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Abstract

Digital goods are produced along a quality ranking and can be both duplicated and damaged at zero
marginal cost. Consumers’ valuation of quality consists of a common decreasing returns component
and an heterogeneous component that gives sellers a motive for screening. The monopolist problem is
naturally divided into an acquisition and a distribution stage; two interdependent sources of inefficiency,
underprovision and quality damaging, emerge. Competition is modeled as a two stage game of perfect
information, in which active firms acquire market power through an irreversible investment in quality. The
monopolistic allocation emerges as one equilibrium but there are also equilibria with active competition.
The welfare comparison between monopoly and duopoly is ambiguous: additional underacquisition and
double spending favor the former, undoing damaging inefficiencies by distributing a positive quality for
free favors the latter.

∗I am indebted to my advisor, Stephen Morris, for encouragement and support in developing this project. I am also grateful
to Faruk Gul and Wolfgang Pesendorfer for insightful conversations. For helpful comments I would like to thank Pierpaolo
Battigalli, Massimo Marinacci, Michele Fornino, Pietro Ortoleva, Franz Ostrizek, Alessandro Pavan, Giorgio Saponaro, and
seminar audiences at Princeton.

†Princeton University, esartori@princeton.edu

1



1 Introduction

We study the distribution of goods that are produced along a quality ranking and that can be both duplicated
and damaged at zero marginal cost. A firm that creates a version of the good of quality q can, at no additional
cost, sell arbitrary amounts of any quality below q. Consumers demand at most one version of the good, they
agree on the quality ranking but have different tastes for quality. Such heterogeneity makes producers with
market power willing to engage in inefficient quality damaging for screening purposes as in the literature of
multiproduct monopolist as in Mussa and Rosen (1978), hereafter referred to as MR.

Two markets whose functioning is well approximated by this model are the market for digital content,
(computer software, mobile apps, digital audio and video content), and some portions of the market for
information (weather forecasts, non-strategic financial information). The former is a large and growing
sector of advanced economies, while the latter is of interest because it is natural to assume that sellers
have access to a free garbling technology that allows for damaging of information structures. Until Section
4, where we formalize the application to information markets, we will not discuss how particular results
explain phenomena observed in those markets, and generically refer to digital goods as products that have
the following characteristics:

1. They are non-rival but excludable through a pricing system;1

2. Produced and damaged along single-dimensional quality ranking that is given exogenously and on
which all consumers agree. This excludes the possibility of horizontal differentiation across consumers.
However,

3. Consumers have heterogenous tastes for quality.

4. When multiple firms are active, their products are homogenous: Individuals never want to combine
qualities sold by different producers.

5. On the production side, replication and damaging of a version occurs at negligible cost, and damaging
must lie on the pre-specified quality ranking.

We will assume consumers’ preferences for quality (point 3 above) are separable in a common decreasing
returns component and an heterogeneous constant returns component. We adopt this specification for two
reasons. First, the interpretation we give in Section 2.1.1 in which agents use the digital good to perform two
tasks (basic and professional activities) may be a reasonable description of the demand for digital goods (we
indeed motivate it with an example of software consumption). Second, it is a parsimonious specification that
allows for rich empirical implications of the model. The standard linear preferences used in MR, which will
be presented as a subcase, are unable to generate an optimal contract that displays non-trivial damaging: we
show that if the decreasing returns component were absent, then only one positive quality would be sold in
the market. This is counterfactual, at least in some markets: to give just one example, Figure 1.1 below shows
a set of packages for statistical software that differ in their computational power. Likewise, digital content

1 An essential non-rivalry arises because of the free replicability. In general, no consumption externalities are allowed, which
is a particularly restrictive assumption in the market for information where a recent literature focused on the fact that the value
of information is an equilibrium object. The excludability issue is also critical; a whole literature (Muto (1986), Varian (2000),
Polanski (2007) among others) focuses on the distribution of non-excludable “information goods” that in their definition include
also software and books.
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Figure 1.1: Non-trivial damaging in the distribution of Stata

is often offered in SD or HD packages and Section 4 gives examples of non-trivial screening in information
markets.

An additional observation motivating our analysis is that goods of positive quality are distributed for
free in many of the markets with the characteristics described above. An enormous amount of information
is available at no (monetary) cost. The same is true for online services, ranging from e-mails to document
storage and digital contents. As for computer software, it is interesting to notice that Open Office was
released in 2002, 12 years after Microsoft sold the first Office package, possibly as a consequence of increased
competition. Many mobile apps are also sold for free, even though premium options are often present and,
unlike (some) computer software, are immune to failures of non-excludability.2 The literature offers some
explanations for the free-quality phenomenon, ranging from creating costumer fidelization to be exploited
in parallel markets (bundling and cross-fidelization), to earning profits from individual attention (through
advertising). In this paper we build a simple model that can both create, under certain assumptions about
primitives and the competition structure, the positive implications discussed above (non-trivial damaging
and distribution of free quality), and that is flexible enough to answer some questions like: Is such free
distribution socially desirable? What is the welfare impact of some policies in this framework (damaging
prohibition, linear taxation, patent protection)?

1.1 Outline of the paper and preview of results

Section 2 formalizes the primitives and characterizes the provision of digital goods by a monopolist under
both perfect and asymmetric information. As in standard first-degree price discrimination problems, the
former setting induces the first-best allocation which features no quality damaging. The latter problem is
more complicated. We show that it can be conveniently rewritten as the maximization over a sequence of MR
problems parametrized by the quality cap constraining the monopolist’s allocation function. Each problem
in this sequence, not the original one, can be solved applying standard monopolist screening techniques
with a particular (zero) cost function. We show that the optimal contract conditional on a quality cap
allocates each type the minimum between an increasing type-dependent function and the quality cap itself.
A bunching threshold moves as the quality cap increases, which raises rents of high valuation types while
leaving rents of lower types unchanged. This property makes it simple to characterize the marginal revenue
function and hence solve the quality-acquisition problem. The two-stage nature of the monopolist problem
generates two sources of inefficiency: an acquisition inefficiency similar to standard underprovision with

2 Many online apps profit from matching demand and supply for either transportation (Uber, Lyft) or for food delivery
(Deliveroo, Foodora). They also actively engage in some sort of screening: ride hailing apps charge a higher price for larger or
more comfortable cars, while food delivery apps may propose early delivery for a surcharge. Those are not examples that fit our
description, since both “premium” services (bigger car and fast delivery) require a higher marginal cost to the producer: the
delivery guy has to run a motorbike rather than a bike and, similarly, the premium car has a higher depreciation/fuel cost.
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market power, and a damaging inefficiency from asymmetric information. The two are interdependent:
distribution obviously depends on the quality constraint, and incentives to acquire depend on the revenues
that damaging can achieve. In particular the efficiency at the top typical of standard screening problems is
limited to a distributional efficiency: a positive measure of types never receives a damaged quality but even
the highest type receives a quality below what he gets in the first best. Curvature of the common component
implies that at low quality levels optimal distribution features no damaging, and that in all contracts all
types receive positive quality (and surplus). With linear preferences (no concave component) a “no haggling”
result holds: a cap-invariant set of types is always served the undamaged quality while others are fully
excluded (given q = 0), so marginal revenues are constant. We conclude Section 2 by analyzing the impact
of a No Screening (NS) policy, namely to prohibit the seller from engaging in quality damaging for screening
purposes. When binding, the policy is proved to always worsen the underacquisition inefficiency. As for its
impact on damaging, two forces operate: the NS policy mechanically prevents inefficient damaging, though
it may induce the complete exclusion of some low types that received positive surplus in the unconstrained
monopoly contract. We find conditions under which the NS policy is welfare improving.

Section 3 studies competition in digital goods markets as the equilibrium of a two stage game of perfect
information. The first stage, investment in quality, determines firms’ market power at the pricing stage. The
second stage (pricing) equilibrium is easily characterized using the tools developed to solve the monopolist
problem: the owner of the larger quality behaves indeed as a (interim-)monopolist on the quality spectrum
he owns exclusively, while Bertrand forces drive the price of the second highest quality to zero. In the first
stage there are multiple equilibria indexed by n, the number of firms that are active (i.e. choosing to acquire
a positive quality with positive probability). With n = 1 the active firm is a monopolist for sure (the only
pure strategy equilibrium) and agents receive the monopolist allocation of Section 2. With any n ≥ 2 there
is a symmetric equilibrium in which active firms randomize investment with full support ranging from zero
to the monopolist quality. In the class of equilibria with active competition, we prove that every type in
the economy is better-off with a lower intensity of competition (smaller n). The relevant welfare comparison
is therefore between monopoly and duopoly. By only looking at the support of the mixed equilibrium
we observe that the highest quality distributed under competition will be below the monopolist quality
(increasing underprovision inefficiency). Also, active competition implies inefficient double spending: due to
homogeneity, the development cost of an inferior quality is always socially wasteful. However, by distributing
a positive quality for free, competition shrinks screening inefficiencies associated to each realized best quality.
We prove that we cannot go beyond this qualitative comparison between monopoly and duopoly equilibria:
different shapes of the cost function can shut down almost completely either the positive or the negative
impact of competition. In particular, if the monopolist was not damaging, then competition unambiguously
reduces total welfare. By contrast, if costs are extremely convex (approaching a fixed cost structure), then
a competitive market induces stochastic allocations that converge to the flat allocation where everybody
receives the quality produced (but not distributed) by a monopolist and hence dominates the monopolistic
equilibrium.

Section 4 is independent of the other two and assesses the fitness of the framework presented before to
study information markets, relative to existing approaches that model information acquisition. We discuss
how modeling choices used in the paper translate into implicit assumptions on the type of information
markets that can be analyzed. The key element is that production of information is decentralized and that
the technology to convert the factor of production (attention) into state-signal structures must be taken as
a primitive. We present a simple but exact microfoundation of the reduced form model studied in the paper
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and discuss how correlation in primary information structures can be used to create product heterogeneity
which is necessary to avoid some implications of the model that are counterfactual in those market (only one
firm makes profits). The dimensionality of feasible signal structures and of payoff relevant types, even with
a “small” state space, poses significant tractability challenges that are beyond the scope of this paper but
suggest directions for future research.

1.2 Literature review

In this section we review technical contributions related to the building blocks of the model: the demand
side, the composition of replicability and damaging on the production technology, and a description of model
of competition with screening. Models of information markets are reviewed separately in the last section.

Quality screening The demand side of the economy and the solution techniques for the quality-conditional
problem are based on the literature on screening with a multiproduct monopolist pioneered by Mussa and
Rosen (1978), advanced in Maskin and Riley (1984) and later in Wilson (1993). Assumptions in this paper
make sure to avoid ironing and other technical complications within each MR problem (which are the focus of
the original paper and Rochet and Choné (1998)), and to have a simple revenue comparison across different
problems.

Free Replicability Motivated by the example of software and digital contents, a recent literature in
computer science Goldberg and Hartline (2003); Goldberg et al. (2006); Hartline and Roughgarden (2008)
studied how to design the revenue maximizing mechanism to allocate a good that is replicable for free to
agents with heterogeneous valuations. In particular Goldberg et al. (2001) show that posted price mechanism
performs surprisingly close to the optimal (possibly dynamic) incentive compatible auction. This result
partially justifies my focus of screening through (a menu of) prices.3

Damaging The idea of damaging a good for screening purposes was originally introduced in Deneckere
and Preston McAfee (1996).4 The approach in this paper is different both in modeling choice and in the
type of questions addressed. From a modeling perspective, beyond preserving a positive marginal cost from
distribution,5 Deneckere and McAfee (1996) take a binary set of qualities as exogenously fixed, thereby
excluding an acquisition margin, and assume that the only way to produce the good of low quality is by
damaging the high quality good. Marginal distribution costs are therefore larger for the low quality good.6

They focus on the monopolist problem and address the following question: When is it the case that the
possibility to damage benefits all agents in the economy?7

Product versioning through quality damaging has been explored also in the context of a durable good
monopolist. In related papers, Inderst (2008) and Hahn (2006) consider an environment with two consumer

3

It is not a complete justification to my approach as they don’t allow damaging of the replicable good. An extension of their
results to cases in which the seller can damage the good would be interesting per se.

4Srinagesh and Bradburd (1989) offer a very general analysis for the case where there are two types of customer. McAfee
(2007) provides an exact characterization in terms of marginal revenues of when damaging is profitable.

5Their motivating examples include processors, printers and other technological products.
6Clearly, under those assumptions it is a more startling fact that a monopolist is sometimes willing to engage in screening.
7Section 2.5 addresses a natural extension of this question within our framework.
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types and a monopolist that sells different versions of a product over time and faces a Coasian commitment
problem in price and quality.8

Availability of a damaged quality may also result from illegal activities such as piracy (assuming the
copied version is somehow inferior to the original).9 Peitz and Waelbroeck (2006) provides a critical overview
of the theoretical literature that addresses the economic consequences of end-user copying, though focusing
mostly on the non-excludability of low qualities that is induced by the illegal activity.10

Competition with screening A vast literature on competition with screening spurred from the seminal
contribution of Rothschild and Stiglitz (1976) (RS) on insurance markets. RS equilibrium invokes a natural
notion of stability induced by a free entry condition which can be interpreted as the Nash equilibrium of a
contract11 posting game among many (ex-ante) symmetric firms. Existence is not guaranteed. The advance-
ment of game theory allowed a more formal analysis of the strategic interaction among competitors: Jaynes
(1978) shows the RS equilibria always exist if sharing of information about customers is treated endogenously
as part of the game among firms. Hellwig (1988) shows that this is true if each firm’s communication strategy
is conditioned on the set of contracts that are offered by the other firms.12

Departures from modeling equilibrium with asymmetric information as the outcome of an extensive form
game produced some elegant characterizations. Dubey and Geanakoplos (2002) study the RS model by fixing
an exogenous set of pools characterized by their limits on contributions. Households signal their reliability
by choosing which to join. They put discipline on beliefs over pools that are not visited in equilibrium and
prove existence (and uniqueness) of the separating RS equilibrium. Bisin and Gottardi (1999) and Bisin et al.
(2011) extend the the model of general competitive equilibrium to economies with asymmetric information
without having to explicitly model private information.13

Possibly due to a lack of tractability of the latter models, the literature even in recent years has kept
analyzing competition under asymmetric information as the equilibrium of an extensive form game. This is
the approach taken also in this paper.14 Netzer and Scheuer (2010) extend the RS model to two-dimensional
heterogeneity in both risk and patience where the latter is the endogenous result of optimal savings or labor
supply decisions. In their model RS equilibria exist and equilibrium contracts can earn strictly positive
profits because any contract that attracts good consumers would also attract bad risk types and become
unprofitable. A similar result of profitable contracts in RS equilibria is obtained in the two dimensional
screening model of Smart (2000) where both dimensions are exogenous.

However, in many cases RS equilibria fail to exist due to the many deviations available to the pool of

8In their setting the seller may optimally choose to engage in quality deterioration in the first period (and trade only occurs
in this period) by selling the low-quality version below marginal cost in the first period to avoid later price concessions to
high-valuation consumers.

9Takeyama (1994) argues that the loss in profits due to copying may be greater if dynamic effects are taken into account;
however it is also possible that the seller benefits from being copied since this reduces his commitment problem.

10Hence connecting mostly with the literature on non-excludable “information goods” referred to in footnote 1.
11In their case, a contract is a set of insurance rate and price.
12 With the use a dynamic games, the analysis of contracting with adverse selection was extended to the other issues, among

others that of renegotiation (e.g. Hart and Tirole (1988)) and recontracting (Beaudry and Poitevin (1995) model a financial
market where the informed party has the bargaining power even though competing uninformed parties make the offer).

13Wilson (1978), Dutta and Vohra (2005) and Vohra (1999) propose an extension of the core as a positive foundation of
equilibria under asymmetric information.

14Although a strategic foundation may sometimes be an appealing feature of the model, it adds one degree of arbitrariness: by
looking at the simplest model of competition and how Cournot and Bertrand equilibria differ in their implication we understand
how crucial even the specification of the action space may be. Selection of the game structure is mainly driven by the tractability
of equilibria it delivers; alternative specifications are discussed in Section 3.4.
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potential entrants. One solution in this case is to give firms some market power at the pricing stage. Garrett
et al. (2014) have a model in which market power is given exogenously by assuming that also consumers are
imperfectly informed about the offers in the market (two-sided asymmetric information). They show that
the intensity of competition decreases this source of market power, so in the limit the Bertrand equilibrium
emerges. Having firms commit through an ex-ante irreversible investment is a second way of creating (this
time endogenously) market power, used since Hotelling (1929). A standard reference for this approach is
Kreps and Scheinkman (1983), who have firms commit to a quantity level before Bertrand competing on the
realized investments. The setup closer to that of this paper is Champsaur and Rochet (1989) who analyze
a MR duopoly where each competitor costlessly commits to a subset of qualities and then chooses a pricing
function (paying the distribution costs at this stage). In section 3.4 we compare the properties of the equilibria
of their models with results in this paper.

2 The Monopolist Problem

2.1 Primitives and Efficiency Benchmark

2.1.1 Demand

The economy is populated by a unit mass of consumers. Each consumer is characterized by a utility type
θ ∈ Θ, where Θ is a compact subset of R+. F : Θ → [0, 1] strictly increasing and admitting a density is the
population distribution function. Utility types describe an agent’s cardinal rankings over different quality
versions of the digital good. Consumers’ valuation for quality are assumed to take the functional form

u (q, θ) = g (q) + θq (2.1)

where g is a concave function representing the relative curvature of the common component of quality ranking
with respect to the type dependent one.15 The degenerate case of g ≡ 0, i.e linear utility, will be an important
subcase for two reasons: it is the utility specification adopted in MR among others and also it delivers an
extreme version of our screening results. When non-degenerate, it is assumed that g satisfies the Inada
conditions

lim
x→0

g′ (x) = ∞, lim
x→∞

g′ (x) = 0 (2.2)

Agents also own a large amount of a numeraire good and have quasilinear preferences in this good. So the
demand correspondence associated to a quality pricing function p : Q → R is given by

Dp (θ) = argmax
q

u (q, θ)− p (q)

15As quality does not have a natural metric, we can consider a more general setting in which for two increasing function
g1, g2

u (x, θ) = g1 (x) + θg2 (x)

then define quality q = g2 (x) with associated cardinal rankings

u (q, θ) = g1
(
g−1
2 (q)

)
+ θq

The cost function over the new quality space can be redefined in a similar fashion. The qualitative results would not change,
what is key is that the type independent component g1 ◦ g−1

2 is concave or, that g1 is “more concave” than g2. The empirical
content driving the results is that the common valuation of the quality is the additive separability in types and the fact that
the function multiplying type is “less concave” than the common quality ranking.
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Returns from quality: Interpretation and properties

The utility specification (2.1)-(2.2) is important to deliver some properties of the optimal contract.16 We now
justify it by offering an interpretation in the context of software consumption, and we identify the analytical
properties that drive our results. For an interpretation, suppose consumers use the digital good to perform
two tasks. All users perform the same basic task and measure returns to quality in the accomplishment
of this task according to a common decreasing returns function; they also perform an advanced task, but
they have heterogeneous constant marginal return types θ, which measure the intensity of individuals’ tastes
for quality in the accomplishment of such task. To substantiate the assumption, we use the software (OS)
example and broadly define q as computational power. The set of basic tasks include simple calculations,
text editing and other activities that are performed by everyone in essentially the same way and for which
the returns to quality are very steep at the beginning, but then vanish. The advanced task is a professional
activity in which each consumer specializes and that may be more or less computationally intensive. At a low
level of q there is little (relative) variation in marginal utilities as everyone cares essentially about the steep
improvement in the performance of the basic task, while at large q the demand for improvement is driven by
the use one can make in the advanced task, which is heterogeneous.

From a technical standpoint, additive separability and concavity of g gives rise to a constant difference
in the marginal utility g′ (q) + θ between any two types. Yet, since g′ is decreasing q, their ratio

g′ (q) + θ

g′ (q) + θ′

is also a decreasing function of q. The type dependent component θ within the marginal valuation g′ (q) + θ

becomes dominant as we climb up the quality ladder. As the marginal willingness to pay for a quality
improvement for a high type relative to a low type increases in the level of quality, it becomes profitable to
screen type θ from θ′ only when the quality level is large enough.

2.1.2 Production and Sale

The digital good can be produced along a continuum of versions or qualities, where Q = R+ is the quality
space. A producer creates a version of the good of quality q at cost c (q), assumed to be increasing and
convex and measured in the same units as revenues.17 Then he can supply an arbitrary quantity of version
q as well as all versions dominated by q. Formally, they operate the following production set18

Y = {I {q′ ≤ q} ,−c (q)}q∈Q (2.3)

16In section 2.4.1 we present less restrictive sufficient condition to preserve the structure of the result at the cost of lower
tractability.

17Again, using the re-definition of the quality spectrum from footnote 15, the cost reads c1 (q) = c
(
g−1
2 (q)

)
, and the

substantive assumption that c ◦ g−1
2 is convex is guaranteed since it is a composition of convex functions.

18Consumers are in unit measure and demand at most one version, so a supply of 1 is indeed “arbitrarily large”.
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After producing q the seller has to quote a feasible market, that is a pricing function on the restricted domain
p : [0, q] → R.19 The profit maximization problem therefore reads

max
q,p:[0,q]→R

∫
Θ

p (Dp (θ)) f (θ) dθ − c (q)

2.1.3 First Best and Perfect Information

We begin by stating and solving the first best problem of choosing a social allocation to maximize expected
social utility net of acquisition costs.

Definition 2.1. The efficient allocation is the functionρeff : Θ → Q

that solves

max
ρ:Θ→Q

S (ρ) =

∫
Θ

u (ρ (θ) , θ) dF (θ)− c

(
sup
θ

ρ (θ)

)
(2.4)

The following proposition characterizes the efficient allocation

Proposition 2.2. The efficient allocation map is given by

ρeff : Θ → Q

ρeff (θ) 7→ q?

where q? is the unique solution to equation

g′ (q) + EF [θ] = c′ (q) (2.5)

It is natural that the efficient allocation has singleton image q?: since each individual’s utility is increasing
in q and the distribution of each quality below q costs the same, it will never be socially optimal to allocate
a damaged good to any type. Equation (2.5) is the first order condition of problem (2.4) after noticing that
the efficient allocation is flat; sufficiency is immediate. As is also standard, we notice that a monopolist that
is not subject to information frictions, namely that observes each type and can charge different prices to
different costumers will induce the efficient allocation rule ρeff and extract all the surplus.

Remark 2.3. (First Degree Price Discrimination) Suppose that the individual type θ were observable to the
seller. Then the monopolist would replicate the efficient allocation characterized in Proposition 2.2, and make
profits S

(
ρeff

)
.

2.2 Private information

In the remainder of the paper, we assume consumers have private information about their utility type. The
monopolist must rely on incentive compatible market design to allocate different qualities to different types.20

19An equivalent restatement is to let the seller choose only a pricing function p : Q → R ∪ {∞} and define the cost function
c on the space of pricing functions as:

c (p) = c (sup {q : p (q) < ∞})
In this case, the monopolist would solve

max
p:Q→R

∫
Θ
p (Dp (θ)) f (θ) dθ − c (p)

20 It is assumed that the principal has no “screening device” as defined in Jaynes (2006), namely he cannot obtain addi-
tional information about valuation types so that each individual must be treated as a random draw from F (assumed known).
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We set up the problem as a multi-agent mechanism design problem and appeal to the revelation principle
to write the monopolist problem as choosing a pair of allocation and transfer rules21

(ρ, p) : Θ → Q× R

to maximize profits under incentive compatibility and rationality constraints. Compared to standard screen-
ing problems, the key novelty is that the cost of an allocation rule ρ no longer takes the additively separable
form

c (ρ) =

∫
Θ

c̃ (ρ (θ)) dθ

for some primitive cost c̃. By contrast, it solely depends on one statistic of the allocation rule, namely the
maximum quality, so it can be written as:22

c (ρ) = c

(
sup
θ

ρ (θ)

)
(2.6)

With these observations at hand, we write the monopolist problem in the following way

maxρ,p:Θ→Q×R
∫
Θ
p (θ) dF (θ)− c (supθ ρ (θ))

s.t.
IC u (θ, ρ (θ))− p (θ) ≥ u (θ, ρ (θ′))− p (θ′) ∀θ, θ′

IR u (θ, ρ (θ))− p (θ) ≥ 0 ∀θ

(2.7)

It is worth emphasizing that under the non additively separable cost function (2.6), we cannot solve (2.7)
by piecewise maximization of an appropriately defined type dependent profit. However, the simple form of
non-separability characterizing (2.6) suggests that problem (2.7) can be divided in two stages. First, revenues
conditional on each quality cap are calculated, and then those revenues are compared with the cost of buying
a quality cap. The following Lemma formalizes this intuition and introduces the revenue and cap-conditional
allocation functions.

Lemma 2.4. Define the quality constrained revenue function V : Q → R given by

V (q) 7−→ maxρ,p:Θ→Q×R
∫
Θ
p (θ) dF (θ)

IC , IR
ρ (θ) ≤ q, ∀θ ∈ Θ

(2.8)

and let ρq : Θ → Q be the optimal quality allocation of problem (2.8). The solution to problem (2.7) is

Bergemann et al. (2015) analyze the limits of (third-degree) price discrimination induced by additional information on buyers’
types and show that that information can be tailored to achieve any combination of surplus such that total surplus is below the
efficient level, and producer and consumer surplus are above uniform monopoly pricing and zero, respectively.

21The steps for rewriting the monopolist problem presented in the previous section as the design of a direct mechanism are
standard and therefore omitted. It should not create confusion that from now on the pricing function p has domain the type
space Θ rather than the quality space Q.

22In a companion project (joint with Franz Ostrizek) we explore screening under the more general cost structure

c (ρ) =

∫
Θ
c̃ (ρ (θ) , ρ) dθ

that allows the cost of producing the quality sold to type θ to depend on the whole allocation rule. This is useful to describe
less extreme versions of economies of scale, learning, or nontrivial cost of quality replication and versioning.
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characterized by a quality cap qM given by:

qM = argmax
q

V (q)− c (q) (2.9)

and by an allocation
ρ? : Θ → Q = ρqM (θ)

Once we are given the V function from (2.8), it is clear we can solve (2.9) as a simple maximization in
single variable (if we show V is concave, qM will be characterized by a first order condition alone). The
challenge is then to find function V and the cap-conditional allocation rule

ρ : Q×Θ → Q

where ρ (q, θ) is the quality assigned to type θ when the quality cap is q.23 This is the objective of the
following section.

2.3 Solution of the Screening Problem

Characterizing the constraint-conditional optimal contract (and therefore the revenues) is in principle a
complicated problem, since for each q ∈ Q we need to solve for a function ρq. The main result of this section,
Proposition 2.9, shows that whenever primitives satisfy regularity conditions, the set of constraint-conditional
allocation rules take a simple form in which we just compare a function of the type with the constraint. Before
moving to the general case with a continuous type space, we consider a simpler economy populated by only
two types since it provides the intuition for the more general case and clarifies the nature of the regularity
assumptions.

2.3.1 Two Types Example

Suppose the economy is populated by a fraction π of high marginal valuation types denoted by H and 1− π

low marginal valuation types L. The following proposition characterizes the optimal contract V (q), ρq (·) for
this economy.

Proposition 2.5. Let y? ∈ Q be the solution to

g′ (y) + θL
g′ (y) + θH

= π (2.10)

The optimal allocation takes the simple form

ρ (L, q) =

q if q < y?

y? else
, ρ (H, q) = q

firm’s profits are given by

V (q) =

u (q, L) if q < y?

u (y?, L) + π (u (H, q)− u (H, y?)) else
23The policy function ρq : Θ → Q associated to the quality constrained problem (2.8) is the section at q of the above defined

ρ; in this sense my notation is consistent and I will use ρ (q, ·) and ρq (·) interchangeably.
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So that

V ′ (q) =

u′ (q, L) if q < y?

πu′ (H, q) else
= c′ (q)

characterizes per Lemma 2.4 the optimal quality cap.

Proposition 2.5 suggest how one may construct all cap-dependent contracts: using only the demand
primitives of the model, i.e. the curvature of g and the distribution of types, we determine the point y?.24

Then, one obtains the optimal allocation ρ (θ, q) by choosing the minimum between a type dependent threshold
(in this case, y? for low types, ∞ for high types) and the quality cap itself. By solving a single equation, (2.10),
we can characterize the allocations for each quality cap and then infer transfer from the binding incentive
constraints to construct the revenue and marginal revenue function. Finally, expression (2.10) suggests why
a strictly concave g function is needed for a nontrivial allocation rule to realize. The following Remark
formalizes this.

Remark 2.6. (Linear Utility). Under the linear utility specification equation (2.10) would read

π =
θL
θH

which is not a function of q and cannot determine a threshold y?. In this case the monopolist would
either always (i.e. at every quality cap) sell to both types, if θL > θHπ, or always serve only high types.
Notice expression (2.10) would also be trivial if we assumed any form multiplicatively separable utilities
u (q, θ) = u1 (q) · u2 (θ). The fact that linear utility has no “service margin” as a function of quality will be
preserved in the more general setting.

2.3.2 Continuous types

We now assume that the type space is continuous.

Definition 2.7. We say primitives are regular if the utility function takes the form (2.1) and the type
distribution F has a monotonically increasing hazard rate

h (θ) =
1− F (θ)

f (θ)

Now consider the virtual valuation function

vv (θ, q) = u (q, θ)− h (θ)uθ (q, θ)

and define the correspondence of maximizers of the virtual valuation

β : Θ ⇒ Q ∪ {∞}

β (θ) 7−→ argmax vv (θ, q)

where the abuse argmax vv (θ, q) = ∞ is adopted whenever vv (θ, q) is strictly increasing in q ∈ Q.
24 As limq→0 h (q) = 1, limq→0 h (q) = θL

θH
, then existence of threshold y? requires that θL

θH
is not larger than π. Uniqueness

follows from monotonicity of ratio of marginal utilities
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The following Lemma, which follows from standard application of supermodular comparative statics, will
be used in the proof of the main Proposition of this section.

Lemma 2.8. If primitives are regular, then β is single valued, monotonically increasing and it is equal to
∞ on a set of positive measure

[
θ̃, θ
]
, where θ̃ is the unique solution to

θ − h (θ) = 0

The general expression of β is given by

β (θ) =

(g′)
−1

(h (θ)− θ) θ < θ̃

∞ θ ≥ θ̃

Since g′ is decreasing by assumption and so is θ − h (θ), then β is an increasing continuous function that
asymptotes to ∞ in the interior of Θ. Also, by the Inada condition and h (θ) − θ > 0 we obtain β (0) > 0,
which will deliver important implications for the shape of the cap-contingent optimal contract. The graph
below plots an example of β.

1/2 1

!

"(!)

0

g-1(1)

∞

Figure 2.1: β function for concave preferences.

The threshold θ̃ takes value 1
2 in the plot since in the remainder of this section we will assume θ ∼ U [0, 1].

As Section 2.4.1 formalizes, qualitative results are unchanged though explicit formulas for revenues, surplus
and inefficiencies would need to carry an additional transformation of the inverse hazard rate.25 Under the

25We do not have a clear interpretation for the distribution of types, as their empirical content is not independent of the
valuation function (2.1).
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uniform distribution assumption, h (θ) − θ = 1 − 2θ, β (0) = (g′)
−1

(1) > 0, and θ̃ = 1
2 . We now proceed to

state the proposition characterizing the monopolist allocation.

Theorem 2.9. Suppose primitives are regular and types are uniformly distributed. Then,
i) The quality-contingent optimal contract takes the simple form

ρ (q, θ) = min {q, β (θ)} (2.11)

ii) The revenue function V is concave with continuously differentiable derivative given by

V ′ (q) =

g′ (q) g′ (q) > 1(
1+g′(q)

2

)2
g′ (q) ≤ 1

(2.12)

iii) The monopolist quantity qM is always strictly below q?.

The allocation rule (2.11) proves that the intuition in the two type example extends to regular continuous
type spaces: the cap-contingent allocation of each type is simply determined by comparing a type dependent
function (found at an ex-ante, constraint-free stage from Lemma 2.8), with the quality cap itself. It is only
convenient to screen type θ if the quality cap exceeds β (θ), and when this happens the allocation ρ (q, θ)

becomes unresponsive to further cap increments.
The shape of the optimal contract(s) helps interpreting also expression (2.12), i.e., the marginal revenue

function. To understand this result, and for future reference, it is convenient to define b : Q →
[
0, 1

2

]
as the

inverse β function that returns for each quality level the lowest type that is bunched at the top. Under the
uniform distribution we get

b (q) = β−1 (q) = max

{
0,

1− g′ (q)

2

}
(2.13)

At an intermediate step of the derivation of the marginal revenue we get

V ′ (q) = (1− b (q)) [g′ (q) + b (q)]

This expression has an intuitive interpretation: the term g′ (q)+b (q) is the marginal utility of the “marginally
bunched” type b (q), while (1− b (q)) is the mass of types above him.26 By marginally increasing the quality
cap, the monopolist does not alter the revenues made from optimal allocation of all lower qualities (given to
the same types at the same price). He allocates the marginal quality to type b (q) and to all those above,
who increase their marginal transfer by

uq (q, b (q)) = g′ (q) + b (q)

Point iii) states that the top quality distributed by a monopolist is below the efficient level implied
by (2.5). Although not obvious in this setting, the result suggests a natural parallelism with the classic
underprovision of a good in the presence of market power. The “efficiency at the top” result, which is typical
of quality screening problems, does not hold in this framework. Despite the highest type never receiving a
damaged quality,27 the quality cap produced under monopoly is below the level q? that type, and everyone
else, receives in the first best.

26Notice that when b (q) = 0, then V ′ (q) = g′ (q) delivering the first branch in (2.12). Substitution of the nontrivial expression
for b delivers the second branch.

27So that distributional efficiency at the top realizes in our setting.
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Comparing i) and iii) in Theorem 2.9 with Proposition 2.2 we notice that a monopolist induces two
sources of inefficiency: one from damaging, because generically, ρ (q, θ) < q for a set o positive measure,
and one from suboptimal acquisition. Although associated to different stages of the monopolist problem,
these inefficiencies are to some degree interdependent as (1) the screening allocation is clearly constrained
by the quality acquired and (2) the quality acquired depends on the screening possibilities. Expression
(2.12) incorporates the optimal distribution of each maximal quality, which generally entails damaging. A
graphic representation of the inefficiencies is given in the bottom panel of Figure 2.2, where green represents
underacquisition and orange damaging. Their analytical expression will be derived in the next section.

2.4 Properties of the Monopolist Contract

We now list some properties of the optimal contract which follow immediately from Theorem (2.9). We begin
with a description of the resulting quality allocations, separating the case of strictly concave and trivial g.

Corollary 2.10. (Linear utility) Suppose g ≡ 0. Then, optimal allocations are given by:

ρ (q, θ) =

0 θ ≤ 1
2

q θ > 1
2

and the monopolist has constant marginal revenue V ′ (q) = 1
4 .

The result follows by applying allocation rule (2.11) to the maximizer of the virtual valuation, which in
case of linear preferences is:28

β (θ) =

0 θ < 1
2

∞ θ > 1
2

When preferences are linear, screening is only performed by excluding (selling quality 0 to) an invariant set
of types, so that only one positive quality will be offered. All the non-trivial screening observed in price
discrimination with linear preferences is driven by the shape of the marginal cost curve (and from ironing
a non-monotone hazard rate). Since the distribution problem lacks such cost curvature, a smooth screening
contract must result from the specification of preferences. Allocations with concave g have the following
properties

Corollary 2.11. Suppose g is strictly concave. Then
i) All types receive a positive quality in the optimal contract.
ii) At low quality caps the optimal contract features full bunching:29

ρ (q, θ) = q ∀θ, q < (g′)
−1

(1)

28 As in Remark 2.6, the shape of the optimal contract would be the same for any multiplicatively separable utility specification

u (q, θ) = u1 (q) · u2 (θ)

which gives:

vv (q, θ) = u1 (q) ·
[
u2 (θ)− u′

2 (θ)

(
1− F (θ)

f (θ)

)]
and β (θ) is again either 0 or ∞.

29With non-uniform distribution, the requirement is q < (g′)−1 (h (θ)− θ)
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Figure 2.2: Marginal revenue (top) and the two inefficiencies (bottom) from monopolistic provision of digital
goods.
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iii) A positive measure of agents
[
1
2 , 1
]

receives the highest quality good irrespectively of the quality cap.30

ρ (q, θ) = q ∀θ ∈
[
1

2
, 1

]
Point i) is implied by the Inada condition of g around 0: by giving a marginal quality to low valuation types

who receive nothing the seller gets unbounded marginal revenues, which she can distribute as information
rents to make sure IC constraints for higher types are satisfied. If the quality acquired is low enough,
since there is little variation in relative marginal utilities it will not be optimal to screen any type, giving
point ii). An implication of ii) is that sufficiently steep marginal cost shuts down one source of inefficiency,
damaging, leaving only underacquisition active. This will allow us to isolate the impact of a policy on the
underacquisition inefficiency alone by assuming monopolist was producing in this region. By point iii), there
is a set of types that are bunched at the top irrespectively of the quality cap. It should be noticed that those
types are exactly the same that were sold a positive undamaged quality under linear preferences. Indeed,
a concave g does not change the fact that above a certain threshold the virtual valuation is monotonically
increasing, but it gives a nontrivial maximizer for other types. Also, we can now explain why (2.12) gives
limit marginal revenues

lim
q→∞

V ′ (q) =
1

4

As the quality grows higher, marginal increments are distributed as if preferences were linear since at
high qualities agents use incremental units only in the performance of the advanced task.31

Figure 2.3 shows a graphical derivation of the optimal contract: the marginal revenue is crossed with the
marginal cost function to determine qM (left graphs with axes flipped for convenience), this level is reported
on the vertical axis in the graph of β and the optimal allocation ρ? (·) then results from “slicing” β at qM .
The three panels describe full bunching, active screening and linear preferences.

We now compute total surplus under monopoly and give an analytic expression to the two sources of
inefficiency described above.32 If qM is below (g′)

−1
(1), then computations are simple. Producer revenues are

V (q) = g (q), consumer surplus is W (q) = 1
2q and per Corollary 2.11 i), there are no damaging inefficiencies

(only underacquisition is active). The following proposition characterizes surpluses when instead qM >

(g′)
−1

(1).

Proposition 2.12. (Decomposition of inefficiencies above (g′)
−1

(1))
Total consumer surplus is given by

W
(
qM
)
=

1

2

[
(g′)

−1
(1) +

∫ qM

(g′)−1(1)

(
1 + g′ (q)

2

)2

dq

]
(2.14)

We can therefore decompose monopolist inefficiencies as

∫ qM

(g′)−1(1)

d (q) dq +

∫ q?

qM

[
1

2
+ g′ (q)− c′ (q)

]
dq (2.15)

30Similarly, we would get the unconditional bunching region to be
[
θ̃, θ

]
.

31This also means that to have a finite solution to the monopolist problem the marginal cost must have limit that exceeds 1
4

.
32 We are currently missing an expression for consumers’ rent.
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Figure 2.3: Graphical representation of optimal contract with high (top) and low (medium) marginal cost
for concave g, and for linear preferences (bottom).
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where
d (q) =

1

8
(1 + (2− 3g′ (q)) g′ (q)) (2.16)

are the marginal inefficiencies from damaging.

Analytic manipulation, shows that aggregate marginal information rent is given by

W ′ (q) =
1

2

(
1 + g′ (q)

2

)2

=
1

2
V ′ (q)

Hence, total surplus under monopoly grows, above (g′)
−1

(1) with slope given by(
1 + g′ (q)

2

)2

− c′ (q)︸ ︷︷ ︸
marginal profits

+
1

2

(
1 + g′ (q)

2

)2

︸ ︷︷ ︸
marginal rents

=
3

2

(
1 + g′ (q)

2

)2

− c′ (q)

Which, combined with full bunching below (g′)
−1

(1) gives the following expression for marginal monop-
olist surplus

m (q) =

g′ (q) + 1
2 − c′ (q) g′ (q) > 1

3
2

(
1+g′(q)

2

)2
− c′ (q) g′ (q) ≤ 1

(2.17)

If we didn’t have the inefficient damaging, total surplus would grow with slope

1

2
+ g′ (q)− c′ (q) (2.18)

Subtracting the two we get the expression for the marginal inefficiencies from damaging

d (q) =
1

8
(1 + (2− 3g′ (q)) g′ (q))

by integrating d (q) from (g′)
−1

(1) to qM we get the first term in (2.15) (the area of the orange region in Figure
2.2). While we cannot give an intuitive interpretation as to why (2.16) represents marginal inefficiencies from
damaging, because the analytical result depends on the uniformity assumption, we notice that d (q) = 0 when
g′ (q) = 1 (below that level there were no damaging inefficiencies), and that d is a positive hump shaped
function in g′ (q) when smaller than 1. Underacquisition inefficiencies, the green area constitute instead the
second summand in (2.15) and add to social surplus losses (2.18) in the underacquisition region

[
qM , q?

]
.

2.4.1 Relaxing Demand Primitives

We have made restrictive assumptions about the specification of returns from quality and of the distribution
of types. Returns belong to the family (2.1) and the type distribution is assumed uniform. The latter
assumption is innocuous: the qualitative results of allocation rule (2.11), monopolist underprovision and
decomposition of inefficiencies into damaging and underprovision always hold though the analytic expression
of marginal revenues (2.12), consumer surplus and damaging inefficiencies (2.16) are modified to allow for a
different inverse hazard rate. Under a general distribution characterized by hazard rate h, the full bunching
threshold (g′)

−1
(1) would be

q = (g′)
−1

(θ − h (θ))
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where q > 0 is guaranteed by the monotone hazard rate assumption and the Inada condition limx→0 g
′ (x) =

∞. Similarly, the inverse β function used to calculate the marginal type bunched at the top which gives
marginal revenues and welfare is defined implicitly by the equation:

g′ (q) = (h (b (q))− b (q)) = h̃ (b (q))

In general, the b function would be given by

b (·) = max
{
0, h̃−1 ◦ g′ (·)

}
which reduces to (2.13) in the uniform case ash̃−1 (x) = (1−x)/2.The cutoff type assigned the undamaged
quality when preferences are linear will be θ̃, the zero of h̃ (θ) = θ− h (θ),33 and marginal revenues would be
θ̃
[
1− F

(
θ̃
)]

, which are 1
2 and 1

4 respectively in the uniform case.
The additive separability assumption is more substantial; its empirical content is discussed in the in-

troduction, together with a plausible microfoundation. The Inada conditions are essential to get the full
bunching region at low qualities, while identifying preferences with function g allows to characterize revenues
and welfare only as a function of its curvature. For the bunching at the top property of the cap-contingent
contract (Proposition 2.9, i)) it would be sufficient that β is an increasing function. This would be guaranteed
by concavity in q and supermodularity of the virtual valuation which is in turns ensured by the standard
conditions on mixed derivatives

uqq < 0, uqθ > 0, uqθθ ≤ 0

and a monotone hazard rate.

2.5 Impact of a No-Screening policy

Corollaries 2.11 ii) and 2.10 present two cases in which only one positive quality is distributed under
monopoly: either preferences are linear, a constant mass of agents is served the undamaged quality and
others are excluded, or g is concave but the optimal quality cap is low enough (steep marginal cost) to induce
full bunching. The aim of this section is to evaluate the positive and normative implications of a regulation
that prohibits the monopolist from selling damaged goods. This exercise is useful for two reasons. First, it
is the natural extension to this framework of the Deneckere and McAfee (1996) normative question “when is
the possibility of screening beneficial for all types in the economy?”. Our different specification of the cost
function and the fact that available qualities are not pre-determined add different channels through which
the NS policy can impact allocations and welfare. Second, this is a first pass at evaluating the impact of a
policy on the two inefficiency sources isolated in the previous section, and will provide a useful benchmark
of comparison for the welfare implications of competition.

2.5.1 The NS Problem

The superscript NS will denote objects associated to a No Screening monopolist. He chooses a quality qNS

and the threshold consumer ϑ
(
qNS

)
who is indifferent between purchasing the good and not, then sell qNS

33That always coincides with the threshold type that is always bunched at the top even with concave concave g.
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to types
[
ϑ
(
qNS

)
, 1
]

at price
g
(
qNS

)
+ ϑ

(
qNS

)
qNS

The exclusion policy ϑ : Q → Θ is found by solving the quality-conditional pricing problem:34

ΠNS (q) = max
θ

[u (q, θ)] (1− θ)

At the acquisition stage, the NS monopolist solves

max
q

ΠNS (q)− c (q)

The following proposition characterizes the solution in regular environments. We focus on strictly concave g

as we already argued that the NS policy is not binding when preferences are linear.

Proposition 2.13. i) The exclusion policy ϑ is given by

ϑ (q) = max

{
q − g (q)

2q
, 0

}
It holds ϑ (q) ≤ b (q), strictly when b (q) > 0. Moreover, ϑ−1 (0) > β (0).

ii) Marginal revenues for the NS monopolist are given by

d

dq
ΠNS (q) =

g′ (q) q ≤ g (q)
(q+g(q))

(
q−g(q)+2qg′(q)

)
4q2 q > g (q)

iii) It holds qNS ≤ qM (strictly whenever qM > (g′)
−1

(1)).

The ϑ and b functions are plotted on the left panel of Figure 2.4. The fact that ϑ has a larger intercept,
stated above as ϑ−1 (0) > β (0), is key as it implies that the NS monopolist starts excluding some types at
a quality level at which the unconstrained monopolist is already actively engaging in inefficient damaging.
The quality space is then partitioned in three regions, highlighted in the right panel of Figure 2.4, where
marginal revenues for the constrained monopolist are compared with those of the unconstrained monopolist.
In Region A, where q < (g′)

−1
(1), both monopolists do full bunching, the constraint is immaterial, and

marginal revenue functions coincide. In Region B, where q < (g′)
−1

(1) but q < g (q), the NS monopolist
sells to all types (marginal revenue is g′ (q)) while the unconstrained one does positive damaging. In Region
C also the NS monopolist performs his “constrained” screening by excluding a positive mass of low types.

Point iii) immediately implies that the NS policy induces a deterioration in the acquisition inefficiency,
which becomes strict as soon as the NS constraint becomes binding. As for the screening inefficiencies, we
have two competing forces: as ϑ (q) < b (q), conditional on acquiring the same quality, the NS monopolist
would serve it to a larger portion of types. However, types that are excluded in the NS contract receive
nothing, while in the unconstrained monopolist contract they have positive consumption (and value). This
delivers the immediate welfare implication that the NS policy makes some low types in Region C, i.e. those
that are excluded, worse off. It is also clear that the monopolist is always worse off since she is solving a

34We keep the assumption θ ∼ U [0, 1]. The qualitative properties do not change under generic monotone hazard rate
distribution.
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constrained version of problem (2.7). We can write foregone profits from the NS policy as

V
(
qNS

)
−Π

(
qNS

)
+

∫ qM

qNS

[V ′ (q)− c′ (q)] dq

both summands are positive and they separate losses for not performing screening and from acquiring a
quality that is below the unconstrained optimum. By focusing on cases where the unconstrained monopolist
produces in Region B we can derive some less trivial welfare implications of the NS policy.

Proposition 2.14. (Welfare impact in Region B) If the monopolist produces in Region B, then
i) A set of (low) types is better-off under the NS policy.
ii) The net gains from enacting the NS policy can be expressed as

∫ qNS

(g′)−1(1)

d (q) dq −
∫ qM

qNS

m (q) dq (2.19)

where m (q) is the marginal monopolist surplus (2.17) and d (q) are the marginal damaging inefficiencies
(2.16).

iii) If c′′
(
qM
)

is large enough (approaches the fixed cost limit), the NS policy increases total welfare (net
gains approach

∫ qM

(g′)−1(1)
d (q) dq).

The intuition for i) is as follows: because in Region B there is no exclusion, every type receives welfare
WNS (θ) = θqNS ; in the unconstrained case low types, those below b

(
qM
)
, received W (θ) =

∫ θ

0
β (θ′) dθ′.

As qNS > β (0), it follows the marginal surplus is larger in the NS environment for a set of positive measure,
implying the statement. As for the overall impact of the NS policy, it reduces “by brute force” the damaging
inefficiencies but it creates two perverse effects: it makes the monopolist worsen underacquisition, and it may
force some types to be completely excluded. Focusing on Region B ensures the “complete exclusion” margin in
non-existent, so point ii) only trades off the positive impact from undoing damaging in the

[
(g′)

−1
(1) , qNS

]
region, and the negative underacquisition impact. Assuming costs are extremely convex around qM ensures
marginal cost cover the V ′ − Π′ gap quickly implying qNS → qM . So in the limit every type receives the
quality a monopolist produces (but does not distribute), which increases total welfare by completely undoing
damaging inefficiencies without perverse effects. The geometric intuition for the result is given in top panel
of Figure 2.5, comparing acquisition and distribution in Region B for different cost functions.

In Region C, portrayed in the bottom panel of Figure 2.5, the convex cost limit would give an ambiguous
welfare impact as we would need to take into account the loss of consumer surplus in the region

[
0, ϑ

(
qM
)]

:
a full welfare comparison needs to take into account of consumer surplus that is lost by inducing complete
exclusion in that Region.

3 Competition

This section develops a model of competition in digital goods markets. Following the discussion in the
introduction, we specify an extensive form game and study its equilibria.35 The discussion on stability in
Section 3.4 offers a comparison with the equilibrium notion in Rothschild and Stiglitz (1976), which is a

35How the setup of the game relates to existing models of competition with screening won’t be discussed throughout the
exposition, relevant references are given in the dedicated paragraph of the literature review. Section 3.4 compares some properties
of equilibria we obtain with those of models that are closer to ours.
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standard benchmark in the literature of competition with screening. Before that, we present the competition
game, solve for its equilibria by backwards induction (pricing and investment stages), and analyze their
welfare properties.

3.1 Primitives and the Extensive Form Game

The production primitives of the model are augmented by adding countably infinite replica of the producer
studied in Section 2. The set of firms is denoted N with typical element i. On the demand side, we assume
that firms produce a homogeneous (range of) products: the identity of the firm producing a certain quality
is immaterial to consumers that will therefore construct their demand by looking at the lower envelope of
the pricing functions. Firms play a two stage game of perfect information in which investments in quality
(first stage, or acquisition stage) are based upon the belief that the ensuing price decision will constitute a
Nash equilibrium in the second (or pricing) stage at which firms quote a feasible pricing function at treat
production costs as already been sunk.

3.1.1 Timing and Action Space

At the first stage each firm chooses a mixed strategy over the qualities she acquires, so her action space is

A1,i = ∆(Q) ,∀i

Firms pay the cost associated to the realized q in exchange to the right to sell (at the second stage) all qualities
below q. At the end of stage one, the vector of realized qualities36 q ∈ QN becomes common knowledge across
competitors. Conditioning on this information, firms then quote a market over the qualities available to them
to maximize revenues. The action set

Ai,2 (q) = R[0,qi]

is the set of pricing functions on the feasible domain [0, qi], qi being the ith entry of vector q.37 Payoffs
from this stage are the revenues each firm makes as a consequence of everyone’s pricing decision. A formal
expression of the payoff function is given in Section 3.2.1.

Firms’ strategies in the extensive form game consist then of a distribution over entry qualities and, con-
ditional on each realized quality vector, a feasible pricing function. It is assumed that there is no discounting
between periods38 so total payoffs simply add costs incurred in the first stage and revenues earned in the
second stage; when those are stochastic, firms behave as expected profit maximizers.

3.2 Equilibrium

This section studies subgame perfect equilibria of the finite horizon game described above by backwards
induction.

36The bold notation reflects the fact that, from an ex-ante perspective, q is a random vector with distribution parametrized
by equilibrium actions.

37In principle we can allow for randomization even at the pricing stage so that Ai,2 (q) = ∆
(
R[0,qi]

)
; randomization will

never be optimal in the second stage, so we restrict the action set to pure actions.
38As costs are incurred in the first period and profits are possibly earned in the second period. Re-normalizing costs to take

discounting into account does not modify the analysis in any substantive way.
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3.2.1 The Pricing Stage

The first step consists in specifying revenues as a function of players’ actions, i.e. pricing functions. Intu-
itively, firms make revenues from the set of qualities they offer at the lowest price, individual demands being
determined by the market pricing function. The following steps make this intuition formal.

We take as given the set of individual pricing functions {pi}i∈N, pi : Q → R∪{∞}.39 The market pricing
function returns the lower envelope

m
(
{pi}i∈N

)
: Q → R ∪ {∞}

m
(
{pi}i∈N

)
(q) 7→ min

i
pi (q)

which allows to derive the individual demand correspondence

D{pi}i∈N
(θ) = argmax

q
u (q, θ)−m

(
{pi}i∈I

)
(q)

To express revenues, we firstly associate each type to the firm he buys from

ι (θ) : Θ → N

ι (θ) 7→ min
{
argmin

i

{
pi

(
D{pi}i∈I

(θ)
)}}

Firm j earns revenues that depend on how much consumers demand, which is a function of the whole
market, on the quality spectrum it ends up supplying by charging the lowest price:40

Rj

(
{pi}i∈I

)
=

∫
{θ:ι(θ)=j}

pj

(
D{pi}i∈I

(θ)
)
f (θ) dθ (3.1)

Now suppose q is the vector of realized qualities, and that it is common knowledge across players. As it is
standard, the notation q(i) denotes the ith order statistic of vector q. The following proposition characterizes
the equilibrium of the pricing game.

Proposition 3.1. If preferences are regular, for each q the second stage game has an essentially unique
Nash equilibrium in pure strategies. The induced allocations are

ρ (q, θ) =


q(2) if β (θ) < q(2)

β (θ) if q(2) ≤ β (θ) < q(1)

q(1) if β (θ) ≥ q(1)

(3.2)

Revenues are given by:

Ri (q) = max

{
V (qi)−max

j 6=i
V
(
qj

)
, 0

}
(3.3)

The intuition for the result is fairly simple: since at the pricing stage costs are sunk and the production
realization is common knowledge, Bertrand competition will drive to zero the revenues from versions

[
0, q(2)

]
that can be provided by more than one firm. Therefore, all firms make zero revenues, except for the owner
of the highest quality, from now on referred to as “interim monopolist”. She enjoys market power on the
quality spectrum

[
q(2), q(1)

]
, and behaves as a monopolist under the additional constraint that all agents

39As before, we identify firm i not offering quality q by writing pi (q) = ∞.
40ι is measurable under the assumption that firms quote an increasing function.
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Figure 3.1: Equilibrium allocations in an x, y market.

must receive at least q(2) for free. Given regularity, the solution to this problem is again simple: the β

function is now “sliced” both from below and from above: all types below b
(
q(2)

)
receive q(2) for free, the

others get the same allocation as under monopolist with quality q(1) - but pay less. Figure 3.1 plots the
allocation induced by competition with q(1) = x, q(2) = y. The equilibrium is only essentially unique because
it is not pinned down who between the producer of the first and the second quality (or both of them) ends
up distributing q(2).41

By (3.3), each firm can compute its revenues as a function of its quality q and the best quality across
competitors x, which a payoff sufficient summary of the competitive environment

R : Q2 → R

R (q, x) 7→ max {V (q)− V (x) , 0} (3.4)

Towards the calculation of the first stage equilibrium it will be key that the marginal revenues of the
interim monopolist only depend on her, and that they own quality and coincide with that of the unconstrained
monopolist, namely

∂

∂q
R (q, x) =

0 x > q

V ′ (q) x ≤ q
(3.5)

In order to avoid carrying order statistics notation, in the remainder of the paper we will denote with
x be the best and y the second quality in the vector of realized entries; x, y will denote particular market
realizations and ρ (x, y, θ) is the quality assigned to type θ whenever the realized first and second qualities
are x, y respectively. The following example begins computation of the equilibrium in the case of linear
preferences.

41This fact may have an empirical content, since we may observe multiple providers of the free quality, though it clearly has
no implications on welfare.
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Example 3.2. With linear preferences, the allocation and transfers associated to each pair x, y are given by

(ρ, p) (x, y, θ) =

(y, 0) θ ∈
[
0, 1

2

](
x, 1

2 (x− y)
)

θ ∈
[
1
2 , 1
] (3.6)

Low types, who were previously excluded, receive the second quality y for free, while high types receive the
best quality x and pay price 1

2 (x− y). The revenues of the interim monopolist are 1
4 (x− y), and marginal

revenues are constant at 1
4 .

3.2.2 The First Stage Game

The pricing game delivers a revenue function (3.4) which is added to the acquisition cost, thus determining
the payoff function in the quality investment game. The expected profit associated to quality q is

Π(q) =

∫
Q

R (q, x) dH (x)− c (q) (3.7)

where H is the CDF of the best quality produced in equilibrium by competitors. The following proposition
characterizes equilibria of this game. A firm is called active if it plays an action different from δ0, that is if
it chooses a positive quality with positive probability.

Proposition 3.3. The first stage game has a unique equilibrium for any number n ≥ 1 number of active
firms. With n = 1, the active firm plays δqM ; this is also the only equilibrium in pure strategies. For each
n ≥ 2, active firms play a mixed symmetric equilibrium

i) with support
[
0, qM

]
ii) and continuously differentiable (on the interior of the support) CDF Hn given by

Hn (q) =

[
c′ (q)

V ′ (q)

] 1
n−1

(3.8)

and make zero (expected) profits.

The intuition for the monopolist being the only investment equilibrium in pure strategies is the following.
Two firms cannot commit to a positive quality as the owner of the lower quality would profitably deviate
by abstaining. All firms abstaining cannot be an equilibrium as well, since everyone would best respond by
playing monopolist. So one firm playing monopoly is the only candidate equilibrium in pure strategies. It is
indeed an equilibrium: potential entrants by (3.4) do not want to choose a quality below qM ; by deviating
above qM a firm will be interim monopolist and make profits

Π(q) = V (q)− V
(
qM
)
− c (q)

=
∫ q

qM
V ′ (q′)− c′ (q′) dq′ − c

(
qM
)

Both summands are negative as as c′ (q) > V ′ (q) above qM . This contrasts with the possibilities of an ex-post
deviator in the spirit of Rothschild and Stiglitz (1976), who upon entry can make revenues approximately
close to those of an “idle” monopolist.

For equilibria with active competition, i.e. n ≥ 2, standard arguments from war of attrition games prove
that each firm must play an atomless distribution over qualities, and that they must make zero profits. Using
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(3.5), the flat profit condition Π′ (q) = 0, necessary for indifference, yields

H (q) =
c′ (q)

V ′ (q)
(3.9)

Equation (3.9) pins down the distribution of the maximal quality across competitors. Notice that H (q) = 1

right at q = qM , so the support of the maximum across competitors, hence that of each firm, is
[
0, qM

]
. Such

a support restriction is implied by the fact that each firm’s best response to a realized entry vector belongs
to the doubleton set

{
0, qM

}
: per (3.3) opponents’ revenues are ex-post equivalent to a fixed cost, and only

affect the decision of whether to enter, but not the quality upon entry.
Symmetry then implies the formula for Hn; notice the number of active firms is not pinned down. The

CDF (3.8) is differentiable since V ′′ is continuous per Proposition 2.9 ii). To check that this is indeed an
equilibrium, notice active firms are indifferent by construction on

[
0, qM

]
, meaning that potential entrants

would make expected losses by playing in that range (compete against n rather than n−1 players). Deviations
above qM are again excluded as profits would be

Π(q) = Π
(
qM
)
+

∫ q

qM
V ′ (q′)− c′ (q′) dq′

The first summand is zero in expectation by the flat profit condition (negative for a potential entrant), while
the second term is negative by the definition of qM . Again, the intuition is that irreversible investment
gives incumbents the commitment to fight and drive expected profits to zero on the common support, so the
interim monopolist with quality above qM adds negative marginal profits to zero.

Combined with Proposition 3.1, the support restriction delivers the following

Corollary 3.4. Irrespective of the number of active firms, with probability 1 a competitive market distributes
i) a best quality strictly below qM , and
ii) a strictly positive quality for free

Point ii) gives a simple empirical implication of the model: a positive quality is distributed for free if and
only if there is active competition. If that is the case, we also know from i) that high valuation types receive
a quality that is below their second-best allocation. Example 3.2 is expounded upon by computing first stage
equilibria for linear preferences under a class of convex cost functions.

Example. (3.2 continued). Consider the class of convex cost functions c (q) = qα, α > 1. Constant marginal
revenues V ′ (q) = 1

4 imply monopolist quality is

qM (α) =

(
1

4α

) 1
α−1

Using Proposition 3.3 i), each one of n active firms plays in equilibrium the mixed strategy characterized by
CDF

Hn,α (q) = I

{
q ∈

[
0,

(
1

4α

) 1
α−1

]}
· (4αq)

α−1
n−1

3.3 Welfare

We now study ex-ante (expected) welfare across different equilibria. One active firm is the monopolist
benchmark to which are associated the underacquisition and damaging inefficiencies isolated in expression
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(2.15). The positive implications highlighted in Corollary 3.4 give a first idea of the impact that active
competition has on welfare (relative to the monopolist equilibrium). Point i) implies that the underacquisition
inefficiency will be worsened. Conditional on each realized best quality x two additional forces operate. One
is a multiple spending inefficiency: all costs associated to qualities that realize below x are social waste as a
planner could achieve the same allocation at no additional cost. This operates in the same direction as the
underprovision inefficiency, favoring monopolist. Point ii) of Corollary 3.4 however implies that competition
shrinks the image of the allocation function, thus reducing damaging inefficiencies (2.16).

Qualitatively, therefore, comparison between monopolist and active competition equilibria is inconclusive:
underacquisition and multiple spending favor the former, undoing distributional inefficiencies favor the latter.
Also, notice that the forces into play are similar to those of a NS policy: perturbation of the monopolist
environment induces a worsening of the underacquisition inefficiency, though it may have positive distribu-
tional effects. A third channel however distinguishes the welfare impact of the NS policy from that of active
competition: in the former case we have the “complete exclusion” margin, while in the latter the double
spending inefficiency. Also, all competition outcomes are stochastic as firms play mixed equilibria in the first
stage.

The next proposition shows that the relative strength of the potential welfare impacts is not unambigu-
ously signed. We show by means of example that depending on the shape of the cost function one can favor
either monopoly or competition with two active firms, which uniformly (i.e. type-wise) dominates equilibria
with more intense competition. We initially define the surplus for type θ conditional on realized market
statistics x, y

W (θ, x, y) = g (y) +

∫ θ

0

max {y,min {x, β (θ′)}}dθ′ (3.10)

and expected welfare of type θ in the n-equilibrium

Wn (θ) := En [W (θ,x,y)]

where expectation En integrates market statistics under the distribution induced by the equilibrium (3.8)
with n active firms. Since all producers make zero expected profits, total surplus under competition is just

Wn = Eθ [En [W (θ)]]

Theorem 3.5.
i) Equilibria with active competition are Pareto-ranked, decreasing in n. Moreover, improvement is uni-

form in types, that is
Wn (θ) ≥ Wm (θ)

for all θ and 2 ≤ n ≤ m.
ii) If qM ≤ (g′)

−1
(1) (monopolist does full bunching), then competition reduces welfare. Otherwise, we

can specify a cost function under which double spending and underprovision inefficiencies vanish and the
complete undoing of damaging inefficiencies make duopoly dominate.

We notice that type-dependent welfare (3.10) is an increasing function in both x and y. This is a natural
consequence of the fact that larger x gives extra surplus to high types leaving unaffected (allocation and rent
of) low types, while larger y increases the allocation of low types and reduces payment for high. For i) it is
therefore sufficient to show that the joint distribution of (x,y) is ordered according to first order stochastic
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dominance (FOSD) in n. We prove that the distribution of y conditional on x = x is independent of n for
each x, with (conditional) distribution given by

Hx,n (y) =
H (y)

H (x)
I {y ∈ [0, x]} (3.11)

and that the distribution of x is ranked in n according to FOSD, from which sufficiency follows. By point i)

we can therefore compare 2 active firms42 with the monopoly equilibrium.
Point ii) proves that the qualitative forces highlighted in Corollary 3.4 can have any relative strength and,

depending on the shape of the cost function can favor either monopoly or duopoly. The message is delivered
by considering two extreme cases: steep cost around zero and the fixed cost limit. We begin with the first
case As there is no damaging, monopolist surplus is

W1 = g
(
qM
)
+

1

2
qM − c

(
qM
)

Also, by Proposition 3.1, as y ≤ x ≤ qM for any market realization everyone will be allocated x at price
g (x)− g (y). Per (3.10), type dependent surplus is

W (x, y, θ) = g (x) + θx− (g (x)− g (y)) = g (y) + θx

and total surplus is
W (x, y) =

∫
Θ

W (x, y, θ) dθ = g (y) +
1

2
x

By using the expression for the conditional distribution (3.11) and then integrating by parts, we show
that welfare under competition Wn = En [W (x,y)] can be written as

[
g
(
qM
)
− c

(
qM
)
+

1

2
qM
]

︸ ︷︷ ︸
WM

−
∫ q

0

g′ (x)− d

dx

(
c (x)

g′ (x)

c′ (x)

)
︸ ︷︷ ︸

>0

+
1

2

Hn (x) dx (3.12)

First term is monopolist welfare, second term is the integral of a positive function, so the statement is
proved.

We prove that in general, i.e. allowing for qM > (g′)
−1

(1), the difference between duopoly and monopolist
welfare can be written as

W2 −WM = E2


∫ y

(g′)−1(1)

d (q) dq︸ ︷︷ ︸
undo screening

− c (y)︸︷︷︸
double spend

− E2


∫ qM

x

m (q) dq︸ ︷︷ ︸
underacquisition

 (3.13)

where E2 is distribution of market statistics under duopoly equilibrium, m is marginal monopolist surplus
function (2.17), d is marginal damaging inefficiencies (2.16), and the following convention is used: for any
real valued function f , ∫ b

a

f (x) dx = 0 (3.14)

42We call two active firms duopoly though the term may be misleading, as inactive firms are also key players in equilibrium.
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Figure 3.2: Screening undoing (purple) and underprovision (light-blue) welfare impact

whenever a > b. As we highlighted in the expression, each summand in (3.13) isolates the impact on one
inefficiency. Figure 3.2 below plots for market realizations x, y the resulting welfare impact from undoing
screening (purple), and worsened underacquisition (light-blue).

The only positive summand in (3.13) comes from realizations of y above (g′)
−1

(1): unless it shrinks
the allocation function compared to an x−monopolist, y has no impact on total welfare as it only transfers
surplus from the seller to (all) consumers in the form of lower price. The case qM < (g′)

−1
(1) ensures this

happens with probability one.43 To get a positive impact of competition the following conditions are required.
Both x and y should put significant mass on high realizations: the former must be close to qM to reduce the
integration domain of the underprovision inefficiency, while the latter should be well above (g′)

−1
(1) to have

significant undoing of damaging inefficiencies; finally, the cost of the second quality must be small to reduce
the double spending inefficiency. Notice that high realizations of y have an ambiguous effect on welfare, as
they increase both the integration domain for screening inefficiencies and costs.

Expression (3.13) is easily modified to evaluate welfare impact of higher intensity competition: we would
need to take expectations under the a different (FOSD dominated) distribution of market statistics and to
account for all multiple spending as all realizations below the best quality will increase the amount of wasteful
acquisition.

We are left to show that in case monopoly has active damaging inefficiencies, then competition can
dominate. To this end, suppose 1 > (g′)

−1
(1) and consider the limit of convex cost functions c (q) = qα as

α grows to infinity.44 Irrespectively of the revenue function monopolist quality will converge to the point at
which the cost function explodes, while its cost will converge to zero

qM∞ = lim
α→∞

qM (α) = 1, cM∞ = lim
α→∞

(
qM (α)

)α
= 0

43Indeed the implication that monopolist dominates duopoly whenever the former does not actively damage could be imme-
diately derived from (3.13). We used the more direct welfare calculations that the subcase allowed to perform.

44It is assumed g′ (1) ≤ 1 so the asymptotic monopolist engages in inefficient damaging; otherwise we can target any
asymptotic monopoly level q by letting cα (q) =

(
q
q

)α
.
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also, substituting marginal cost into (3.8) we get that equilibrium strategy converges in probability to qM∞ ,
that is

H2 (q) →

0 q < qM∞

1 q = qM∞

and Eα [c (y)] ≤ c
(
qMα
)
→ 0. Plugging those results in (3.13) we observe that the limit welfare impact of

competition is given by ∫ qM∞

(g′)−1(1)

d (q) dq − cM∞ −
∫ qM∞

qM∞

[m (q)− c′ (q)] dq

=

∫ qM∞

(g′)−1(1)

d (q) dq (3.15)

only the impact on screening undoing is active in the limit, and is also “complete”: all types receive in
the limit the quality that a monopolist would have produced (but not distributed).

We provided an expression for the welfare gains under duopoly and proved it cannot be unambiguously
signed. Competition induces positive distributional effects that contrast increased underacquisition and
double spending. The cost function can be tailored to shut down either channel. This is the main message
of this Section.

We now complete the analysis of equilibria with linear preferences and generic costs started in Example 3.2
by studying their welfare properties and show how results derived in this section apply to a tractable example.
Notice that with linear preferences there is no region in which the screening inefficiency is non-existent, as
types

[
0, 1

2

]
are always (completely) excluded.

Example. (Example 3.2 continued) Using allocation rule (3.6), we can write market type-dependent welfare
as

W (θ, x, y) =

θy θ < 1
2

θx− 1
2 (x− y) θ > 1

2

So we can derive a closed form expression for market-contingent welfare45

W (x, y) =

∫ 1
2

0

θydθ +

∫ 1

1
2

[
xθ − (x− y)

1

2

]
dθ =

1

8
[x+ 3y] (3.16)

With quadratic cost c (q) = 1
2q

2, the monopolist produces qM = 1
4 , while each firm in equilibrium with n

active firms plays distribution

Hn (q) = I
{
q ∈

[
0,

1

4

]}
· (4q)

1
n−1

From which we can calculate expectations of first and second order statistics

En [x] =

∫ 1
4

0

[
1− (4x)

n
n−1

]
dx =

n

8n− 4
(3.17)

En [y] =

∫ 1
4

0

4ny
[
1− [4y]

1
n−1

]
dy =

n

16n− 8
(3.18)

Figure 3.3 plots equilibrium support and mean allocations (sufficient for welfare under linearity) for
different competition intensities.

45Notice y has disproportionate impact as it increases welfare of low types and reduces payments of others.
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Figure 3.3: Expected Bertrand allocations with different intensity, quadratic cost.

Plugging (3.17) and (3.18) into (3.16) we get that welfare in an equilibrium with n active firms is

Wn = En [W (x,y)] =
1

8
En [x+ 3y] =

5

64

n

2n− 1

which is a decreasing function in n (Proposition 3.3 i)). Under monopolist, both consumer and producer
surpluses are 1

32 , giving total surplus 1
16 . Notice

W1 =
1

16
>

5

64
· 2
3
= W2 > W3 > · · · > lim

n→∞
Wn =

5

128
>

1

32
= CSM

With moderately convex costs monopolist outperforms duopoly and competition of any intensity makes
consumers better off than under monopoly.

Now consider generic convex cost c (q) = qα, and focus on the limit case α → ∞. We can check that

qM (α) =

(
1

4α

) 1
α−1

→ 1, c
(
qM (α)

)
=

(
1

4α

) α
α−1

→ 0

which imply the following limit for monopolist surplus

WM =

[∫ 1

1
2

(
θqM − 1

2
qM
)
dθ +

∫ 1

1
2

1

2
qMdθ

]
− c

(
qM
)
−→ 1

∫ 1

1
2

θdθ − 0 =
3

8

Equilibrium play under duopoly is

H2,α (q) = I

{
q ∈

[
0,

(
1

4α

) 1
α−1

]}
· (4αq)α−1
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which converges in probability to 1, so that

W2,α =
1

8
E2,α [x+ 3y] → 1

8
[1 + 3] =

1

2

Repeating the same steps we can show Wn,α → 1
2 for each n, any intensity of competition allocates (ap-

proximately) quality 1 to all types, delivering surplus 1
2 , which exceeds monopoly surplus by 1

8 . Notice this
conforms with equation (3.15), as 1

8 is exactly the (limit) damaging inefficiency induced by excluding (at all
quality levels) types

[
0, 1

2

] ∫ qM∞

0

d (q) dq =

∫ 1

0

(∫ 1
2

0

dθ

)
dq =

1

8

3.4 Equilibrium properties and stability

This section has two purposes: i) to compare equilibrium outcomes with those obtained in models that have
the most similar competition structure, and ii) to discuss equilibrium stability as robustness to deviations
from idle firms that may unexpectedly occur as the game unfolds.

3.4.1 Similar models of competition

Making producers commit through an ex-ante irreversible investment is a modeling device used since Hotelling
(1929): it makes equilibrium existence less problematic (and in our case also guarantees tractability) by
granting incumbents some market power at the pricing stage. Separation of the production and pricing
stages prevents indeed potential entrants from exploiting profitable deviations that may emerge when the
competition environment or its outcome realize.

Two classical papers study similar competition games. Kreps and Scheinkman (1983) have firms commit
to a quantity level before Bertrand competing (without screening) on the realized investments. The two stage
equilibrium yields Cournot competition outcomes. The obvious difference with the setting of this paper is
that the social value of aggregate production is obtained by summing quantities but taking the maximum
over qualities of an homogenous good. As production along multiple lines is always wasteful, the result that
competition may be beneficial is to some degree surprising. Champsaur and Rochet (1989) have the most
similar setup as they analyze a MR duopoly where each competitor costlessly commits to a subset of qualities
and then chooses a pricing function (paying the distribution costs at this stage). In committing to a quality
range firms face a trade-off: they want a broad quality range to discriminate among consumers, but they also
want to differentiate their products from those of the competitor as price competition lowers profit margins
on neighboring qualities. They show that at a Nash equilibrium where each firm makes positive profits,
the quality sets to which firms commit are always disjoint. Our investment game makes, in the language
of Champsaur and Rochet (1989), firms commit to a quality range of the type [0, q], so it is technologically
impossible that two firms acquire disjoint sets. Indeed in all equilibria only one firm realizes positive revenues
(Proposition 3.1), and first stage equilibria with active competition are only mixed (Proposition 3.3 ii)).

3.4.2 Stability

We thus far fixed an extensive form game and studied its properties: for sake of tractability we implicitly
imposed strong timing and information rigidities, that must be justified by looking at, say, the length and
transparency of R&D processes and patenting in the relevant markets, entry regulations etc. Contrary to
Champsaur and Rochet (1989) our quality commitment stage is not cheap talk but requires a real and costly
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investment, though it still excludes plausible production deviations. The perfect information assumption is
self-explanatory and so is the realism of its empirical counterparts.46 We may be interested in investigating
equilibria that are induced by different specifications of the competition environment. Unfortunately, no
alternative specification delivered tractable results and we can only make an informal discussion of the
stability of the equilibria we found. We loosely define stability as robustness to unanticipated deviations
from inactive firms: the game is augmented by allowing firms that were idle to take some actions as the
game unfolds. Since the game is two stage, two natural notions of stability emerge, depending on the stage
at which outsiders are allowed to act.

• Interim stability: after the first stage is over a potential entrant observes the realized vector of entry
qualities q and chooses whether (and eventually at which quality) to enter and play the second stage
against q.

• Ex-post stability: after the whole game is played a potential entrant observes the realized market pricing
function and chooses whether (and eventually with which pricing function) to enter and compete with
the realized contract.

Definition 3.6. The degree of interim (ex-post) stability of an equilibrium is the probability that the realized
entry vector (market pricing function) does not induce interim (ex-post) entry.

Following the discussion above, it should be noticed that neither the ex-post nor the interim stability
notion are associated to the equilibrium of an extended game in which active firms recognize the threat from
outsiders: if he anticipates that at a later stage a potential entrant could wipe out his revenues, the interim
monopolist would not (in general) choose allocation rule (3.2).47 Similarly, the expected profit formula for the
investment game would be different from (3.7) if active firms anticipated interim (and ex-post) deviations.
However, if firms were playing a pure strategy equilibrium in the first stage, then the ex-post stability
refinement would collapse to the Rothschild and Stiglitz (1976) equilibrium. Rothschild and Stiglitz (1976)
invoke a notion of free-entry to justify the assumption that all firms observe the offered contracts48 and must
have no incentive to deviate, which is exactly what ex-post equilibrium in pure strategies requires.49

In this setting a Rothschild and Stiglitz (1976) contract would be a pricing function pi. The cost of
offering contract pi is

c (pi) = c (sup {q : pi (q) < ∞})

which, contrary to the original setting, does not depend on competitors’ actions and consumers’ demand.
We associate to each set of pricing functions {pi}i∈N the firm specific revenue function Rj

(
{pi}i∈N

)
given by

(3.1) so we can define

Definition 3.7. An ex-post (Rothschild and Stiglitz (1976)) pure strategy equilibrium is a profile of contracts
{p?i }i∈N such that

Ri

(
p?i , p

?
−i

)
− c (p?i ) ≥ Ri

(
pi, p

?
−i

)
− c (pi) , ∀i, pi

The following proposition establishes non-existence of ex-post equilibria and characterizes the degree of
stability of monopolist and competitive equilibria.

46Otherwise timing is vacuous a competitors equivalently randomize over pricing functions, which would be a perfectly valid
but intractable (for us) equilibrium concept.

47In particular, he would not alter his pricing decision if and only if this decision induces the potential deviator to abstain.
48In their case, a pair of coverage rate and deductible.
49Pure strategies make indeed the sequential nature of the game immaterial: as each player knows the realization of the

quality vector and the strategy of opponents conditional on each quality vector, he knows the realization of the pricing functions
and best responds to them.
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Proposition 3.8. i) There is no ex-post equilibrium in pure strategies.
ii) The degree of interim stability is always larger than the degree of ex-post stability. The monopolist

equilibrium is interim fully stable (degree 1) but ex-post fully unstable (degree 0).
iii) All competitive equilibria feature intermediate degrees of interim and ex-post stability, and both of

them are decreasing in n.

The intuition for i) is the following: the monopolist pricing function (and all others abstain) is, by the
same arguments used in Proposition 3.3, the unique candidate. However this time potential entrants can
earn revenues that are ε close to V

(
qM
)

by just granting a small and equal discount to all types. The idle
monopolist has no way to fight back, which breaks the candidate equilibrium.

We then notice that interim or ex-post best response implies producing a quality that lies in the doubleton
set
{
0, qM

}
. As

0 = R
(
qM , qM

)
< c

(
qM
)
< R

(
qM , 0

)
= V

(
qM
)

and R
(
qM , x

)
is monotonically decreasing there will be a threshold m? ∈

(
0, qM

)
such that R

(
m?, qM

)
=

c
(
qM
)
. We notice that at interim stage entry occurs if and only if the best active quality is below m?, while

at an ex-post stage entry occurs if and only if the quality offered for free is below m?. So the degree of
interim stability is the CDF (under equilibrium play) of the best quality evaluated at m?, and the degree of
ex-post stability is the CDF of the second quality evaluated at m?. From this fact and the FOSD order of
equilibrium statistics proved in Proposition 3.5 i), all results listed in ii) and iii) follow.

4 The Market for Information

This section discusses information markets as a potential application of the model. We highlight the im-
plicit assumptions on the demand side and the production technology of information sources that make the
framework of this paper more suited than other approaches (which are briefly reviewed) to analyze some
phenomena in those markets. The main novelty is that production of information is decentralized and that
the technology to convert the factor of production (attention) into state-signal structures must be taken as
a primitive. We present a simple but exact microfoundation of the model in which firms observe increments
of a common Brownian motion and sell the realization to agents solving a standard location problem. A
natural extension in which correlation of the primary information sources induces product heterogeneity is
presented since the basic model has the counterfactual implication that only one firm will be active (provide a
non-trivial screening contract and make profit) even in the competitive setting. We motivate future extension
of the model presented in this paper by discussing limitations imposed by the current simple structure.

4.1 A market for hard information

Many economically relevant situations can be modeled as a decision problem (or a game) preceded by an
information acquisition phase in which agents speculate about some characteristics of the environment they
will be acting in. To this aim it is necessary to specify what type of information agents can access and at
what cost. The model presented in this paper can be applied to information markets with the following
characteristics

• Decision makers (consumers) have no way to create their own information structure and must rely
exclusively on the opinions sold by a set of profit maximizing sellers. This contrasts with models of
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unrestricted information acquisition with statistical pricing of information structures (e.g. Shannon
entropy) which is the approach taken in (most) rational inattention models.50

• Firms are endowed with a technology to produce primary information structures and a (free) technology
to Blackwell garble those structures. Both production and damaging occurs along a single dimension,
exogenously given.

• Firms make revenues from selling information structures.51 Price competition may become a second
order concern (relative to attention and revenues from advertising) when information means entertain-
ment and ideology drives agents’ choice among opinion outlets. Newspapers, cable tv and similia are
therefore not examples of information markets whose functioning is likely captured by this paper’s
model.52

• Communication of the signal (of any quality) is a costless operation that occurs without frictions:
sellers have no disutility in repeating statements like “This asset is going to default with a likelihood
p ∈ A.” to whomever wants to pay for that, and investors have no difficulty in understanding what such
statements mean,53 to do the proper (bayesian) updating and to infer the value of such information
from the decision problem they face.

• Reputation issues are also neglected: the seller cannot misreport the precision of the (menu of) signal he
sells, and buyers believe the products they buy are indeed draws from the promised signal structure.54

Real world examples that approximately fit the description are websites that sell weather forecasts and
assessments of the likelihood of default of a fixed income security (credit rating). Although (possibly) of
limited interest, weather forecast is an insightful example since both the signal structure (probability of rain,
temperatures bounds...), and the cost of acquisition (strengths of instruments, stations installed) have a clear
interpretation. The website Accuweather offers basic, premium and professional subscriptions respectively
for free, at $7.95 and at $19.95 monthly rate. Better packages add to basic service a longer horizon (up to
90 days), finer (hourly) weather forecast, experts opinions and radar images that clearly satisfy the feature
of free damaging. The market for financial information is much larger and relevant, though some of its
complexities require extensions of the model that we will address later. For the moment we let information
production be the effort to evaluate the likelihood that a certain fixed-income security defaults. Credit rating
has a clear signal structure (intervals of likelihoods of the default event) and to some extent can be modeled

50The rational inattention literature originates from the idea of Sims (1998, 2003) that decision makers are finite capacity
information channels, unable to process all the information available. The information acquisition problem is equivalently
rewritten by making agents pay an attention cost that is linear in the reduction of Shannon entropy, where the (per-bit) price
emerges as the Lagrange multiplier on the attention constraint of the original problem. In this world, information is floating
around agents that grasp it costly bit by costly bit; the fact that the “information bill” depends on some statistical property
of the joint state-action distribution pays off in terms of a great tractability which accounts for some of the success of this
approach.

51The vast literature on bayesian persuasion (initiated by Kamenica and Gentzkow (2011)) and, more in general, of information
design (see Bergemann and Morris (2017)) study the problem of a principal who knows the state (has already “produced” the
best information structure) and optimally transmits it to a set of agents. In both cases that objective is not the maximization
of revenues from selling information securities: principal’s utility depends on agents’ actions which he influences by tailoring the
information transmission.

52Galperti and Trevino (2017) endogenizes the supply of information as the outcome of competition among potential infor-
mation sources that choose where to locate on the accuracy/clarity space in a Myatt and Wallace (2011) setting. In a different
setting Perego and Yuksel (2018) studies competitive provision and endogenous acquisition of political information with hori-
zontal differentiation of potential consumers. In both those papers firms compete for the attention of their consumers, which is
justified as many information companies make most revenues from advertising.

53Again, this contrasts with a rational inattention setting.
54Since posting a menu of prices is essentially cheap talk and the model is static, this is also a strong assumption. Reputational

issues in information transmission are studied by Wang (2009) and Ottaviani and Sørensen (2006) among others.
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as the costly conjecturing exercise of some experts in the consultancy sector. Damaging is performed by
coarsening the rating partition or hiding some parts of the report.

The key primitives that characterize such markets are i) the expression for the value of information and
ii) the set of information structures that can be acquired and obtained through damaging. We proceed and
give an example of both.

4.1.1 Information value

In an information market a type θ ∈ Θ generically corresponds to a bayesian decision problem (action set,
priors, utility) defined over a common uncertainty space (over which producers construct signal structures).
This paper took this object as a primitive which means we can describe the shape of the optimal contract
for classes of decision problems/type heterogeneity that induce a value of information having shape (2.1). It
is however clear that to study specific phenomena we cannot take the value of available signal structures as
exogenous but derive it from the relevant decision problem. Two recent papers that focus on information
distribution derive the information value function from either heterogeneity in the decision problems or
strategic externalities: Bergemann et al. (2018a) obtain a (piecewise) linear value of information when agents’
types are their prior beliefs over a finite dimensional state space. They show (among many other results) that
it will never be optimal for the seller to damage information by reducing precision (i.e. a quality dimension
along which preferences are linear). This conforms with the “no-haggling” result stated in this paper as
Corollary 2.10. In general they show that information is degraded and sold in non-trivial screening packages
by revealing only a portion of the available data to the buyer: along this deterioration margin consumers’
valuation are not linear.55 Kastl et al. (2018) study the problem of a monopolist seller that may want to
supply imprecise information to competitive firms that are uncertain about the marginal cost type of their
contractors;56 in their setup the state space is binary but information structures are allowed to be asymmetric
and characterized by a two dimensional vector (α, β).

We can obtain an information value with concave component as in (2.1) from a decision problem that is
standard in the literature: agents choose a location a to minimize the realized euclidean distance from an
unknown state

u (a, ω) = − (a− ω)
2

so the value of an information structure S : Ω → ∆(S) is just the expected (i.e. after observing a draw from
S) reduction in the variance

g (S) = −ES [Vpost] + Vprior

If agents have normal prior belief ω ∼ N
(
µ, τ−1

p

)
and information structures take the form N

(
ω, q−1

)
for q ∈ R,57 then such value is given by

g (q) = − 1

q + τp
+

1

τp
=

q

τp (q + τp)
(4.1)

55As a concrete example of damaging through partial revelation occurring in information markets, Bergemann et al. (2018b)
point at the “Undisclosed Debt monitoring” packages sold by Equifax in which the data broker offers individual rating reports to
financial firms considering application for loans in three different versions differing in the number of “red flags” that the lender
receives if the borrowers’ history includes some negative events.

56They focus on the trade-off of a monopolist that may want to sell imprecise signal in order to limit distortions due to
internal agency problems.

57Induced by speculation effort (4.2) (next section).
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which is a concave function in q. Moreover, notice that

g′′ (q) = − 1

(q + τp)
2

is decreasing (in absolute value) in τp, so larger precision implies “more concave” returns from quality in the
sense of footnote 15. To get the specification (2.1) we should therefore assume that agents solve two inde-
pendent “location problems” and have heterogeneous valuations from guessing right the problem with larger
prior variance. In general, we can keep the common location game as inducing the concave component, and
take the linear part as some Taylor approximation for an additional type-dependent returns from precision.

4.1.2 Information production

Primary information structures are the state-signal correlations that can be produced by the firms. Suppose
Ω = R and the choice of primary information corresponds to observing a Brownian motion

dXt = ωdt+ dW j
t (4.2)

for some period of (costly) time. After staring at the Brownian Motion for qj units of time, firm j “produced”
a signal (sufficient for ω)

sj =
1

√
qj
Xqj ∼ N

(
ω,

1

qj

)
about the state, which can be (damaged and) distributed to interested parties. Clearly, as every firm i ∈ N
observes the same Brownian motion but just for different time, whoever stares at it the longer can push out
of the market (owns a product that is superior to) everyone else. Every firm j can “quote” a market for
any precision that is below qj since inferior qualities can be obtained by reporting the Brownian motion at
a period before qj or by adding independent normal noise.58 Notice we have made the implicit assumption
that damaged structures must fall in the normal family. However there is no reason for which sellers should
have this restriction: they can report whether it lies in a certain region, whether it is closer to point A or B,
or commit to any garbling. The restriction to single dimensional quality is therefore substantial especially
when it comes to damaging, and becomes untenable when we have a generic state space without parametric
restrictions on primary structures.59

4.1.3 Correlation as product heterogeneity

Proposition 3.1 gives the implication that only one firm sells positive qualities and makes profits. This seems
to be counterfactual at least in the market for financial consultancy where many people make money out
of saying something. Product homogeneity in this framework arises from having all firms observe the same
Brownian Motion (4.2): the empirical counterpart of this assumption is that all experts look at the same set
of evidence (share a common reasoning process), or that meteorological instruments make perfectly correlated

58If agents do not care about correlation (e.g. they play independent decision problems) then how the signal is damaged is
immaterial. If they were playing a game then also the correlation of the signal would induce a value. In particular, in presence
of strategic substitutability agent derive value from being uncorrelated and we would obtain the result that a monopolist may
acquire a quality higher than the highest quality distributed, just to be able to damage it in an agent-independent way.

59It is somehow natural to have single dimensional production sets: we can say that a weather forecaster can buy a stronger
telescope that allows for fixed maps into signal structures, or that financial experts can only determine the intensity of their search
and the resulting Markov kernels are model primitives. It is clearly a much stronger assumption to say that such conjecturing
effort can be damaged only along the production dimension.
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errors.
Such extreme assumption can be relaxed by letting the Wiener process driving observation of firm j be

dW j
t = ρdWt +

√
1− ρ2dZj

t (4.3)

where dZj
t is a firm-specific process60 and ρ ∈ [0, 1] parametrizes the correlation of the conjecturing effort of

the different firms. Suppose for expositional clarity that there are two firms i, j and that at the investment
stage they produced qi > qj . Despite being of inferior quality (correlation with the state) now Xqj contains
information about ω even after conditioning on Xqi . Indeed, it holds

Cov
(
Xqj , Xqi

)
= ρmin {qi, qj} = ρqj

Consumers only care about the final precision of the signal they observe (see (4.1)), that is u (qi, qj , θ) admits
the aggregator representation

u (qi, qj , θ) = u (Ψ (qi, qj) , θ)

where Ψ : Q2 → Q, derived by the normal updating formulas is the piecewise convex function given by

Ψ(qi, qj) =
qi (qj (1− 2ρ) + qi)

qi − qjρ2

Notice that if ρ = 0 (signals are uncorrelated), then Ψ(q) = qi+qj and we have a model of additive social
value of production as in Kreps and Scheinkman (1983), though the distribution problem is subject to the
screening frictions. If ρ = 1 then we are back to homogenous products and maximum aggregator Ψ(q) = qi

which has been the subject of study of this paper. Continuity of Ψ implies full deterioration domain, namely
that that for each {qi}i∈N and q′ < Ψ

(
{qi}i∈N

)
we can find {q′i}i∈N ≤ {qi}i∈N so that q′ = Ψ

(
{q′i}i∈N

)
.

We define the cost of aggregate quality as the value function

c (q) = min
{qi}i∈N

∑
i∈N

c (qi) , s.t. Ψ
(
{qi}i∈N

)
≥ q (4.4)

With the full deterioration property we can adapt the techniques used for the homogenous product and
characterize first and second best. Second best is equivalent to a monopolist that owns all production sources
and distributes damaged qualities only subject to information frictions: he allocates packages {qi (θ)}i∈N,θ∈Θ

subject to IR and IC where each type θ can only choose among profiles {qi (θ′)}i∈N (cannot pick qi (θ
′) and

qj (θ
′′) for i 6= j). Proposition (2.9) applies verbatim to characterize the second best distribution of aggregate

qualities which are produced at cost (4.4). We cannot however decentralize the second best as a pricing stage
equilibrium among competitive firms. The technical complications to solve for a competitive equilibrium
with screening and heterogeneous products are illustrated in the Handbook chapter of Stole (2007), and we
could not extend the tractability of competitive equilibria for homogenous digital goods to this more general
case.

4.2 Limitations and future research

Section 4 had three objectives: i) discuss features of information markets that make them fit to be studied
under the framework of this paper rather than under alternative approaches, ii) use standard building

60Meaning dWt, dZj
t , dZi

t are uncorrelated Wiener processes.
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blocks to provide a microfoundation for an information market that fits exactly the reduced form description
given in the paper, and iii) suggest correlation in primary structures as a natural way to introduce product
heterogeneity in a market that fails one stark empirical implication of the homogenous product model. Section
4.1.3 explored a tractable way to allow for heterogeneous in preferences that admit a quality aggregator.
The unsolved technical challenge is the specification of a competition environment that delivers tractable
equilibria. We conclude the section exploring other extensions of the model

• Contrary to a growing literature on information acquisition in markets, we do not allow for strategic
interaction at the decision stage as this would make an exogenous (i.e. independent of equilibrium
play) specification of the value for information untenable.61 The extension would make a second quality
dimension (broadly speaking, correlation with information given to co-players) emerge endogenously.
Broadly speaking, this direction points at an heterogeneous agent version of Myatt and Wallace (2011)
(or derived setups) with information acquisition as in (4.3) and price competition.

• The quality restrictions become substantive when the state space is large: as investors have interests
that are differentiated either geographically or for the type of assets they trade, restricting sellers’ mar-
ketable products to be single dimensional is unreasonable. We could think of a model with horizontally
differentiated agents that care, say, only about some dimension of a large state space. A conjecturing
effort produces signal structures about the whole state space but firms may choose to sell what they
know about different portions of the state space as different products. We could use this specification
to ask under what conditions firms favor production and marketing of signal structures characterized
by a large breadth (learn about the approximate location of many states) or depth (focus on one state
and identify it more precisely) component.

• The issue of non-excludability is particularly relevant for information markets: beyond prohibiting re-
selling of opinions, private information may be “leaked” through aggregate variables (this channel
is explored in Admati and Pfleiderer (1986)). Many financial information packages include agent
specific information (as the rating of potential borrowers in the Equifax example of Bergemann et al.
(2018b)), and live prices (Bloomberg vs Reuters), which somehow reduce the concern of failure of
non-excludability.

5 Conclusions

In this paper we developed a model of production and distribution of digital goods. The monopolist problem
reduces to quality screening where the cost of an allocation is not additively separable but depends solely on
one statistic of such allocation (the maximum). Under regularity assumptions on the demand side the optimal
allocation is characterized by a bunching at the top threshold that increases with the quality cap, which
is then easy to solve for. Market power and asymmetric information induce interdependent inefficiencies
in acquisition and distribution of the digital good. Preventing damaging always worsens the acquisition
inefficiency and induces exclusion of types that would be served under the unconstrained contract. The
mechanical undoing of damaging inefficiencies counters those perverse effects yielding an ambiguous welfare

61Several contributions (among which Hellwig and Veldkamp (2009), Myatt and Wallace (2011), and Colombo et al. (2014))
show that in the presence of strategic externalities also the information acquisition game has strategic complementarities (i.e.
there is an information acquisition externality). The game structure makes the value of information an endogenous object, but
the cost is still exogenous even in cases where the supply side is a rich set of information sources who are characterized by an
accuracy-clarity pair (as in Myatt and Wallace (2011)).
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impact of the policy whose sign depends on the cost primitive. We then studied competition in digital
goods markets as an extensive form game in which investment in quality is a sunk cost at the pricing stage.
Monopoly is the only equilibrium in pure strategies, but there are also equilibria with different levels of
competition. Competition induces wasteful double spending and worsens underacquisition since the highest
quality distributed by a competitive market is below monopolist level. However, Bertrand forces induce a
contraction of the screening domain that reduces distributional inefficiencies. Across equilibria with active
competition the duopoly is Pareto dominant and welfare is decreasing in the intensity of competition. The
welfare comparison between monopoly and duopoly is ambiguous and we can tailor the cost function to
completely shut down the channels that favor either of them. The monopolist equilibrium is always subject
to ex-post deviations while the duopoly features the highest degree of ex-post stability across all equilibria.
We concluded by discussing how to apply and extend the model to study some phenomena in the market for
information from a novel perspective.
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A Proof Appendix

A.1 Proof of Proposition 2.2 and Remark 2.3

As uq > 0 for any type θ, deterioration is inefficient: the planner produces a quality that equates the average
marginal valuation to the marginal cost and distributes such quality to each type. (2.5) is the first order
condition of problem (2.4) after noticing the efficient allocation is flat, whose sufficiency is immediate.

A seller with perfect information can charge a type-dependent price pθ. Then the profit maximization
problem coincides with the social surplus problem, he produces q?, distributes it to all types and he extracts
all the surplus.

A.2 Proof of Lemma 2.4

Consider the monopolist problem

maxρ,p:Θ→Q×R
∫
Θ
p (θ) dF (θ)− c (ρ)

s.t. IC,IR
(A.1)

and define
ω (x) = {ρ, p : Θ → Q× R : IC, IR hold and c (ρ) ≤ x}

be the set incentive compatible and individually rational allocation and pricing function whose cost does not
exceed x. Using this constraint sets, problem (A.1) can be rewritten as

max
x,{p:∃ρ,(p,ρ)∈ω(x)}

∫
Θ

p (θ) dF (θ)− x

= max
x∈R

[
max

{p:∃ρ,(p,ρ)∈ω(x)}

∫
Θ

p (θ) dF (θ)

]
− x (A.2)

now given the specification of the cost function (2.6)

ρ ∈ ω (x) only if c (maxθ ρ (θ)) ≤ x

⇐⇒ maxθ ρ (θ) ≤ c−1 (x)

so
ω (x) =

{
ρ, p : Θ → Q× R : IC, IR hold and max

θ
ρ (θ) ≤ c−1 (x)

}
and therefore

max
{p:∃ρ,(p,ρ)∈ω(x)}

∫
Θ

p (θ) dF (θ) = V
(
c−1 (x)

)
where V is the value of quality defined in (2.8) as the constraint set of that problem coincides with ω

(
c−1 (x)

)
.

Redefining the domain of choice to be Q = c−1 (R) (which we can do as c strictly increasing), problem (A.2)
becomes

max
q∈Q

V (q)− c (q)

as we wanted to show.
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A.3 Proof Proposition 2.5

Fix an arbitrary q. The monopolist chooses allocations and transfers {qi, Ti}i∈{H,L} to solve

V (q) = max
{qi,Ti}i∈{H,L}

(1− π)T1 + πT2

subject to

u (qi, i)− Ti ≥ u (qj , i)− Tj

u (qi, i)− Ti ≥ 0

qi ≤ q

Combining the incentive constraint for high and low types we get monotonicity of the optimal allocation.
Optimality implies the rationality constraint of the low type and the incentive to deviate from high to low
types must be binding. With those observations the revenue maximization problem can written as a control
problem where we choose allocation to high type and low type, x, y respectively.

V (q) = max
0≤y≤x≤q

u (L, y) + π (u (H,x)− u (H, y))

Maximization with respect to x immediately gives the corner solution

x? = q

Necessary condition for interior y is

u′ (L, y?)− πu′ (H, y?) = 0

g′ (q) + θL
g′ (q) + θH

= π (A.3)

Notice that by assumption u′′
H (q) = g′′ (q) = u′′

L so

u′ (L, x)

u′ (H,x)
=

g′ (x) + θL
g′ (x) + θH

is monotonically decreasing, and equation (A.3) has (at most) one solution. and also guarantees that the
SOC

u′′ (L, y?)− πu′′ (H, y?) = (1− π) g′′ (y?) < 0

is satisfied at the critical point, giving the unique solution to the program.
Now, if y? ≤ q, then also the monotonicity constraint is satisfied and we have a global solution. If the

threshold y? is below the maximal quality we need to compare the fully pooling and exclusion equilibrium.
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By the single crossing property, for all x < y? it holds u′ (L, x) > πu′ (H,x), therefore

u (q, L) =

∫ q

0

u′ (L, x) dx >

∫ q

0

πu′ (H,x) dx = πu (q,H)

and it is more profitable to serve q to all consumers at price u (q, L). This proves L receives y? if y? ≤ q and
q otherwise. Given allocation we can infer transfers from the binding constraints and obtain the expression
for the revenue (and marginal revenue) function.

A.4 Proof of Lemma 2.8

We check that the virtual valuation is indeed a supermodular function in q, θ.

∂
∂q∂θvv (q, θ) = ∂

∂q∂θ

[
g (q) + θq − q 1−F (θ)

f(θ)

]
= ∂

∂θ g′ (q) + θ − 1−F (θ)
f(θ)

= 1− h′ (θ)︸ ︷︷ ︸
<0

≥ 0

Now notice that
g (q) + q

[
θ − 1− F (θ)

f (θ)

]
is maximized at q = ∞ whenever the multiplier on the linear part is greater than zero, since this is a
monotonically increasing function of q. On the contrary, when θ ≤ θ̃, then θ− 1−F (θ)

f(θ) < 0 and the objective is
concave as the difference between a concave function g and a linear part. So maximizer β (θ) is characterized
by the first order condition

g′ (β (θ)) =
1− F (θ)

f (θ)
− θ

As g′ is a strictly increasing function and can invert it to get the other branch of the maximizer function

β (θ) =

(g′)
−1

(h (θ)− θ) θ < θ̃

∞ θ ≥ θ̃

as we wanted to show.

A.5 Proof of Proposition 2.9

Fix a generic quality cap q. We want to show i), that is ρ (q, θ) = min {β (θ) , q}.
The quality constraint ρ (θ) ≤ q defining problem (2.8) is inserted in the objective function by subtracting

to type dependent revenues the cost

c∞ (q′) =

0 q′ ≤ q

∞ else

So the cap conditional problem equivalently reads

V (q) 7−→ maxρ,p:Θ→Q×R
∫
Θ
p (θ)− c∞ (ρ (θ)) dF (θ)

s.t. IC , IR
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Notice c∞ (q′) is not differentiable, but can be approximated by the continuously differentiable convex function

cn (q
′) =

(
q′

q

)n

We can now define the sequence of auxiliary problems

Vn (q) 7−→ maxρ,p:Θ→Q×R
∫
Θ
p (θ)− cn (ρ (θ)) dF (θ)

s.t. IC , IR

as limn→∞ cn (q
′) = c∞ (q′), the objective in Vn converges to the objective in V and as policies and values

of the auxiliary problems are bounded, the sequence of solutions (ρn, pn) converges to the solution to the
original problem. The auxiliary problem for a generic n is a monopolist screening problem with additively
separable cost function, which we solve using standard arguments.

Firstly, the pairwise comparison of incentive constraints implies that the allocation ρn is monotonically
increasing. Then, using the envelope theorem assuming sufficiency of the first order approach we obtain

d

dθ
[u (ρn (θ) , θ)− pn (θ)] = uθ (ρn (θ

′) , θ′) = ρn (θ
′)

from which we get the payoff equivalence function

u (ρn (θ) , θ)− pn (θ) =

∫ θ

0

ρn (θ
′) dθ′

from which we infer prices

pn (θ) = u (ρn (θ) , θ)−
∫ θ

0

ρn (θ
′) dθ′

and substitute in the objective to get the relaxed problem

Wn (q) −→ max
ρn(θ) increasing

∫
Θ

[
u (ρn (θ) , θ)− cn (ρn (θ))−

∫ θ

0

ρn (θ
′) dθ′

]
f (θ) dθ

integrating by parts we obtain

max
ρn(θ) increasing

∫
Θ

[
u (ρn (θ) , θ)− cn (ρn (θ))− ρn (θ)

1− F (θ)

f (θ)

]
f (θ) dθ

pointwise maximization of the integrand gives that a candidate ρn (θ) must satisfy

g′ (ρn (θ)) + ρn (θ)−
1

h (θ)
− n

qn
(ρn (θ))

n−1
= 0

that ρn (θ) so defined satisfies monotonicity follows from supermodularity of the profit function

r (x, θ) = g (x) + θx− x
1− F (θ)

f (θ)
−
(
x

q

)n

as subtraction of a (convex) function of x does not change the sign of the cross derivative computed in Lemma
2.8 (neither sufficiency of the first order condition).
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Recall that β (θ) solves
g′ (β (θ)) + β (θ)− 1

h (θ)
= 0

and as

lim
n−→∞

n

qn
(x)

n−1
=


0 x < q

1 x = q

∞ x > q

we conclude that the pointwise limit of ρn (θ) is

ρn (θ) →

β (θ) if β (θ) < q

q β (θ) > q

and so ρ (q, θ) = min {β (θ) , q}, which is our desideratum.
ii) Now assume that types are uniformly distributed.62 Using that, we write

V (q) =

∫ 1

0

u (ρ (θ, q) , θ)− (1− θ) ρ (θ, q) dθ (A.4)

it is convenient to define b : Q →
[
0, 1

2

]
the inverse β function, namely

b (q) = β−1 (q) = max

{
0,

1− g′ (q)

2

}
(A.5)

so that

ρ (q, θ) =

β (θ) θ ≤ b (q)

q else

which can be substituted in A.4 to obtain

V (q) =

∫ b(q)

0

u (β (θ) , θ)− (1− θ)β (θ) dθ +

∫ 1

b(q)

u (q, θ)− (1− θ) qdθ

now we can differentiate it

V ′ (q) = b′ (q) [u (q, b (q))− (1− b (q)) q]

− b′ (q) [u (q, b (q))− (1− b (q)) q]

+
∫ 1

b(q)
u1 (q, θ)− (1− θ) dθ

=
∫ 1

b(q)
g′ (q) + (2θ − 1) dθ

= (1− b (q)) (g′ (q)− 1) +
(
1− b (q)

2
)

= (1− b (q)) [g′ (q)− 1 + (1 + b (q))]

= (1− b (q)) [g′ (q) + b (q)]

substituting expression (A.5) for b we get:
If 1 < g′ (q) then b (q) = 0 and V ′ (q) = g′ (q)

Otherwise,

62See discussion in Section
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V ′ (q) =

(
1 + g′ (q)

2

)2

which is the expression in the Proposition. We are left now left to show that V ′ is C1. Continuous differen-
tiability in the two branches is immediate, we need to show they are smoothly pasted.(

1 + g′ (q)

2

)2 ∣∣∣∣
g′(q)=1

= 1 = g′ (q)

∣∣∣∣
g′(q)=1

proves continuity, while
d
dq

(
1+g′(q)

2

)2 ∣∣∣∣
g′(q)=1

= 2 1+g′(q)
2

g′′(q)
2

∣∣∣∣
g′(q)=1

= 2 1+1
2

g′′(q)
2

= g′′ (q)

= d
dq g

′ (q)

proves continuous differentiability.
iii) Per Proposition 2.2 the efficient quality q? is determined by the first order condition

g′ (q) +
1

2
= c′ (q)

Monopolist quality qM instead solves
V ′ (q) = c′ (q)

so it is sufficient to show
V ′ (q) < g′ (q) +

1

2
(A.6)

always. Clearly, g′ (q) + 1
2 > g′ (q) so in the full bunching region this is true. It is also easy to check that

x ≤ 1 =⇒ x+
1

2
>

(
1 + x

2

)2

proving V ′ (q) is strictly below efficient marginal surplus even when g′
(
qM
)
≤ 1. As (A.6) always holds,

qM < q? and we have inefficient acquisition.

A.6 Proof of Proposition 2.12

We firstly need to compute consumers’ surplus. As uθ is ρ (θ, q), type θ welfare when the cap is q reads

W (θ, q) = u (0) +

∫ θ

0

uθ (ρ (θ
′, q) , θ′) dθ′ =

∫ θ

0

min {β (θ′) , q} dθ′ (A.7)

Integrating over Θ = [0, 1] to get total consumer surplus, we have
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W (q) =
∫ 1

0
W (θ, q) dθ

=
∫ 1

0

∫ θ

0
min {β (θ′) , q} dθ′dθ

=
∫ 1

0
min {β (θ) , q} (1− θ) dθ

=
∫ 1

0
min

{
(g′)

−1
(2θ − 1) , q

}
(1− θ) dθ

=
∫ b(q)

0
(g′)

−1
(2θ − 1) (1− θ) dθ +

∫ 1

b(q)
q (1− θ) dθ

First line is definition, second substitutes (3.3), third is integration by parts, fourth expresses β (θ) and
finally breaks the integral in the parts above and below q.

When differentiating, as for the marginal revenues V ′, the terms in b′ will drop so we are left with

W ′ (q) =
∫ 1

b(q)
∂
∂q q (1− θ) dθ

=
∫ 1

b(q)
(1− θ) dθ

= (1− b (q))− 1
2x

2
∣∣∣1
b(q)

= (1− b (q))− 1
2

(
1− b (q)

2
)

= 1
2 (1− b (q))

2

= 1
2

(
1+g′(q)

2

)2
= 1

2V
′ (q)

(A.8)

Integrating marginal surplus below ( 1
2 ), and above (A.8) (g′)

−1
(1) we obtain (2.14).

To obtain the inefficiencies decomposition, notice first best surplus is given by

SFB = 1
2q

? + g (q?)− c (q?)

=
∫ q?

0

(
1
2 + g′ (q)− c′ (q)

)
dq

Summing marginal revenues (2.12) and consumer surplus (A.8) we get monopolist surplus below (g′)
−1

(1)

grows as first best (has no damaging), while above it grows with slope(
1 + g′ (q)

2

)2

− c′ (q) +
1

2

(
1 + g′ (q)

2

)2

=
3

2

(
1 + g′ (q)

2

)2

− c′ (q)

Monopolist welfare can therefore be written as

WM =
∫ (

g′)−1(1)

0

(
1
2 + g′ (q)− c′ (q)

)
dq +

∫ qM

(g′)−1(1)
3
2

(
1+g′(q)

2

)2
− c′ (q) dq (A.9)

Notice in the region
[
(g′)

−1
(1) , qM

]
we have marginal damaging inefficiencies

d (q) =
1

2
+ g′ (q)− c′ (q)︸ ︷︷ ︸

(SFB)′

−

[
3

2

(
1 + g′ (q)

2

)2

− c′ (q)

]
︸ ︷︷ ︸

W ′
M

= 1
8 (1 + (2− 3g′ (q)) g′ (q))

By splitting integrals in the three regions
[
0, (g′)

−1
(1)
]
,
[
(g′)

−1
(1) , qM

]
and

[
qM , q?

]
we can write losses
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relative to first best as

SFB −WM =
∫ (

g′)−1(1)

0

(
1
2 + g′ (q)− c′ (q)

)
dq −

∫ (
g′)−1(1)

0

(
1
2 + g′ (q)− c′ (q)

)
dq

+
∫ qM

(g′)−1(1)

(
1
2 + g′ (q)− c′ (q)

)
dq −

∫ qM

(g′)−1(1)
3
2

(
1+g′(q)

2

)2
− c′ (q) dq

+
∫ q?

qM

(
1
2 + g′ (q)− c′ (q)

)
dq − 0

= 0

+
∫ qM

(g′)−1(1)
d (q) dq

+
∫ q?

qM

(
1
2 + g′ (q)− c′ (q)

)
dq

which is expression (2.15).

A.7 Proof of Proposition 2.13

i) The quality conditional profit reads

ΠNS (q) = max
θ

[g (q) + θq] (1− θ)

First order condition is
θq − θg (q)− θ2q ≥ 0

[− [g (q) + θq] + q] θ ≥ 0

ϑ (q) = max
{

q−g(q)
2q , 0

}
When q−g(q)

2q = 0, then everyone is sold good q and ΠNS (q) = g (q). If instead q−g(q)
2q > 0 then only types[

q−g(q)
2q , 1

]
receive quality q and pay the valuation of the marginal consumer.

We need to show that the screening monopolist stops full bunching before the NS monopolist. The
threshold for the screening monopolist β (0) solves

1− g′ (q)

2
= 0 =⇒ g′ (q) = 1

The threshold for the NS monopolist ϑ−1 (0) solves

q − g (q)

2q
= 0 =⇒ g (q) = q

As g is continuous and convex, β (0) < ϑ−1 (0) is an immediate implication of the Largange Theorem.
iii) The marginal revenue function d

dqΠ
NS (q) is equal to g′ (q) when q − g (q) < 0 and we have full

bunching (serve everyone at price g (q)). If ϑ (q) ∈ (0, 1), we can use the envelope theorem to obtain

ΠNS (q) = maxθ [g (q) + θq] (1− θ)
d
dqΠ

NS (q) = [g′ (q) + ϑ (q)] (1− ϑ (q))

=
[
g′ (q) + q−g(q)

2q

] (
1− q−g(q)

2q

)
=

(q+g(q))
(
q−g(q)+2qg′(q)

)
4q2

proving the statement.
iii) As in the proof of Proposition 14 iii), it will be sufficient to show

d

dq
ΠNS (q) ≤ V ′ (q)
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strictly when g′ (q) ≤ 1. We distinguish three cases.
If q is such that g′ (q) > 1, then the constraint is immaterial and marginal revenues coincide.
If q is such that g′ (q) ≤ 1 but g (q) > q, then the monopolist screens so its optimal choice is given by

V ′ (q) =

(
1 + g′ (q)

2

)2

> g′ (q) =
d

dq
ΠNS (q)

If also g (q) < q, then the derivative of the profit function is given by

d
dqΠ

NS (q) =
(q+g(q))

(
q−g(q)+2qg′(q)

)
4q2

<
(q+q)

(
g(q)−g(q)+2qg′(q)

)
4q2

= g′ (q)

≤
(

1+g′(q)
2

)2
= V ′ (q)

where the first inequality uses g (q) < q (twice). This proves in general that qNS ≤ qM , strictly whenever
g′ (q) ≤ 1 (no full bunching in the monopolist case).

A.8 Proof of Proposition 2.14

i) Type θ welfare under the NS monopolist is

WNS (θ) =


(
θ − ϑ

(
qNS

))
qNS θ > ϑ

(
qNS

)
0 else

a linear function (in θ) which is zero at the exclusion threshold and has slope qNS . If qM is in region B, then
ϑ
(
qNS

)
= 0 and

qM > qNS > β (0)

As β is continuous in types there exists some θ > 0 for which

qNS > β (θ) = ρ
(
θ, qM

)
∀θ ∈

[
0, θ
]

Now pick θ ∈
(
0, θ
)

and notice
W (θ) =

∫ θ

0
β (θ′) dθ′

<
∫ θ

0
qNSdθ′

= θqNS

= WNS (θ)

and θ is better-off under the NS policy.
ii) Since in Region B no one is excluded by the NS monopolist, total surplus is

WNS = g
(
qNS

)
− c

(
qNS

)
+ 1

2q
NS

=
∫ qNS

0
g′
(
qNS

)
− c′

(
qNS

)
+ 1

2dq

Subtracting this from monopolist surplus 53 and breaking down the integral in regions (g′)−1
(1) < qNS < qM
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we get

WNS −WM =
∫ qNS

(g′)−1(1)

(
1
2 + g′ (q)− c′ (q)

)
dq −

∫ qM

(g′)−1(1)
3
2

(
1+g′(q)

2

)2
− c′ (q) dq

+ 0−
∫ qM

qNS
3
2

(
1+g′(q)

2

)2
− c′ (q) dq

=
∫ qNS

(g′)−1(1)
d (q) dq −

∫ qM

qNS
3
2

(
1+g′(q)

2

)2
− c′ (q) dq

first term are welfare gains from undoing damaging, second are losses from underacquisition (compared to
monopolist).

iii) We keep fixed qM . As c′′
(
qM
)
→ ∞, then c′

(
qM
)
−c′ (q) → ∞ for each q > qM . As V ′ (qM)−Π′ (qM)

is positive but finite this means qNS → qM and by ii) above

WNS −WM →
∫ qM

(g′)−1(1)

d (q) dq

when convex costs shut down underacquisition, NS policy in Region B has the only (welfare increasing) effect
of undoing screening inefficiencies.

A.9 Proof of Proposition 3.1

We avoid order statistics notation and let x, y generic be the realized maximum and second order statistics
of the entry vector q.

We firstly establish that in any market equilibrium, all qualities q ≤ y make zero revenues. Suppose
otherwise, that is some firm j makes positive revenues selling a set of qualities bounded above by y. By
definition of y at least an active competitor can modify his pricing function to copy the revenue-earner in
that quality region, not alter the market pricing function (hence his revenues on other qualities) and share
those positive revenues. Without invoking arbitrary tie-breaks, and for future reference, we should notice the
competitor can, by quoting a pricing function pj (q) − ε for ε arbitrarily close to 0 appropriate all revenues
in the shared region without altering his revenues from other qualities: only marginal types would deviate as
ε → 0. As no firm makes revenues on q ≤ y, it follows m (q) = 0 for all q ≤ y, and in particular m (y) = 0.

We now solve the problem of the interim monopolist. Beyond forcing pi (y) = 0 (or, equivalently, the
quality allocation to be bounded below by y), competition has no impact on the interim monopolist as
feasibility forces competitors −i to quote a price p−i (q) = ∞ for all q > y.

Using the same steps as for the unconstrained monopolist, we write the problem of the interim monopolist
as choosing a type dependent quality allocation rule ρ which is increasing (pairwise comparison of IC) and
has image [y, x]. The interim monopolist revenues are therefore

Ri (x, y) −→ max
ρ(θ)∈[y,x], increasing

∫
Θ

[
u (ρ (θ) , θ)− ρ (θ)

1− F (θ)

f (θ)

]
f (θ) dθ

Pointwise maximization of the objective delivers the candidate allocation

ρ̃ (x, y, θ) = arg max
q∈[x,y]

g (q) + q (θ − h (θ))

From the concavity of the objective first order condition characterizes the interior optimum, hence ρ̃ (x, y, θ) =
β (θ) if β (θ) ∈ [y, x]. The objective is instead strictly decreasing (on the relevant domain) in q if β (θ) < y,
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strictly increasing if β (θ) > x. It therefore follows

ρ̃ (x, y, θ) =


y y < β (θ)

β (θ) β (θ) ∈ [y, x]

x x > β (θ)

which is a weakly increasing function (in θ), hence the solution of the interim monopolist problem. This
proves the allocation rule (3.2).

We now need to compute the revenue function. Per the discussion above all firms but the interim
monopolist make zero revenues. The interim monopolist earns

Ri (x, y) = R (y, y) +

∫ x

y

∂

∂q
R (q, y) dq (A.10)

We have R (y, y) = 0 and, given allocation function (3.2), marginal revenues for the interim monopolist
coincide with those of the unconstrained monopolist: the marginal quality is assigned to types [b (q) , 1] at
marginal price g′ (q) + b (q). So

∂

∂q
R (q, y) =

0 y > q

V ′ (q) y ≤ q

And we can rewrite (A.10) as

Ri (x, y) =
∫ x

y
V ′ (q) dq = V (x)− V (y)

Since x, y was generic this proves expression (3.3) (after the appropriate notation changes are made).

A.10 Proof of Proposition 3.1

We divide the proof in several steps.
Step 1: Monopolist is the only equilibrium in pure strategies.
Consider a generic infinite profile of pure strategies q̃.63 Suppose there is i, j with 0 < q̃i ≤ q̃j . Then by

(3.3), firm i makes zero revenues but pays positive cost, she is better off staying inactive. So no two firms can
choose positive qualities in the pure strategies equilibrium. 0 cannot be an equilibrium either as everyone’s
best response is to produce qM . q̃ is therefore a candidate equilibrium in pure strategies only if q̃i = qM

for one and only one i, q̃−i = 0. We need to show this is indeed an equilibrium. The entrant clearly has no
incentive to deviate. Other firms do not enter with a quality below qM as

q ≤ qM =⇒ R
(
q, qM

)
= 0 < c (q)

If q > qM , the deviator becomes interim monopolist and makes profits

Π(q) = R
(
q, qM

)
− c (q)

= V (q)− V
(
qM
)
− c (q)

=
∫ q

qM
(V ′ (q′)− c′ (q′)) dq′ − c

(
qM
)

63Where q̃ is shorthand notation for each firm i plays δq̃i
.
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Both summands are negative as as c′ (q) > V ′ (q) above qM . Now we look for equilibria where there are at
least 2 active firms. By Step 1, those equilibria must be in mixed strategies.

Step 2: Active firms play an atomless distribution with support including 0.
The support of equilibrium play must contain 0: if the support was bounded below by a strictly positive

quality q, then playing the costly q would deliver zero revenues with probability 1, and abstaining is better.
Similarly, in equilibrium no firm can choose a quality q with positive probability. If that were the case, all
opponents best respond by placing zero probability on an open set including q to get a discrete jump in the
probability of winning and (almost) the same profits. But then the firm itself wants to shift the mass away
from q, depending on the sign of V ′ (q)− c′ (q).

Step 3: The distribution of the maximum of opponent’s qualities must be H (q) = c′(q)
V ′(q) .

We know from (3.3) that the maximum across competitors’ realizations x is sufficient to determine firms’
revenues. Let H (x) be the distribution of such maximum, which from the previous step we know is continuous
on [0, q] for some q > 0. By playing q makes expected profits

Π(q) =

∫
Q

R (q, x) dH (x)− c (q)

The flat profit condition Π′ (q) = 0, necessary for indifference reads

∂

∂q

∫
Q

R (q, x) dH (x)− c′ (q) = 0

Using Leibnitz rule on an invariant support

∂

∂q

∫
Q

R (q, x) dH (x) =

∫
Q

∂

∂q
R (q, x) dH (x)

Now use again
∂

∂q
R (q, x) =

0 x > q

V ′ (q) x ≤ q

to write ∫
Q

∂

∂q
R (q, x) dH (x) =

∫ q

0

V ′ (q) dH (x) = V ′ (q)

∫ q

0

dH (x) = V ′ (q)H (q)

Which, substituted in the flat profit condition gives the desideratum

H (q) =
c′ (q)

V ′ (q)

It holds H (0) = 0 since, by Proposition 2.9 ii), for low q marginal revenues V ′ (q) is equal to g′ (q)

approaching ∞ by the Inada condition. H is increasing as c is assumed convex and V is concave. The right
extremum of the support is determined by

H (q) = 1 =⇒ c′ (q) = V ′ (q) =⇒ q = qM

Hence the maximum among n− 1 competitors is an absolutely continuous random variable with support[
0, qM

]
.

Step 4: An equilibrium candidate with n active firms is (3.8)
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The CDF H pins down the distribution of the maximal quality among n− 1 competitors that makes the
nth firm indifferent among any quality q ∈

[
0, qM

]
. So for each n we have one (and only one) candidate

equilibrium which has everyone plays

Hn (q) = [H (q)]
1

n−1

Also absolutely continuous with support
[
0, qM

]
. This proves expression (3.8). Notice CDF Hn admits

a positive density
hn (q) =

1

n− 1
[H (q)]

2−n
n−1 h (q)

It is continuous since h (q) = d
dqH (q) is continuous in q in light of continuity of V ′′ established in Proposition

2.9 ii).
Step 5: Sufficiency
We are left to prove that this is indeed an equilibrium. All active firms are indifferent across all qualities

in
[
0, qM

]
by the flat profit condition, they are indifferent with abstaining as 0 is in the support of the

equilibrium. We are left to prove that firms do not want to produce more than qM . In that case they would
be the interim monopolist for sure, making profits

Π(q) = Π
(
qM
)
+

∫ q

qM
V ′ (q′)− c′ (q′) dq′

The first summand is zero in expectation by the flat profit condition, while the second term is negative by
definition of qM . That inactive firms do not want to produce any positive quantity is immediate: each of
the n firms, competing against n− 1 opponents makes zero profits in expectation and competing competing
against n firms increases (in the sense of FOSD) the distribution of the best competitors’ quality. Inactive
firms are strictly better off abstaining completing the proof that this is an equilibrium.

A.11 Proof of Theorem 3.5

i) We preliminary derive type dependent consumer for each realized competitive environment x, y adding to
the utility of the lowest type the integral of allocations (equal to uθ) characterized in Proposition 3.1

W (θ, x, y) = u (0, x, y) +
∫ θ

0
uθ (ρ (θ

′, x, y) , θ′) dθ′

= g (y) +
∫ θ

0
max {y,min {x, β (θ′)}}dθ′

which is expression (3.10) in the main text (and for x = q, y = 0 give surplus under monopoly). It is
immediate to notice that type dependent welfare is increasing in (x, y)

∀θ, (x, y) ≥2 (x′, y′) implies W (θ, (x, y)) ≥ W (θ, (x, y′))

where ≥2 is the standard incomplete order in R2. Given monotonicity of value conditional on the realized
qualities, to establish the result is sufficient to show that the random vector of marketed qualities x,y

has distribution ordered according to first order stochastic dominance (FOSD) in the equilibria with active
competition.

Using individual firms’ equilibrium play (3.8) we derive the distribution of the maximal quality x in
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equilibria with n active firms

Hn [x] = Pr [max {q1, q2, . . . qn} ≤ x]

=
∏n

i=1 [qi ≤ x]

= [Hn (x)]
n

= [H (x)]
n

n−1

Since
s (n) = v

n
n−1

is a (strictly) increasing function of n for every v ∈ [0, 1], it follows

n > m =⇒ Hn [x] > Hm [x] ∀x

the best quality in equilibria with lower competition first order stochastically dominates the best quality in
equilibria with more intense competition. Now we use the following fact64

Fact. Let X1, . . . Xn be independent observations from a continuous CDF F . Then, the conditional distri-
bution of the second order statistic given maxi∈[n] Xi = x is the same as the unconditional distribution of the
maximum in a sample of size n− 1 from a new distribution, namely the original F truncated at the right at
x.

It follows from the fact that the distribution of each other firm’s quality conditional on x = x in an
equilibrium with n active firms is

Hx,n (q) =

[
H (q)

H (x)

] 1
n−1

I {q ∈ [0, x]}

so y |x , the maximum across n− 1 of them is distributed

Hx,n (y) =

[[
H (y)

H (x)

] 1
n−1

]n−1

I {y ∈ [0, x]} =
H (y)

H (x)
I {y ∈ [0, x]}

In particular, is independent of n. As the distribution of x is FOSD ranked across equilibria and the
distribution of y given x is invariant across equilibria, it follows the joint of x,y is FOSD across equilibria,
which we argued above is sufficient for the statement.

ii) Suppose y ≤ x ≤ qM ≤ (g′)
−1

(1). As both market statistics realize in the full bunching region, the
competitive allocation (3.2) will assign every type the undamaged quality x at price g (x)− g (y). Per (3.10),
type dependent surplus is

W (x, y, θ) = g (y) + θx

and total surplus is
W (x, y) =

∫
Θ

W (x, y, θ) dθ = g (y) +
1

2
x

So
Wn = En [W (x,y)] = Ex

[
Ey|x [g (y)] +

1

2
x

]
(A.11)

64See theorem 6.7 in http://www.stat.purdue.edu/~dasgupta/orderstats.pdf.
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Since
Hx (y) =

g′ (x)

c′ (x)

c′ (y)

g′ (y)
, y ∈ [0, x]

is the conditional CDF of y given x = x it follows

Ey|x [g (y)] =
∫ x

0
g (y) dHx (y)

= 1
H(x)

(
H (y) g (y)

∣∣∣x
0
−
∫ x

0
g′ (y)H (y) dy

)
= 1

H(x)

[
(H (x) g (x))−

∫ x

0
g′ (y) c′(y)

g′(y)dy
]

= g (x)− c(x)
H(x)

= g (x)− c (x) g′(x)
c′(x)

(A.12)

The function
s (x) = g (x)− c (x)

g′ (x)

c′ (x)

has s (0) = 0 and
s′ (x) = g′ (x)− c′ (x) g′(x)

c′(x) − c (x) g′′(x)c′(x)−g′(x)c′′(x)

[c′](x)2

= −c (x) g′′(x)c′(x)−g′(x)c′′(x)

[c′](x)2

> 0

so s is positive and monotonically increasing in
[
0, qM

]
, and s

(
qM
)
= g

(
qM
)
− c

(
qM
)

Now, we substitute (A.12) into (A.11) to get

Wn = En

[
g (x)− c (x) g′(x)

c′(x) +
1
2x
]

=
∫ qM

0

[
g (x)− c (x) g′(x)

c′(x) +
1
2x
]
dH

n
n−1 (x)

Integrating by parts the last expression we obtain

[
g
(
qM
)
− c

(
qM
)
+

1

2
qM
]
−
∫ qM

0

[
g′ (x)− d

dx

(
c (x)

g′ (x)

c′ (x)

)
+

1

2

]
H

n
n−1 (x) dx

the first term is monopolist profit, while we can notice

g′ (x)− d

dx

(
c (x)

g′ (x)

c′ (x)

)
= s′ (x) > 0

as proved above, so we are subtracting the integral of a positive function, reducing monopolist welfare and
proving the statement.

We now prove the general welfare decomposition (3.13). Fix a realization of market statistics x, y. We
can write

W (x, y) =

∫ x

0

d

dq
W (x, y) (q) dq

where d
dqW (x, y) (q) is the marginal contribution to welfare . It holds

d

dq
W (x, y) (q) =


(
SFB

)′
(q)− c′ (q) q < y

m (q) q ∈ [y, x]

since for qualities below y welfare from competition grows as first best (since all all goods are distributed
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to everyone) net of the additional marginal costs (incurred twice). In the quality region [y, x] surplus grows
as monopolist since those qualities are assigned to the same types and cost incurred only once. It then follows

W (x, y)−WM =

∫ x

0

d

dq
W (x, y) (q) dq −

∫ qM

0

(WM )
′
(q) dq =

As monopolist surplus grows as first best below (g′)
−1 and as the second branch of m (q) in

[
(g′)

−1
, qM

]
we rewrite the difference (assuming y > (g′)

−1)

= −c (y) +

∫ (
g′)−1

0

[(
SFB

)′
(q)−

(
SFB

)′
(q)
]
dq︸ ︷︷ ︸

=0

+

∫ y

(g′)−1

[(
SFB

)′
(q)− (WM )

′
(q)
]

︸ ︷︷ ︸
=d(q)

dq

+

∫ x

y

m (q)−m (q) dq︸ ︷︷ ︸
=0

−
∫ qM

x

m (q) dq

=

∫ y

(g′)−1

d (q) dq − c (y)−
∫ qM

x

m (q) dq

Taking expectations under the duopoly equilibrium distribution of market statistics x,y,

W2 = E2 [W (x,y)]

we obtain the fundamental welfare decomposition

W2 −WM = E2

[∫ y

(g′)−1(1)

d (q) dq − c (y)

]
− E2

[∫ qM

x

[m (q)− c′ (q)] dq

]

where we mean ∫ y

(g′)−1(1)

d (q) dq = 0

whenever y < (g′)
−1

(1).
We are now left to show that under convex cost c (q) = qα as α grows to infinity equilibria with active

competition dominate monopoly. As qM (α) solves V ′ (q) = αqα−1, irrespectively of the revenue function
monopolist quality will converge to the point at which the (marginal) cost function explodes, that is

qM∞ = lim
α→∞

qM (α) = 1

while its cost will converge to zero
cM∞ = lim

α→∞

(
qM (α)

)α
= 0

also, since

lim
α→∞

c′α (x) →


0 x < 1

1 x = 1

∞ x > 1
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it follows that

H2,α (q) =


c′(q)
V ′(q) q ≤ qM (α)

1 q > qM (α)
−→

0 q < qM∞

1 q ≥ qM∞

which means that each firm’s equilibrium strategy converges in probability to qM∞ . Also, notice that as
y ≤ qM (α) then

Eα [c (y)] ≤ c
(
qMα
)
→ 0

Plugging those results in (3.13) we observe that the limit welfare impact of competition is given by

∫ qM∞

(g′)−1(1)

d (q) dq − cM∞ −
∫ qM∞

qM∞

[m (q)− c′ (q)] dq

=

∫ qM∞

(g′)−1(1)

d (q) dq (A.13)

proving the statement.

A.12 Proof of Proposition 3.8

i) By the same reasoning as in the proof of Proposition 3.3, one firm offering the monopolist pricing function
pM (·) is the only candidate equilibrium: no two firms can quote a non-trivial pricing function but someone
must. However in this case, an inactive firm can offer pricing function pM (·)− ε (so that allocations would
be unchanged), pay c

(
qM
)

and make revenues that are ε−close to V
(
qM
)
, a profitable deviation. There is

no RS equilibrium.
For the second statement in ii) we notice that full interim stability of the monopolist follows from Propo-

sition 3.3 i) (it is a Nash equilibrium of the first stage game), while its ex-post instability is proved above.
To prove the remaining part of ii) and iii) we preliminarily notice that

0 = R
(
qM , qM

)
< c

(
qM
)
< R

(
qM , 0

)
= V

(
qM
)

and R
(
qM , x

)
is monotonically decreasing, so there will be a threshold m? at which R

(
m?, qM

)
= c

(
qM
)
.

By Proposition 3.3 a potential entrant against best quality x can make revenues

R̃ (x) = max
q

R (q, x)− c (q)

As R (x, q) = V (q)− V (x), x induces a sunk cost, upon entry qM is played and

R̃ (x) = max
{
V
(
qM
)
− V (x)− c

(
qM
)}

From which it follows
R̃ (x) > 0 ⇐⇒ x < m?

By a similar argument, an ex-post deviation occurs if and only if the second quality is above m?. A deviator
that enters with qM can indeed offer allocation ρ

(
y, qM , ·

)
and make revenues that are arbitrarily close

to V
(
qM
)
− V (y): to do that he must grant a small discount to all types in [b (y) , b (x)] so to push the

interim monopolist out of the market. Whenever y realizes strictly below m? therefore an ex-post entrant
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the profitable deviation of offering the interim-contract
[
y, qM

]
, with prices ε-reduced to all types for which

β (θ) is below the level owned by the realized interim monopolist.
It therefore follows that the degree of interim stability of the n−equilibrium is Hx,n (m

?) and the degree of
ex-post stability is Hy,n (m

?), where Hx,n, Hy,n are the CDF of market statistics calculated under equilibrium
play with n active firms. Point ii) now follows from x ≥ y by definition, while the n−ranking in iii) follows
from the FOSD ranking of market statistics proved in Proposition 3.5 i).
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