projects initiated by the takeover target in order to prevent the

cannibalization of its own market. In a similar vein, Kamepalli et al. (2020) suggest

the possibility of a “kill zone,”where entrants, whose innovations would challenge

the incumbent’s dominance, are discouraged by the threat of an aggressive reaction.

Our analysis abstracts from these effects.

Static models have also shown that acquisitions can have an impact not only on

the rate but also on the direction of technological progress. In particular, acquisitions

can affect the diversity of research projects (Letina et al., 2020), whether innovators

target substitutes or complements of the incumbent’s product (Shelegia and Motta,

2021; Dijk, Moraga-Gonzàlez and Motchenkova, 2021), and whether they target the

product of the market leader or of the follower (Bryan and Hovenkamp, 2020).

The present paper, instead, forms part of the strand of the literature analyzing

antitrust policy in dynamic models of repeated innovation. The pioneering contri-

bution here is Segal and Whinston (2007). Below, we discuss the differences with

6See, for instance, Scott Morton et al. (2019) and Bryan and Hovenkamp (2020).
7In recent independent work, Fons-Rosen et al. (2022) have developed an endogenous growth

model that bears some resemblance to ours. However, their model cannot be solved analytically
and thus they resort to numerical analysis.

8There is also an extensive literature on the impact of mergers on innovation: see Bourreau et
al. (2021) for an excellent synthesis. Unlike that on the acquisition of start-ups, this literature
studies mergers that take place before investment in R&D is chosen.

9There can also be further positive effects: for example, acquisitions may relax the inventors’
financial constraints, as in Fumagalli et al. (2021).
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their model at some length; for now, suffi ces it to say that they do not consider

acquisitions and assume that the degree of market dominance is constant over time.

This latter assumption is also made by Cabral (2018, 2021). He distinguishes be-

tween incremental and radical innovations. For incremental innovations, the invention-

for-buyout effect implies that acquisitions spur innovation. Radical innovations, how-

ever, are different: the buyout effect is nil, insofar as these innovations would not

be transferred to the incumbent anyway. Still, acquisitions are not neutral because

innovators may choose which type of innovation to target. When acquisitions are

permitted, incremental innovations may therefore crowd out radical ones. Clearly,

this crowding-out mechanism, which may reduce the overall rate of innovation, is

different from the entrenchment of monopoly.

Another examination of the invention-for-buyout mechanism is Katz (2021). He

notes that acquisitions increase the entrant’s payoff; however, the incentive to in-

novate is determined by the rate with which the payoff increases with the size of

the innovation, which in principle may either increase or decrease with acquisitions.

This observation also applies to our model, where, however, the buyout effect in itself

implies that acquisitions would increase both the level and the slope of the inventor’s

profit.

While we can solve our model in closed form and derive our results analytically,

other papers have used numerical analysis to study a richer industry dynamics. Most

existing computational dynamic models however do not feature the entrenchment

effect. The results they produce are driven, essentially, by the buyout effect.10

Structure of the paper. In the next section, we outline a tractable model of

repeated innovation and acquisitions where the entrenchment of monopoly is due to

consumer inertia. Section 3 derives the equilibrium. Section 4 examines the effects

of acquisitions on the rate of innovation. Sections 5 and 6 analyze the optimal acqui-

10In particular, Hollenbeck (2019) examines the trade-off between the static allocative effects
of acquisitions, which are always negative, and the dynamic effects via level of innovation, which
in his model are always positive due to the buyout effect. As a result, he finds that acquisitions
are welfare-reducing in the short run but can be positive in the long run. Mermelstein et al.
(2020) consider a model where entry may be ineffi cient because of economies of scale in production
and investment. The invention-for-buyout effect implies that acquisitions facilitate entry, but the
ineffi ciency of entry implies that a restrictive policy may be optimal.
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sition policy when antitrust authorities adopt non-contingent and state-contingent

policy rules, respectively. Section 7 discusses a different mechanism that may under-

pin the entrenchment effect. Section 8 summarizes and concludes. The proofs are

set out in online Appendix A.

2 The model

We propose a tractable model of repeated innovation, where in the absence of ac-

quisitions, incumbents would be systematically replaced by new innovators. The

possibility of acquiring these challengers may however lead to the persistence of

monopoly.

The model is tailored to industries where the ability to innovate is diffused, so

that it is unlikely that the same firm will innovate repeatedly, or that the successful

innovator can be identified before the innovation is developed. Once the innovation

has been developed, on the other hand, the incumbent can identify the potential

challenger precisely.11

These features are embedded in a fully specified model of the industry, whose

other components are kept as simple as possible in order to obtain closed-form solu-

tions.

2.1 Demand

In each period t = 1, 2, ..., a vertically differentiated product is purchased by a mass

of infinitely-lived homogeneous consumers (normalized to 1), who may demand either

0 or 1 unit. The net utility from one unit of a product of quality qi purchased at

price pi is

U i
t = qit − pit, (1)

11In reality, incumbents often acquire inventors when they are still so small that it is diffi cult
to gauge whether they actually pose a threat for leadership. They may therefore acquire a large
number of start ups, in the hope of catching the few ones that have the potential to become the
new market leaders before they get too strong.
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where the willingness to pay for quality is also normalized to 1. The utility of not

purchasing is normalized to 0 (these normalizations entail no loss of generality).

2.2 Innovation, entry and market structure

In each period t = 1, 2, .., one outsider, drawn at random from a number of potential

innovators, gets an idea for improving the existing technology qt−1. This outsider

then becomes the period-t inventor by developing the idea into an innovation, i.e.,

a product of quality qt > qt−1.12 The inventor chooses the magnitude of innovation

∆t = qt − qt−1 so as to maximize its profits. The cost of raising quality by ∆t,

C(∆t), is independent of the current level qt−1 and is quadratic in ∆t. With another

innocuous normalization, we can write:

C(∆t) =
1

2
∆2
t . (2)

After developing its invention, the inventor firm qt enters the market. In the

absence of acquisitions, it is the technological leader but faces competition from

the incumbent (i.e., inventor qt−1). In period t + 1, inventor qt becomes the new

incumbent and competes with inventor qt+1.

As time passes, inventions can be imitated by a competitive fringe. We assume

that the innovation is used exclusively by the inventor for two periods and afterwards

can be imitated freely. (For example, the invention might be protected by a patent

that lasts for two periods.) As a consequence, in the absence of acquisitions inventor

qt−2 is absorbed by the competitive fringe in period t. Thus, in each period t there are

three types of firm: an entrant (E), which supplies a product of quality qEt = qt, an

incumbent (I) with quality qIt = qt−1, and a competitive fringe (F ) with qFt = qt−2.13

12With a modest abuse of notation, we denote by qt both the quality and the identity of inventor.
13One can allow imitation to be faster, say because intellectual property protection is imperfect.

For example, continuing to assume that invention qt is fully protected in period t and can be
imitated freely in period t + 2, the innovation could be imitated partially in period t + 1. In this
case, the competitive fringe’s quality would be qFt = qt−2 + ϑ(qt−1 − qt−2), where the parameter
ϑ is an index of the speed of imitation, or an inverse index of the strength of intellectual property
protection. When ϑ = 1, the competitive fringe imitates the innovation in just one period, whereas
the baseline case in which it takes two periods is re-obtained for ϑ = 0. With this more general
formulation, the only change in our formulas is that the discount factor δ is replaced by δ(1 − ϑ).
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The unit production cost c is independent of quality and is normalized to 0.

2.3 Market dominance

Following Segal and Whinston (2007), we assume that although it is technological

laggard, the incumbent may have acquired some other competitive advantage, owing,

for instance, to such factors as consumer inertia, intertemporal network externalities,

dynamic economies of scale, or exclusive access to more and better data. Conversely,

entrants may face entry hurdles; for example, some consumers may be unwilling to

try new products, or may not even be aware of their existence.

We differ from Segal and Whinston (2007), who assume that the incumbent’s

dominance is time-invariant, by allowing it to change over time as a function of the

industry’s past history. In particular, in our model dominance is strengthened by

acquisitions, which can therefore lead to the entrenchment of market power.

To be specific, we assume that demand is not entirely contestable:14 in each

period, a fraction µt of consumers are “captive”and cannot purchase from the new

entrant; the remaining 1− µt consumers are “free”and can buy the new product.15

The size of the incumbent’s captive consumer base, µt, is therefore an index of the

degree of market dominance.

The innovator forms its captive consumer base in the first period of its life cycle,

by captivating a fixed fraction κ of its customers. It can then exploit this consumer

base in the next period, when it becomes the new incumbent. Thus, the number

of captive consumers evolves over time according to the following equation (the

superscript NA stands for “no acquisition”):

µNAt = κ(1− µt−1)xEt−1, (3)

Thus, the parameter δ that we use throughout the model can be thought of as capturing both the
private rate of time preference and the strength of intellectual property protection.
14This is a fairly common assumption in the analysis of exclusionary conduct: see, for instance,

Ide and Montero (2020), Oertel and Schmutzler (2021), and the literature cited therein.
15Captive consumers can always purchase from the fringe. This limits their exploitation by the

incumbent and ensures the stationarity of the model.
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where 1−µt−1 is the number of free consumers in period t−1, who represent the po-

tential buyers from the qt−1 innovator, xEt−1 is the fraction of such free consumers who

actually buy from the innovator, and κ is the fraction of the innovator’s customers

who become loyal (or captive).

The key property of this formulation is that the incumbent’s degree of market

dominance in period t, µt, depends on its past sales, (1 − µt−1)xEt−1. Equation (3),

which captures this broad idea in a specific way, may be interpreted literally, or taken

as a metaphor for various possible reasons why the dependence may arise.

The literal interpretation may be justified as follows. Suppose that consumers

face a cost of switching to the latest product (they have to learn how to use it,

say, or have to conduct a search to learn of its existence). These learning costs are

heterogeneous. For a fraction κ of consumers, they are suffi ciently high that it is

worth paying them only to move ahead by two quality steps.16 As a consequence,

a high-cost consumer who purchased the state-of the art product in period t − 1,

qt−1, would not be willing to switch to product qt in period t. In other words, such a

consumer would be captive in period t. (In the absence of acquisitions, he will return

to be a free consumer in period t+1). For the remaining fraction 1−κ of consumers,

learning costs are negligible, so they can always purchase all the products on offer,

including the latest. In this interpretation, it is learning costs that create inertia in

market shares.

2.4 Acquisitions

If acquisitions are allowed, the incumbent may take over the inventor after it has

fully developed its new product. The merged entity resulting from the acquisition is

denoted by M . The entrant furnishes M with its new technology qt, which is ready

for use without incurring in any further development cost,17 while the incumbent

brings its exclusive control over the old technology qt−1 and its captive consumer

16Consumers do not need to be posited permanently high- or low-cost: the parameter κ may
be interpreted as the probability of a consumer’s being high-cost in a given period. Any level of
correlation across periods is consistent with our formulation.
17This distinguishes ours from models of killer acquisitions.
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base.

We assume that consumers who are captive to firmM can purchase any product

from it, including the newest one.18 If they do, they may remain captive for several

periods in a row. Specifically, we assume that firm M’s captive consumer base in

period t + 1 comprises a fraction κ of the free consumers that it served in period t

and a fraction ξ, possibly greater than κ, of the already captive ones. As a result, in

period t+ 1 the merged firm will have (the superscript A stands for “acquisition”):

µAt+1 = κ(1− µt)x
F,M
t + ξµtx

C,M
t (4)

captive consumers, where xF,Mt denotes the fraction of free consumers and xC,Mt the

fraction of captive consumers served by firmM in period t.19 Since the merged entity

can serve more consumers than the entrant alone, it can build a larger captive con-

sumer base for the next period. This is how acquisitions increase market dominance

in our model, creating what we call the entrenchment-of-monopoly effect.

We assume that acquisitions will take place whenever they are jointly profitable.

The acquisition price paid by the incumbent, Pt,20 determines the division of the

surplus among the two parties. The price is determined by a simple bargaining

process, where one of the two firms is picked up randomly to make a take-it-or-leave-

it offer to the other. We denote by α the probability that the entrant makes the

offer and the incumbent receives it; with probability 1− α, these roles are reversed.

Thus, α is the share of the bargaining surplus obtained on average by the entrant —

a measure of its bargaining power.21

18In the learning cost interpretation of the model, one may imagine that as long as consumers
purchase from the same firm, they bear no more learning cost. In other words, the merged entity
can remove the factors that would otherwise prevent captive consumers from purchasing the new
product qt. For example, the merged entity may ensure backward compatibility with product qt−1,
it may facilitate the transition by providing the same usage modes, or it may guarantee a seamless
transfer of data to the new service. See Kamepalli et al. (2020) for a similar assumption.
19In the learning-cost interpretation of the model, this assumption can be justified on the ground

that consumers who purchased from the same firm repeatedly in the past may have undermined
their ability to learn or search.
20The assumption that the incumbent acquires the entrant, and not the other way around, is just

an accounting convention. Nothing would change if the roles were reversed.
21We adopt a strategic approach to the bargaining process in order to avoid mixing notions from

cooperative and non-cooperative game theory. In any case, many different bargaining solutions
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2.5 Timing and Payoffs

We consider an infinite horizon in discrete time. Each period t is divided into three

stages. In the first stage (ex ante), the inventor is randomly selected and chooses the

innovation size, ∆t. In the second (interim), the incumbent and the entrant bargain

over the acquisition price and, if they reach an agreement, the acquisition occurs. In

the third stage (ex post), firms compete in prices. This sequence is repeated in every

period t = 1, 2, .... If acquisitions are prohibited, the second stage is absent.

Firms are risk neutral and maximize intertemporal profits, future values being

discounted by the common discount factor δ < 1. Total discounted profits as of time

t are denoted by Πi
t, current profits by π

i
t, with i ∈ {E, I,M}.

2.6 Equilibrium

We analyze the Markov perfect equilibria of this game. Under our assumptions, at

the beginning of each period t, the payoff-relevant variables are µt, qt−1 and qt−2.

At the interim stage, i.e. once the entrant has chosen the size of the innovation ∆t,

they also include qt.

3 The acquisition game

We find the model’s equilibrium under the assumption that acquisitions are always

permitted. Since the merged entity can replicate any behavior of both entrant and

incumbent, acquisitions are weakly profitable. In fact, we shall presently show that

they are always strictly profitable. This implies that acquisitions will always take

place in equilibrium.

To ensure a perfect equilibrium, we start from the pricing subgames and proceed

backwardly to the bargaining process and choice of innovation size.

would lead to the same expected outcome as our non-cooperative assumptions.
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3.1 Pricing subgames

We assume that firms cannot distinguish between captive and non captive consumers,

so price discrimination is not practicable.

On path. We begin from the pricing subgame that is actually played on the equi-

librium path, i.e., the one starting after the acquisition.

The merged entity’s only competitor is the fringe, which supplies the best freely

available quality, qFt = qt−2, and prices it at cost, pFt = 0. The equilibrium strategy

of the merged firm is given by the following lemma.22

Lemma 1 The merged entity supplies only one product of quality qMt = qt. It serves

all consumers (xFMt = xCMt = 1) at price pMt = qt − qt−2 = ∆t + ∆t−1, reaping a

profit of

πMt = ∆t + ∆t−1. (5)

The intuition is simple. The competitive fringe does not sell any output in equi-

librium but exerts competitive pressure by providing an outside option to consumers.

The merged entity undercuts the fringe in utility space, charging a price equal to the

value of the quality differential.

Note that the presence of the competitive fringe prevents prices and profits from

increasing without limit even though the quality level continues to rise over time.

From an economic point of view, this guarantees that all benefits from technolog-

ical progress eventually accrue to consumers; from an analytical point of view, it

guarantees the stationarity of the equilibrium.

Note also that the merged entity always uses the state-of-the-art technology qt;

the model excludes “killer acquisitions.”

Off path. Next, we characterize the price equilibrium that arises, out of the equi-

librium path, if the incumbent does not acquire the entrant.23 In this case, there

22To simplify the presentation, we adopt the following tie-breaking rule: when a consumer or
a firm is indifferent among different actions, it chooses the one that maximizes aggregate profits.
This assumption captures the idea that the stronger firm could shave the price marginally in order
to overcome the indifference.
23The same equilibrium arises also on the equilibrium path if acquisitions are prohibited (see

footnote 27 below).
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are two active firms besides the fringe. In the baseline specification, we assume that

these two firms price sequentially, with the incumbent acting as the price leader. As

we shall see, this implies that acquisitions do not affect consumer surplus for a given

state of the technology. For our purposes, this is a conservative property that biases

the analysis against prohibiting acquisitions.24 Alternative timings are considered

later.

Lemma 2 If the incumbent acts as price leader, it serves all captive consumers

and the entrant serves all free consumers (xEt = 1). The incumbent prices at pIt =

qt−1 − qt−2 = ∆t−1 and obtains a profit of

πIt (µt) = µt∆t−1. (6)

The entrant’s equilibrium price is pEt = qt − qt−2 = ∆t + ∆t−1, so the profit it earns

in the first period of its life cycle is

πEt (µt) = (1− µt) (∆t + ∆t−1) . (7)

When the incumbent acts as price leader, both the incumbent and the entrant

slightly undercut the competitive fringe in utility space, and the entrant also slightly

undercuts the incumbent. Consequently, consumers get the same net utility from

any firm they may buy from.25 The incumbent does not compete more aggressively

for the free consumers because it anticipates that it would be underpriced by the

entrant.

Implications. Lemmas 1 and 2 carry several significant implications. First, the

per-period profit functions πit are additively separable in the quality steps ∆t and

∆t−1. This property is central to the following analysis, as it allows for a closed-form

24Sequential pricing also facilitates the analysis by guaranteeing the existence of a pure-strategy
equilibrium. With simultaneous moves, there is generally no pure-strategy pricing equilibrium.
Intuitively, the existence of captive consumers is analogous to a capacity constraint, as the entrant
cannot supply more than (1− µt) units.
25Note, incidentally, that this implies that free and captive consumers obtain the same net utility

in equilibrium. As a consequence, consumers have no incentive not to buy the state-of-the-art
version of the product in order to avoid becoming captive.
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solution.

Second, the lemmas imply the following:

Corollary 1 Acquisitions are always strictly profitable.

Acquisitions are profitable for two reasons. From the static viewpoint, they

facilitate the diffusion of the innovation: the state-of-the-art product is sold not only

to the free but also to the captive consumers. From the dynamic viewpoint, they

increase the fraction of captive consumers that the merged entity can exploit in the

next period.

Third, the lemmas imply:

Corollary 2 Either with or without acquisitions, consumers obtain exactly the sur-

plus guaranteed to them by the fringe:

CSt = qt−2. (8)

From the consumer viewpoint, therefore, acquisitions matter only to the extent

that they affect innovation, which determines their future surplus. As noted, this is

a conservative property for our purposes.

Finally, Lemmas 1 and 2 prove that in equilibrium the entrant serves all free

consumers (xEt = 1), and the merged entity all consumers (xF,Mt = xC,Mt = 1).

Therefore, with no acquisitions the share of captive consumers evolves over time

according to:

µNAt = κ(1− µt−1). (9)

With acquisitions, the dynamics of µt is:

µAt = κ(1− µt−1) + ξµt−1. (10)

3.2 The acquisition price

Proceeding with our backward induction, consider next the bargaining over the ac-

quisition price. Firms are forward looking and correctly anticipate all the future
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consequences of their choices. Since entrants are systematically acquired, the acqui-

sition price must coincide with the entrant’s value function (gross of the innovation

cost). This is determined simultaneously with the value functions for the incumbent

and the merged entity, as we shall see presently.

To proceed, it is important to keep in mind that in a Markov perfect equilib-

rium, the value functions depend only on the payoff-relevant variables. From the

foregoing, it appears that profits depend on µt and the quality differentials ∆’s.

Thus, the period-t payoff-relevant variables are {µt,∆t−1} at the ex ante stage and

{µt,∆t−1,∆t} at the interim stage. Accordingly, we denote by V i
t (µt,∆t−1) the

firms’ ex ante value functions, and by vit(µt,∆t−1,∆t) the interim functions, for

i ∈ {E, I,M}. These value functions must satisfy the following conditions (to sim-

plify the notation, we suppress the dependence of the interim value functions on the

relevant variables when this does not create confusion):

vMt = πMt + δV I
t+1(µAt+1,∆t) (11)

vEt = (1− α)
[
πEt + δV I

t+1(µNAt+1,∆t)
]

+ α
(
vMt − πIt

)
(12)

vIt = vMt − vEt . (13)

Equation (11) says that the merged entity obtains profits πMt in period t and then

becomes the new incumbent with µAt+1 captive consumers, yielding a continuation

value of δV I
t+1(µAt+1,∆t). According to (12), the acquisition price (which, as noted,

coincides with the entrant’s value function) equals the entrant’s disagreement payoff

plus a fraction α of the bargaining surplus. The entrant’s disagreement payoff is

equal to the current profit if it resists the takeover, πEt , plus the continuation value,

δV I
t+1(µNAt+1,∆t). The “one-shot deviation principle” implies that the continuation

value must be calculated on the expectation that even if there was no acquisition in

period t, entrant qt, once it has become the new incumbent in period t+1, will acquire

entrant qt+1. At that point, however, it will have only µNAt+1 captive consumers. As
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for the period-t incumbent, its disagreement payoff is simply πIt , given that with

no agreement it would exit the market in the next period. The bargaining surplus

is therefore vMt −
[
πEt + δV I

t+1(µNAt+1,∆t) + πIt
]
, from which there follows condition

(12). The final condition says that the value of being the incumbent must be equal

to the value of the merged entity minus the acquisition price. In other words, the

acquisition does not change the sum of the firms’values because the extra-profits

created by the merger are already included in the forward-looking valuation of the

firms.

The system of equilibrium conditions (11)-(13) cannot be solved for the interim

value functions yet, because it also involves the ex ante value functions V I
t+1(µAt+1,∆t)

and V I
t+1(µNAt+1,∆t), which depend on ∆t. In turn, ∆t might potentially depend on

the future values ∆t+1, ∆t+2 etc. To proceed, we must therefore consider the optimal

choice, ex ante, of the size of the innovation.

3.3 The innovation size

Plainly, the equilibrium innovation size must satisfy the following condition:

∆A
t (µt,∆t−1) = arg max

∆t

[
vEt (µt,∆t−1,∆t)−

1

2
∆2
t

]
. (14)

In a Markov perfect equilibrium, this optimal choice of ∆t is anticipated by all

players, furnishing a link between the ex ante and interim value functions. That

is, the ex ante value must be equal to the interim value calculated at the optimal

innovation size:

V i
t (µt,∆t−1) = vit

[
µt,∆t−1,∆

A
t (µt,∆t−1)

]
for i ∈ {E, I,M} . (15)

This completes the set of conditions that must all hold simultaneously in equilibrium.
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3.4 Equilibrium

It is easy to see that the set of Markov perfect equilibria coincides with the set of

solutions to the system of equilibrium conditions (11)-(15), given the profit functions

(5), (6) and (7).

The solution can be calculated explicitly thanks to a key simplifying property of

the model, which we noted above: the profit functions πit are additively separable in

∆t and ∆t−1. This separability implies that while the value function vEt (µt,∆t−1,∆t)

depends on ∆t−1, the marginal value of increasing the innovation size,
∂vEt (µt,∆t−1,∆t)

∂∆t
,

does not. Therefore, the optimal innovation size in period t, ∆A
t (µt,∆t−1), is inde-

pendent of ∆t−1, and in turn ∆t does not affect the future values ∆t+1, ∆t+2, ..., in

spite of the forward-looking nature of system (11)-(15).

These properties of the model imply that the derivative ∂vEt (µt,∆t−1,∆t)

∂∆t
can be cal-

culated even without full knowledge of the value function vEt (µt,∆t−1,∆t), allowing a

two-stage solution. In the first stage, we calculate the derivative and find the equilib-

rium innovation size for any value of µt, ∆A
t (µt). With this function in hand, in the

second stage we determine the value function vEt (µt,∆t−1,∆t) by a guess-and-verify

method. Further details are provided in the proof of Lemma 3 in the Appendix.

Applying this procedure, we get:

Lemma 3 In the baseline model, the equilibrium innovation size depends on the

share of captive consumers µt and is

∆A
t (µt) = (1 + δκ) (1− µt) + α(1 + δξ)µt. (16)

The ex ante value functions are

V E
t (µt,∆t−1) = φ0 + φ1µt + φ2µ

2
t + (1− µt)∆t−1 (17)

V I
t (µt,∆t−1) = ϕ0 + ϕ1µt + ϕ2µ

2
t + ∆t−1 (18)

The coeffi cients φn and ϕn, forn = 0, 1, 2, depend on the exogenous parameters α,
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δ, κ and ξ and are reported in the Appendix.26 Given V E
t (µt,∆t−1) and V I

t (µt,∆t−1),

one can easily recover V M
t (µt,∆t−1) and the interim value functions vit(µt,∆t,∆t−1),

i = M, I,E, from conditions (11)-(15).

4 Acquisitions and innovation

In this section, we analyze the impact of acquisitions on innovation. We show that

prohibiting acquisitions always reduces the equilibrium size of innovation in the short

run but may increase it in the long run if the entrenchment effect is large enough.

4.1 Benchmark: no acquisitions

To proceed, we determine the innovation size when acquisitions are prohibited. In

this case, the entrant’s payoff is

ΠE,NA
t = πEt (µt) + δπIt+1(µNAt+1), (19)

where the profit functions are the same as in Lemma 2.27 The equilibrium innova-

tion size with no acquisitions then is ∆NA
t (µt) = arg max∆t

[
ΠE,NA
t − 1

2
∆2
t

]
. Simple

calculations lead to the following:

Lemma 4 If acquisitions are always prohibited, the equilibrium size of innovation is

∆NA
t (µt) = (1 + δκ) (1− µt). (20)

4.2 Innovation and market dominance

We start by showing that market dominance always has an adverse effect on innova-

tion.
26The Appendix also verifies that V It (µt,∆t−1) increases with µt, a property that we used in the

derivation of the pricing equilibria.
27This is not self-evident, because firms are forward looking, and the entrant’s continuation value

is different with and without acquisitions. With them, the continuation value is δV I(µAt+1,∆t);
without, it is δπIt+1(µ

NA
t+1). However, the proof of Lemma 2 shows that all that matters is that the

continuation value is non-decreasing in µt+1, which is true in both cases.

18



Proposition 1 The equilibrium size of innovation ∆t is a decreasing function of the

degree of market dominance µt both when acquisitions are permitted (eq. (16)) and

when they are prohibited (eq. (20)).

To understand why Proposition 1 holds, consider first the case of no acquisitions.

Innovator qt’s marginal benefit from increasing its innovation size is the increase in

the discounted sum of its profits in the two stages of its life cycle. Inspection of the

profit functions (7) and (6) shows that the marginal profit is equal to the number of

free consumers 1 − µt in the first period, and to the number of captive consumers

µNAt+1 = k(1− µt) in the second. Both decrease with µt.

With acquisitions, the mechanism is analogous. The qt innovator’s outside option

when bargaining on the acquisition price is the profit πEt (µt) that it would obtain

if it resisted the takeover plus the continuation value δV I
t+1(µNAt+1,∆t). An increase

in µt decreases both π
E
t (µt) and µ

NA
t+1, and hence V

I
t+1(µNAt+1,∆t). This implies that a

higher µt worsens the innovator’s outside option and thus reduces its incentives to

invest even if it expects to be bought out.

4.3 The short run

Comparing (16) and (20) one immediately obtains:

Proposition 2 Provided that 1+δκ
1+δξ

> α > 0 and µt > 0, prohibiting acquisitions

reduces the equilibrium size of innovation in period t:

∆A
t (µt) > ∆NA

t (µt). (21)

This result reflects the invention-for-buyout effect. Intuitively, the innovation is

more valuable in the hands of the incumbent, which can supply the state-of-the-art

product not only to the free but also to the captive consumers. By transferring the

new technology to the incumbent, acquisitions create a surplus, a share of which,

when α > 0, goes to the inventors. The prospect of being bought out thus increases

the value of the innovation to forward-looking inventors, hence their incentives to
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innovate.28 The greater the entrant’s bargaining power α, the stronger this invention-

for-buyout effect.

4.4 The long run

However, acquisitions also affect the dynamics of µt. Starting from an arbitrary µt,

if acquisitions are permitted µ will converge to its steady state level

µ̄A =
κ

1 + κ− ξ , (22)

whereas if acquisitions are prohibited the steady state is:29

µ̄NA =
κ

1 + κ
. (23)

Clearly, µ̄A > µ̄NA. This inequality reflects the entrenchment of monopoly due

to acquisitions. The strength of the entrenchment effect can be measured by the

percentage increase in the long-run degree of market dominance:

µ̄A − µ̄NA
µ̄NA

=
ξ

1 + κ− ξ . (24)

When ξ = κ, the entrenchment effect is simply ξ. In general, the effect increases

with ξ, which can therefore be regarded as the entrenchment parameter.

In the steady state, if acquisitions are always prohibited the level of innovation

is

∆NA(µ̄NA) =
1 + δκ

1 + κ
. (25)

If acquisitions are always permitted, on the other hand, it is

∆A(µ̄A) =
(1 + δκ) (1− ξ) + ακ (1 + δξ)

1 + κ− ξ . (26)

28This is not a foregone conclusion, however. The incentive to innovate is not determined by the
impact of acquisitions on the inventor’s profit, but by the marginal profitability of the innovation
size. Proposition 2 guarantees that in our model the marginal and total effects go hand in hand.
See Katz (2021) for a model where this property does not necessarily hold.
29While both µAt and µ

NA
t converge to their respective steady state levels, the dynamics of the

former is monotonic, that of the latter oscillatory.
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Comparing (25) and (26), it appears that if the entrenchment effect is suffi ciently

strong, the positive short-run effect of acquisitions on innovation may be reversed in

the long run.

Proposition 3 In the steady state, prohibiting acquisitions increases the equilibrium

size of innovation if

ξ >
α (1 + κ)

1 + δκ− αδ(1 + κ)
. (27)

Intuitively, the long-run effect of acquisitions is the sum of two components:

the difference between ∆A
t and ∆NA

t for any given µt, and the difference between

µ̄A and µ̄NA. The first component reflects the buyout effect and is positive. The

second component reflects the entrenchment effect and is negative. Condition (27)

determines when the second component prevails over the first one.

The condition simplifies considerably in the special case κ = ξ, when it reduces

to:

ξ >
α

1− α. (28)

Intuitively, the entrenchment parameter ξ must be large and the entrant’s bargaining

power α, which determines the magnitude of the invention-for-buyout effect, must

be small.

When ξ > κ, other factors come into play. Prohibiting acquisitions is more likely

to raise the long run level of innovation the lower the private discount factor (and

hence the lower the speed of imitation, or the stronger the protection of intellectual

property), and the lower the fraction of free consumers that are turned into captive.

The effects that we have identified in this section are depicted in Figure 1, with

the case of acquisitions being permitted in red, prohibited in blue. First, both with

and without acquisitions, the rate of innovation decreases as market dominance in-

creases, reducing innovators’ability to appropriate the returns from their innovations

(Proposition 1). Second, for any given level of dominance, the rate of innovation is

higher when acquisitions are permitted (Proposition 2), reflecting the invention-for-

buyout effect. Third, the long-run degree of dominance is higher if acquisitions are
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Figure 1: The decreasing lines represent the equilibrium rate of innovation when acquisi-
tions are permitted (red) or prohibited (blue). The distance between the two lines measures
the invention-for-buyout effect. The vertical lines represent the long-run degree of market
dominance, which is higher when acquisitions are pemitted because of the entrenchment
effect. The curley arrows represent the process of convergence to the steady state, starting
from the current level of market dominance.
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permitted than if they are prohibited, reflecting the entrenchment-of-monopoly ef-

fect.

4.5 Transitory dynamics

Our model is tractable enough to allow explicit calculation of the equilibrium dy-

namics of the innovation size ∆t+n for n = 1, 2, ..., starting from an arbitrary µt.

When acquisitions are permitted, the degree of market power evolves over time as

follows:

µAt+n =
κ

1 + κ− ξ +

(
µt −

κ

1 + κ− ξ

)
(ξ − κ)n , (29)

and thus the level of innovation is:

∆A
t+n =

1 + κ [α(1 + δξ) + δ(1− ξ)]− ξ
1 + κ− ξ +

− [1 + δκ− α(1 + δξ)]

(
µt −

κ

1 + κ− ξ

)
(ξ − κ)n . (30)

When, on the contrary, acquisitions are prohibited, we have:

µNAt+n =
κ

1 + κ
+

(
µt −

κ

1 + κ

)
(−κ)n (31)

and

∆NA
t+n =

1 + δκ

1 + κ
− (1 + δκ)

(
µt −

κ

1 + κ

)
(−κ)n . (32)

Figure 2 illustrates the dynamics of ∆t+n, starting from an arbitrary µt ∈(
µ̄NA, µ̄A

)
. Consider a shift from a lenient policy (the red curve) to a restrictive

one (the blue curve). Immediately with the policy change, the level of innovation

drops, as the invention-for-buyout effect vanishes. In subsequent periods, however,

the share of captive consumers µt+n shrinks, reducing the degree of market domi-

nance, with a positive effect on the entrant’s innovative effort, which increases over

time. In the counterfactual where acquisitions are permitted, on the other hand,

µt+n increases towards its steady state level µ̄
A. The figure illustrates the case where

condition (27) holds. In this case, at some point in time the innovation size with
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Figure 2: The dynamics of equilibrium innovation size when acquisitions are permitted and
prohibited. The figure depicts a continuous time approximation of the discrete dynamics,
which eliminates the oscillations that may be exhibited by the discrete dynamics. The
picture has been drawn for κ = 3

4
, ξ = 19

20
, δ = 19

20
, α = 9

20
and µt = 1

2
.

acquisitions banned becomes larger than if acquisitions continued to be permitted.

5 Policy rules

We now analyze the optimal antitrust policy in our model, assuming that the agencies

take consumer surplus as their objective and discount future values by the social

discount factor δS.30 In view of (8), the policymaker’s objective function as of period

t is

∞∑
n=0

CSt+nδ
n
S =

∞∑
n=0

δnSqt+n−2

=
1

1− δS

(
qt−2 + δSqt−1 + δ2

S

∞∑
s=0

δnS∆t+n

)
. (33)

30The social discount factor δS is generally greater than the private discount factor δ, because
benevolent policymakers ought to be more farsighted than private firms, and because δ may reflect
not only the private rate of time preference but also the speed of imitation (see footnote 13).
However, our formulas would continue to hold even if δS < δ.
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The first two terms inside brackets are pre-determined, so the objective function

effectively reduces to

Wt =

∞∑
n=0

δnS∆t+n. (34)

Thus, social welfare comparisons boil down to the comparison of the discounted sum

of current and future sizes of innovation.

5.1 Fixed v. contingent policies

In principle, the optimal acquisition policy may vary over time. In particular, if the

antitrust authorities can observe the state of the industry µt, they may condition

acquisition policy on it.31 In this subsection, however, we show that in our baseline

model it is never optimal to take advantage of this possibility.

We start this analysis with a preliminary result. So far, we have considered

only the case where acquisitions are always permitted or always prohibited. Under

a state-dependent policy, however, acquisitions may be permitted in certain periods

and prohibited in others, as the degree of market dominance varies. A convenient

simplifying property of the model is that the size of innovation in period t in fact

depends only on whether acquisitions are permitted or prohibited in that period, not

in subsequent periods.

Lemma 5 If acquisitions are permitted in period t, then ∆t(µt) = ∆A
t (µt) irre-

spective of acquisition policy in all subsequent periods. Likewise, if acquisitions are

prohibited in period t, then ∆t(µt) = ∆NA
t (µt) irrespective of acquisition policy in all

subsequent periods.

This is not a foregone conclusion, as firms are forward looking, and future acqui-

sition policy affects the continuation values in the dynamic game. The conclusion

nonetheless holds, because the profit functions πit are additively separable in∆t−1 and

∆t. This property is inherited by the value functions, which implies that changes

31Strictly speaking, the state also includes∆t−1. However, this variable does not impact on future
innovation and affects consumer surplus in an additive, separable way; hence, it cannot affect the
optimal policy.
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in future acquisition policy cause parallel shifts in vEt (∆t) that do not affect the

incentive to innovate.32

Armed with Lemma 5, we can now show that in the baseline model, the possibility

of conditioning acquisition policy on the degree of market dominance µt is in fact

valueless.

Proposition 4 In the baseline model, the optimal acquisition policy does not depend

on µt.

This result relies on the fact that ∆A
t (µt) and ∆NA

t (µt) are linear functions of

µt, and that µt+1 is a linear function of µt. This linearity entails a special property:

while the short-run gains and the long-run losses from permitting acquisitions both

depend on µt,
33 the sign of the sum of the two does not. This property is quite

special, and later we shall analyze an extension of the baseline model where it no

longer holds.

5.2 Optimal fixed policy rules

In view of Proposition 4, in the rest of this section we focus on non-contingent policy

rules, assuming that acquisitions are either always approved or always prohibited.

The choice is made once and for all in a generic period t.

Let us compare the two policy regimes for an arbitrary initial µt. If acquisitions

are always permitted, using (30)and (29) social welfare becomes:

WA
t (µt) = ∆A

t (µt) +
∞∑
n=1

δnS∆A
t+n(κ)

=
(1 + δκ) (1− ξδS)− ακδS(1 + δξ)

(1− δS) [1− δS(ξ − κ)]
− 1− α + δκ− αδξ

1− δS(ξ − κ)
µt. (35)

If instead acquisitions are always prohibited, using (32) and (31) social welfare be-

32Lemma 5 therefore continues to hold in the variant of the model considered in the next section,
where the profit functions are still additively separable in ∆t and ∆t−1.
33The short-run gain is the difference ∆A

t (µt)−∆NA
t (µt), whereas the long-run loss is the differ-

ence between
∑∞

n=1 δ
n
S∆t+n starting from µAt+1(µt) and µ

NA
t+1(µt), respectively.
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comes:

WNA
t (µt) = ∆NA

t (µt) +

∞∑
n=1

δnS∆NA
t+n(µNAt+n)

=
1 + δκ

(1− δS) (1 + δSκ)
− 1 + δκ

1 + δSκ
µt. (36)

Comparing WNA
t (µt) and W

A
t (µt), we get:

Proposition 5 Prohibiting acquisitions increases social welfare if and only if

ξ >
α (1 + δSκ)

(1− α)δSδκ+ (δS − αδ)
. (37)

The condition simplifies considerably in the case ξ = κ, when it reduces to:

ξ >
α

(1− α) δS
. (38)

The effects of ξ and α are the same as in Proposition 3, and for the same reasons.

That is, prohibiting acquisitions is the more likely to be optimal, the higher the

entrenchment-of-monopoly parameter ξ and the lower the invention-for-buyout pa-

rameter α. Furthermore, prohibiting acquisitions is the more likely to be optimal,

the higher the social discount factor δS. This makes intuitive sense: in our model,

prohibiting acquisitions is socially costly in the short run but may bring about long-

run benefits. It is therefore logical that a restrictive policy may be optimal only

if the policymaker is suffi ciently farsighted. When δS → 1 condition (37) collapses

to (27): the weight of the transitory dynamics in the social welfare calculation be-

comes negligible, so the welfare comparison depends only on the steady-state levels

of innovation.

When ξ > κ, two more parameters come into play. Prohibiting acquisition

is the less likely to be optimal, the lower the private discount factor δ, and the

lower the fraction of free consumers that are turned into captive κ. Since a higher

discount factor δ also captures the possibility of slower imitation, as discussed in

footnote 13, Proposition 5 suggests that in our model acquisition policy and patent
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policy may be interconnected: when entrants are better protected against imitation,

acquisition policy should be more lenient, while weaker patent protection calls for

stricter antitrust rules.

6 State-dependent policy

In this section, we consider a variant of the model where the optimal acquisition

policy may vary over time.34

As noted, the fact that a non-contingent policy rule is optimal in the baseline

model relies on the linearity of the profit functions in the degree of market power

µt. To allow for the possibility that the optimal policy may be state-dependent, we

therefore consider a variant in which the entrant’s profit πEt is a non-linear function

of µt. Specifically, we assume that if the acquisition does not take place, the entrant,

rather than the incumbent, acts as price leader. This is enough to invalidate the

conclusion of Proposition 4.

Reversing the order of moves in the pricing game changes the pricing equilibrium

when there is no acquisition. (In the case of acquisitions, nothing changes.) The

incumbent’s price and profit are the same as in the baseline model, but the entrant’s

profit in the first period of its life cycle becomes :35

πEt (µt) = (1− µt) (∆t + µt∆t−1) . (39)

The profit is lower than in the baseline, because the entrant has to cut its price down

to the point where the incumbent’s incentive to compete for the free consumers is

34Omitted details and proofs for this section may be found in online Appendix B.
35Under the assumption that the dynamics of market dominance is given directly by (9) and (10),

the case of simultaneous moves would produce the same results as when the entrant is price leader.
The reason for this is that firms would price myopically, as the impact of acquisitions on future
market dominance would not depend on current output levels. Now, in a static pricing game of
simultaneous moves, the equilibrium generally involves mixed strategies, but in any case each firm
obtains the same payoff as it would if it acted as price leader (as in Kreps and Scheinkman, 1983).
Therefore, the entrant’s profit would be (39), and the incumbent’s profit would be (6). Retain-
ing the original assumptions (3) and (4), however, the simultaneous-move pricing game becomes
untractable.

28



eliminated —a form of limit pricing.36 However, the marginal impact of ∆t on πEt is

the same as in the baseline model, so if acquisitions are prohibited the equilibrium

level of innovation does not change. If they are permitted, on the other hand, the

new level of innovation is:

∆A
t = 1− (1− α)µt + δ

[
1− (1− ξ) 1 + (1− α)(1− κ)ξ

1 + κ− ξ µt

]
. (40)

Comparing (40) and (20), one sees that acquisitions always spur innovation in

the short run. However, as in the baseline model, acquisitions may stifle innovation

in the long run. The condition is again that the entrenchment-of-monopoly effect be

suffi ciently strong; formally, ξ > ξ̃(α, δ, κ), where the new critical threshold ξ̃ is an

increasing function of α, κ and δ.

6.1 Cut-off policy rules

We continue to assume that the authorities maximize consumer welfare. If the acqui-

sition takes place in period t, the consumer surplus is CSAt = qt−2, as in the baseline

model. However, if there is no acquisition the surplus now becomes:

CSNAt = qt−2 + (1− µt)
2 ∆t−1. (41)

The additional term, which now arises because firms compete more aggressively,

represents the static allocative gains from prohibition.

The discounted consumer surplus is now:

∞∑
n=0

δnSCSt+n =

qt−2 + δSqt−1 + δ2
S

∞∑
s=0

δnS∆t+n

1− δS
+

∞∑
n=0

1t,NA
(
1− µt+n

)2
δnS∆t+n, (42)

where 1t,NA is an indicator function equal to 1 if acquisitions are prohibited in period

t and to 0 if they are permitted.

For simplicity, we focus on the limiting case δS → 1, allowing us to abstract

36If the incumbent acts as price leader, it will not even try to compete for the free consumer in
the anticipation that it would be outpriced by the entrant anyway.
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Figure 3: A non-stationary cycle of length ` = 2.

from the second term in the above expression. Indeed, the relative weight in the

social welfare calculation of this term, which captures the static effect of prohibition,

becomes negligible as δS approaches 1. Intuitively, the static allocative costs of

acquisitions are transitory, whereas the effects on innovation size are permanent.

As δS → 1, welfare comparisons rest uniquely on how acquisition policy affects the

long-run level of innovation.

6.1.1 Acquisition cycles

For tractability, in the rest of this section we focus on a class of simple policy rules,

where the policy-maker permits acquisitions as long as µt < µ̂ and prohibits them

when µt ≥ µ̂ for some cut-off value µ̂.37 The variable µ̂ may be interpreted as the

degree of lenience of acquisition policy.

Such cut-off policies produce cycles in which the industry oscillates between

periods where market dominance is low, and acquisitions are permitted, and periods

where it is high, and they are prohibited. As long as acquisitions are permitted the

degree of market dominance µt increases, until it crosses the threshold µ̂. When it

does, the acquisition is prohibited, µt jumps down, and a new cycle starts. Figure 3

illustrates.
37We believe that the optimal policy belongs to this class, even though we have not been able to

prove this conjecture.
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It is convenient to define the length of a cycle, `, as the number of consecutive pe-

riods in which acquisitions are permitted between two successive prohibitions. Cycles

are degenerate, and policy is effectively state independent, when ` = 0 (acquisitions

are always prohibited) or ` =∞ (acquisitions are always permitted).

Starting from an arbitrary µt, the cycles generated by a given cut-off µ̂ are,

generically, non stationary, as the one shown in Figure 3. However, there exist limit

cycles where the system follows exactly the same steps over and over again. At the

end of a limit cycle of length ` (and period `+ 1), the value of µt is

µH (`) =

κ
∑̀
n=0

(ξ − κ)n

1 + κ (ξ − κ)`
, (43)

and at the beginning of the cycle it is µL (`) = κ
[
1− µH (`)

]
.

These limit cycles are stable attractors.

Lemma 6 Under a cut-off policy rule, the degree of market dominance µt converges

to a limit cycle. The length of the limit cycle is 0 if

µ̂ ≤ µH (0) = µ̄NA,

it is `+ 1 if

µH (`) < µ̂ ≤ µH (`+ 1) , (44)

and it is infinite if

µ̂ > lim
`→∞

µH (`) = µ̄A.

Lemma 6 says that the length of the limit cycles is a stepwise increasing function

of the cut-off µ̂ and thus it depends on policy lenience. Intuitively, the greater µ̂, the

longer it takes, starting from any given µt < µ̂, to pass the threshold. Furthermore,

the greater µ̂, the lower µt at the beginning of the next cycle.

Asymptotically, a cut-off policy is fully characterized by the length ` of the limit

cycle which the industry converges to. If µ̂ changes but remains within one and
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the same interval of Lemma 6, the change in µ̂ may affect the industry’s transitory

dynamics but not the long-run level of innovation.

6.1.2 Optimal cycles

We are interested in determining whether acquisition cycles may be optimal, and if

so, when. Let us start from the case κ = ξ. In this case, there is only one non-

degenerate limit cycle, which has length ` = 1 and period 2; its initial and final point

are, respectively, µL = κ (1− κ) and µH = κ.

The following proposition says that inducing such a cycle may indeed be the

optimal policy when the policy-maker is nearly indifferent between always permitting

and always prohibiting acquisitions. This is true, in particular, when α and δ are

not too large.

Proposition 6 If κ = ξ, provided that α and δ are not too large, there exists a

neighborhood of ξ̃(α, δ) such that when ξ lies in that set, the optimal acquisition

policy entails a period-2 cycle.

The analytical characterization of the region of parameter values where such a

neighborhood exists is unmanageable, but the region can be identified by numerical

methods.

Note that any value of µ̂ in the interval [κ (1− κ) , κ] leads to the same limit

cycle, so the asymptotic dynamics of the industry does not depend on the exact

value of µ̂ within that interval. Nevertheless, the choice of µ̂ requires care, in that

when µ̂ is close to κ, the merged firm might opt for self-restraint in order to retain

the possibility of additional acquisitions in the future. From this standpoint, the

merged firm should voluntarily limit its sales so as to prevent µt from crossing the

threshold µ̂.38 In particular, when µt = µ̂ < κ the firm should serve only a fraction

xM = µ̂
κ
of its potential demand, so that µt+1 = κ µ̂

κ
= µ̂. When µ̂ is close to κ, the

amount of profit foregone by restricting output in this way would be small, and the

strategy would therefore be profitable.
38The merged firm cannot raise its price because of the competitive pressure from the fringe.

An alternative way not to cross the threshold is to resist takeover, but it is easy to see that this
strategy is always dominated by merging and then restraining output.
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One may wonder whether it might be optimal to induce such self-restraint by

the merged firm. In fact, it is not.39 Therefore, the policy-maker must be careful not

to set µ̂ too high. But if µ̂ is set just barely above κ (1− κ), it is easy to see that

the merged entity would definitely serve its entire demand.40 Therefore, when µ̂ is

marginally higher that κ (1− κ) there will be no self-restraint, and the industry will

shuttle between the high- and low-dominance states.

Turning to the general case ξ > κ, we have analyzed the optimal length of the

limit cycles by means of numerical calculations. Figure 4 illustrates an example

where, depending on the value of ξ, cycles of different lengths may be optimal.

Numerical calculations show that the optimal length of the limit cycle —which as

noted is an index of the lenience of acquisition policy —is (i) a stepwise decreasing

function of the entrenchment-of-monopoly parameter ξ, (ii) a stepwise increasing

function of the entrant’s bargaining power α, (iii) a stepwise decreasing function of

the private discount factor δ, and (iv) a stepwise decreasing function of the capture

rate κ.

7 Absorptive capacity

So far, we have focused on a specific source of market dominance, namely, consumer

inertia. However, there might be other reasons why acquisitions may create, or

enhance, a competitive advantage for incumbents, in spite of the lower quality of

their products. To demonstrate the robustness of our mechanism, in this section we

analyze a toy model of absorptive capacity, in which acquisitions affects incumbents’

incentives to imitate the entrants.
39This is proved in Appendix B.
40The reason is that to avoid crossing the threshold, the merged entity would have to serve only

1 − κ consumers. In this case, however, its profit would be lower than the aggregate profit of the
incumbent and the entrant in the absence of acquisition. In other words, acquisitions would no
longer be profitable, so retaining the option to future acquisitions would be valueless.
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Figure 4: Social welfare under different lengths of the limit cycles. For low values of ξ,
the optimal policy is to always permit acquisitions (` =∞, the red curve). As ξ increases,
limit cycles of finite length become optimal. The figure represents the cases of limit cycles
of length ` = 3 (the green curve), ` = 2 (the purple curve), and ` = 1 (the black curve).
The blue curve is the case where acquisitions are always prohibited. The figure has been
drawn for α = 0.1, δ = 0.6 and κ = 0.4. For these values, permanent prohibition is never
optimal.

7.1 Assumptions

Consumers’utility function is still given by (1), and firms’types and dynamics are as

in the baseline model. However, all consumers now are free, eliminating the consumer

inertia mechanism that we have focused on so far. The new mechanism relies instead

on the incumbent’s ability to imitate the entrant’s product.

Specifically, we now assume that if the incumbent makes an investment in “ab-

sorptive capacity,”it can supply a product of quality

qIt = qt−1 + φ∆t (45)

rather than qt−1, where φ ∈ [0, 1]. The cost of the investment is positive but arbitrar-

ily small. The new mechanism of entrenchment relies on the fact that the investment

is profitable only if the incumbent acquires the entrants.

We start with a stationary version of the model. After explaining the new mech-

anism, we shall briefly discuss a more dynamic setting.
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7.2 Equilibrium

Since all consumers are free, the pricing equilibrium no longer depends on the order

of moves. The qt-entrant always serves all consumers, charging a price cost margin

of qEt − qIt and obtaining a profit of πEt = qEt − qIt . Therefore, the entrant’s profit

πEt is ∆t if the incumbent does not invest in absorptive capacity but is (1− φ) ∆t if

it does. As for the incumbent, it always obtains πIt = 0. With acquisitions, on the

other hand, the merged entity’s profit is πMt = ∆t + ∆t−1, as in the baseline model.

It appears that when acquisitions are prohibited, incumbents have no incentive

to invest in absorptive capacity, as they would make zero profits anyway. Therefore,

the entrant’s discounted profit over its life cycle is ΠE
t = ∆t. In view of (2), this

immediately implies that:

∆NA
t = 1. (46)

When acquisitions are permitted, on the other hand, incumbents gain from the

investment in absorptive capacity, as it worsens the entrants’outside option and thus

allows incumbents to extract a larger share of the rents from the innovation. Since

the investment cost is arbitrarily small, the merged firm will therefore always invest

in absorptive capacity.

As in the baseline model, the incentive to innovate with acquisitions is determined

by the value functions vit.
41 These are now determined by the following conditions:

vMt = ∆t + ∆t−1 + δvIt+1 (47)

vEt = (1− α)
[
(1− φ) ∆t + δvIt+1

]
+ αvMt (48)

vIt = vMt − vEt . (49)

Condition (47) says that the value of the merged firm is its current profit πMt =

∆t + ∆t−1 plus the continuation value, which is the discounted value of being the

41In this static version of the model, there are no state variables so the value functions reduce to
constants, and it is no longer necessary to distinguish between ex ante and interim values.
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incumbent in period t+1. Condition (48) says that the entrant’s payoff is a weighted

combination of its disagreement payoff and the bargaining surplus, with weights

given by its bargaining power α. The disagreement payoff is the sum of the current

profit, which is πEt = (1− φ) ∆t, plus the continuation value. (The disagreement

payoff of the current incumbent is nil, as with no acquisition this incumbent makes

zero profits and is then absorbed by the competitive fringe.) The joint payoff in

case of agreement, on the other hand, is vMt , so the bargaining surplus is v
M
t −[

(1− φ) ∆t + δvIt+1

]
. Condition (49) says that acquisitions do not change the firms’

aggregate value, as in the baseline.

Solving the system (47)-(49) yields:

vEt = [1− (1− α) (φ− δ)] ∆t + α∆t−1 + (1− α) δφ∆t+1. (50)

The corresponding equilibrium level of innovation is

∆A
t = 1− (1− α) (φ− δ) . (51)

In this stationary version of the model, ∆A
t is constant over time. The level of

innovation is a decreasing function of φ, which represents the new entrenchment

parameter.

Comparing (46) and (51), one sees immediately that acquisitions stifle innovation

if

φ > δ. (52)

Once again, the intuition is that the entrenchment effect must be strong enough to

outweigh the invention-for-buyout effect. Like in the baseline model, prohibiting ac-

quisitions is more likely to raise the level of innovation the lower the private discount

factor δ. This simple model therefore yields the same basic insight as the baseline

model.
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7.3 Dynamics

One may obtain a more fully dynamic model by assuming that the merged firm’s

absorptive capacity varies over time. For example, suppose that if the firm enters

period t with an absorptive capacity of φt−1 and invests in that period, its ability to

imitate the entrant becomes:

φt = ϑ
(
φ̄− φt−1

)
, (53)

where φ̄ is the maximum feasible level of absorptive capacity and ϑ ∈ [0, 1] is the rate

at which φt is accumulated. This captures the idea that the longer a firm has been

the industry leader, the better it can appropriate the results of outsiders’innovative

activity.

In this case, the merged entity will invest in all periods if acquisitions are permit-

ted. As a result, its absorptive capacity will gradually increase, converging towards

its steady state level φ̄. Assuming that φ0 < δ < φ̄, it then follows that acquisi-

tions increase innovation in the short run but decrease it in the longer run, as in the

baseline model.

8 Conclusion

We have analyzed a tractable model of repeated innovation, where incumbents may

either compete with innovative entrants or else acquire them. Acquisitions have both

positive and negative effects on innovation. The former stems from the invention-

for-buyout mechanism: inventors earn more by transferring their innovations to the

incumbent than by exploiting them themselves, so their incentive to innovate is

greater when such technology transfers are permitted. The negative effect, on the

other hand, derives from the entrenchment of monopoly due to acquisitions. When

these are permitted, that is to say, incumbents come to enjoy a higher degree of

market dominance, which in turn reduces the entrants’incentive to innovate.

We have shown that the invention-for-buyout effect always prevails in the short
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run but can be outweighed in the long run by the entrenchment effect. As a result,

if policymakers are suffi ciently farsighted and the entrenchment effect is suffi ciently

strong, prohibiting acquisitions may be the optimal policy. In some cases, the optimal

policy may be state-dependent. In other words, it may be best to permit acquisitions

as long as market dominance is weak and prohibit them once repeated acquisitions

have made it too strong.

Throughout our analysis, we have assumed that the sole objective of the antitrust

authorities is consumer welfare. It is sometimes contended that this narrow focus

is responsible for the leniency of antitrust policy. However, we have shown that if

the authorities are forward looking and consider the cumulative dynamic effects of

different policy rules, taking consumer surplus as the welfare criterion may justify a

restrictive policy on acquisitions.

Our results imply that the small size of the target firm should not provide a shield

against antitrust scrutiny. The critical policy variable should not be the size of the

takeover target but the incumbent’s degree of market dominance. To the extent that

in innovative industries this correlates with the size of the incumbent, then it is the

latter’s size that should matter in the antitrust assessment.

We believe that the mechanism highlighted in this paper is quite general, but

we have carefully chosen specific assumptions that allow for a closed-form solution.

Extending the model therefore requires care. In particular, the special property that

allows us to calculate the value functions explicitly is that the profit functions are

linear in the current and past innovation sizes, ∆t and∆t−1. If this property fails, one

must either resort to numerical solutions, or else restrict attention to a two-period

model where the first period is a stylized representation of the short run and the

second period, the long run. These alternative approaches, while being perhaps less

elegant, may allow one to analyze richer variants of the model.
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For online publication
Appendix A

Proofs

Proof of Lemma 1. The merged entity’s objective function is

ΠM
t = πMt + δV I

t+1(µAt+1,∆t),

where πMt = xMpMt is the current period profit, δ is the discount factor, and δV
I
t+1(µAt+1,∆t)

is the continuation value, i.e., the discounted value of being the incumbent in the

next period with µAt+1 = κxMt captive consumers. Note that xF,M = xC,M = xM as

the firm cannot price discriminate.

To begin with, assume that the merged entity prices myopically, i.e., δ = 0.

Since all consumers are effectively identical in this case, there is no incentive to

price discriminate by supplying different quality levels. Thus, the dominant firm will

supply only the highest quality, qt. Since the competitive fringe guarantees to all

consumers an outside option of UF
t = qt−2, the merged entity must match this utility

level:

UM
t = qMt − pMt = UF

t ,

with a tiny price discount to break the indifference, if necessary. Therefore, pMt =

∆t + ∆t−1. In this myopic equilibrium, xMt = 1.

Next suppose that δ > 0. It is intuitive (and we shall confirm below) that the

continuation value V I
t+1(µAt+1,∆t) is a non-decreasing function of µAt+1, which is in

turn a non-decreasing function of xMt . Therefore, a forward-looking firm would have

an incentive to further reduce the price so as to increase xMt if possible. But since

xMt is already equal to 1, the myopic price remains optimal also for a forward-looking

firm. �

Proof of Lemma 2. Plainly, all firms supply the highest quality level that they

control: qEt = qt, qIt = qt−1, and qFt = qt−2, and the fringe prices at marginal cost
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(i.e., 0). The incumbent and the entrant, on the other hand, price so as to maximize

their respective profits:

πIt = µtx
I
tp
I
t

and

ΠE
t = πEt (µt) + δV I

t+1(µNAt+1,∆t)

where πEt (µt) = (1−µt)xEt pEt denotes the entrant’s profit in period t, and V I
t+1(µNAt+1,∆t)

is the value of being the incumbent in the next period with µNAt+1 = κ(1−µt)xEt captive

consumers. The incumbent, which is due to exit in the next period, prices myopi-

cally. A forward-looking entrant, in contrast, must keep into account the impact of

its current price on the number of captive consumers that it will inherit in the second

period of its life-cycle, as this affects the profits that it will earn in its capacity as

the new incumbent.

To begin with, however, suppose that the entrant prices myopically (δ = 0).

Given the behavior of the fringe, consider the entrant’s best response to pIt . Free

consumers choose to purchase from the entrant if UE
t > max

{
U I
t , U

F
t

}
, that is, if

pEt < min
{
pIt + ∆t,∆t + ∆t−1

}
. Therefore, the entrant’s best response is

pEt (pIt ) =


pIt + ∆t if pIt ≤ ∆t−1,

∆t + ∆t−1 if pIt > ∆t−1.

Next, consider the incumbent’s strategy as a price leader. The incumbent makes

no sales if pIt > ∆t−1. On the other hand, it anticipates that if it reduces the price

below ∆t−1, it would always be undercut by the entrant and would therefore serve

only the captive consumers anyway. Therefore, the incumbent must price exactly at

∆t−1 (with a tiny discount to break the captive consumers’indifference, if necessary).

By doing so, it gets a profit of πIt = µt∆t−1. In response, the entrant prices at

pEt = ∆t + ∆t−1 (again with with a tiny discount if necessary) and will serve all free

consumers.
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If δ > 0, so that the entrant is forward looking, it would have a further incentive

to reduce the price to increase xEt if that were possible, as the continuation value

V I
t+1 is increasing in µt+1. However, x

E
t is already equal to 1, so the myopic price

remains optimal also for a forward-looking firm. �

Proof of Corollary 1. With no acquisition, the firms’aggregate payoff is

(1− µt) (∆t + ∆t−1) + µt∆t−1 + δV I
t+1(µNAt+1,∆t).

If the incumbent acquires the entrant, in contrast, the aggregate payoff becomes

(∆t + ∆t−1) + δV I
t+1(µAt+1,∆t).

The lemma then immediately follows by comparing the above expressions, keeping

in mind that V I
t+1 increases with the fraction of captive consumers µt+1, and that

µAt+1 = κ ≥ µNAt+1 = κ(1− µt). �

Proof of Lemma 3. From the optimization problem (14) it appears that the equilib-

rium innovation size depends only on the derivative of vEt (µt,∆t−1,∆t) with respect

to ∆t, which is the marginal profitability of increasing the size of the innovation. To

calculate the derivative, let us substitute (11) into (12), obtaining

vEt (µt,∆t−1,∆t) = (1− α)
[
πEt + δV I

t+1(µNAt+1,∆t)] + α[πMt + δV I
t (µAt+1,∆t)− πIt

]
= (1− α)πEt + α(πMt − πIt ) + δ

[
(1− α)V I

t+1(µNAt+1,∆t) + αV I
t (µAt+1,∆t)

]
.

The on-path continuation value is

V I
t+1(µAt+1,∆t) = vIt+1(µAt+1,∆t,∆t+1)

= vMt+1(µAt+1,∆t,∆t+1)− vEt+1(µAt+1,∆t,∆t+1)

= πMt+1 + δV I
t+2(µA,At+2 ,∆t+1) +

−(1− α)
[
πEt+1 + δV I

t+2(µA,At+2 ,∆t+1)]− α[vMt+1(µAt+1,∆t,∆t+1)− πIt+1

]
,
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where ∆t+1 is the innovation size in period t + 1, which is correctly anticipated in

period t, and µA,At+2 is the fraction of captive consumers in period t+ 2 if the entrant

is acquired both in period t and in period t+ 1. Likewise, the off-path continuation

value is

V I
t+1(µNAt+1,∆t) = vIt+1(µNAt+1,∆t,∆t+1)

= vMt+1(µNAt+1,∆t,∆t+1)− vEt+1(µNAt+1,∆t,∆t+1)

= πMt+1 + δV I
t+2(µNA,At+2 ,∆t+1) +

−(1− α)
[
πEt+1 + δV I

t+2(µNA,At+2 ,∆t+1)] + α[vMt+1(µAt+1,∆t,∆t+1)− πIt+1

]
.

where µNA,At+2 is the fraction of captive consumers in period t+ 2 if the entrant is not

acquired in period t but is acquired in period t + 1. (It follows from the one-shot

deviation principle that this is indeed the relevant value of µ.)

Next, note that all current-period profit functions

πMt = ∆t + ∆t−1

πIt (µt) = µt∆t−1

πEt (µt) = (1− µt)(∆t + ∆t−1)

are additively separable in∆t−1 and∆t, and that all other terms in the expression for

vEt (µt,∆t−1,∆t) do not depend on ∆t−1. This implies that vEt (µt,∆t−1,∆t) depends

on ∆t−1 in an additively separable way and that, as a result, the optimal choice of

∆t does not depend on ∆t−1.

Since a similar argument applies to all subsequent periods, it follows that ∆t+1

does not depend on ∆t, and the same is true of ∆t+2, ∆t+3 etc. These future values

depend only on µt. In particular

V I
t+1(µAt+1,∆t) = (1− α)

[
πMt+1(µAt+1)− πEt+1(µAt+1)

]
+ απIt+1(µAt+1) +

+ terms that depend only on µt
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and

V I
t+1(µNAt+1,∆t) = (1− α)

[
πMt+1(µNAt+1)− πEt+1(µNAt+1)

]
+ απIt+1(µNAt+1) +

+ terms that depend only on µt

Thus, we have

vEt (µt,∆t−1,∆t) = (1− α)πEt (µt) + α
[
πMt − πIt (µt)

]
) +

+δ { (1− α)
[
πMt+1 − πEt+1(µNAt+1)

]
+ απIt+1(µNAt+1) +

+α
[
πMt+1 − πEt+1(µAt+1)

]
+ απIt+1(µAt+1) }

+ terms that depend only on µt

Collecting all terms that depend on ∆t−1 and ∆t, we finally have

vEt (µt,∆t−1,∆t) = (1− µt) [α + (1− α)µt] ∆t−1 +

+ [(1 + δκ) (1− µt) + αµt(1 + δξ)] ∆t + (54)

+ terms that depend only on µt

From this expression, (16) follows immediately, proving the first part of the

lemma.

With the equilibrium innovation size at hand, we can now determine the equilib-

rium value function, and hence the acquisition price. To this end, we make a guess

on the functional form of the value functions and find them by the method of unde-

termined coeffi cients. Since ∆A
t is linear in µt and (54) shows that the expression for

the value function vEt (µt,∆t−1,∆t) involves the product µt ×∆t, we conjecture that

the ex ante value functions are polynomials of degree 2:

V E
t (µt,∆t−1) = (1− µt)∆t−1 + φ0 + φ1µt + φ2µ

2
t (55)

V M
t (µt,∆t−1) = ∆t−1 + ϕ0 + ϕ1µt + ϕ2µ

2
t . (56)

Given V E
t (µt,∆t−1) and V M

t (µt,∆t−1), we have V I
t (µt,∆t−1) = V M

t (µt,∆t−1) −
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V E
t (µt,∆t−1). We then identify the coeffi cients φ0, φ1, φ2, ϕ0, ϕ1 and ϕ2 by imposing

the condition that (55)-(56) must be identically satisfied. Here we report the solu-

tion for the special case ξ = κ (the general solution can be found in a mathematical

appendix available from the authors upon request):

φ0 =
(2− α) (1 + δκ)2 {1 + (1− α)δ [1− α(1− κ)]κ}
[1 + (1− α) δ] [1− (1− α) δκ] [1 + (1− α) δκ2]

φ1 = −
(1− α) (1 + δκ)2 [3− α− (1− α)δκ+ (1− α2)δκ2 + (1− α)2δ2κ3

]
[1− (1− α) δκ] [1 + (1− α) δκ2]

φ2 =
(1− α)2 (1 + δκ)2

[1 + (1− α) δκ2]

and

ϕ0 =
(1 + δκ)2 {1 + (1− α)δ [1− α(1− κ)]κ}

[1 + (1− α) δ] [1− (1− α) δκ] [1 + (1− α) δκ2]

ϕ1 = −(1− α) (1 + δκ)2

ϕ2 = 0.

This proves the second part of the lemma.

It is simple to verify that V I
t (µt,∆t−1) is increasing in µt —a property the was

used repeatedly in the proof of Lemma 1 and 2. �

Proof of Proposition 1. From (16) and (20) we have

d∆A
t

dµt
= −(1 + δκ) + α(1 + δξ) Q 0⇐⇒ α Q 1 + δκ

1 + δξ

and
d∆NA

t

dµt
= −(1 + δκ) < 0. �

Proof of Proposition 2. From (16) and (20) we have:

∆NA
t (µ̄NA)−∆A

t (µ̄A) = κ
[1 + δκ− αδ (1 + κ)] ξ − α (1 + κ)

(1 + κ) (1 + κ− ξ) ,

whence the result follows immediately.�
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Proof of Proposition 3. Using the steady state values (22) and (23) we get

∆NA
t (µ̄NA)−∆A

t (µ̄A) = κ
[1 + δκ− αδ (1 + κ)] ξ − α (1 + κ)

(1 + κ) (1 + κ− ξ) ,

whence the result follows immediately. �

Proof of Lemma 5. Proceeding as in the proof of Lemma 3, it is easy to verify

that if acquisitions are permitted in period t, the derivative of the acquisition price

Pt = vEt (µt,∆t−1,∆t) with respect to ∆t may depend only on whether acquisitions

are prohibited or permitted in period t+ 1.

We already know that if acquisitions are permitted in period t+ 1, we have

vEt (µt,∆t−1,∆t) = (1− µt)∆t−1 +

+ (1 + δκ) [(1− µt) + αµt] ∆t + other terms

where the other terms depend on expected values ∆t+1,∆t+2,∆t+3 etc., and thus

depend only on µt.

If, on the other hand, acquisitions are prohibited in period t + 1, the period-t

acquisition price is

vEt (µt,∆t−1,∆t) = (1− α)
[
πEt + δπIt+1(µNAt+1)] + α[πMt + δπIt (µ

A
t+1)− πIt

]
.

That is, the continuation value reduces to the profits that the merged firm will reap

in its capacity as the next-period incumbent. Simple calculations yield

vEt (µt,∆t−1,∆t) = (1− µt)∆t−1 + (1 + δκ) [(1− µt) + αµt] ∆t.

This immediately implies that if acquisitions are permitted in period t, ∆A
t (µt) does

not depend on whether acquisitions are permitted or prohibited in the subsequent

periods.

Next suppose that acquisitions are prohibited in period t. If acquisitions are
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prohibited also in period t+ 1, the entrant’s profit is

ΠE,NA
t = πEt (µt) + δπIt+1(µNAt+1)

= (1− µt) (∆t−1 + ∆t) + δκ(1− µt)∆t,

whence (20) follows. If, on the other hand, acquisitions are permitted in period t+1,

the entrant’s profit is

ΠE,NA
t = πEt (µt) + δ

[
vMt+1(µNAt+1,∆t,∆t+1)− vEt+1(µAt+1,∆t,∆t+1)

]
= πEt (µt) + δ

{
πIt+1(µNAt+1) + (1− α)

[
πMt+1 − πIt+1(µNAt+1)− πEt+1(µNAt+1)

]}
+

+ other terms that depend only on µt.

Plugging the equilibrium profits into this formula, one obtains

ΠE,NA
t = (1− µt) (∆t−1 + ∆t) + δ

[
αµNAt+1∆t + (1− α)µNAt+1 (∆t + ∆t+1)

]
= (1− µt)∆t−1 +

[
(1− µt) + δµNAt+1

]
∆t + other terms

= (1− µt)∆t−1 +

+(1 + δκ)(1− µt)∆t +

+other terms that depend only on µt

so the optimal level of innovation is still given by (20). �

Proof of Proposition 4. We verify whether the non state-contingent policy is

optimal by applying the single-deviation principle. To begin with, suppose that

condition (37) holds, so that always prohibiting acquisitions is the optimal non-

contingent policy. Consider an alternative policy where acquisitions are permitted in

period t and then are always prohibited from period t+ 1 onwards. With this policy,

social welfare is:

WA,NA
t (µt) = ∆A

t (µt) + δSW
NA
t (µAt+1).
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Using (16) and (36), this rewrites as:

WA,NA
t (µt) = (1 + δκ)(1− µt) + α(1 + ξδs)µt +

+
δS(1 + δκ) [1− (1− δS)κ(1− µt) + ξ(1− δS)µt]

(1− δS) (1 + δSκ)
.

Simple algebra shows that WA,NA
t (µt) ≤ WNA

t (µt) when (37) holds.

Next suppose that condition (37) fails, so that always permitting acquisitions is

the optimal non-contingent policy. Consider an alternative policy where acquisitions

are prohibited in period t and then are always permitted from period t+ 1 onwards.

With this policy, social welfare is:

WNA,A
t (µt) = ∆NA

t (µt) + δSW
A
t (µNAt+1).

Using (20) and (35), this rewrites as:

WNA,A
t (µt) =

1− δS (ξ − ακ) + δκ [1− (1− α)ξδS]

(1− δS) (1 + δSκ)
[1− (1− δS)µt] .

Simple algebra shows that WNA,A
t (µt) ≤ WA

t (µt) when (37) fails.

Thus, the optimal non-contingent policy always survives one-shot deviations.

This confirms that such policy remains optimal even when state-contingent policies

are feasible. �

Proof of Proposition 5. Simple algebra shows that

WNA
t −WA

t =
(1 + δκ) ξδS − α(1 + κδS)(1 + δξ)

(1− δS)(1 + κδS) [1− δS(ξ − κ)]
[δS(κ− µt) + µt] ,

whence the result follows immediately. �
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For online publication
Appendix B

Additional material for Section 6

Pricing equilibrium. Reversing the order of moves in the pricing game changes

the pricing equilibrium as follows:

Lemma 2′: If the entrant acts as price leader, the incumbent serves all captive

consumers and the entrant all free consumers (xEt = 1). The incumbent prices at

pIt = ∆t−1 and obtains a profit of

πIt (µt) = µt∆t−1. (57)

The entrant prices at pEt = ∆t + µt∆t−1, so the profit it earns in the first period of

its life cycle is

πEt (µt) = (1− µt) (∆t + µt∆t−1) . (58)

Proof. As in the proof of Lemma 2, let us begin by assuming that the entrant prices

myopically (δ = 0). Given the behavior of the fringe, consider the incumbent’s

best response to pEt . Captive consumers choose to purchase from the incumbent

if U I
t > UF

t , that is if p
I
t < ∆t−1. Free consumers choose to purchase from the

incumbent if U I
t > max

{
UE
t , U

F
t

}
, that is, if pIt < min

{
pEt −∆t,∆t−1

}
. Therefore,

the incumbent must always undercut the fringe by setting a price no higher than

pIt = ∆t−1, for otherwise it would make no sales. (Likewise, the entrant must always

undercut the fringe to make positive sales, so we can restrict attention to the case

pEt ≤ ∆t + ∆t−1 with no loss of generality.) If the incumbent prices exactly at ∆t−1

(with a tiny discount to break the captive consumers’indifference, if necessary), it

gets a profit of πIt = µt∆t−1. If it further reduces the price to undercut not only the

fringe but also the entrant, pricing at pIt = pEt −∆t, it earns πIt = pEt −∆t. Therefore,
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the incumbent’s best response is

pIt (p
E
t ) =


∆t−1 if pEt ≤ ∆t + µt∆t−1,

pEt −∆t if pEt > ∆t + µt∆t−1.

Next, consider the entrant’s strategy as a price leader. As noted, the entrant

makes no sales if pEt > ∆t + ∆t−1. It also makes no sales if pEt > ∆t + µt∆t−1, as

in this case the incumbent would undercut it. Therefore, the entrant’s equilibrium

price is pEt (µt) = ∆t + µt∆t−1. At this price, the entrant serves all free consumers:

xEt = 1.

Finally, suppose that δ > 0 so that the entrant is forward looking. Since the

continuation value V I
t+1 is increasing in µt+1, the entrant would have a further incen-

tive to reduce the price to increase xEt if that were possible. But since x
E
t is already

equal to 1, the myopic price remains optimal also for a forward-looking firm. �

The incumbent’s price and profit are the same as in the baseline model. Here,

however, when the entrant acts as price leader it cannot just barely undercut the

rivals in utility space by setting pEt = ∆t + ∆t−1. If the entrant priced this way, the

incumbent would have the incentive to cut the price below ∆t−1 in order to capture

the (1− µt) free consumers. The entrant therefore has to cut its own price further,

down to the point where the incumbent’s incentive to compete for the free consumers

is eliminated —a form of limit pricing.

Derivation of equation (41). Proceeding as in the proof of Lemma 3, but using

the current-period profit functions

πMt = ∆t + ∆t−1

πIt = µt∆t−1

πEt = (1− µt)(∆t + µt∆t−1)

one obtains
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vEt (µt,∆t−1,∆t) = (1− µt) [α + (1− α)µt] ∆t−1 +

+ { α + δ + (1− α)(1− µt)− (1− α)δ [1− κ(1− µt)] [α + κ(1− α)(1− µt)] +

−αδ [1− κ(1− µt)− µtξ] [α + κ(1− α)(1− µt)− (1− α)µtξ] }∆t

+ terms that depend only on µt

From this expression, (40) follows immediately. The equilibrium value functions vit

and V i
t can be calculated by the method of undetermined coeffi cients, as in the proof

of Lemma 3. They are now polynomials of degree 4 in µt; the solution can be found

in a mathematical appendix available from the authors upon request.

Proof of Lemma 6. First of all, consider a generic cycle of length `; that is, suppose

that there are `−1 consecutive periods in which acquisitions are permitted, followed

by one period in which they are prohibited. Focusing only on the beginning and the

end of such a cycle, the dynamics of µt can be described by the following difference

equation

µt+` = κ− κ2

`−2∑
n=0

(ξ − κ)n − κ(ξ − κ)`−1µt.

The characteristic root of this difference equation is, in absolute value,

∣∣∣−κ 1
` (ξ − κ)

∣∣∣ < 1.

This shows that all cycles of length ` converge to the limit cycle of length `, irrespec-

tive of the initial condition.

Next consider a generic cut-off µ̂ ∈
[
µ̄NA, µ̄A

]
. We show that starting from an

arbitrary µ0, after at most one cycle, all subsequent cycles have length ` (µ̂). With

no loss of generality, assume that µ0 < µ̂. (If µ0 ≥ µ̂, it suffi ces to apply the

argument below starting from µ1, which will then be lower than µ̂.) The value of µt

for which acquisitions are first prohibited may then range from µ̂ to κ(1− µ̂) + ξµ̂.

Therefore, the value of µt at the beginning of the next acquisition cycle may range

from κ(1− κ)− κ(ξ− κ)µ̂ to κ(1− µ̂). Tedious but simple algebra shows that for all
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starting points in this interval, µt will cross the threshold µ̂ in exactly ` (µ̂) periods.

Combining the fact that under a cut-off policy rule with cut-off µ̂ all cycles will

eventually have length ` (µ̂), and that all cycles of that length converge to the limit

cycle of length ` (µ̂), it follows that the system converges to the limit cycle of length

` (µ̂).�

Proof of Proposition 6. First of all, note that when ξ = κ the critical value ξ̃ is

implicitly defined by the condition

H(α, δ, ξ) ≡ 1− (1− α)ξ + δ
[
1− ξ (1− ξ)− (1− α)ξ2(1− ξ)2

]
− 1 + δξ

1 + ξ
= 0

Simple algebra shows that

∂H
∂δ

∣∣∣∣
ξ=ξ̃

< 0

∂H
∂α

∣∣∣∣
ξ=ξ̃

> 0,

implying that ξ̃ is an increasing function of α and a decreasing function of δ.

Next, note that along a period-2 cycle, µt oscillates between µt = κ, where

acquisitions are prohibited, and µt = κ (1− κ), where acquisitions are permitted. By

Lemma 5, the level of innovation then oscillates between ∆NA
t (κ) and ∆A

t (κ (1− κ)).

On average, the level of innovation is

∆SC =
2 + δ (1− α)

2
− 2− α(1 + 2δ)

2
κ+

1− α + δ [1− 2α (2− α)]

2
κ2

−3− (7− 4α)αδ

2
κ3 + δ (1− α)2 3− κ+ κ2

2
κ4

Next, note that for δ = 0 and κ = κ̃(α, 0) = α
1−α , we have ∆NA

(
µ̄NA

)
=

∆A
(
µ̄A
)

= ∆SC . It may then be verified that if one increases δ and at the same time

increases κ so that κ̃(α, δ) remains constant at α
1−α , ∆SC increases more rapidly than

either ∆NA
(
µ̄NA

)
or ∆A

(
µ̄A
)
(which in fact, by construction, increase at the same

rate). This implies that when δ = 0, there exists a neighborhood of κ̃(α, 0) = α
1−α

where the state-contingent policy is optimal. This however requires that α
1−α < 1,
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and hence that α < 1/2. By continuity, state-contingent policy is optimal for some

values of κ as long as δ and α are not too large. �

Discussion of self-restraints. Suppose now that the merged firm rations demand

so as to keep its degree of market dominance below the threshold µ̂. To this end,

it must set an output level of xM = µ̂
κ
, earning a profit of πM = µ̂

κ
(∆t + ∆t−1).

Proceeding as in the proof of Lemma 3, one finds that the corresponding level of

innovation is

∆R = (1− α) {1− δκ [1− α (2− κ)]}+

−
[
1− α + αδ (1− 2α)− α + δ (1− α)

κ
− (1− α) (1− 2α) δκ+ 2 (1− α)2 δκ2

]
µ̂

+ (1− α)
[
α + (1− α)κ2

]
δµ̂2.

Tedious algebra shows that ∆R is always lower than max
[
∆NA

(
µ̄NA

)
,∆A

(
µ̄A
)]
.

This implies that a state contingent policy that induces the merged firm to ration

its demand is never optimal.
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