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Abstract

I propose the use of state-space methods as a unified econometric framework for study-

ing heterogeneity and dynamics in micropanels (large N , medium T ), which are typical of

administrative data. I formally study identification and inference in models with pervasive

unobservable heterogeneity. I show how to consistently estimate the cross-sectional distri-

butions of unobservables in the system and uncover how such heterogeneity has changed

over time. A mild parametric assumption on the standardized error term offers key ad-

vantages for identification and estimation, and delivers a flexible and general approach.

Armed with this framework, I study the relationship between job polarization and earn-

ings inequality, using a novel dataset on UK earnings, the New Earnings Survey Panel

Data (NESPD). I analyze how the distributions of unobservables in the earnings process

differ across occupations and over time, and separate the role played on inequality by

workers’ skills, labor market instability, and other types of earnings shocks.

Keywords: Unobserved Heterogeneity; State-space Methods; Job Polarization; Income

Inequality.
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1 Introduction

In recent years, administrative datasets have become increasingly available. While this wealth

of data can be instrumental in answering several key questions in Economics, it also introduces

modeling challenges. Most of the time, administrative data are micropanels, which are panel

data where many units (N) are observed for a medium number of time periods (T ), and thus

provide rich information on individuals and firms over time. However, micropanels usually

have few dimensions of observable heterogeneity: for instance, administrative data on earnings

typically lack information on education, marital status, and health conditions, with demo-

graphical variables for each worker limited to age and gender. This drawback makes it crucial

to model unobservable heterogeneity both over time and across individuals, and the medium

time-series dimension requires careful modeling of the dynamics. Unobservable heterogeneity

is not only interesting per se, but it also affects several other outcomes of interest.1 Indeed,

many important questions in the earnings literature, covering topics such as wage inequality or

insurance against earnings shocks, require an understanding of the interplay between dynamics

and heterogeneity.2 In addition to this, a modeling framework that features pervasive unobserv-

able heterogeneity and dynamics would be useful in addressing new empirical questions using

administrative data.

In this paper, I propose the use of state-space methods as a unified econometric framework

for the study of heterogeneity and dynamics in micropanels. I estimate unobservable hetero-

geneity and uncover how such heterogeneity has changed over time. As a key contribution, I

formally study identification and inference in models with pervasive unobservable heterogene-

ity. Armed with this framework, I analyze how earnings dynamics of UK workers differ across

occupations and over time, making use of a novel dataset on UK earnings, the New Earn-

ings Survey Panel Data (NESPD). My approach and findings reconcile empirical evidence of

an increase in the 50/10 wage gap (the ratio of median and low wages) and the documented

phenomenon of job polarization (increase in employment in low- and high-skill occupations

alongside a simultaneous decrease in middle-skill occupations).

Several econometric methods, often applied to the study of earnings dynamics, treat un-

observable heterogeneity as nuisance parameters. Following Almuzara (2020) and Botosaru

1For instance, heterogeneity in earnings dynamics influences predicted mobility out of low earnings (Brown-
ing, Ejrnaes, and Alvarez, 2010); heterogeneity in income profiles conditional on parents’ background is crucial
to the study of intergenerational mobility (see Mello, Nybom, and Stuhler, 2020).

2The distinction between transitory and persistent shocks and the trade-off between heterogeneity and per-
sistence are useful in explaining how individual earnings evolve over time and in decomposing residual earnings
inequality into different variance components; the persistence of earnings affects the permanent or transitory
nature of inequality (MaCurdy (1982), Lillard and Weiss (1979), Meghir and Pistaferri (2004)). The compo-
nents of the stochastic earnings process drive much of the variation in consumption, savings, and labor supply
decisions, (see Guvenen (2007), Guvenen (2009), Heathcote, Perri, and Violante (2010), Arellano, Blundell, and
Bonhomme (2017)). Moreover, they play a crucial role for the determination of wealth inequality, and for the
design of optimal taxation and optimal social insurance. Finally, separating permanent from transitory income
shocks is relevant for income mobility studies and to test models of human capital accumulation.
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(2020), I depart from the existing approach in the literature and explicitly treat unobservable

heterogeneity as the main object of interest. Almuzara (2020) and Botosaru (2020) adopt a

non-parametric approach for estimation of unobservable heterogeneity in earnings models. I

consider comparatively richer heterogeneity and dynamics, while imposing a mild parametric

assumption on the standardized error term. I assume that innovations are Gaussian, but this

assumption can be relaxed, and several more flexible distributions, e.g. mixtures of normals,

can be considered.3 Moreover, the approach proposed in this paper lends itself to several gen-

eralizations, such as unbalanced panel data and measurement errors, and can be adapted to

accommodate a treatment of heterogeneity as either fixed or random effects.

The paper’s contribution is twofold: methodological and empirical.

My first contribution is to derive theoretical results on how to adapt state-space methods

to the analysis of panel data featuring heterogeneous dynamic structures. The choice of using

state-space methods with filtering and smoothing techniques is motivated by their usefulness for

estimation and inference about unobservables in dynamic systems. As emphasized by Durbin

and Koopman (2012) and Hamilton (1994), state-space methods include efficient computing

algorithms that provide (smoothed) estimates of unobservables, while providing flexible and

general modeling that can incorporate individual explanatory variables, macro shocks, trends,

seasonality, and nonlinearities. Another main advantage is that these methods can be used

in the presence of data irregularities, e.g. unbalanced panel data and measurement error.

The models typically considered in the earnings literature, e.g. ARIMA, are a special case of

state-space models but state-space methods include techniques for initialization, filtering, and

smoothing. If the goal is to uncover the evolution of the state variables, state-space models are

the most natural choice. Multivariate extensions with common parameters and time-varying

parameters are much more easily handled in state-space modeling with respect to a pure ARIMA

modeling context.

State-space methods have been mainly used in the context of time series models or with

macropanels (panel data with few units observed over many time periods), but the unique

structure of micropanels requires the development of new econometric tools for analysis. There

is a lack of theoretical results on how to extend their use to micropanels for the analysis of

heterogeneous dynamic structures.4 Therefore, I adapt state-space methods to the analysis of

unobserved heterogeneity in micropanels and formally study identification and inference in the

context of these heterogeneous models. I show how to consistently estimate the cross-sectional

distributions of unobservables in the system and uncover how such heterogeneity has changed

over time.

3Note that, when errors are not normally distributed, results from Gaussian state-space analysis are still
valid in terms of minimum variance linear unbiased estimation.

4Some notable exceptions are the Seemingly Unrelated Times Series Equations (SUTSE) by Commandeur
and Koopman (2007), and Dynamic Hierarchical Linear models by Gamerman and Migon (1993) and by Petris
and An (2010) but the focus of the analysis is rather different. I build on these models, discuss the differences,
and provide theoretical results on how to recover the cross-sectional distribution of heterogeneous components.
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A mild parametric assumption on the standardized error term offers substantial advantages

for identification and estimation, and delivers a flexible and general approach. Following the

literature on state-space methods, I propose an argument for identification based on a large-

T approach. I also consider a fixed-T identification approach to establish a comparison with

the existing non-parametric literature. I discuss the corresponding estimation procedures and

further analyze the asymptotic properties of these distribution estimators. In the existing liter-

ature, properties of the distribution estimators for the individual parameter estimates obtained

from state-space models are unknown. Moreover, it is computationally challenging to extend

state-space analysis and filtering to heterogeneous micropanels, which feature large N.

As a first step of the analysis, I consider a simple state-space model and treat the history

of each individual i as a separate time series. Identification of the parameters relies on a large

T argument, while asymptotic properties of the distribution estimators are established under

some ratio between N and T . Building on the work of Okui and Yanagi (2020) and Jochmans

and Weidner (2018), I derive this ratio and propose a bias correction for small T.

In a second step, I introduce time-varying parameters in the state-space model and further

consider extensions where these parameters are assumed to be common across groups of similar

individuals. I discuss how the identification results change in this setting. To devise a tractable

estimation strategy, I use stratification as a device to reduce the computational burden of a

large cross-sectional dimension on filtering and smoothing algorithms. Once I estimate the

parameters and state variables of interest, a larger cross-section is used to consistently estimate

the distribution of heterogeneous unobservables.

Finally, in the last part of the theoretical analysis, I consider a fixed-T approach to explore

the relationship to the current non-parametric approach, (see Almuzara, 2020, and Botosaru,

2020), which relies on a fixed-T argument for identification of the cross-sectional distribution of

unobservables in the model. The main limitation of fixed-T approaches is that the condition for

identification may be difficult or even impossible to verify and existing estimation techniques

can be computationally expensive. I show how the parametric assumption on the error term

can permit achieving identification with a short number of time periods, making the analysis

feasible when richer heterogeneity is allowed in the model. I also discuss what the implications

of a parametric assumption on error terms are for regular identification of the distribution of

unobservables, following the work of Escanciano (2020).5

My second contribution is to provide new empirical evidence on the phenomenon of job

polarization using a novel UK micropanel, the NESPD, and to study it within a dynamic

framework. Analysis of job polarization in the literature is typically grounded on a static ap-

proach. The literature on job polarization, pioneered by Autor, Katz, and Kearney (2006),

defines job polarization as a significant increase in employment shares in low-skill occupations

and high-skill occupations, associated with a simultaneous decrease in employment shares in

5Regular identification of functionals of nonparametric unobserved heterogeneity means identification of these
functionals with a finite efficiency bound.
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middle-skill occupations, which is a pattern that has been been observed and documented in

the US and UK over the last 40 years.6 I use this novel dataset to test several hypotheses on the

relation between job polarization and income inequality. The NESPD is a survey directed to

the employer, running from 1975 to 2016, with large cross-sectional and time-series dimensions,

which allow the earnings process to feature type dependence in a flexible way. Stratification by

observables is possible and replaces the first-stage regression of earnings on covariates, which

restricts the dependence of earnings on them. I analyze how the distributions of unobservables

in earnings processes have evolved over time and across occupations, and separate the role that

workers’ skills, labor market instability, and other types of earnings shocks have played on in-

equality. I use the proposed modeling framework to test whether the distribution of individuals’

skills among different occupations has evolved over time and by different age groups. Moreover,

I investigate how the corresponding skill prices have changed, and how the distributions of

permanent and transitory shocks have changed over time and by occupation.

This paper uses the answers to the above questions to reconcile the empirical evidence that

an increase in the 50/10 wage gap (inequality between the low and median wages) has occurred

despite the documented phenomenon of job polarization, which would predict the opposite if

relative demand is rising the low-skill jobs relative to middle-skill jobs. The findings can provide

key insights to inform policy decisions based on the dynamics of earnings and of their distribu-

tions over time, and are relevant to think about the evolution of labor markets and inequality,

also during and after the COVID-19 pandemic. Another interesting empirical question is to

uncover heterogeneity in firms’ productivity and document how this has changed over time.

To conclude, I develop a state-space framework as a new tool for modelers, with several

advantages for identification and estimation, which can be used to address questions on dynamic

unobservable heterogeneity in many settings.

The outline of the paper is as follows: Section 2 presents an overview of the related literature.

In Section 3, I establish the argument for identification, while the corresponding estimation pro-

cedures are discussed in Section 4. Section 5 provides a discussion of the Gaussian assumption

and further extensions. In Section 5, I describe the dataset used for the empirical analysis. In

Section 6, I present the empirical application and report empirical findings. Finally, the last

Section concludes and discusses directions for future research.

2 Related literature

There is an extensive literature on state space methods for time series or macropanels, which

are panel data with small N and large T (Durbin and Koopman (2012), Hamilton (1994)).

However, the unique nature of micropanels requires the development of new econometric tools

6Following the literature, occupations are classified into the categories of low-, middle-, and high-skill jobs
based on 1976 wage density percentiles.
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to make use of state space methods. I contribute to this econometric literature on state-space

by adapting existing methods to suit the characteristics of administrative data, i.e. micropanel

data, which feature large N. In particular, I derive theoretical results on how to consistently

estimate the cross-sectional distribution of unobservables estimated with state space models.

In order to establish the asymptotic properties of (and make inference on) the estimators

of the cross-sectional distribution of unobservables, I rely on the literature on heterogeneous

dynamic panel data (Okui and Yanagi (2020), Jochmans and Weidner (2018), Mavroeidis,

Sasaki, and Welch (2015)). Okui and Yanagi (2020) propose a model-free approach, whereas

Jochmans and Weidner (2018) consider a Gaussian assumption on error term but obtain similar

results. Finally, Mavroeidis et al. (2015) consider heterogeneous AR(1) models with a fixed-

T setting. I extend these existing approaches to investigate the asymptotic properties of the

estimator of the cross sectional distribution of unobservables, which are estimated in a first-stage

using a state-space model.

Panel data factor models, e.g. Bai (2009), are related to the analysis of panel data with state

space methods since dynamic factor models are special cases of state-space models where the

econometrician specifies dynamic properties for latent factors in the state equation. However,

the state vector is small, and the goal of the analysis is to find commonalities in the covariance

structure of a high dimensional dataset.

By developing the corresponding fixed-T approach, I explore the relation of my methodol-

ogy with a recent literature on estimation of the cross-sectional distribution of unobservables

with panel data for the analysis of earnings processes. Almuzara (2020) and Botosaru (2020)

adapt the identification argument in Hu and Schennach (2008), with the aim of identifying the

distribution of heterogeneous variance and permanent components in earning processes. I con-

sider a more general process but impose a (flexible) parametric assumption on the error term:

in particular, I focus on large dimensions of heterogeneity, with time-varying parameters, and I

impose a mild parametric assumption on the standardized error term. Moreover, this approach

lends itself to generalizations such as allowing for unbalanced panel data and measurement

errors.

This paper also relates to the literature on earning dynamics. The literature on the analysis

of earnings processes is large and can be distinguished into several strands: one strand focuses

on the permanent-transitory decomposition of earnings residuals (Abowd and Card (1989),

MaCurdy (1982), Lillard and Weiss (1979)); another strand introduces growth-rate heterogene-

ity, e.g. Baker (1997), Haider (2001), Guvenen (2009); a third strand considers income variance

dynamics allowing for conditional heteroskedasticity in permanent and transitory shocks, e.g.

Meghir and Pistaferri (2004), Botosaru et al. (2018)); finally, nonlinear models have recently

been proposed by De Nardi, Fella, and Pardo (2016), Arellano et al. (2017). Guvenen, Karahan,

Ozkan, and Song (2015) and Browning et al. (2010) introduce pervasive heterogeneity and are

the closest to the present paper. However, Browning et al. (2010) do not consider a transitory-
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persistent decomposition of earnings shocks and both these papers do not propose arguments

for identification and estimation of the cross-sectional distribution of unobservables.

Finally, I investigate the relationship between wage inequality and job polarization, which

has only be analyzed using static approaches in the literature. The phenomenon of job polar-

ization has been documented by Autor et al. (2006) for the US, and by Goos and Manning

(2007) for the UK. The literature that supports the hypothesis of skill-biased technical change

cannot explain the increase in employment in low- and high-skill occupations alongside a si-

multaneous decrease in medium-skill occupations (U-shape in figure 1) because it would only

predict change in demand for unskilled vs skilled workers. The hypothesis of automation and

routinization, advanced by Autor et al. (2006), can explain this U-shape, but contradicts the

fact that wages in low-skill jobs have been falling relative to those in medium-skill jobs. Indeed,

one would think that the opposite occurs if relative demand is rising in the low-skill jobs rela-

tive to middle-skill jobs. The modeling approach developed in my paper links the literature on

earnings dynamics and wage inequality with the literature on job polarization and investigates

this puzzle by testing different hypotheses on the equality of distributions of unobservables over

time and across occupations.

Figure 1: The graph is taken from Goos and Manning (2007). It shows the impact of job
polarization on employment growth by wage percentile. Data are taken from NES using 3-digit
SOC90 code. Employment changes are taken between 1976 and 1995. Percentiles are the 1976
wage density percentiles.
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3 Identification

I start by describing a general state-space model and how a model of earning process can be

written in terms of a state-space representation. I then discuss identification and present the

main results on asymptotic properties of the distribution estimators of unobserved estimated

from state-space models. I consider state-space models both with time-invariant and time-

varying parameters. I discuss how the parametric assumption on the error terms helps to

establish these results. Finally, I analyze the implications of this assumption and of a long-T

approach for identification results in the existing literature.

3.1 Model Setup

The state-space representation of a dynamic system is used to capture the dynamics of an

observable variable, yit, in terms of unobservables, known as the state variables for the system,

zit. Consider the following state-space representation to describe the dynamic behavior of yit,

for i = 1, ..., N , and t = 1, ..., T :

yit = Aitzit +Ditxit + σiεit (observation equation)

zit+1 = Titzit +Ritηit (state equation)
(1)

where I name ε̃it ≡ σiεit the raw errors and εit the standardized errors; εit ∼ N (0, Ht),

ηit ∼ N (0, Sit); zit denotes the state variables; ε̃it and ηit are the errors. A vector of exogenous

observed variables xit can be added to the system. The state equation describes the dynamics

of the state vector, while the observation equation relates the observed variables to the state

vector. The unobservables of the model are the (potentially time-varying) parameters, the state

variables, and the error terms. To complete the system and start the iteration via Kalman filter

I further make the assumption that for each individual i, the initial value of the state vector, zi1

is drawn from a normal distribution with mean denoted by ẑi1|0 and variance Pi1|0.7 Assuming

the parameters are known, the Kalman filter recursively calculates the sequences of states

{ẑit+1|t}Tt=1 and {Pit+1|t}Tt=1 where ẑit+1|t is the optimal forecast of zit+1 given the set of all past

observations (yit, ..., yi1, xit, ...xi1), and its mean squared forecast error is Pit+1|t. It does so by

first getting the filtered values of the states {ẑit|t}Tt=1 and variances {Pit|t}Tt=1. When the interest

is in the state vector per se, it is possible to improve inference on it by obtaining the smoothed

estimates of the states, i.e. {ẑit|T}Tt=1 and {Pit|T}Tt=1, i.e. the expected value of the state when

all information through the end of the sample, up to time T , is used, and its corresponding

mean square error.8 When parameters are unknown, maximum likelihood estimation is possible

7If the vector process zi1 is stationary, i.e. if the eigenvalues of Tit are all inside the unit circle, then ẑi1|0 and
Pi1|0 would be the unconditional mean and variance of this process, respectively. If the system is not stationary
or time-varying then they represent the initial guess for zi1 and the associated uncertainty.

8The general formulas used by the Kalman filter and smoother are provided in Appendix A.

8



but presupposes the model to be identified.9

The model for earnings yit, of an individual i at time t, has the following state-space repre-

sentation:

yit = [pt]αi + zit + σiεit (observation equation)

zit+1 = ρizit + ηit (state equation)

with εit ∼ N(0, Ht) and ηit ∼ N(0, Sit). In this specification, the individual specific component

αi enters the state vector, and the coefficient pt enters the matrix of parameters Ait in the

general model described in 1. The factor pt might be included as a measure of skills price. Note

that transitory shocks are assumed to be i.i.d. in these models. However, more general moving

average representations, which are common in the earnings literature, can be accommodated

by augmenting the state vector accordingly. An extension of this model to include a term βit

can account for an individual’s ith specific income growth rate with cross-sectional variance σ2
β

(see HIP model in Guvenen (2009)). A model for earnings could further include job-specific

effects γi, for job k, with jik = 1(Ki = k).

First, I consider a simpler model of earnings and treat the history of each individual i

as a separate time series. I provide the argument for identification of the parameters and

states, and of their cross-sectional distribution. The identification of the parameters relies on

a large T argument, while the asymptotic properties of the estimator of the cross-sectional

distribution of parameters and states are established under some ratio of N and T . I derive

this ratio and propose a bias correction method to use when T is small. In the second step of

the analysis, I introduce time-varying parameters in the state-space model. I discuss how the

identification results change in this setting. Finally, in the last part of the analysis, I relate

to the nonparametric existing approach, which relies on a fixed-T argument for identification

of the unobservables in the model and of their cross-sectional distribution. I show how the

parametric assumption on the error term can permit to achieve identification with a shorter

number of time periods and discuss whether high-level assumptions for identification hold.

3.2 Benchmark Model

First, treat the earnings history of each individual i as a separate time series. In particular,

assume that for each individual i, the time series is represented by the state-space model:

yit = αi + zit + σiεit (observation equation)

zi,t+1 = ρizit + ηit (state equation)

9Details on the likelihood are provided in Appendix A.
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with εit ∼ N(0, 1) and ηit ∼ N(0, σ2
i,η). This model decomposes earnings into a deterministic

fixed effect and a stochastic term, which has a transitory and a persistent component. I first

discuss how the model’s parameters are identified and how it is possible to identify the cross-

sectional distribution of the parameters and state variables.

A state-space model is identified when a change in any of the parameters of the state-

space model would imply a different probability distribution for {yit}∞t=1. There exist several

ways of checking for identification. Burmeister, Wall, and Hamilton (1986) provide a sufficient

condition for identification: a state-space model is minimal if it is completely controllable with

respect to the error term (and external variable directly affecting both the observed and the

state variables) and completely observable. If the state-space is minimal, then it is identified.10

An alternative way of checking identification of a state-space model is to rely on the exact

relationship between the reduced form parameters of an ARIMA process and the structural

parameters in the state-space model, and use the condition for identification of parameters in

ARIMA models. The literature on linear systems has also extensively investigated the question

of identification, see Gevers and Wertz (1984) and Wall (1987) for a survey of some of the

approaches.

For the above state-space model, it is possible to verify that under stationarity the following

holds, ∀i:

ρi =
Cov(yit, yit+2)

Cov(yit, yit+1)

σ2
i = V ar(yit)−

Cov(yit, yit+1)

ρi
= V ar(yit)−

Cov(yit, yit+1)
Cov(yit,yit+2)
Cov(yit,yit+1)

σ2
ηi = (V ar(yit)− σ2

i )(1− ρ2
i )

αi = E(yit)

where the mean, variance, and covariances are moments of the distribution of yit taken over

time, for each individual i.

Once I establish identification of the model’s parameters, which is based on properties of

each individual’s ith time series, I can exploit the cross-section of the time series to identify the

10The model considered above is observable as the observation matrix has rank equal to the number of state
variable where the observation matrix is defined as: O = [AATAT 2AT 3...ATn] where n is the number of state
variables. However, the model is not controllable because there are no observables entering additively into the
state equation that one can use to change the direction of the states (to check for controllability test on full
rank of controllability matrix). Require ρ 6= 1 for observability.
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cross sectional distributions of the variables of interest (parameters and states), and analyze

the asymptotic properties of these distribution estimators. In line with these results, I derive

nonparametric bias correction via split panel Jackknife methods when T is small.

From the above state-space model, I collect all unknown parameters in a vector θi =

{αi, ρi, σ2
i , σ

2
ηi}. Let θ̂i be the MLE estimator for the vector of parameters θi, obtained as:

θ̂i = arg maxθi QT (θi), where QT (θi) = T−1
∑T

t=1 log f(yit; θi) := m(wit, θi) and f(yit; θi) is the

likelihood from the state-space model as derived in Appendix A. Following a similar notation

and argument as in Okui and Yanagi (2020), define Pθ̂N := N−1
∑N

i=1 δθ̂i , as the empirical

measure of θ̂i, where δθ̂i is the probability distribution degenerated at θ̂i. Also, let P θ
0 be the

probability measure of θi. Denote as Fθ̂N the empirical distribution function, so Fθ̂N(a) = Pθ̂Nf
for f = 1(−∞,a], where 1(−∞,a](x) := 1(x ≤ a) and the class of indicator functions is denoted as

F := {1(−∞,a] : a ∈ R}. Similarly, Fθ0(a) = P θ
0 f . Finally, denote as P θ̂

T the probability measure

of θ̂i. In the following, for simplicity of notation, I omit superscripts θ̂ and θ, so PN = Pθ̂N ,

FN = Fθ̂N , P0 = P θ
0 , F0 = Fθ0, PT = P θ̂

T , FT = Fθ̂T .

Assumption 1 Assume that {{εit}Tt=1, {ηit}Tt=1}Ni=1 is i.i.d. across i and yit is a scalar random

variable.

Assumption 2 The true parameters θi must be continuously distributed.

Assumption 3 Further, assume that: |ρ| < 1; θi identified, and not on the boundary of

parameter space.

Assumption 2 and 3 state standard and sufficient conditions that are required for the ML

estimators of the unknown parameters in the time-invariant Gaussian state-space model to be

consistent and asymptotically normal. In particular, Assumption 3 is required to establish

convergence in probability of θ̂i to θi0, as T →∞. Note that even without normal distributions

the quasi maximum likelihood estimates θ̂i, obtained assuming Gaussian errors, is consistent

and asymptotically normal under certain conditions, see White (1982).

Indeed, the above model is a Gaussian time-invariant state space model, which has a sta-

tionary underlying state process (ρ is assumed to be less than 1 in absolute value), and which

has the smallest possible dimension (see Hannan and Deistler (2012)). Under these general

and sufficient conditions, then the MLE estimator is consistent and asymptotically normal if

the true parameters are identified and not at the boundary of the parameter space, see Douc,

Moulines, and Stoffer (2014).

Assumption 4 The CDFs of θi is thrice boundedly differentiable. The CDFs of θ̂i is thrice

boundedly differentiable uniformly over T.

Under these assumptions, it is possible to establish uniform consistency and asymptotic

normality of the distribution estimator. In the following theorem, I show that the estimator for

the distribution of the true individual parameters and states uniformly converges to their true

population distribution and it converges in distribution at the rate N3+ε/T 4, where ε ∈ (0, 1/3),

if the above assumptions hold.
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Theorem 1 Under Assumption 1-4, when N, T → ∞: (i) sup |PNf − P0f |
as−→ 0, where

as−→ signifies almost sure convergence. Moreover, (ii) when N, T → ∞, with N3+ε/T 4 → 0 and

ε ∈ (0, 1/3):
√
N(PN − P0)  GP0 in l∞(F), where  means weak convergence and GP0 is

a Gaussian process with zero mean and covariance function F0(ai ∧ aj) − F0(ai)F0(aj) with

fi = 1(−∞, ai] and fj = 1(−∞, aj] for ai, aj ∈ R and ai ∧ aj is the minimum of ai and aj.

The key idea behind this result is that the asymptotic properties of the ML estimator θ̂i for

each individual’s i parameters guarantee that it is possible to bound the norm of the difference

between the cross-sectional distribution of the ML estimators and the true distribution of the

true parameters, i.e. the term sup |PTf − P0f |. See Appendix B for the proof.

Following Okui and Yanagi (2020) and Jochmans and Weidner (2018), when T is small I

propose a nonparametric bias correction method via split-panel jackknife (HPJ). I divide the

panel along the time series dimensions into two parts and obtain F̂HPJ = 2F̂ − F̄ , where F̂ is

the estimator obtained using the whole sample, while F̄ = (F̂ 1 + F̂ 2)/2 with F̂ j for j = 1, 2

being the estimators obtained when using each half of the panel.

3.3 Time-varying Model

When adding time-varying parameters in the state-space model for each i, the derivation of the

Kalman filter and smoother is essentially the same as for the case of time-invariant matrices.

Note that if the matrices are generic functions of the stochastic variable xt, then, even if the error

terms are normal, the unconditional distribution of the state variable and of the observation yit

is no longer normal, while normality can be established conditionally on the past observations

and xt.

Assumption 3 in Theorem 1 can be modified by using existing results that provide conditions

on asymptotic properties of the ML estimator for time-varying state-space models. Indeed,

assumption 3 can be relaxed along several dimensions: it is possible to rely on results in

Chapter 7 of Jazwinski (1969) for a departure of the time-invariance assumption, and it is

further possible to weaken the assumption that ρ < 1 for stability of the filter, as in Harvey

(1990).

For time-varying parameters that are common across (groups of) individuals, I consider a

multivariate version of the state-space model above. I consider stratification by observables

and, within each group, I impose common time-varying parameters (e.g. price of skills) and

individual-specific parameters. The main challenge is that the Kalman filter and smoother can

be computationally intense or even infeasible when the cross-sectional dimension N is large. I

give proposals on how to deal with these issues in the estimation section.
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3.4 Relation to Non-Parametric Literature

Finally, I consider a fixed-T approach to establish a comparison with nonparametric estimation

(Almuzara, 2020) and analyze how the results differ when I impose a parametric assumption

on the error term. Consider the following simple process for log labor income of individual i at

time t:

yit = zit + σiεi,t (2)

zit = zit−1 + ηit (3)

where zit and εi,t are unobserved components; E(σ2
i ) = 1, and the initial level of the random

walk is zi1 = zi. But impose εi,t ∼ N(0, σ2
ε ); the distribution of the raw errors ε̃i,t = σiεi,t is

quite flexible, depending on the distribution of heterogeneous variance. It is a special case of

the general state-space model above. In the following, I show first identification of the moments

of the cross-sectional distribution of (σ2
i , zi), and then identification of their joint distribution.

With stationarity only, need T ≥ 3 for identification of Cov(zi, σ
2
i ) and T ≥ 4 for V ar(σ2

i )

(Almuzara, 2020).

Cov(yit, yit+k) =


σ2
z + σ2

ε if k = 0, t = 1

σ2
z +

∑k
s=2 σ

2
η + σ2

ε if k = 0, t > 1

σ2
z if k > 0, t = 1

σ2
z +

∑k
s=2 σ

2
η if k > 0, t > 1

Cov(zi, σ
2
i ) =

Cov(yit, (∆yiτ+1)2)

2σ2
ε

τ > t+ 1

V ar(σ2
i ) =

Cov((∆yit)
2, (∆yiτ+2)2)

4σ4
ε

τ > t+ 1

Can reduce T if assuming Gaussian shocks: need T ≥ 2 for identification.

Cov(yit, yit+k) =


σ2
z + σ2

ε if k = 0, t = 1

σ2
z +

∑k
s=2 σ

2
η + σ2

ε if k = 0, t > 1

σ2
z if k > 0, t = 1

σ2
z +

∑k
s=2 σ

2
η if k > 0, t > 1

Cov(zi, σ
2
i ) =

Cov(yit, (∆yit+1)2)

2σ2
ε
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V ar(σ2
i ) =

V ar((∆yit)
2)− 4(1− σ4

ε ) + σ2
η(σ

2
η − 8σ2

ε )

8 + 6σ4
ε

For the latter use Gaussian nature of η but can relax this assumption using the moments

E[y4
it+1]− E[y4

it].

As for identification of the cross sectional distribution of the unobservables (σ2
i , zi) under

Gaussian error, the argument in Hu and Schennach (2008) would simplify here as there is

no need for instruments. Let’s denote by y earnings, by x lagged earnings, and by x∗ the

unobservables of interest (σ2
i , zi).

f(y, x) =

∫
f(y|x∗)f(x|x∗)f(x∗)dx∗

Note that f(y|x∗) and f(x|x∗) are known up to parameters. Then, it is possible to identify the

unobserved distribution of interest f(x∗) with just (y, x), no need for additional z, by solving

the above for f(x∗) in terms of known objects. Identifiability requires the integral operator to

be invertible, this is a completeness condition. If I define y to be two-dimensional I do not need

x and identification of f(x∗) is obtained as follows:

f(y) =

∫
f(y|x∗)f(x∗)dx∗

Without the parametric assumption on the error term, I need to introduce the variable z,

which is further lags or leads of y, i.e. more time periods are required (5 time periods for this

simple model, see argument in Almuzara (2020)). Note the analogy with the logic of Mavroeidis

et al. (2015), which is based on a fixed-T setting and require a parametric assumption on the

distribution of error term. Consider again the simple state-space model:

yit = zit + σiεi,t (4)

zit = zit−1 + ηit (5)

Identification relies on the equality:

fYT ,...,Y2|Y1(yT , ..., y2|y1) =

∫ ∫ ∫
fζ,σε,ση |Y1(z, sε, sη|y1)

fYT ,...,Y2|ζ,σε,ση ,Y1(yT , ..., y2|z, sε, sη, y1)dzdsεdsη

Provided that the solution exists, one can recover the unknown primitive fζ,σ|Y1=y1 by solving

14



the linear equation:

fζ,σε,ση |Y1(z, sε, sη|Y1 = y1) = L−1fYT ,...,Y2|Y1=y1

where L is the linear integral operator:

L(ξ)(YT , ..., Y2)

=

∫ ∫ ∫
ξ(z, sε, sη)

fYT ,...,Y2|ζ,σε,ση(yT , ..., y2|z, s)dzdsεdsη

For identification, need the linear operator L : L2(Fζ,σ|Y 1=y1) → L2(FYT ,...,T2|Y 1=y1) to be

complete, i.e. Lf = 0 in L2(FYT ,...,T2|Y 1=y1) implies f = 0 in L2(Fζ,σε,ση |Y 1=y1).

[On the conditions for identification, the L2-completeness conditions can be very difficult or

impossible to test.11 The paper of Andrews (2011) proposes a class of distributions satisfying

this conditions but it doesn’t extend to multivariate case. Characterization of completeness via

characteristic function as in D’Haultfoeuille (2011) may extend to multivariate cases. See also

paper of Seely on Completeness for a Family of Multivariate Normal Distributions, given that

both ε and η are normally distributed.] It is possible to use the argument in Newey and Powell

(2003) to this case given the assumption of normality in the univariate case. Extension to the

multivariate case can be established using the results in Lemma 7 of Hu and Schennach, which

reduce a multivariate completeness problem to a single variate one, under some independence

assumptions on the endogenous variables. Gaussian likelihood introduces irregular identification

(Escanciano, 2020), one way of dealing with this is to employ sieve methods with incomplete

sieve basis.

4 Estimation

In this Section I provide some details on the estimation procedure, starting from the long-

T approach, which I adopt in the empirical application, and then considering the alternative

fixed-T estimation procedure.

4.1 Main estimation

State-space estimation and filtering with heterogeneous dynamic panel data pose econometric

challenges. Estimation of the distribution of unobservables is performed in 2 stages: a first

step of estimation is performed via state-space methods; then, in a second step, I obtain the

11Canay, Santos, and Shaikh (2013) conclude that no nontrivial tests for testing completeness conditions in
nonparametric models with endogeneity involving mean independence restrictions exist.
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empirical cross-sectional distribution of unobservables estimated in the first step.

In the first step, estimation of model’ s parameters is based on maximum likelihood.12 I employ

the kalman filtering and smoothing algorithm to get smoothed estimates of state variables and

error terms.

The econometric challenge in this first step of estimation is on how to deal with state-space

models for a dataset featuring a large cross-section N: given recursive nature of filter, at each

period inversion of Ft = V ar(vt|yt−1), where vt = yt − AtE[zt|Yt−1] is the innovation, can be

problematic, see Durbin and Koopman (2012) (Ft has size N x N , computationally costly with

large N). In the models I consider, Ht is diagonal, hence, it is possible to adopt matrix identity

for inverse of Ft. Moreover, I perform stratification as a way to avoid intractability while

also addressing the issue of not restricting the dependence of earnings on covariates. When

introducing time-varying parameters, I impose that within each group some parameters are

common and time-varying parameters (e.g. price of skills), while others are individual-specific

(e.g. the standard deviation of the shocks as reported in the matrix Rit in model ??).

For starting the recursions, I implement diffuse initialization as in De Jong et al. (1991), i.e. the

uncertainty around initial states is represented in the model with an arbitrarily large covariance

matrix for the initial state distribution.13

Once (smoothed) estimates of unobservables are obtained, I obtain the empirical cross-

sectional distribution of the unobserved components estimated from the state-space models in

the second step of the estimation strategy. Note that dimensionality of vector yt can vary over

time. Thus, the methodology can be easily extended to deal with unbalanced panel data.

4.2 Fixed-T estimation

For fixed-T, the corresponding estimation approach is based on sieve nonparametric maximum

likelihood (see Mavroeidis et al. (2015)):

maxθ∈Θk(N)

N∑
i=1

log

∫ ∫ ∫
fζ,σε,ση ,Y1:θ(z, sε, sη, yi1)

fYT ,...,Y2|ζ,σε,ση ,Y1(yT , ..., y2|z, sε, sη, y1)dzdsεdsη

where Θk(N) denotes a sieve space whose dimension k(N) increases with the sample size N; and

Θ ⊂ L1(Fζ,σε,ση ,Y 1=y1).

12Details on the likelihood are provided in Appendix A.
13Durbin and Koopman (2012) show that initialization of the Kalman filter is not affected the choice of

representing the initial state as a random variable with infinite variance as opposed to assuming that it is fixed,
unknown and estimated from observations at t=1.
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5 Discussion on Gaussian Error and Extension

One might be worried that the parametric assumption is quite restrictive. Horowitz and Marka-

tou (1996) provide empirical evidence that the normal distribution can approximate well the

distribution of the permanent component of the income process. However, there might be con-

cerns that the parametric assumption is restrictive for the transitory component of earnings

shocks. Indeed, there is empirical evidence that the cross-sectional distribution of transitory

shocks features negative skewness and high kurtosis. These stylized facts have been docu-

mented, among others, by Arellano et al. (2017) as relevant features of the earnings process.

First and importantly, note that when errors are not normally distributed, results from

Gaussian state-space analysis are still valid in terms of Minimum Variance Linear Unbiased

Estimation (MVLUE): Kalman Filter estimates are not necessarily optimal, but they will have

the smallest mean squared errors with respect to all other estimates based on a linear function

of the observed variables (yit, yit−1, ..., yi1, xit, xit−1, ..., xi1), see Anderson and Moore (1989).14

Second, the homogeneity assumptions may explain some of these stylized facts: once allow-

ing for rich heterogeneity, it is unclear whether the residuals will still display the same features.

One interesting empirical question is to test to what extent these features are still present when

allowing for rich heterogeneity and time-varying parameters. Assuming individual Gaussian

shocks with heterogeneous variances allows obtaining flexible cross-sectional distributions and,

depending on the cross-sectional distributions of the heterogeneous variances, the resulting

cross-sectional distribution might display the above key features.

Finally, extensions to different distributions are feasible within a state-space framework.

Alternative assumptions on error terms can be considered by non-Gaussian state-space models;

for instance, the error term can be assumed to follow a Mixture of Normals distribution. It

would be interesting to see how much the goodness of fit improves when the assumption on

Gaussian shocks is relaxed.

6 Data

The dataset used for the empirical application is a novel confidential dataset for the UK, the

New Earnings Survey Panel Data (NESPD). It is an annual panel, running from 1975 to 2016.

All individuals whose National Insurance Number ends in a given pair of digits are included in

the survey, making it representative of the UK workforce.15 It surveys around 1% of the UK

workforce.

14The sketch of the argument is provided in appendix C.
15It might under-sample part-time workers if their weekly earnings falls below the threshold for paying National

Insurance and those that moved jobs recently. Thus, the following categories are likely to be under-sampled:
self-employed, some groups of seasonal workers, and those working only few hours irregularly. To address these
concerns, one could perform robustness checks using the Labour Force Survey data, which, however, has a much
smaller sample size.
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Figure 2: Monte Carlo simulation showing that, despite the assumption of Gaussian errors at
individual level, the cross sectional distribution of raw errors can display very high kurtosis
(and potentially also skewness) depending on the cross-sectional distribution of heterogeneous
variances, σ2

i .

The questionnaire is directed to the employer, who completes it based on payroll records for

the employee; the survey contains information on earnings, hours of work, occupation, industry,

gender, age, working area, firms’ number of employers, and unionization. This information

relates to a specified week in April of each year: the data sample is taken on the 1st of April of

each calendar year and concerns complete employee records only. As a result of being directed to

the employer, NESPD has a low non-classical measurement error and attrition rate. Descriptive

statistics are reported in Appendix D.

For both Standard Industry Classification (SIC) and Standard Occupation Classification

(SOC) codes, different classifications have been used over time. I report SIC and SOC codes to

the same classification using conversion documents provided by ONS on their website: I map

all SIC codes into the SIC07 Division (2-digit); for those divisions where there are multiple

correspondences, I use the information on whether the individual has stayed in the same job in

the last twelve months to identify the mapping; I proceed in an analogous way for SOC codes.

I rank occupations by percentiles of the median wage distribution in the starting year and

separate them accordingly into three groups: low-skill, medium-skill, and high-skill occupa-

tions.16

Given large dimensions, this dataset is particularly suited to obtain a flexible treatment of

16Another classification might be based on routine task intensity of occupations since one of the main hypothe-
ses put forward to explain job polarization is the bias of recent technological change towards replacing labor
in routine tasks (this is called routine-biased technological change, RBTC, by Goos, Manning, and Salomons
(2014)).
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covariates by stratification. I stratify by observables instead of running a first-stage regres-

sion on covariates which restricts the dependence of earnings on them. Stratification allows

considering a specification for the earning process that features type dependence in a flexible

way. In particular, I perform stratification by occupations: high-skill occupations, medium-skill

occupations, and low-skill occupations; by age groups; and by gender.

7 Empirical Application

Over the last 40 years, in the US and UK, there has been a significant increase in employment

shares in low-skill occupations and high-skill occupations, and a simultaneous decrease in em-

ployment shares in middle-skill occupations. Goos and Manning (2007) document that this

phenomenon, known as job polarization, has occurred in the UK since 1975. A likely expla-

nation for it is the automation of some types of jobs only, the middle-skill jobs, which require

precision and are easy to be replaced by machines.

In the following figures, the phenomenon of job polarization results in the characteristic

U-shape with much a negative change in employment share for middle-skill occupations. Note

that this pattern is observed over the whole period, and is not driven by a change in the gender

composition of the workforce.17

As a result of job polarization, one would expect an increase in wages for both low-skill

and high-skill occupations, while a decrease in wages for medium-skill occupations. Indeed,

job polarization would predict a rising relative demand in the low-skill relative to middle-skill

jobs. However, this has not been the case: on the contrary, earnings inequality also between

low and median wages has increased over time. Part of the increase in wage inequality might

be justified by the fact that wage growth is monotonically positively related to the quality

of jobs. If one includes more controls, the within job inequality significantly reduces. Once

one controls for job-specific effects, there should only be between job inequality, not within.

However, as suggested by Goos and Manning (2007) the findings that wages in low-skill jobs are

falling relative to those in middle-skill jobs presents something of a problem for the routinization

hypothesis, as one might expect the opposite if relative demand is rising in the low-skill jobs

relative to middle-skill jobs.

The methodology proposed in the paper is used to shed light on the relation between job

polarization and earnings inequality, which is relevant to think about the evolution of labor mar-

kets and inequality, also during and after the COVID-19 pandemic. The goal of the empirical

analysis is to relate the components and dynamics of the earnings process to the phenomenon

of job polarization, which is usually investigated only with a static approach. To this aim,

I am going to test different hypotheses on the degree of heterogeneity of the distributions of

unobservables, by observables and over time, to shed light on this puzzling empirical evidence.

17Results are robust to the chosen level of disaggregation by occupation.
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More specifically, first I am going to consider the time-invariant model used as benchmark

model in the analysis. In a second step of the analysis, I am going to introduce time varying

parameters, in the form of a time-varying price of skills (pt) in the model above, and by allowing

the variances of the shocks to be time-varying. For both models, for each group obtained by

stratification by observables, I use state-space analysis to obtain (smoothed) estimates of unob-

servables. Finally, I estimate the cross-sectional distribution of the unobservables, potentially

for aggregated strata in order to recover a larger cross-sectional dimension needed for infer-

ence on distributions. I compare these distributions via tests of the null hypothesis of equal

distributions by Kolmogorov-Smirnov test to test for different degrees of heterogeneity.18

7.1 Toy Model

The following toy model is used to motivate things and illustrate some of the underlying mech-

anisms that I would like to test.

Consider a model with two types of individuals, i ∈ {LG,HG}, where LG stands for

low growth type and HG for high growth type. Further, assume that there are 3 types of

occupations, k ∈ {LS,MS,HS}, i.e. low-skill, medium-sill, and high-skill occupations. The

price of the skills in occupation k, at time t, is πk,t, and πLS,t ≤ πMS,t ≤ πHS,t. The individual

i’s earnings at time t from occupation k is:

yi,k,t = πk,t(αi,k + βi,khi,t)

where αik and βik are the heterogeneous level and slope, which are time-invariant. The indi-

vidual’s problem at time s is:

maxk

T∑
t=s

E(yi,k,t)β
t
d

where βd is the discount factor. In this scenario one moves from MS to LS occupation if either

displaced with probability δi or if πMS,t(αi,MS+βi,MShi,t) < πLS,t(αi,LS+βi,LShi,t). Analogously

from HS to MS.

I model routinization as a negative demand shock in MS occupation, i.e. πMS,t decreases.

After this shock, all HG type move from MS occupations to HS occupations, or stay in MS

occupations. Vice versa all LG type move from MS occupations to LS occupations, or stay in

MS occupations. Assume that, after the shock, for i = HG, πMS,t(αHG,MS + βHG,MShHG,t) ≤
πHS,t(αHG,HS + βHG,HShHG,t) and πLS,t(αLG,LS + βLG,LShLG,t) ≥ πMS,t(αLG,MS + βLG,MShLG,t).

Assuming that there is a nonzero outflow of people from MS occupation, the overall effect would

be an increase in inequality.

18There might be a problem of independence if aggregate time effects are taken into account.
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Now, let’s consider a more realistic earnings process by adding the stochastic persistent and

transitory components zi,t + εi,t:

yi,k,t = πk,t(αi,k + βi,khi,t) + zi,t + εi,t

An increase in inequality might occur also if the variances of the stochastic components signifi-

cantly changed over time and by different type of occupation. This might happen as a result of

changes in institutions that have lead to a decline in wages at the bottom of the distribution.

In UK there has been a marked decline of both unionization and minimum wage over time.

Several hypotheses can be tested to investigate this phenomenon:

H1: Change in prices of skills by occupation and over time. (?)

H2: Distribution of skills changed over time as result of job mobility/displacement. (?)

H3: Alternative explanation: higher skills for those in middling occupations. Also in line with

literature on displaced workers.

H4: Distribution of variance of transitory shocks more concentrated depending on the evolution

of unionization and minimum wage over time. I investigate this channel given that a possible

explanation for increase in inequality might be that change in institutions have been in such a

way to lead to a fall in wages at the bottom of the distribution.

8 Empirical Findings

The empirical findings provide evidence that earnings dynamics feature considerable unobserv-

able heterogeneity. First, I uncover the amount of unobservable heterogeneity using the simple

time-invariant model considered as benchmark model in the theoretical section. I document

that workers in middle-skill occupations display significantly different earnings dynamics with

respect to workers in other occupations. In particular, as shown in the table below, persistence

to earnings shocks for workers in middle-skill jobs is on average smaller, over the entire time

period. The distribution of persistence has the largest dispersion for workers in low-skill oc-

cupations. Moreover, empirical evidence suggests a relatively higher correlation between the

skills of workers in middle-skill occupations and the dispersion of earnings shocks they face.

To test the hypotheses presented in the above section, I introduce time-varying parameters

in the state-space model. I obtain that there has been a pattern of increase in the prices of skills

for workers in low- and high-skill occupations, while the change over time of the skill prices for

workers in middle-skill occupations has been unstable as shown in the figure below.

These preliminary findings can be interpreted as suggestive of a pattern of negative demand

shocks in MS occupations over the considered time period. Moreover, there has been a shift in

the distribution of skills for individual in MS-occupations due to a compositional change in the

UK workforce. Finally, the dispersion of the variance of transitory shocks has increased over
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αi ρi σ2
i αi ρi σ2

i

1975-1999 2000-2005

Mean -0.1909 0.5424 0.0442 -0.3085 0.5028 0.0671
LS St. Dev. 0.3112 0.5391 0.0639 0.3534 0.5607 0.1278

IQR 0.3993 0.7996 0.0422 0.4107 0.8280 0.0724
Mean -0.1140 0.4620 0.0354 -0.1054 0.4731 0.0368

MS St. Dev. 0.2909 0.5526 0.0408 0.3342 0.5440 0.0626
IQR 0.3719 0.7686 0.0354 0.4760 0.8267 0.0329
Mean 0.1527 0.5095 0.0278 0.2507 0.5926 0.0340

HS St. Dev. 0.2873 0.5260 0.0416 0.3879 0.5366 0.0750
IQR 0.3718 0.7501 0.0259 0.4536 0.7926 0.0293

Table 1: The table reports the means, standard deviation, and interquartile range (IQR) of the
cross-sectional distributions of αi, ρi, and σ2

i , for workers in LS occupations, MS-occupations,
and HS-occupations, for two time windows: 1975-1999, 2000-2005. Split-panel jackknife (HPJ)
is used for bias correction.

time, comparatively more for workers in LS-occupations.

9 Conclusion

In this paper, I propose a formal econometric framework for studying identification and esti-

mation of unobservable heterogeneity and its dynamics. I adapt state-space methods to the

analysis of heterogeneous dynamic structures with micropanels. The framework proposed in

this paper allows for rich heterogeneity and dynamics in models, while a mild parametric yet

flexible assumption on the distribution of the shocks provides several advantages for identifica-

tion and estimation.

The framework in this paper will enable empirical researchers to answer a variety of new

empirical questions using administrative data. Moreover, it naturally lends itself to important

and useful generalizations such as allowing for common unobservable macro shocks, trends,

seasonality, and nonlinearities.

In the empirical application, I use a novel dataset on UK workers, the NESPD, to uncover

unobserved heterogeneity in earnings processes and investigate how this is related to the phe-

nomenon of job polarization.

A natural next step in the analysis is to combine the information on UK workers provided

by the NESPD with information about the supply side as reported in another novel UK dataset,

the Business Structure Database (BSD), which can be merged with NESPD to get a matched

employee-employer dataset for UK.
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Appendices

A Kalman Filter and Smoother

The Kalman filter is an algorithm that recursively calculates {ẑit+1|t}Tt=1 and {Pit+1|t}Tt=1 and

given the initial ẑi1|0 and Pi1|0, it is implemented by iterating on the following two equations:

ẑit+1|t = Titẑit|t−1 + TitPit|t−1At(AtPit|t−1At + σiHt)
−1(yit − Atẑit|t−1 −Dtxit)

Pit+1|t = TitPit|t−1T
′
it − TitPit|t−1At(AtPit|t−1At + σiHt)

−1A′tPit|t−1T
′
it + Sit

given that:

ẑit|t = ẑit|t−1 + Pit|t−1At(AtPit|t−1At + σiHt)
−1(yit − Atẑit|t−1 −Dtxit)

Pit|t = Pit|t−1 − Pit|t−1At(AtPit|t−1At + σiHt)
−1A′tPit|t−1

and

ẑit+1|t = Titẑit|t

Pit+1|t = TitPit|tT
′
it + Sit

Once I run the Kalman filter and get the sequences {ẑit+1|t}Tt=1 and {Pit+1|t}Tt=1, and {ẑit|t}Tt=1

and {Pit|t}Tt=1, it is possible to proceed in reverse order in order to calculate the sequence

of smoothed estimates {ẑit|T}Tt=1 and their corresponding mean squared errors {Pit|T}Tt=1, as

follows:

ẑit|T = ẑit|t + Pit|tT
′
itP
−1
it+1|t(ẑit+1|T − ẑit+1|t)

Pit|T = Pit|t + Pit|tT
′
itP
−1
it+1|t(Pit+1|T − Pit+1|t)P

−1
it+1|tTitPit|t

for t = T−1, T−2, ..., 1, while ẑiT |T and PiT |T are set equal to the terminal state of the sequence

obtained with the Kalman filter and associated variance.

The above recursions are made assuming that the matrices of parameters are known.

However, typically parameters are unknown. Denote by θi the vector containing all the un-

known elements in these matrices for individual i. When one needs to estimate the pa-

rameter vector θi, one builds the likelihood for the observations yit given its past values

and the observables xit, xit−1, ..., xi1, for an initial arbitrary guess on θi, θi0. In particular,

yit|xit, ..., xi1, yit−1, ..., yi1; θi0 ∼ N (µit(θi0),Σit(θi0)), where µit(θi0 = Dit(θi0)xit+Ait(θi0)ẑit|t−1(θi0)

and Σit(θi0) = Ait(θi0)Pt|t−1(θi0)Ait(θi0)′ + σi(θi0)Ht(θi0). Based on this, the value of the log-
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likelihood is:

T∑
t=1

logf(yit|xit, ..., xi1, yit−1, ..., yi1; θi0) =

k − 1

2

T∑
t=1

log|Σit(θi0)| − 1

2

T∑
t=1

[yit − µit(θi0)]′Σ(θi0)−1[yit − µit(θi0)]

where k is a constant, and the likelihood is evaluated at the initial guess for the unknown

parameters. For alternative guesses one proceed to maximize the value of the log-likelihood

by numerical method and find the Maximum Likelihood estimates of θi0. Many alternative

optimization techniques exist, one attractive option is the EM algorithm of Watson and Engle

(1983).

B Proof of Theorem 1

The proof of Theorem 1 has two parts, one for uniform convergence (i) and the other for conver-

gence in distribution (ii): (i) As in Okui and Yanagi (2020), the proof for uniform convergence

starts from the following triangle inequality:

supf∈F |PNf − P0f | ≤ supf∈F |PNf − PTf |+ supf∈F |PTf − P0f |. The goal is to show that the

term on the left-hand side is bounded by 0. This proof is composed of two steps: in a first

step, I bound the second term on the right-hand side by using the convergence in distribution

of the MLE estimator. In a second step, I follow Okui and Yanagi (2020) and bound the first

term using a modification of the steps in the Glivenko-Cantelli theorem that accounts for the

fact that the true distribution of θ̂i changes as T increases. In particular, in the first step, I

use Assumption 3 to ensure that θ̂i converges to θi in distribution. Moreover, given that θi is

continuously distributed by Assumption 2, then Lemma 2.11 in van der Vaart (1998) implies

that supf∈F |PTf − P0f | → 0. The second part of the proof is exactly as in Okui and Yanagi

(2020) to show that the first term almost surely converges to 0. The assumptions required for

this step are assumption 1, condition 1.5 in Hu et al. (1989) and Condition 1.6 in Hu et al.

(1989) when I set X = 2 in Condition 1.6, which are both satisfied here.

(ii) The proof for convergence in distribution follows a similar logic. �

C Properties of Kalman Filter Estimator

The Kalman filter estimator obtained under the Gaussian assumption is the Minimum Variance

Linear Unbiased Estimator (MVLUE) even when true errors are not normally distributed. To
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see this consider estimation of x when x is unknown and y is known.

E

[
x

y

]
=

[
µx

µy

]
, V ar

[
x

y

]
=

[
Σxx Σxy

Σxy Σyy

]
(6)

x̂ = E[x|y] = µx + ΣxyΣ
−1
yy (y − µy)

V ar(x̂− x) = Σxx − ΣxyΣ
−1
yy Σxy

then x̂ is MVLUE regardless normality of (x, y).

Consider an unbiased linear estimator x̄ = β + γy, and see that for γ = ΣxyΣ
−1
yy then x̄ = x̂,

so it is unbiased and it can be shown to have minimum variance. When matrices Zt and Tt do

not depend on previous yt’s, then under appropriate assumptions the values of the states given

by the Kalman Filter minimize the variance matrices of the estimates of zt|t and zt+1 given yt.

D Descriptive Statistics

In the following table I report some descriptive statistics.
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