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1 Introduction

Our work contributes to two broad fields: decision making and empirical analysis of the

behaviour of financial investors. First, we are carrying on an empirical investigation of an

extension of Regret Theory, RT (Loomes and Sugden, 1982; Strack and Viefers, 2013), one of

the most successful theories of decision under risk (Bleichrodt and Wakker, 2015). Second,

we add to the literature on the behavior of individual investors (see Barber and Odean,

2013 for a comprehensive review of the topic). Our work stems from the theoretical and

experimental work of Strack and Viefers (2013), SV hereafter. In their work, they derive

theoretical predictions for an Expected Utility (EU) agent and a RT agent in financial trading

decisions. They show that a RT agent does not necessarily stops at a threshold when deciding

to sell a stock and that her propensity to sell is influenced by the running maximum of the

price of the stock she is trading. We test their predictions on the LDB dataset (Odean, 1998,

1999; Dhar and Zhu, 2006; Barber and Odean, 2013).

Regret theory has already been used to explain several phenomena in finance and eco-

nomics. Gollier and Salanié (2006) and Muermann, Mitchell, and Volkman (2006) incorpo-

rate regret into models of asset pricing and portfolio choice, Braun and Muermann (2004)

show that regret can explain the commonly observed preference for low deductibles in per-

sonal insurance markets. Barberis, Huang, and Thaler (2006) use regret to explain why

people tend to invest too little in stocks. Michenaud and Solnik (2008) show that regret can

explain the empirically observed behaviour that many investors do not adopt a full hedging

policy with respect to currency risk, and Muermann and Volkman (2006) show how regret

can explain the disposition effect.

Maximum price and its effect on individual decision has already been studied from other

perspectives than ours. Grinblatt and Keloharju (2001) look at recent local maxima and

the propensity to sell of investors. Heath, Huddart, and Lang (1999) show that exercise of

option is higher when the price of the underlying stock is above its last year’s peak. Barber

and Odean (2008) and Huddart, Lang, and Yetman (2009) find that trading volume is high

around both last year maximum and minimum. Finally, an experimental paper by Baucells,

Weber, and Welfens (2011) investigates the impact of the highest level in a stream of payoffs

on subjects formation of reference point.

We closely follow the work of Strack and Viefers (2013). They extend RT to dynamic

trading decisions and test their predictions in a laboratory experiment. They compare a RT

agent to an EU agent. An EU agent would find it optimal stopping at a threshold and her

propensity to sell would not be influenced by the distance from past maximum. A RT agent

does not necessarily stops at a threshold and her propensity to sell would be increasing in
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the price of the stock and decreasing in the price distance from past maximum.

Our results section consists of two parts. In the first part we investigate if investors follow

a threshold strategy in the gain and in the loss domains. Consistently with SV we find that

most of the traders do not follow it. We find that investors are more willing to adopt a

threshold strategy in the gain with respect to the loss domain. That is a sort of a corollary

of the higher propensity to realize gains with respect to losses, the disposition effect (Shefrin

and Statman, 1985; Odean, 1998; Barber and Odean, 2013). On top of that we will go on

to characterize those traders who are more likely to follow it and build some links with the

literature on trading decisions and individual characteristics (Shapira and Venezia, 2001;

Dhar and Zhu, 2006; Seasholes and Zhu, 2010; Korniotis and Kumar, 2011, 2013; Richards

and Willows, 2018). We find that sophisticated investors and active traders are more likely to

follow a threshold strategy and affluent and older investors are less likely to follow a threshold

strategy. Males are more willing to realize losses at a threshold than females. In the second

part, we investigate the impact of past maximum of a stock in a specific trading episode,

on the propensity to sell that stock. We model the time to sell using a proportional hazard

model (Cox, 1972). We take into account both the distance in price from past maximum,

the distance in time from maximum realization and the ratio of price over running average

price. We find that investors are more likely to realize a gain, the higher is the price over

average price in the investment. The relationship of the propensity to realize a gain with the

distance in price from past maximum follows an inverse U-shape. It peaks when distance in

price is low but it decreases when it gets very low. We test also predictions which were not

considered in the model by Strack and Viefers (2013). We take into account distance in time

from past maximum. We find a strong and clear pattern: investors are less likely to sell a

winning stock, the further in time the maximum price occurred. Moreover, we investigate

the relation between distance in price and distance in time from past maximum and find

that, when distance in time is low, investors are more likely to realize a gain, the higher is

the distance in price from past maximum. We suggest that a panic effect is the main force

leading to the realization of a stock.

Our paper consists of five sections, including this one. Section 2 reviews the literature.

Section 3 describes our data and the methodology we use to analyze the data. In Section 4

we present our results and in Section 5 we conclude.
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2 Literature Review

2.1 Too Proud to Stop: Regret in Dynamic Decisions

We start this section summarizing the findings in Strack and Viefers (2013). Their work

is a pioneering work in the exploration of regret in dynamic decisions context. Regret has

been widely studied in the context of static decisions while pretty neglected in the context

of dynamic decisions (notable exceptions are the recent works by Descamps, Massoni, and

Page, 2016; Fioretti, Vostroknutov, and Coricelli, 2018). The objective of their study is a

stopping problem. In a stopping problem a decision maker observes a sequence of offers,

which are realizations of a stochastic process Xt. After observing the n-th offer the decision

maker is given the possibility to stop or keep seeing further offers. Once she chooses to go on

she cannot accept forgone offers, while if she stops she cannot accept future offers. In such

a decision framework, an EU maximizer would adopt a threshold strategy, meaning that she

should stop the game as soon as the price reaches the gain threshold she fixed as her goal.

The optimal threshold is ex-ante optimal and optimal at any point in time (there is no time

inconsistency).

Definition 1. A threshold strategy τ (b) prescribes that agent stops at time t if the value

of the process Xt exceeds the cut-off b and continues otherwise, where b is a given con-

stant. If the agent uses the cut-off strategy τ (b) she will stop at the time τ (b, X) =

min {t ≥ 0 : Xt ≥ b}.

Building on Feng and Hobson (2016), SV show that a RT agent would not necessarily

follow a threshold strategy. On top of that, she will adopt an optimal strategy which is

different from the EU maximizer one. A RT agent will never find it optimal stopping under

a past maximum while an EU maximizer who failed to stop at her threshold will not take

into account how far above the threshold the stock went and will still find it optimal stopping

at any value above her ex ante threshold. According to the hypothesis of the authors, the

basic idea behind those concepts is that in expected utility the agent only evaluates current

state of the process while in regret theory she takes into account the path of the process. It

would be useful looking at figure (1). An EU agent would experience the same utility at the

point denoted as bu, no matter when the stock hits it. A RT agent would experience a lower

utility the second time the stock hits bu wrt to the first time. More formally, a regret agent

faces a disutility due to regret because she compares her choice to the one that revealed to

be ex-post optimal, namely

Regret = (maxs∈S Us)− Ut
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Figure 1: Example of a threshold investment strategy with upper and lower thresholds
highlighted.

where S is the set of times relative to which the agent evaluates her regret. Thus the

regret is driven by the difference between the maximum utility that could have been achieved

and the utility actually achieved stopping at time t.

SV go on testing in the lab the following hypothesis, derived from their model:

• H1: Agents have a constant reservation level and they behave consistently in any

repetition of the task, i.e. for all realized sequences (agents play 65 times the game) of offers

X = (X1, X2, ...) 6=
(
X
′
1, X

′
2, ...

)
= X

′
the level at which the agent stops the game is the

same τ (X) = τ
(
X
′)

• H2: Agents never stop under the running maximum, i.e. they never stop at a level

where they decided to continue before;

• H3: Agents follow a threshold strategy, hence the stopping decision τ satisfies τ =

inf {t : Xt = Xτ}
• H4: Agents are more willing to stop the higher the level of the price and they are less

willing to stop the higher the maximum level of the price up to the decision moment, i.e.

the empirical frequency with which subjects stop at a given level x, given past maximum s

is increasing in x and decreasing in s.

In their work they are able to reject the first three hypothesis and to confirm the fourth
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Figure 2: Experimental Results from Strack and Viefers (2013). Empirical stopping fre-
quency per any level of the price and distance from past maximum (Figure 4 in Strack and
Viefers, 2013).

one (see Figure 2. In our work we are interested in translating their hypothesis into testable

hypothesis on a real world dataset. We will go back to this later in the discussion.

2.2 The behaviour of individual investors

Our work contributes to the understanding of the behaviour of individual investors. A very

good review on the topic is Barber and Odean (2013). The most widely studied phenomenon

in this area is the disposition effect (Shefrin and Statman, 1985), the tendency of investors to

realize gains at a faster rate than losses. Odean (1998) examines trading records for 10,000

accounts at a large US discount brokerage for the period 1987–1993. He compares the rate

at which investors sell winners (realized gains) and losers (realized losses) and compares

the realization of gains and losses to the opportunities to sell winners and losers. He finds

that, relative to opportunities, investors realize their gains at about a 50% higher rate than

their losses and that this difference is not explained by informed trading, a rational belief in

mean reversion, transactions costs, or rebalancing. The disposition effect is stronger among

individuals and institutional investors, according to Brown, Chappel, Da Silva Rosa, and

Walter (2006) and Barber, Lee, Liu, and Odean (2007). Dhar and Zhu (2006) show that

wealthier individuals, individuals employed in professional occupations and frequent traders

exhibit a lower disposition effect.

As far as maximum is concerned, there are several papers linked to the idea that the

maximum point of a price process has an effect on agents behaviour. First of all, Grinblatt
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and Keloharju (2001) show that high recent past returns of stocks tend to increase propensity

to sell of investors and propensity to sell is higher when a stock hits its last month maximum

price. Heath et al. (1999) show that exercise of option is higher when the price of the

underlying stock is above its last year’s peak. Barber and Odean (2008) and Huddart et

al. (2009) find that trading volume is high around both last year maximum and minimum.

Finally, an experimental paper by Baucells et al. (2011) investigates the impact of the highest

level in a stream of payoffs on the formation of the reference point.

The data we are investigating is a well established dataset in the economic literature. It is

referred to as the LDB Dataset. Data contain information on trading activities of individual

households in the period 1991-1996. Investors are from the USA. In particular, we can

mention several studies that tried to explain a great variety of phenomena through those data.

There are some papers which used the rich description in terms of investors characteristics to

detect differences in investing ability among groups. For example, Barber and Odean (2001)

conclude that women trade less than men and have better average performances. Korniotis

and Kumar (2011, 2013) focus on demographic differences among people and differences

due to age and financial knowledge. Ivković, Sialm, and Weisbenner (2008) document that

investors with concentrated portfolios tend to outperform other investors. The authors

attribute concentration to an informational advantage of those investors. A similar finding

is due to Ivković and Weisbenner (2005). They argue that investors in the LDB dataset

tend to rely upon local stocks and that leads to higher returns. However, Seasholes and

Zhu (2010) dispute their finding blaming some methodological issues in the estimation of

cross-sectional differences in investors performance. Investors’ performance is investigated

by Odean (1999), Barber and Odean (2000), Coval, Hirshleifer, and Shumway (2005) and

Huang (2019).

3 Motivation, Data and methodology

Our data span the period from January 1991 to November 1996. We use two different samples

of the data for the two sections of our analysis. We are going to explain the details of all our

choices. Some of the data preparation steps are common between the two specifications and

we will describe them here. We obtain price data from the CRSP (Centre for Research in

Security Prices) of WRDS (Wharton Research Data Services). We exclude those stocks for

which we were not able to recover price information. We remove investor-stocks records if at

least one of the entries has negative commissions (which may indicate that the transaction

was reversed by the broker). We remove from the sample investor-stocks that include short-

sale transactions or that have positions that were opened before the starting point of our
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dataset. We remove those trades where the buy and sell dates coincide (Ivković, Poterba,

and Weisbenner, 2005; Ben-David and Hirshleifer, 2012).

The starting point of an investment the first time an investor buys a stock or any time

she buys it without the stock being present in the portfolio at that time. The end point

of an investment the first sale date after that buy date as the end point of the investment1

(Shapira and Venezia, 2001; Brettschneider and Burgess, 2017). We define an episode as all

the day-stock information between a buy and a sell date. An episode is classified as a gain

if the selling price is higher or equal than the buy price. It is classified as a loss otherwise.

We now introduce a variable: the distance from the extreme at time t, dt, which we will

refer to as “distance”. Time t is defined in terms of trading days.

Definition 2. The distance from the extreme is defined as

dt =

 t−tmax

t
, if episode ends up as a gain

t−tmin

t
, if episode ends up as a loss

(1)

where t is the number of days since the episode started, and tmax and tmin are the days

when the current maximum and minimum prices of the episodes realized, respectively. Hence,

t is always bigger or equal than tmax and tmin. These are calculated taking the starting point

of an episode equal to t = 0.

3.1 Threshold Investigation

We introduce the research question we will address in the corresponding subsection in Sec-

tion 4.

• Do investors follow a threshold strategy, as defined in definition (1)?

• Which categories of investors are more likely to follow a threshold strategy?

Threshold strategy in the loss domain is not discussed from a theoretical point of view

in SV, hence our analysis is more agnostic than the one we make for the threshold strategy

in the gain domain. Optimality of the threshold strategy is defined theoretically only in the

gain domain by SV. We will assume that a threshold strategy is rational also for the loss

domain. It is linked to the concept of “stop-losses”.

1We carried on part of the analyses using a different definition of the selling date and results were
basically the same. On top of that, in the vast majority of cases investors only bought a stock once and then
sold the entire share they held in their portfolio at once.
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Table 1: Summary Statistics for the sample used in the Threshold analysis. Gain refers to
the sample where only investments which resulted in a gain are considered (return higher
or equal than 0). Loss refers to the sample where only investments which resulted in a loss
are considered. All considers those portfolio where at least a gain and a loss trading episode
were completed.

Gain Loss All

Percentage of Threshold Episodes 0.316 0.258 0.293
Number Bank Account 15, 624 11, 390 8, 674
Mean Rate of Threshold Consistency per Bank Account 0.275 0.216 0.257
Median Rate of Threshold Consistency per Bank Account 0.043 0 0.250
Mean Number of Episodes per Bank Account 4.640 3.954 11.493
Median Number of Episodes per Bank Account 2 2 6
Number of Cash Bank Accounts 2, 591 1, 812 1, 218
Number of IRA Bank Accounts 2, 798 1, 674 1, 227
Number of Keogh Bank Accounts 91 76 51
Number of Margin Bank Accounts 2, 436 1, 884 1, 469
Number of Schwab Bank Accounts 7, 708 5, 944 4, 709
Number of General Traders 10, 368 7, 080 5, 085
Number of Affluent Traders 2, 134 1, 549 1, 045
Active Trader (num.) 3, 122 2, 761 2, 544
Mean Age 4.970 5.058 5.025
Median Age 4.800 4.800 4.800
Mean Income per Bank Account 6.219 6.224 6.213
Median Income per Bank Account 6 6 6
Number of Females 1, 329 949 689
Number of Males 11, 947 8, 717 6, 627
Number of Not Professional Traders 10, 362 7, 672 5, 916
Number of Professional Traders 880 632 462
Number of Traders with Other Occupation (even NA) 4, 382 3, 086 2, 296

8



We take into account episodes whose length is shorter or equal to 300 days from buy to sell

date (209 trading days). We want to be sure we capture active trading decisions and that we

are not looking at decisions of buy-and-hold long term investors (Benartzi and Thaler, 1995;

Heath et al., 1999; Brettschneider and Burgess, 2017). We focus on the sample of portfolio

for which demographics are available. The sample is summarized in Table 1. It is obviously

the case that an episode where the investor follows a threshold strategy is characterized by

the condition dT = 0 where T is the selling date for that episode. This is the proxy we are

going to use to define a threshold strategy. Namely,

Definition 3. A trading episode is said to be a threshold strategy episode if dT = 0.

It is obviously the case that Definition 3 gives a necessary but not sufficient condition to

define an investment as a threshold episode. However, since our aim is rejecting a threshold

strategy, we are only adding more obstacles to our goal by taking into account a less stringent

hypothesis. Being able to reject it would imply, a fortiori, that a threshold strategy does not

hold. A perfect threshold strategy would imply that a stock is sold as soon as the maximum

is realized.

In Table 1 we see the distribution of some statistics for our sample. We notice that they

are in line with the idea that investors suffer from the disposition effect. In particular, dt is

lower for gains than for losses. This is a signal that investors tend to realize gains quicker and

have a strong aversion to realize losses at a minimum. Overall, the vast majority of trades

does not adhere to a threshold strategy. That is shown also in Figure 3. Our definition of

threshold strategy applies only to 31.6% of episodes in the gain domain, and to 25.8% of

trades in the loss domain.

These are descriptive statistics which clearly hint that a threshold strategy is not consis-

tently followed by our population of investors. In Section 4 we are going to investigate how

the propensity to follow a threshold strategy changes at individual level.

3.2 Maximum Investigation

Our second research question is:

• How does the propensity to sell a stock vary with respect to the three following variables?

– Level of the price;

– Distance in time from the day of running maximum realization;

– Distance in price from the running maximum.
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Figure 3: On the left, frequency of dT , the rescaled distance in time from the minimum day
calculated in the day when a sell for a loss took place. One observation per episode. On the
right, frequency of dT , the rescaled distance in time from the maximum day calculated in
the day when a sell for a gain took place. One observation per episode.
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In this section we restrict our attention to a random sample of 13000 episodes whose

length is smaller or equal to 300 days (209 trading days). We made this choice to increase

the probability we capture active decisions from investors and to get more stable estimation

in our survival models. We only take into account trading episodes which ended up with a

gain, in order to be consistent with SV. Their predictions only take into account maximum

price and an upper threshold. On top of that, in their experiment the simulated price process

is biased towards the gain domain (there is an higher probability of the price to increase than

to decrease). We excluded the 10% of most volatile episodes2. Since we are interested in how

the propensity to sell a stock changes when the distance of the price from past maximum

increases, we did not want to focus on those trades where the likelihood of big intraday drops

in price is high. The characteristics of our sample are summarized in Table 2.

Table 2: Summary Statistics for the sample used in the Maximum analysis

Number Bank Accounts 8704
Number Trading Episodes 13000
Mean Return per Episode 1.19
Median Return per Episode 1.12
Mean length per Episode 68.07
Median Return per Episode 52

We analyse data using the proportional hazard model (PH), developed by Cox (1972).

Survival analysis models are widely used in medical research and they are relatively popular

in demography and labour economics. They have recently been used in a series of financial

applications (Ivković and Weisbenner, 2005; Deville and Riva, 2007; Panayi and Peters, 2014;

Gepp and Kumar, 2015; Jiao, 2015; Brettschneider and Burgess, 2017; Richards, Rutterford,

Kodwani, and Fenton-O’Creevy, 2017).

PH model is a semi-parametric model, aimed at describing the “time-to-event” of indi-

viduals. In our case the time to event is the time from the start to the end of an investment

episode. It has the advantage of assessing the impact of covariates over the entire time axis,

while for example a logistic regression only evaluates the odds of the event/non event with

respect to a fixed time. Informally, a PH model incorporates all the information accumulated

in time for a given episode. A logistic regression would evaluate the information in a given

day independently from the information on other days of the same episode. We now add

more details to our discussion. In particular, we need to define some objects

Definition 4. Let T be a non-negative continuous random variable, representing the time

until the event of interest.
2We get the average daily ratio of minimum to maximum price per each investment episode and we

exclude those trades where the ratio is lower or equal than 0.93
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F (t) = P (T ≤ t) denotes the distribution function and f(t) the probability density

function of random variable T .

S(t) = P (T > t) = 1−F (t) is the survival function. It is the probability that a randomly

selected individual will survive beyond time t. It is a decreasing function, taking values in

[0, 1] and it equals 1 at t = 0 and 0 at t =∞.

H(t) = log S(t) is the cumulative hazard function.

The hazard function (or hazard rate) is defined as:

h (t) = lim
4t→0

P (t ≤ T < t+4t | T ≥ t)

4t

=
1

P (T ≥ t)
lim
4t→0

P (t ≤ T < t+4t)
4t

=
f (t)

S (t)
=
−d
dt

logS (t) =
d

dt
H (t)

h(t) measures the instantaneous risk of dying right after time t given the individual is alive

at time t.

In particular, we will fit a regression model where we evaluate the change in the hazard

rate with respect to a set of covariates. That is to say, given a set of covariates xi =

(xi1, xi2, ..., xip) measured for subject i, the following model is fit to data

hi (t) = h0 (t) exp
(
βtxi

)
;

with β, a p × 1 vector of parameters and h0(t) which is the baseline hazard function (i.e.

hazard for a subject i with xj = 0, j = (1, 2, ..., p)).

The proportional hazards assumption states that the ratio of the hazards of two subjects

with covariates xi and xi′ is constant over time:

hi (t)

hi′ (t)
=

exp (βtxi)

exp (βtxi′)

The Cox PH model is a semi-parametric model. It means that it leaves the form of

h0(t) completely unspecified and it estimates the model in a semi-parametric way. Then, to

estimate the model we maximize a partial likelihood. Finally, we should point out that we

are estimating a model with time changing covariates so it is better to define it as

hi (t) = h0 (t) exp
(
βtxit

)
12



To deal with unobserved heterogeneity we stratify the model based on the investor who holds

the position. This means each investor has a different baseline hazard function, which can

absorb any heterogeneity not captured by the model covariates Hence, the hazard function

for the ith position of the jth investor is

hij (t) = h0j (t) exp
(
βtxijt

)
;

where xijt is the covariate vector for the position. A final word should be spent on why

we need to stratify at investor level3. Possible reasons for there being a difference between

investors include their preference for risk, their beliefs about the market (e.g. whether there

is price momentum or not), their investment objectives and the particular strategy they are

following. For example, some investors may trade very frequently and follow a strategy based

on short term changes in stock prices. The holding periods of these investors will therefore

be shorter than other investors in the sample. Differentiating investors baseline hazards can

separate out this kind of difference from the effects of covariates included in the model, that

are in theory common across all investors.

4 Results

4.1 Threshold strategy investigation

In this section an investment episode will be claimed to respect a threshold strategy if it

satisfies Definition 3. As we said, this is only a necessary condition for a threshold strategy

(it is not sufficient). However, since we want to show that a threshold strategy is not able

to define the behaviour of traders, we are actually making harder to disprove this claim.

We already saw in Section 3 that the vast majority of trading episodes is not consistent

with a threshold strategy. The unit of analysis in this section will be the portfolio, since

we are interested in the rate of consistency with threshold for each portfolio4 In table 3 we

analyze the rate of threshold consistency per bank account. We perform a negative binomial

regression5. The dependent variable in our negative binomial regression is defined as:

3We will refer to investor level to simplify the discussion. We actually stratify at bank account level but
in most cases investors only have one bank account.

4Each individual might hold more than 1 bank account but we consider each bank account separately.
5We performed a Likelihood Ratio Test to check that a negative binomial model is more approriate than

a Poisson model. Negative binomial models assume the conditional means are not equal to the conditional
variances. This inequality is captured by estimating a dispersion parameter (not shown in the output) that
is held constant in a Poisson model. Thus, the Poisson model is actually nested in the negative binomial
model. We can then use a likelihood ratio test to compare these two and test this model assumption.
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• Ng, the number of investments in a portfolio which respect Definition 3 and resulted

in a gain, for columns 1 and 2 of Table 3.

• Nl, the number of investments in a portfolio which respect Definition 3 and resulted

in a loss, for columns 3 and 4 of Table 3.

• N = Ng +Nl, the total number of investments in a portfolio which respect Definition 3

for columns 5 and 6 of Table 3.

Hence, in columns 1 and 2 we only look at those bank accounts where at least an in-

vestment which resulted in a gain was recorded. In columns 3 and 4, we look at those bank

accounts where at least an investment which resulted in a loss was recorded. In columns

5 and 6, we look at those bank accounts where at least an investment which resulted in a

gain and at least one which resulted in a loss were recorded. To control for the fact that

different investors completed different numbers of trading episodes, we take into account the

logarithm of the number of completed episodes (completed gains, losses or all depending on

the regression) as an offset. Hence, we measure how the rate of threshold consistency varies

from one portfolio to the other. We now introduce the covariates we are taking into account.

They are all defined at bank account level.

• Dummy for the account type: Cash Account, IRA and Keogh, which are two different

types of retirement accounts, Margin accounts and Schwab One accounts;

• Client Segment: Affluent if at any point in time she has more than $100, 000 in equity,

active if she makes more than 48 trades in any year and General for the residual

individuals. If traders could be classified as both affluent and active they were classified

as active traders;

• Age in decades;

• Income is classified as a numeric variable which takes values from 1 to 9 and increases

with income of the individual6.

• Gender;

• Occupation, we follow Dhar and Zhu (2006): non-professional if the trader has a “white

collar/clerical”,“blue collar/craftsman” or “service/sales” job; professional occupation

61 corresponds to less than $15, 000 per year; 2 to $15, 000 to $19, 999; 3 to $20, 000 to $29, 999; 4 to
$30, 000 to $39, 999; 5 to $40, 000 to $49, 999; 6 to $50, 000 to $74, 999; 7 to $75, 000 to $99, 999; 8 to $100, 000
to $124, 999; 9 to $125, 000 or more
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if the trader has a “professional/technical” or “administrative/managerial” occupation;

the residual category is everyone else7.

We see that investors with margin accounts and Schwab accounts are more likely to follow

a threshold strategy. In particular, investors with margins accounts show a rate of threshold

consistency which is, on average, 20% higher than cash accounts both for gains and for

losses, separately (almost 30% when we consider overall rate). Schwab account holders have

a consistency rate which is around 10% higher than cash accounts for gains and around 5%

for losses. If we consider a threshold strategy as the rational choice for an investors, we see

that more sophisticated investors (those who have margin accounts and Schwab accounts)

are more likely to adopt it. This is in line with the idea that sophistication lowers investment

biases (Grinblatt and Keloharju, 2001; Dhar and Zhu, 2006). Retirement accounts show a

higher rate of threshold consistency than cash accounts but only when the overall rate is

considered. Active traders have a higher rate of threshold consistency. That is especially

true for losses (6 to 8% higher rate than general traders). That is to be expected since

frequency of trading increases the chances that investors are constantly monitoring their

investments. Consistency with threshold depends also on attention since investors might

lose the possibility to stop at a threshold because of inattention. Affluent traders seem to

be less consistent than general traders with a threshold strategy but the effect boils down

when we take into account age. That is probably due to the fact that affluent traders are

much older, on average, than general traders. Older investors are less likely to be consistent

with threshold strategy. Every ten years, the rate of threshold consistency decreases by

around 8%, 4% and 7% in the gain, loss and overall sample. This finding can be linked to

the idea that older individuals have lower decision making abilities and make worse financial

decisions (Korniotis and Kumar, 2011; Bruine De Bruin, 2017). The higher is the income

of the traders, the less likely they are to follow a threshold strategy. Males are more likely

to follow a threshold strategy than females for losses (their rate of threshold consistency is

14.1% higher). We do not see any differences based on the occupation of the traders.

The take home from this section is that investors do not seem to follow consistently a

threshold strategy. That is in line with the experimental findings from SV. We tried to

investigate differences at investor level. The main differences are due to age, client segment

and account type. Sophisticated investors (margin and Schwab accounts) and active traders

are more consistent with a threshold strategy. Affluent and older investors are less consistent

than general investors with a threshold strategy. Males are more willing to realize losses at

a threshold than females.

7To avoid having too many missing observations, also missing values were classified in the residual
category.
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4.2 Maximum price investigation

In this section we propose a survival analysis estimation of the propensity to sell a stock.

We look at a sample of investments which lasted no longer than 300 days (209 trading days)

and resulted in a gain. The choice of restricting the sample to such a period comes from

the fact that we want to guarantee the PH assumption holds and we base our estimation

on the idea that investors attention does not span a very long period (Benartzi and Thaler,

1995; Brettschneider and Burgess, 2017). The choice of restricting attention to the gain

domain is due to the fact that it would be difficult estimating the impact of maximum price

on the propensity to sell a stock for a loss, since maximum price would often coincide with

buy price. On top of that, SV test their prediction in a laboratory setting where stocks

are on average in the gain domain. In our analysis we take into account several variables

which are updated at daily level. The buy date of any investment episode is date 0. Every

date is registered as the difference in trading days between that date and the buy date and

denoted by t. Only propensity to sell on days when the stock is trading above the buy price

is estimated. That means that information on those days in which the stock is trading at a

loss is not incorporated in the estimate. We confine ourselves to estimate the propensity to

sell for a gain. Hence, we thought it was not appropriate estimating the propensity to sell

the stock on those days when it was trading at loss, since we constrained it to zero8. We

define now our covariates of interest, measured at any given day t

• Distance: it is the rescaled distance from the occurrence of running maximum date,

as we defined it in definition 2, t−tmax

t
. tmax is the day when maximum price between

day 0 and day t realized. We split it into tertiles based on the stock-portfolio-day

distribtuion. Distance is defined as low in the interval [0; 0.07]; medium in the interval

[0.07; 0.34) and high in the interval [0.34; 1];

• Ratio to Max Price (Ratiomax) is the ratio of daily closing price to maximum price up

to that time in the investment episode. On the selling date it is equal to the ratio of

selling price to maximum price in the episode. We split it into quartiles based on the

stock-portfolio-day distribution. Defined as low in the interval [0.349; 0.918]; medium-

low in the interval (0.918; 0.957]; medium-high in the interval (0.957; 0.981] and high

in the interval (0.981; 1].

• Ratio to Average Price (Ratioavg): Ratio to Avg Price is the ratio of daily closing price

to average daily closing price up to that time in the investment episode. On the selling

8To make a parallel with the medical literature, from which we borrow our estimation strategy, think
about an allergy which we know can only occur during the spring. It would not make sense estimating the
probability of occurrence based on the covariates measured during the winter.
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date it is equal to the ratio of selling price to average closing price in the episode. We

split it into quintiles based on the stock-portfolio-day distribtuion. Defined as low in

the interval [0.58; 1.01]; medium-low in the interval (1.01; 1.03]; medium in the interval

(1.03; 1.07]; medium-high in the interval (1.07; 1.14]; high in the interval (1.14, 3.20].
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Figure 4: Percentage of selling days out of all stock-portfolio-days per each category (0.95
c.i.). Ratio to Max Price is the ratio of daily closing price to maximum price up to that
time in the investment episode. On the selling date it is equal to the ratio of selling price
to maximum price in the episode. Low [0.349; 0.918]; Medium-Low (0.918; 0.957]; Medium-
High (0.957; 0.981]; High (0.981; 1].

We standardize all variables since we need consistency from one trading episode to an-

other. Prices are really different from stock to stock. We need to normalize them in a way

to make them comparable. On top of that, we decided to stratify variables instead of using

their continuous version for two reason. First, to take into account non linearity. Second, to

have a model which could be analyzed through Proportional Hazard technique9. The most

important implication of the PH assumption is that the effect of a covariate is constant in

time. Whilst violation of the assumption does not invalidate the model, it does significantly

alter the interpretation, particularly when only hazard ratios are reported. If an effect does

change over time then the hazard ratio is only an average of this process, and if it changes

a lot then this average can be misleading.

9A careful fine tuning was made to identify the best number of bins to split each variable. We wanted
to be parsimonious and at the same time accurate. The specification we chose was the one which led to the
Proportional Hazard assumption not being violated for any of the models. On top of that, we were able to
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Figure 5: Percentage of selling days out of all stock-portfolio-days per each category (0.95
c.i.). Distance in Time from Max Day is the standardized distance as defined in Definition 2.
Low [0; 0.07]; Medium [0.07; 0.34); High [0.34; 1].
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Figure 6: Percentage of selling days out of all stock-portfolio-days per each category (0.95
c.i.).Ratio to Avg Price is the ratio of daily closing price to average daily closing price up
to that time in the investment episode. On the selling date it is equal to the ratio of selling
price to average closing price in the episode. Low [0.58; 1.01]; Medium-Low (1.01; 1.03];
Medium (1.03; 1.07]; Medium-High (1.07; 1.14]; High (1.14, 3.20].
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Table 4: Proportional Hazard model of the hazard of selling a stock. The event is the sale.
Each day when the stock is not sold is a non-event. Each observation is at stock-portfolio-
day level. Odds Ratios with c.i. Baseline hazard rate stratified at investor level. Clustered
robust s.e. at bank account level. Ratio to Max Price is the ratio of daily closing price to
maximum price up to that time in the investment episode. On the selling date it is equal to
the ratio of selling price to maximum price in the episode. Low [0.349; 0.918]; Medium-Low
(0.918; 0.957]; Medium-High (0.957; 0.981]; High (0.981; 1]. Distance in Time from Max
Day is the standardized distance as defined in Definition 2. Low [0; 0.07]; Medium [0.07;
0.34); High [0.34; 1]. Ratio to Avg Price is the ratio of daily closing price to average daily
closing price up to that time in the investment episode. On the selling date it is equal to the
ratio of selling price to average closing price in the episode. Low [0.58; 1.01]; Medium-Low
(1.01; 1.03]; Medium (1.03; 1.07]; Medium-High (1.07; 1.14]; High (1.14, 3.20].

(1) (2) (3)

Ratio Price to Max Price (ref. Low)
Medium-Low 0.909

(0.792,1.043)
Medium-High 1.062

(0.932,1.210)
High 0.720∗∗∗

(0.619,0.837)
Dist. in Time from Max Day (ref. Low)

Medium 0.877∗∗

(0.786,0.979)
High 0.430∗∗∗

(0.385,0.481)
Ratio Price to Avg Price (ref. Low)

Medium-Low 0.837∗∗∗

(0.741,0.946)
Medium 0.914

(0.802,1.042)
Medium-High 0.914

(0.801,1.044)
High 1.082

(0.924,1.267)

Xu-O’Quigley R2 0.020 0.061 0.013
Concordance 0.57 0.61 0.55
PH Assumption Valid (0.05) YES YES YES
Time Controls YES YES YES
Number of Trading Episodes 13,000 13,000 13,000
Number of Bank Accounts 8,704 8,704 8,704
Observations 621,849 621,849 621,849

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

20



Figures 4 to 6 show the average percentage of selling days for all the categories of Ra-

tiomax, Distance and RatioAvg. We see that the propensity to sell is highest when Ratiomax

is in the medium-high category. That means that investors are more likely to sell at a point

when the price is relatively close to running maximum but not when it is very close to it (Fig-

ure 4). This is nor confirming the predictions of SV. Distance in time from maximum seems

to have a clear effect. The further in time is the maximum, the less likely is the investor to

realize a stock. It is possible that investors hope the stock to rebound when the maximum

is far in time (Figure 5). Distance in time is not taken into account in SV. Probably, time

effects would be difficult to capture in a laboratory setting. We believe that the distance

in time from the maximum point has not the same psychological relevance if measured in

trading periods in the lab or in days in the field. However, we feel it is worth investigating

the effect of time and we could open the way for the development of new theories. We think

that regret might arise not only because of price distance but also because of time distance

from the past maximum. Figure 6 seems to confirm the finding by SV that investors are

more likely to stop, the higher the level of the price process.

In Table 4 we estimate three Proportional Hazard model where we take into account the

effect of Ratiomax, Distance and Ratioavg. On top of that we stratify the baseline hazard

at bank account level, in order to take into account differences in the propensity to realize

a stock due to fixed investors’ characteristics. We also control for time effects (month and

year). For example, it is well known that the disposition effect is not present in December

(Odean, 1998) and taking into account the year we take into account market and economic

conditions in that period. The time-span considered was a period during which the stock

market experienced good returns in general. After taking into account all these effects, we

see that the propensity to sell is lowest when the stock is trading close to the maximum price.

The probability of selling at a high ratiomax is 28% lower than the probability of selling at

other points. This contradicts the main conclusion of SV. Propensity to sell peaks at a

medium-high level of the Ratiomax but differences among low, medium-low and medium-

high categories are not significant. We conclude that regret does not bite as we expected

from the theoretical discussion in SV. Propensity to sell is highest when price is close but

not extremely close to the maximum. The pattern for Distance is quite strong and clear.

Propensity to sell is 12.3% lower at a medium with respect to a low Distance and 57% lower

at high distance. The effect for Ratioavg is different to what we saw in Figure 6. Propensity

to sell is highest when Ratioavg is high but all effects are not significanlty different from

zero, apart from the fact that propensity to sell is lowest at medium-low level of Ratioavg.

capture the main non-linear changes in the effect of the variables. In the appendix we repeat the analysis
referring to the absolute distance in trading days from the maximum day.
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Most of the effect are not singnificant but the propensity to sell is higest for very low or

very high prices. This contradicts predictions in SV and hints to the idea that investors are

somewhow attracted by extreme good or bad events (Barber and Odean, 2008).

Figure 7: Percentage of selling days out of all stock-portfolio-days per each category (0.95
c.i.). Ratio to Max Price is the ratio of daily closing price to maximum price up to that
time in the investment episode. On the selling date it is equal to the ratio of selling price
to maximum price in the episode. Low [0.349; 0.918]; Medium-Low (0.918; 0.957]; Medium-
High (0.957; 0.981]; High (0.981; 1]. Distance in Time from Max Day is the standardized
distance as defined in Definition 2. Low [0; 0.07]; Medium [0.07; 0.34); High [0.34; 1]. Ratio
to Avg Price is the ratio of daily closing price to average daily closing price up to that time
in the investment episode. On the selling date it is equal to the ratio of selling price to
average closing price in the episode. Low [0.58; 1.01]; Medium-Low (1.01; 1.03]; Medium
(1.03; 1.07]; Medium-High (1.07; 1.14]; High (1.14, 3.20].

Since the effect of Distance seems to be the most relevant in terms of both strength and

explanatory power, we are interested in the interaction of it with the effect of Ratiomax. Here,

we leave the test of the hypotheses outlined in SV and we move to a closer investigation of the

combined effect of time and price. In the appendix we report the distribution distribution

of the combination of the two categories. At least 2% of stock-portfolio-day observations

fall in each category. From Figure 7 we can see that the interaction between Ratiomax and

Distance leads to an interesting scenario. When the Distance is low or medium, the average

percentage of selling days is highest when Ratiomax is low. There is probably a panic effect,
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which can be framed as regret but is much deeper than what we described before, in the

discussion of SV theory. Investors are more willing to realize a gain when it is closest in

time to maximum but furthest in price. If regret is having a role, it is through this channel.

Investors regret selling at a time far from maximum. However, they sell as soon as the price

decreases significantly. We can see this by looking at the fact that the percentage of sale

days is 2.5% at high Ratiomax and low Distance and it is 4% at low price and low distance.

Hence, it looks like anticipated regret of incurring higher losses is higher than experienced

regret given by the distance in price from past maximum. This is in line with the evidence

of anticipated regret present in Fioretti et al. (2018).
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Figure 8: Odds Ratio from a Proportional Hazard model of the hazard of selling a stock.
Each Odds Ratio corresponds to the effect of being in a given category. The event is the sale.
Each day when the stock is not sold is a non-event. Each observation is at stock-portfolio-
day level. Clustered robust s.e. at bank account level. Blue odds ratios are significantly
different from 1 (p < 0.05), red are not. Ratio to Max Price is the ratio of daily closing
price to maximum price up to that time in the investment episode. On the selling date it
is equal to the ratio of selling price to maximum price in the episode. Low [0.349; 0.918];
Medium-Low (0.918; 0.957]; Medium-High (0.957; 0.981]; High (0.981; 1]. Distance in Time
from Max Day is the standardized distance as defined in Definition 2. Low [0; 0.07]; Medium
[0.07; 0.34); High [0.34; 1]. The baseline category is ”Low Distance and High Ratio”.

We fit a Proportional Hazard model where we take into account all the 12 combinations

of Ratiomax and Distance categories. We stratify the baseline hazard at bank account level,

in order to take into account differences in the propensity to realize a stock due to fixed
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investors’ characteristics. We also control for time effects (month and year). By having

12 categories where both Ratiomax and Distance can change, we address the problem of

collinearity we would have by fitting a model where we include Ratiomax and Distance as

two distinct covariates. All categories in our regression are disjoint. The regression table is

reported in the appendix. In Figure 8 we report the odds ratio of the 11 coefficients. The

baseline category corresponds to “Low Distance and High Ratiomax”, the ideal point to sell

a stock, from an accounting perspective. We can see that all cases where distance is low

are clustered at the top, when we rank categories based on the propensity to sell for each

of them. All cases where distance is high are clustered at the bottom. The big exception

is the baseline category, low Distance and high Ratiomax. Figure 8 offers a more complete

interpretation to the sample averages we reported in Figure 7. When we take into account

investors’ fixed effects and time, the hazard of selling at a high price at a low distance from

maximum day is even lower than expected. Hazard of selling is 2.65 higher for low distance

and low Ratiomax stock-days than at the baseline. In general, when the stock is close in

time but not close in price (i.e. low distance but not high Ratiomax) the hazard of selling

is always estimated to be at least double than that at the baseline. The complete picture

seems to suggest that reality is more complicated than how the lab describes it. Distance

in price from the maximum plays a role but the effect is not nice and linear as the one

observed by SV. When distance in price is considered in isolation, it looks like propensity

to sell peaks at a point which is close but not the closest possible to maximum. However, it

is really intriguing looking at the combined effect of time distance from maximum day and

price distance from maximum day. We fell we can safely claim that traders are more willing

to sell at a low distance in time from maximum. They probably wait for a new maximum

when a lot of time has passed since the last one. Hence, it is always a salient figure in their

mind. However, when the distance in time is short, they are more willing to sell stocks

which are further from past maximum. We believe panic might play a big role. It looks like

investors are not extremely good at catching the best time to realize a stock and decide to

realize it only when the price path shows a defined descending trend. Predictions of regret

theory in dynamic context by SV are only partially confirmed then.

5 Conclusions

Investigating investors behaviour in the light of decision making models is a fascinating

challenge (Barberis and Xiong, 2009; Kaustia, 2010; Hens and Vlcek, 2011; Henderson,

2012; Strack and Viefers, 2013). Fitting a comprehensive model able to describe all aspects

of financial decisions would be the ultimate goal of this stream of research. However, our
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understanding of financial decisions proceeds more as a constructive process. We contributed

to the explanations of trading decisions from a very specific angle.

We focused on selling activities, in particular in the gain domain. We moved from

theoretical considerations of what could explain selling decisions of investors. The idea that

investors would behave as perfectly rational and optimizing decision makers, with no time

inconsistency in their preferences, is fascinating both for scholars studying rational decision

making and scholars studying optimal stopping behaviour from a more mathematical point

of view.

However, based on empirical and experimental evidence gathered in the last 20 years,

the idea of describing individual investors as rational decision makers was disputed (Barber

and Odean, 2013). In our work we tested the idea that investors stop at an optimal ex ante

threshold and are prone to regret in their decision to sell stocks. We moved from theoretical

and experimental evidence found by Strack and Viefers (2013) and tested their predictions

on field data.

Loosely speaking, a threshold strategy implies that an investor sells a stock as soon

as her optimal goal in terms of returns is reached. We rejected that hypothesis for our

sample of investors. We further investigated investors differences in the propensity to adopt

a threshold strategy. First, we saw that investors are more willing to adopt a threshold

strategy in the gain with respect to the loss domain. That is a sort of a corollary of the

higher propensity to realize gains with respect to losses, formalized as disposition effect

(Shefrin and Statman, 1985; Odean, 1998; Barber and Odean, 2013). Then, we found that

the main differences in the rate of threshold consistency are due to age, client segment

and account type. Sophisticated investors and active traders are more consistent with a

threshold strategy. Affluent and older investors are less consistent than general investors

with a threshold strategy. Males are more willing to realize losses at a threshold than

females. Sophisticated investors seem to be less prone to investment biases (Grinblatt and

Keloharju, 2001; Dhar and Zhu, 2006). Males seem to be more willing to accept losses at

a minimum, that is partially at odds with Barber and Odean (2001), who find that males

under-perform females because of overconfidence. Affluent and older investors are more likely

to depart from a rational threshold strategy, this is linked to the idea that decision making

of older individuals is poorer (Korniotis and Kumar, 2011; Bruine De Bruin, 2017).

We investigated the impact of running maximum price in an investment episode on the

propensity of investors to realize gains. We fitted a Proportional Hazard model to the

propensity to sell for a gain. Predictions of regret theory in a dynamic context (Strack and

Viefers, 2013) are that propensity to sell increases with the level of the price and decreases

with the distance of the price from past maximum. The first prediction was confirmed, but
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the evidence is not strong. Investors tend to realize more stocks, the higher is the price over

average price in the investment. However, not all effects were significant, when we take into

account investors and time fixed effects. The effect of distance in price from past maximum

was not the same found in Strack and Viefers (2013). We did find that the propensity to sell

is actually lower when the stock is trading very close to maximum price, while it is highest

when the price is close to past maximum but not in the closest region. The relation between

propensity to sell and distance in price from past maximum follows an inverse U-shape.

We did not only restrict to test ideas exposed in Strack and Viefers (2013). We investi-

gated the impact that distance in time from past maximum has on the propensity to sell a

stock. We find a very strong effect, with the propensity to sell a stock falling as the distance

in time from past maximum increases. On top of that, we investigated the joint effect of

distance in time and distance in price from past maximum, finding that investors are more

willing to realize stocks which are closer in time but further in price from past maximum.

When time distance from past maximum is short, the predictions of regret reverse. Investors

are more willing to realize stocks, the further is the price from maximum. It looks like two

forces are at work. Investors are willing to wait for a new maximum to occur if a long time

has passed since the last one and they panic when the stock price drops a short time after

maximum.

These findings open up the way to further experimental and theoretical work in this

area. First, we believe that it would interesting isolating the effects of time and price in a

controlled laboratory setting and second, we think that it would be worth incorporating the

time dimension in theoretical dynamic stopping models.
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Appendix A. Methodological notes

Negative Binomial Regression

The Poisson distribution may be generalized by including a gamma noise variable which has

a mean of 1 and a scale parameter of ν. The Poisson-gamma mixture (negative binomial)

distribution that results is

P (Y = yi|µi, α) =
Γ(yi + α−1)

Γ(yi + 1)Γ(α−1)

(
α−1

α−1 + µi

)α−1 (
α−1

α−1 + µi

)yi
(2)

where µi = ti ∗ µ and α = ν−1. The parameter µ is the mean incidence rate of y per

unit of exposure. Exposure may be time, space, distance, area, volume, or population size.

Because exposure is often a period of time, we use the symbol ti to represent the exposure for

a particular observation. When no exposure is given, it is assumed to be one. The parameter

µ may be interpreted as the risk of a new occurrence of the event during a specified exposure

period, t.

In our case the exposure time ti is the number of episodes in a bank account and µi is

the number of threshold episodes in the same bank account. In negative binomial regression,

the mean of y is determined by the exposure time t and a set of k regressor variables (the

x’s). The expression relating these quantities is

µi = exp(log(ti) + β1x1i + ...+ βkxki) (3)

often x1 = 1, in which case β1 is called the intercept. We estimate the vector of β coefficients

through maximum likelihood.

Pseudo R squared for Cox models

In this section, we would like to spell out some details of the pseudo R squared proposed

by Xu and O’Quigley (1999), which we report for our proportional hazard models. They

start from a coefficient of explained randomness derived by Kent and O’Quigley (1988). The

coefficient aims at explaining the variability on the outcome looking at the distribution of

time to events, given covariates. That coefficient has the following properties and others

which are not really relevant to our discussion but help realizing how accountable that

measure is:

• When a covariate is unrelated to survival, and the corresponding regression coefficient

it is equal to zero, it is equal to zero;
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• When the effect of at least a coefficient is different from 0, it is between 0 and 1;

• It is invariant under linear transformations of covariates and under monotone increasing

transformations of time.

The coefficient we use, used the same basic ideas but looking at the distribution of covariates

at each time. The construction could be carried out using routine quantities calculated

during a standard proportional hazards analysis. Inference was also greatly simplified. Most

importantly, the presence of time-dependent covariates presents no difficulties for Xu and

O’Quigley (1999) coefficient estimation, while the one by Kent and O’Quigley (1988) is not

defined in that case. In O’Quigley, Xu, and Stare (2005) there are further discussions on the

robustness of the pseudo R-squared we used.

Appendix B. Supplementary Analysis

Here, we include some extra analysis to complement the analysis in the main text. In

Table 5 we present the same model we presented in Table 3, taking into account knowledge

and experience of investors. As you can see, those figures are available for a relatively small

subset of individuals. The sole novelty is represented by the effect of knowledge. Investors

with extensive knowledge of investments have a rate of threshold consistency which is 12.7%

lower than others, in the gain domain. That might be an effect of overconfidence. On top of

that, we present a logit regression where the dependent variable takes the value of 1 if the

investor followed a threshold strategy for at least one investment in her portfolio (at least

one gain, at least one loss or at least one). Results are presented in Tables 6 and 7 and they

confirm the analysis we made with the negative binomial. Effects are obviously stronger,

since we are considering in the same group all investors who followed a threshold strategy

at least once.

Figures 4 to 6 show the survival curves for Ratiomax, Distance and Ratioavg respectively.

In our application, survival probability corresponds to the probability of holding the stock.

We see that the effect of Distance is much more neat than the effect of Ratiomax and

Ratioavg, as we saw in our analysis in the main text. As we mentioned in the text, we

report the joint distribution of Ratiomax and Distance (Table 8) and the regression table

which corresponds to Figure 8 (Table 9). Moreover, we reproduce Figure 8 estimating

confidence intervals using the method of Quasi-variance developed by Firth (2003), Firth and

De Menezes (2004). In this way, we overcome the problem of having a reference category for

which confidence intervals cannot be estimated and we enhance the possibility of reproducing

our work. In Figures 13 and 14 and tables 10 to 12 we reproduce the analysis of the main text,
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using absolute distance in trading days from maximum instead of the standardized distance.

We see that the Proportional Hazard assumption is not valid for models in Tables 11 and 12.

That means that the effect we report is not constant in time. Hence, the hazard ratio we

report is only an average effect. That is to be expected since we believe that being 1 or 2

days far from maximum is not the same when an investor is considering a 7 days or a 50 day

investment, intuitively. This back up the idea that a standardized distance, like the one we

defined in Definition 2 is approriate. We again see that, on average, the propensity to sell

is highest for small distance in time from maximum day and high distance in price from the

maximum.
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Figure 9: Survival curves for the four categories of Ratio to Max Price. Ratio to Max Price is
the ratio of daily closing price to maximum price up to that time in the investment episode.
On the selling date it is equal to the ratio of selling price to maximum price in the episode.
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1]. A lower probability of survival implies an higher propensity to sell the stock.

33



T
ab

le
5:

O
d
d
s

ra
ti

os
w

it
h

95
%

c.
i.

of
a

N
eg

at
iv

e
B

in
om

ia
l

re
gr

es
si

on
w

h
er

e
ea

ch
ob

se
rv

at
io

n
co

rr
es

p
on

d
s

to
a

b
an

k
ac

co
u
n
t.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
is

th
e

n
u
m

b
er

of
ti

m
es

th
e

in
ve

st
or

st
op

p
ed

at
a

th
re

sh
ol

d
in

th
e

ga
in

,
lo

ss
or

ov
er

al
l.

T
h
er

e
is

an
off

se
t

eq
u
al

to
th

e
n
u
m

b
er

of
ep

is
o
d
es

in
th

e
b
an

k
ac

co
u
n
t

(i
n

th
e

ga
in

,
lo

ss
,

ov
er

al
l)

.

G
a
in

L
o
ss

A
ll

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

A
cc

o
u

n
t

T
y
p

e
(r

ef
.

C
a
sh

)
A

cc
o
u

n
t

T
y
p

e
IR

A
1
.0

3
2

1
.0

2
9

1
.0

8
1

1
.0

8
1

1
.0

7
6

1
.0

6
8

(0
.9

0
4
,1

.1
7
8
)

(0
.9

0
5
,1

.1
7
2
)

(0
.9

1
0
,1

.2
8
6
)

(0
.9

1
4
,1

.2
8
1
)

(0
.9

4
9
,1

.2
2
0
)

(0
.9

4
6
,1

.2
0
7
)

A
cc

o
u

n
t

T
y
p

e
K

eo
g
h

1
.1

8
2

1
.2

1
2

1
.2

6
1

1
.2

1
9

1
.2

5
5

1
.2

6
6
∗

(0
.8

4
1
,1

.6
5
4
)

(0
.8

7
2
,1

.6
7
9
)

(0
.8

5
0
,1

.8
4
9
)

(0
.8

2
2
,1

.7
8
3
)

(0
.9

4
6
,1

.6
6
3
)

(0
.9

6
1
,1

.6
6
4
)

A
cc

o
u

n
t

T
y
p

e
M

a
rg

in
1
.2

1
9
∗∗
∗

1
.2

4
4
∗∗
∗

1
.1

4
0

1
.1

8
2
∗

1
.2

7
2
∗∗
∗

1
.2

9
2
∗∗
∗

(1
.0

6
7
,1

.3
9
4
)

(1
.0

9
2
,1

.4
1
8
)

(0
.9

5
6
,1

.3
6
2
)

(0
.9

9
6
,1

.4
0
5
)

(1
.1

2
3
,1

.4
4
2
)

(1
.1

4
6
,1

.4
5
9
)

A
cc

o
u

n
t

T
y
p

e
S

ch
w

a
b

1
.1

6
2
∗∗

1
.1

5
4
∗∗

1
.1

4
3
∗

1
.1

6
0
∗∗

1
.2

2
1
∗∗
∗

1
.2

1
6
∗∗
∗

(1
.0

3
8
,1

.3
0
4
)

(1
.0

3
2
,1

.2
9
2
)

(0
.9

8
7
,1

.3
2
8
)

(1
.0

0
5
,1

.3
4
3
)

(1
.0

9
7
,1

.3
6
0
)

(1
.0

9
7
,1

.3
5
1
)

C
li
en

t
S

eg
m

en
t

(r
ef

.
G

en
er

a
l)

C
li
en

t
S

eg
m

en
t

A
ffl

u
en

t
1
.0

0
4

0
.9

8
4

0
.9

6
4

0
.9

7
0

0
.9

4
4

0
.9

2
9

(0
.9

0
6
,1

.1
1
1
)

(0
.8

8
9
,1

.0
8
7
)

(0
.8

3
4
,1

.1
1
1
)

(0
.8

4
1
,1

.1
1
5
)

(0
.8

5
0
,1

.0
4
7
)

(0
.8

3
8
,1

.0
2
8
)

C
li
en

t
S

eg
m

en
t

A
ct

iv
e

1
.0

8
1
∗∗

1
.0

8
2
∗∗

1
.0

8
0
∗

1
.0

9
7
∗∗

1
.1

1
5
∗∗
∗

1
.1

1
0
∗∗
∗

(1
.0

0
8
,1

.1
5
8
)

(1
.0

1
2
,1

.1
5
8
)

(0
.9

8
7
,1

.1
8
2
)

(1
.0

0
5
,1

.1
9
7
)

(1
.0

4
9
,1

.1
8
6
)

(1
.0

4
5
,1

.1
7
8
)

A
g
e

(d
ec

a
d

es
)

0
.9

0
7
∗∗
∗

0
.9

0
9
∗∗
∗

0
.9

3
1
∗∗
∗

0
.9

4
3
∗∗
∗

0
.9

1
0
∗∗
∗

0
.9

1
7
∗∗
∗

(0
.8

8
3
,0

.9
3
1
)

(0
.8

8
6
,0

.9
3
2
)

(0
.9

0
0
,0

.9
6
2
)

(0
.9

1
4
,0

.9
7
3
)

(0
.8

8
9
,0

.9
3
1
)

(0
.8

9
7
,0

.9
3
8
)

In
co

m
e

0
.9

9
4

0
.9

9
2

0
.9

7
6
∗∗

0
.9

7
5
∗∗

0
.9

8
9

0
.9

8
7
∗

(0
.9

7
7
,1

.0
1
1
)

(0
.9

7
6
,1

.0
0
8
)

(0
.9

5
5
,0

.9
9
8
)

(0
.9

5
5
,0

.9
9
6
)

(0
.9

7
5
,1

.0
0
4
)

(0
.9

7
3
,1

.0
0
2
)

M
a
le

0
.9

7
5

0
.9

6
8

1
.0

8
3

1
.1

2
9

0
.9

7
5

0
.9

8
9

(0
.8

5
8
,1

.1
0
9
)

(0
.8

5
4
,1

.0
9
9
)

(0
.9

1
2
,1

.2
9
2
)

(0
.9

5
4
,1

.3
4
4
)

(0
.8

6
6
,1

.0
9
8
)

(0
.8

8
2
,1

.1
1
1
)

O
cc

u
p

a
ti

o
n

(r
ef

.
O

th
er

(a
ls

o
N

A
)

N
o
n

P
ro

fe
ss

io
n

a
l

O
cc

u
p

a
ti

o
n

1
.0

4
4

1
.0

5
1

0
.9

9
5

1
.0

4
2

1
.0

1
0

1
.0

3
5

(0
.9

0
9
,1

.1
9
6
)

(0
.9

1
9
,1

.1
9
8
)

(0
.8

2
2
,1

.1
9
6
)

(0
.8

7
0
,1

.2
4
1
)

(0
.8

8
7
,1

.1
4
7
)

(0
.9

1
5
,1

.1
6
9
)

P
ro

fe
ss

io
n

a
l

O
cc

u
p

a
ti

o
n

1
.0

1
0

1
.0

0
2

0
.9

1
6
∗

0
.9

2
7
∗

0
.9

7
5

0
.9

7
3

(0
.9

4
5
,1

.0
7
9
)

(0
.9

3
9
,1

.0
7
0
)

(0
.8

3
9
,0

.9
9
9
)

(0
.8

5
2
,1

.0
1
0
)

(0
.9

1
9
,1

.0
3
4
)

(0
.9

1
8
,1

.0
3
1
)

E
x
p

er
ie

n
ce

(r
ef

.
G

o
o
d

)
E

x
p

er
ie

n
ce

E
x
te

n
si

v
e

0
.9

2
6
∗

1
.0

4
1

0
.9

7
9

(0
.8

5
3
,1

.0
0
5
)

(0
.9

4
0
,1

.1
5
1
)

(0
.9

1
3
,1

.0
4
9
)

E
x
p

er
ie

n
ce

L
o
w

1
.0

0
8

1
.0

4
4

1
.0

3
3

(0
.9

3
5
,1

.0
8
6
)

(0
.9

4
4
,1

.1
5
4
)

(0
.9

6
4
,1

.1
0
7
)

E
x
p

er
ie

n
ce

N
o
n

e
1
.0

6
6

0
.8

3
5

0
.9

7
3

(0
.8

8
1
,1

.2
8
5
)

(0
.6

2
8
,1

.0
9
5
)

(0
.8

1
5
,1

.1
5
7
)

K
n

o
w

le
d

g
e

(r
ef

.
G

o
o
d

)
K

n
o
w

le
d

g
e

E
x
te

n
si

v
e

0
.8

7
3
∗∗
∗

1
.0

5
5

0
.9

6
4

(0
.7

9
8
,0

.9
5
5
)

(0
.9

4
7
,1

.1
7
5
)

(0
.8

9
5
,1

.0
3
9
)

K
n

o
w

le
d

g
e

L
o
w

1
.0

0
6

1
.0

1
2

1
.0

2
8

(0
.9

3
4
,1

.0
8
4
)

(0
.9

1
6
,1

.1
1
8
)

(0
.9

6
1
,1

.1
0
0
)

K
n

o
w

le
d

g
e

N
o
n

e
1
.0

3
9

1
.1

1
4

1
.0

7
9

(0
.9

3
2
,1

.1
5
8
)

(0
.9

6
7
,1

.2
8
1
)

(0
.9

8
0
,1

.1
8
8
)

M
cF

a
d

d
en

A
d

j.
R

2
0
.7

7
0
.7

6
0
.7

6
0
.7

5
0
.7

6
0
.7

7
O

b
se

rv
a
ti

o
n

s
4
,7

1
3

4
,9

1
1

3
,5

3
1

3
,6

6
3

2
,7

0
1

2
,8

0
9

N
o
te
:

∗
p
<

0
.1

;
∗∗

p
<

0
.0

5
;
∗∗
∗
p
<

0
.0

1

34



T
ab

le
6:

O
d
d
s

ra
ti

os
w

it
h

95
%

c.
i.

of
a

lo
gi

t
re

gr
es

si
on

w
h
er

e
ea

ch
ob

se
rv

at
io

n
co

rr
es

p
on

d
s

to
a

b
an

k
ac

co
u
n
t.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
is

1
if

th
e

in
ve

st
or

st
op

p
ed

at
a

th
re

sh
ol

d
at

le
as

t
on

ce
in

th
e

ga
in

,
lo

ss
or

ov
er

al
l.

G
ai

n
L

os
s

A
ll

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

A
cc

ou
n
t

ty
p

e
(r

ef
.

C
as

h
)

A
cc

ou
n
t

T
y
p

e
IR

A
1.

10
9∗

1.
13

0∗
1.

04
8

1.
04

1
1.

16
1∗

1.
23

8∗
∗

(0
.9

94
,1

.2
37

)
(0

.9
97
,1

.2
82

)
(0

.9
09
,1

.2
08

)
(0

.8
84
,1

.2
25

)
(0

.9
87
,1

.3
66

)
(1

.0
27
,1

.4
94

)
A

cc
ou

n
t

T
y
p

e
K

eo
gh

1.
17

4
1.

32
1

1.
73

1∗
∗

1.
44

4
1.

41
3

1.
38

0
(0

.7
63
,1

.8
07

)
(0

.7
49
,2

.3
45

)
(1

.0
79
,2

.7
75

)
(0

.8
12
,2

.5
51

)
(0

.7
88
,2

.5
85

)
(0

.6
57
,3

.0
10

)
A

cc
ou

n
t

T
y
p

e
M

ar
gi

n
1.

42
3∗
∗∗

1.
37

4∗
∗∗

1.
47

5∗
∗∗

1.
46

7∗
∗∗

1.
53

1∗
∗∗

1.
45

0∗
∗∗

(1
.2

71
,1

.5
94

)
(1

.2
04
,1

.5
69

)
(1

.2
87
,1

.6
90

)
(1

.2
51
,1

.7
21

)
(1

.3
10
,1

.7
90

)
(1

.2
05
,1

.7
46

)
A

cc
ou

n
t

T
y
p

e
S
ch

w
ab

1.
45

3∗
∗∗

1.
41

7∗
∗∗

1.
36

9∗
∗∗

1.
32

9∗
∗∗

1.
54

0∗
∗∗

1.
52

6∗
∗∗

(1
.3

25
,1

.5
93

)
(1

.2
72
,1

.5
79

)
(1

.2
23
,1

.5
35

)
(1

.1
64
,1

.5
19

)
(1

.3
52
,1

.7
55

)
(1

.3
07
,1

.7
82

)
C

li
en

t
S
eg

m
en

t
(r

ef
.

G
en

er
al

)
C

li
en

t
S
eg

m
en

t
A

ffl
u
en

t
0.

79
0∗
∗∗

0.
84

3∗
∗∗

0.
75

8∗
∗∗

0.
77

2∗
∗∗

0.
70

8∗
∗∗

0.
74

3∗
∗∗

(0
.7

18
,0

.8
69

)
(0

.7
53
,0

.9
44

)
(0

.6
73
,0

.8
54

)
(0

.6
70
,0

.8
88

)
(0

.6
18
,0

.8
10

)
(0

.6
31
,0

.8
73

)
C

li
en

t
S
eg

m
en

t
A

ct
iv

e
2.

45
5∗
∗∗

2.
73

7∗
∗∗

2.
16

6∗
∗∗

2.
12

2∗
∗∗

2.
40

5∗
∗∗

2.
69

0∗
∗∗

(2
.2

53
,2

.6
76

)
(2

.4
68
,3

.0
37

)
(1

.9
78
,2

.3
72

)
(1

.9
04
,2

.3
66

)
(2

.1
68
,2

.6
71

)
(2

.3
71
,3

.0
55

)
A

ge
(d

ec
ad

es
)

0.
90

3∗
∗∗

0.
99

6
0.

88
1∗
∗∗

(0
.8

76
,0

.9
31

)
(0

.9
62
,1

.0
32

)
(0

.8
46
,0

.9
18

)
In

co
m

e
0.

97
3∗
∗∗

0.
96

5∗
∗∗

0.
97

0∗
∗

(0
.9

54
,0

.9
93

)
(0

.9
42
,0

.9
88

)
(0

.9
44
,0

.9
97

)
M

al
e

1.
12

2
1.

11
5

1.
13

5
(0

.9
76
,1

.2
90

)
(0

.9
42
,1

.3
24

)
(0

.9
30
,1

.3
84

)
O

cc
u
p
at

io
n

(r
ef

.
O

th
er

(a
ls

o
N

A
)

N
on

P
ro

fe
ss

io
n
al

O
cc

u
p
at

io
n

0.
98

2
0.

90
9

0.
96

4
(0

.8
46
,1

.1
40

)
(0

.7
59
,1

.0
87

)
(0

.7
84
,1

.1
87

)
P

ro
fe

ss
io

n
al

O
cc

u
p
at

io
n

0.
94

4
0.

94
3

0.
94

1
(0

.8
69
,1

.0
25

)
(0

.8
54
,1

.0
40

)
(0

.8
39
,1

.0
54

)

M
cF

ad
d
en

A
d
j.
R

2
0.

03
0.

29
0.

02
9

0.
29

0.
03

8
0.

31
O

b
se

rv
at

io
n
s

15
,6

24
11

,4
77

11
,3

90
8,

31
5

8,
67

4
6,

28
0

N
ot

e:
∗ p
<

0.
1;
∗∗

p
<

0.
05

;
∗∗
∗ p
<

0.
01

35



T
ab

le
7:

O
d
d
s

ra
ti

os
w

it
h

95
%

c.
i.

of
a

lo
gi

t
re

gr
es

si
on

w
h
er

e
ea

ch
ob

se
rv

at
io

n
co

rr
es

p
on

d
s

to
a

b
an

k
ac

co
u
n
t.

T
h
e

d
ep

en
d
en

t
va

ri
ab

le
is

1
if

th
e

in
ve

st
or

st
op

p
ed

at
a

th
re

sh
ol

d
at

le
as

t
on

ce
in

th
e

ga
in

,
lo

ss
or

ov
er

al
l.

G
a
in

L
o
ss

A
ll

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

A
cc

o
u

n
t

T
y
p

e
(r

ef
.

C
a
sh

)
A

cc
o
u

n
t

T
y
p

e
IR

A
1
.1

7
3

1
.1

7
0

1
.0

3
0

1
.0

5
4

0
.9

9
9

0
.9

8
1

(0
.9

4
9
,1

.4
5
1
)

(0
.9

5
1
,1

.4
4
0
)

(0
.7

9
0
,1

.3
4
4
)

(0
.8

1
4
,1

.3
6
8
)

(0
.7

3
5
,1

.3
5
9
)

(0
.7

2
8
,1

.3
2
2
)

A
cc

o
u

n
t

T
y
p

e
K

eo
g
h

1
.7

1
0

1
.6

5
2

1
.6

8
4

1
.5

6
6

1
.6

6
9

1
.8

1
8

(0
.8

1
4
,3

.6
9
2
)

(0
.8

0
4
,3

.4
7
5
)

(0
.7

9
1
,3

.5
9
9
)

(0
.7

4
5
,3

.2
9
5
)

(0
.6

1
9
,4

.9
9
9
)

(0
.6

8
6
,5

.3
8
7
)

A
cc

o
u

n
t

T
y
p

e
M

a
rg

in
1
.3

2
3
∗∗

1
.4

0
1
∗∗
∗

1
.1

8
9

1
.2

1
4

1
.1

6
1

1
.2

6
0

(1
.0

4
7
,1

.6
7
3
)

(1
.1

1
5
,1

.7
6
3
)

(0
.8

9
7
,1

.5
7
8
)

(0
.9

2
2
,1

.6
0
2
)

(0
.8

4
0
,1

.6
0
7
)

(0
.9

1
9
,1

.7
2
9
)

A
cc

o
u

n
t

T
y
p

e
S

ch
w

a
b

1
.5

7
6
∗∗
∗

1
.5

8
0
∗∗
∗

1
.2

3
0
∗

1
.2

6
7
∗∗

1
.4

6
1
∗∗
∗

1
.4

9
4
∗∗
∗

(1
.3

0
7
,1

.9
0
2
)

(1
.3

1
6
,1

.8
9
9
)

(0
.9

8
1
,1

.5
4
6
)

(1
.0

1
6
,1

.5
8
5
)

(1
.1

2
1
,1

.9
0
4
)

(1
.1

5
6
,1

.9
3
4
)

C
li
en

t
S

eg
m

en
t

(r
ef

.
G

en
er

a
l)

C
li
en

t
S

eg
m

en
t

A
ffl

u
en

t
0
.8

9
4

0
.9

0
2

0
.7

3
1
∗∗
∗

0
.7

4
5
∗∗
∗

0
.7

8
4
∗∗

0
.7

9
9
∗

(0
.7

6
2
,1

.0
4
8
)

(0
.7

7
1
,1

.0
5
4
)

(0
.5

9
8
,0

.8
9
2
)

(0
.6

1
2
,0

.9
0
5
)

(0
.6

2
2
,0

.9
8
6
)

(0
.6

3
8
,1

.0
0
0
)

C
li
en

t
S

eg
m

en
t

A
ct

iv
e

2
.4

9
6
∗∗
∗

2
.5

7
3
∗∗
∗

1
.9

9
1
∗∗
∗

2
.0

3
2
∗∗
∗

2
.5

6
4
∗∗
∗

2
.6

0
4
∗∗
∗

(2
.1

5
4
,2

.8
9
4
)

(2
.2

2
8
,2

.9
7
4
)

(1
.7

0
0
,2

.3
3
4
)

(1
.7

4
1
,2

.3
7
4
)

(2
.1

3
5
,3

.0
8
6
)

(2
.1

7
6
,3

.1
2
2
)

A
g
e

(d
ec

a
d

es
)

0
.8

7
2
∗∗
∗

0
.8

7
5
∗∗
∗

0
.9

8
4

0
.9

9
1

0
.8

2
6
∗∗
∗

0
.8

3
9
∗∗
∗

(0
.8

2
9
,0

.9
1
6
)

(0
.8

3
3
,0

.9
1
8
)

(0
.9

3
0
,1

.0
4
1
)

(0
.9

3
7
,1

.0
4
7
)

(0
.7

7
3
,0

.8
8
2
)

(0
.7

8
7
,0

.8
9
5
)

In
co

m
e

0
.9

7
7

0
.9

7
5

0
.9

6
5
∗

0
.9

7
1

0
.9

7
8

0
.9

7
9

(0
.9

4
5
,1

.0
0
9
)

(0
.9

4
4
,1

.0
0
6
)

(0
.9

2
8
,1

.0
0
2
)

(0
.9

3
6
,1

.0
0
8
)

(0
.9

3
5
,1

.0
2
3
)

(0
.9

3
7
,1

.0
2
3
)

M
a
le

1
.0

2
1

1
.0

1
7

1
.1

5
3

1
.1

5
7

0
.8

8
6

0
.8

8
0

(0
.8

0
7
,1

.2
9
1
)

(0
.8

0
7
,1

.2
8
2
)

(0
.8

7
6
,1

.5
2
6
)

(0
.8

8
2
,1

.5
2
5
)

(0
.6

3
4
,1

.2
3
3
)

(0
.6

3
1
,1

.2
2
1
)

O
cc

u
p

a
ti

o
n

(r
ef

.
O

th
er

(a
ls

o
N

A
)

N
o
n

P
ro

fe
ss

io
n

a
l

O
cc

u
p

a
ti

o
n

0
.8

3
1

0
.8

6
6

0
.9

2
6

0
.9

8
7

0
.8

7
8

0
.9

5
7

(0
.6

5
1
,1

.0
6
0
)

(0
.6

8
2
,1

.1
0
0
)

(0
.6

8
7
,1

.2
4
4
)

(0
.7

3
7
,1

.3
1
7
)

(0
.6

2
1
,1

.2
4
3
)

(0
.6

8
2
,1

.3
4
8
)

P
ro

fe
ss

io
n

a
l

O
cc

u
p

a
ti

o
n

0
.8

5
0
∗∗

0
.8

4
9
∗∗
∗

0
.9

1
9

0
.9

2
4

0
.8

3
9
∗∗

0
.8

3
6
∗∗

(0
.7

4
9
,0

.9
6
5
)

(0
.7

4
9
,0

.9
6
1
)

(0
.7

9
2
,1

.0
6
6
)

(0
.7

9
8
,1

.0
6
9
)

(0
.7

0
6
,0

.9
9
6
)

(0
.7

0
6
,0

.9
9
0
)

E
x
p

er
ie

n
ce

(r
ef

.
G

o
o
d

)
E

x
p

er
ie

n
ce

E
x
te

n
si

v
e

0
.9

1
1

1
.1

8
9
∗

0
.9

4
5

(0
.7

7
1
,1

.0
7
6
)

(0
.9

8
7
,1

.4
3
1
)

(0
.7

6
5
,1

.1
6
8
)

E
x
p

er
ie

n
ce

L
o
w

0
.9

1
6

0
.9

9
5

0
.9

0
0

(0
.7

9
8
,1

.0
5
2
)

(0
.8

4
3
,1

.1
7
3
)

(0
.7

4
2
,1

.0
9
2
)

E
x
p

er
ie

n
ce

N
o
n

e
1
.1

3
7

0
.6

7
4
∗

1
.3

1
0

(0
.8

0
1
,1

.6
1
6
)

(0
.4

3
2
,1

.0
3
2
)

(0
.8

0
2
,2

.1
7
6
)

K
n

o
w

le
d

g
e

(r
ef

.
G

o
o
d

)
K

n
o
w

le
d

g
e

E
x
te

n
si

v
e

0
.8

3
7
∗

1
.1

2
4

0
.8

8
7

(0
.7

0
0
,1

.0
0
1
)

(0
.9

2
1
,1

.3
7
1
)

(0
.7

0
6
,1

.1
1
6
)

K
n

o
w

le
d

g
e

L
o
w

0
.8

9
5

0
.9

2
3

0
.8

8
5

(0
.7

8
0
,1

.0
2
7
)

(0
.7

8
3
,1

.0
8
7
)

(0
.7

3
2
,1

.0
7
1
)

K
n

o
w

le
d

g
e

N
o
n

e
0
.9

5
0

0
.9

0
1

0
.9

1
8

(0
.7

7
4
,1

.1
6
7
)

(0
.7

0
6
,1

.1
4
7
)

(0
.6

9
7
,1

.2
1
2
)

M
cF

a
d

d
en

A
d

j.
R

2
0
.0

3
0
.2

9
0
.0

2
9

0
.2

9
0
.0

3
8

0
.3

1
O

b
se

rv
a
ti

o
n

s
4
,7

1
3

4
,9

1
1

3
,5

3
1

3
,6

6
3

2
,7

0
1

2
,8

0
9

N
o
te
:

∗
p
<

0
.1

;
∗∗

p
<

0
.0

5
;
∗∗
∗
p
<

0
.0

1

36



0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Distance in Time from Maximum Day Low Medium High

Figure 10: Survival curves for the three categories of Distance in Time from Max Day.
Distance in Time from Max Day is the standardized distance as defined in Definition 2. Low
[0; 0.07]; Medium [0.07; 0.34); High [0.34; 1]. A lower probability of survival implies an
higher propensity to sell the stock.
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Figure 11: Survival curves for the five categories of Ratio to Avg Price. Ratio to Avg Price is
the ratio of daily closing price to average daily closing price up to that time in the investment
episode. On the selling date it is equal to the ratio of selling price to average closing price in
the episode. Low [0.58; 1.01]; Medium-Low (1.01; 1.03]; Medium (1.03; 1.07]; Medium-High
(1.07; 1.14]; High (1.14, 3.20]. A lower probability of survival implies an higher propensity
to sell the stock.
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Table 9: Proportional Hazard model of the hazard of selling a stock. The event is the sale.
Each day when the stock is not sold is a non-event. Each observation is at stock-portfolio-
day level. Odds Ratios with c.i. Baseline hazard rate stratified at investor level. Clustered
robust s.e. at bank account level. Ratio to Max Price is the ratio of daily closing price to
maximum price up to that time in the investment episode. On the selling date it is equal to
the ratio of selling price to maximum price in the episode. Low [0.349; 0.918]; Medium-Low
(0.918; 0.957]; Medium-High (0.957; 0.981]; High (0.981; 1]. Distance in Time from Max
Day is the standardized distance as defined in Definition 2. Low [0; 0.07]; Medium [0.07;
0.34); High [0.34; 1].

Dist. in time from Max and Ratio to Max (ref. Low and High)
Low dist. and Low Ratio to Max 2.649∗∗∗

(1.803,3.891)
Medium dist. and Low Ratio to Max 1.755∗∗∗

(1.421,2.166)
High dist. and Low Ratio to Max 0.882

(0.731,1.064)
Low dist. and Medium-Low Ratio to Max 2.430∗∗∗

(1.968,3.002)
Medium dist. and Medium-Low Ratio to Max 1.266∗∗

(1.051,1.524)
High dist. and Medium-Low Ratio to Max 0.604∗∗∗

(0.501,0.728)
Low dist. and Medium-High Ratio to Max 2.061∗∗∗

(1.779,2.387)
Medium dist. and Medium-High Ratio to Max 1.230∗∗

(1.021,1.482)
High dist. and Medium-High Ratio to Max 0.620∗∗∗

(0.519,0.742)
Medium dist. and High Ratio to Max 0.996

(0.809,1.226)
High dist. and High Ratio to Max 0.360∗∗∗

(0.286,0.453)

Xu-O’Quigley R2 0.095
Concordance 0.65
PH Assumption Valid (0.05) YES
Time Controls YES
Number of Trading Episodes 13,000
Number of Bank Accounts 8,704
Observations 621,849

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 12: Odds Ratio from a Proportional Hazard model of the hazard of selling a stock.
Each Odds Ratio corresponds to the effect of being in a given category. The event is the sale.
Each day when the stock is not sold is a non-event. Each observation is at stock-portfolio-day
level. Clustered robust s.e. at bank account level. Blue odds ratios are significantly different
from 1 (p < 0.05) when relying upon exact standard errors, red are not. Confidence intervals
were obtained with the Quasi-Variance method of Firth (2003), Firth and De Menezes (2004).
Ratio to Max Price is the ratio of daily closing price to maximum price up to that time in the
investment episode. On the selling date it is equal to the ratio of selling price to maximum
price in the episode. Low [0.349; 0.918]; Medium-Low (0.918; 0.957]; Medium-High (0.957;
0.981]; High (0.981; 1]. Distance in Time from Max Day is the standardized distance as
defined in Definition 2. Low [0; 0.07]; Medium [0.07; 0.34); High [0.34; 1]. The baseline
category is “Low Distance and High Ratio”.
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Table 11: Proportional Hazard model of the hazard of selling a stock. The event is the sale.
Each day when the stock is not sold is a non-event. Each observation is at stock-portfolio-
day level. Odds Ratios with c.i. Baseline hazard rate stratified at investor level. Clustered
robust s.e. at bank account level. Distance in Time from Max Day is measured in trading
days.

Dist. from Maximum Day (ref. Max Day)
1 Day 1.093

(0.943,1.266)
2 Days 0.929

(0.783,1.101)
3 to 5 Days 0.742∗∗∗

(0.640,0.860)
More than 5 Days 0.413∗∗∗

(0.363,0.470)

Xu-O’Quigley R2 0.061
Concordance 0.61
PH Assumption Valid (0.01) NO
Time Controls YES
Number of Trading Episodes 13,000
Number of Bank Accounts 8,704
Observations 621,849

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: Proportional Hazard model of the hazard of selling a stock. The event is the sale.
Each day when the stock is not sold is a non-event. Each observation is at stock-portfolio-
day level. Odds Ratios with c.i. Baseline hazard rate stratified at investor level. Clustered
robust s.e. at bank account level. Ratio to Max Price is the ratio of daily closing price to
maximum price up to that time in the investment episode. On the selling date it is equal
to the ratio of selling price to maximum price in the episode. Low [0.349; 0.957]; Medium
(0.957; 0.981]; High (0.981; 1]. Distance in Time from Max Day is measured in trading days.

Dist. in from Max and Ratio to Max (ref. Max Day and High)
Max Day and Low Ratio to Max 3.051∗∗∗

(2.283,4.077)
1 Day After Max and Low Ratio to Max 1.702∗∗∗

(1.238,2.339)
2 Days After Max and Low Ratio to Max 1.791∗∗∗

(1.381,2.322)
3 to 5 Days After Max Low Ratio to Max 1.437∗∗∗

(1.166,1.771)
5+ Days After Max and Low Ratio to Max 0.706∗∗∗

(0.602,0.829)
Max Day and Medium Ratio to Max 2.529∗∗∗

(2.141,2.989)
1 Day After Max and Medium Ratio to Max 1.709∗∗∗

(1.362,2.143)
2 Days After Max and Medium Ratio to Max 1.339∗∗

(1.018,1.762)
3 to 5 Days After Max Medium Ratio to Max 0.908

(0.720,1.146)
5+ Days After Max and Medium Ratio to Max 0.535∗∗∗

(0.442,0.647)
1 Day After Max and High Ratio to Max 1.348∗∗∗

(1.084,1.675)
2 Days After Max and High Ratio to Max 0.762

(0.544,1.067)
3 to 5 Days After Max High Ratio to Max 0.741∗∗

(0.555,0.989)
5+ Days After Max and High Ratio to Max 0.366∗∗∗

(0.287,0.467)

Xu-O’Quigley R2 0.1
Concordance 0.65
PH Assumption Valid (0.05) YES
Time Controls YES
Number of Trading Episodes 13,000
Number of Bank Accounts 8,704
Observations 621,849

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 13: Percentage of selling days out of all stock-portfolio-days per each category (0.95
c.i.). Ratio to Max Price is the ratio of daily closing price to maximum price up to that
time in the investment episode. On the selling date it is equal to the ratio of selling price to
maximum price in the episode. Low [0.349; 0.957]; Medium (0.957; 0.981]; High (0.981; 1].
Distance in Time from Max Day is measured in trading days.
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Figure 14: Odds Ratio from a Proportional Hazard model of the hazard of selling a stock.
Each Odds Ratio corresponds to the effect of being in a given category. The event is the sale.
Each day when the stock is not sold is a non-event. Each observation is at stock-portfolio-
day level. Clustered robust s.e. at bank account level. Blue odds ratios are significantly
different from 1 (p < 0.05), red are not. Ratio to Max Price is the ratio of daily closing price
to maximum price up to that time in the investment episode. On the selling date it is equal
to the ratio of selling price to maximum price in the episode. Low [0.349; 0.957]; Medium
(0.957; 0.981]; High (0.981; 1]. Distance in Time from Max Day is measured in trading days.
The baseline category is ”Max Day and High Ratio”.
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