
Production Function Identification Under

Imperfect Competition∗

Daniel A Ackerberg

UT Austin

Jan De Loecker

KU Leuven and CEPR

June 23, 2024

Abstract

The presence of imperfect competition introduces distinct challenges when estimating production func-

tions. We start by highlighting that some existing approaches to production function estimation cannot

completely abstract away from the presence of imperfect competition in the product market. We then

extend these existing approaches to accommodate some additional oligopoly models commonly used in em-

pirical work by using a suffi cient statistic approach, and show that the presence of such strategic interactions

has important benefits in that they introduces additional exogenous variation that can help identify pro-

duction functions. We study how to optimally leverage this exogenous variation, both with and without

direct data on a firm’s competitors, and use Monte-Carlo experiments to 1) verify that the existence of

strategic interactions can identify production functions that would not otherwise be identified, and 2) assess

the extent to which what applied researchers observe about competition affects the precision of estimates

based on this variation.
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1 Imperfect competition: challenges and benefits

The estimation of production functions is an important step in a host of economic analyses ranging from

identifying drivers of productivity growth to the study of market power. There exists a variety of approaches,

e.g. the "proxy variable" literature originating with Olley and Pakes (1996, OP) and Levinsohn and Petrin

(2003, LP) which we refer to throughout as "OP/LP-style approaches", and the dynamic panel approach

of Blundell and Bond (2000, BB). While in principle these approaches only require fully specifying the

technological relationship between output and inputs, they do put restrictions, some more explicitly than

others, on the underlying operating environment of producers. This paper studies these restrictions in the

context of imperfect competition and potential strategic interactions in the product market. While much

of the literature has been carried out without explicitly taking a stand on the underlying market structure

in the product market, we highlight that these approaches to production function estimation cannot (or

should not) completely abstract away from the presence of imperfect competition.1

After providing a brief summary of the key aspects of these papers, we summarize the extent to which

existing applications of these techniques, in particular those based on OP/LP-style approaches, are consistent

with imperfect competition. We then show how they can be extended to feasibly allow more general models

of imperfect competition by deriving suffi cient statistic results that can be used to control for the presence

of strategic interactions among producers. The models covered include homogeneous good quantity setting

competition (e.g. Cournot) and Bertrand-Nash price setting under a (nested) logit model of demand -

these are models of oligopoly commonly used in applied work. We show that in these cases, OP/LP-style

approaches can use a modified "first stage" inversion equation based on a low dimensional suffi cient statistic.

A fundamental contribution of the OP/LP based literature is that their semiparametric approaches allow

production functions to be estimated without fully specifying other aspects of firms maximization problems.

Our extensions to imperfect competition for this set of models inherit this propery, i.e. we are able to

estimate production functions without fully specifying models of demand, input choice, and in some cases

the nature of competition. We then argue that if one wants to consider more general models of strategic

interactions, one can alternatively make additional technological restrictions, e.g. a restricted linear process

for productivity as in the BB dynamic panel (DP) approach, or an approach discussed in Ackerberg, Caves,

and Frazer (2015, ACF) and De Loecker and Scott (2022) based on a Leontief assumption that we call a

1We note that other approaches may be able to though reliance on additional assumptions. In particular, as detailed by De
Loecker and Syverson (2021), the factor share approach only requires observing cost shares, but imposes assumptions of constant
returns to scale and that all inputs in production are variable factors.
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technology control (TC) approach.

While the above illustrates how imperfect competition is non-trivial for the first stage of OP/LP-style

approaches, it on the other hand can provide additional exogenous variation that can help in the second stage

of these approaches (as well as the TC and DP approaches), More specifically, it introduces a new set of

valid instruments - the productivity shocks and fixed factors of a firm’s competitors - that shift the residual

demand curve facing a firm and thus can generate exogenous variation in that firms’use of variable inputs.

This can be thought of as a supply side analogue to the common use of competitive instruments in demand

estimation, e.g. Bresnahan (1987) and Berry, Levinsohn, and Pakes (1995). We show how the existence of

these "oligopoly instruments" can in fact break the important non-identification result of Gandhi, Navarro,

and Rivers (2020, GNR), and, applying Chamberlain (1985), show that there are interesting considerations

in considering optimal use of these instruments. Moreover, we show that lagged variable inputs can be valid

instruments in the case of strategic interactions among producers, similarly breaking the non-identification

result of GNR under perfect competition. We also note an important implication of this, i.e. that utilizing

imperfect competition as an source of exogenous variation does not necessarily require defining markets or

even observing firms’sets of competitors. These issues are relevant not only for OP/LP-style approaches,

but also the TC and DP approaches.

We conclude with a Monte-Carlo study and some extensions of our results. The Monte-Carlo study

verifies that oligopoly instruments can identify production functions (that would otherwise not be identified

as per GNR), and assesses the precision of estimates obtained through different competitive instruments,

in particularly comparing the case where competitors are observed versus when they are not observed.

In the extensions, we assess a key limitation of competitive instruments in that they cannot generally

provide independent exogenous variation for multiple variable inputs, assess the applicability of our results

to situations in which only firm revenues (and not physical quantities) can be reliably observed, and consider

the possibility of imperfect competition also being present in input markets.

Lastly, we want to emphasize that our focus is on situations where one’s primary goal is to estimate

production functions and one does not have the exogenous price variation to additionally estimate a demand

system. In other words, we envision a "standard" production dataset primarily composed of data on inputs

and outputs. If one additionally has the exogenous price variation and other needed data to suffi cient

fully specify and estimate a demand system, more could likely relax some of the substantial assumptions we

make here, e.g. regarding unobserved demand shocks or product characteristics and models of demand and

competition. While recent years have seen an increase in the availability of datasets that have the variation
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necessary to estimate both production and demand, they still unfortunately constitute a small minority.

2 Setup

Consider a firm j producing output (Qjt) in a market/period t (which we use to index both different

geographic markets and the same geographic market across time) using observed variable and fixed inputs

Vjt (e.g. labor) and Fjt (e.g. capital), with an unobserved (to the econometrician) productivity shock ωjt.

We consider a production function of the form

Qjt = Q(Vjt, Fjt; θ) exp(ωjt) exp(εjt) (1)

or in logs (represented by lower case and used interchangeably through the paper as per convenient)

qjt = q(vjt, fjt; θ) + ωjt + εjt (2)

where εjt is classical measurement error in qjt that is mean independent of all other variables in the model

(though possibly correlated over time). fjt can represent a vector of multiple fixed inputs, though for now

we assume that the variable input vjt is scalar. Important issues regarding multivariate vjt are discussed

at the end of the paper.

There are two aspects of OP/LP-style and dynamic panel approaches that we review here because they

are particularly relevant for extending the approaches to imperfect competition in product markets (one can

consult the surveys of Ackerberg, Berry, Benkard, and Pakes (2007, ABBP) and De Loecker and Syverson

(2021, DLS) for more extensive discussion). First is the semi-parametric "first stage" inversion that is a

crucial step for OP/LP-style approaches, but not dynamic panel approaches. Second are "second stage"

moment conditions based on timing and information set assumptions used by OP/LP-style approaches - as

discussed in ACF and elsewhere these are very similar to the moment conditions used in the dynamic panel

approach of BB. We now discuss each of these aspects in turn, as well as a technology control approach that

also relies on the second stage moment conditions.
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2.1 OP/LP-Style First and Second Stages

While we describe them generically as OP/LP-style approaches, we actually restrict attention to LP’s

proposed use of Vjt (or equivalently, vjt) as the "first stage" control variable (the original OP approach

instead uses investment). This restriction is crucial because the suffi cient statistic results here do not apply

when investment is used as the control variable (fortunately a large proportion of the literature does in

fact use Vjt as the control, i.e. where our results apply). This highlights one of the advantages pointed

out by LP regarding using Vjt as the control variable - optimal choice of Vjt can often be characterized by

considering a relatively simple static first order condition, while investment is inherently dynamic and more

complicated.

More specifically, LP derive conditions under which firms’optimal choice of variable input Vjt can be

written as

Vjt = Vt(ωjt, Fjt) (3)

where Vt is strictly monotonic in the scalar unobservable ωjt. One example of these conditions is the

standard assumption of price taking in factor markets, and perfectly competitive output markets, though

as we discuss below, LP also consider more general conditions. The importance of the scalar unobservable

(plus strict monontonicity) assumption is that it implies that any two firms in the same market t with the

same observed Vjt and Fjt must have the same ωjt. Note that since V is indexed by t, (3) is consistent with

firms facing different output or input prices in different markets, and these do not need to be observed by

the econometrician.

Given conditions under which (3) holds, the first stage proceeds by inverting for ωjt and substituting

into (2), i.e.

qjt = q(vjt, fjt; θ) + V −1
t (Vjt, Fjt) + εjt (4)

Since this equation only has the single econometric unobservable εjt that by assumption is mean independent

of Vjt and Fjt (and their logged versions vjt and fjt), there are no endogeneity problems in (4). However,

OP/LP-style approaches treat the inverse function V −1
t non-parametrically, and hence q(vjt, fjt; θ) is not

identified from solely this equation. But one can non-parametrically regress qjt on vjt and fjt and this first

stage, while not identifying q(vjt, fjt; θ), does produce estimates of the sum q(vjt, fjt; θ) + V −1
t (Vjt, Fjt) and

the residuals εjt.2

2More commonly the non-parametric component of (4) is written in log form qjt = q(vjt, fjt; θ) + v−1
t (vjt, fjt) + εjt, but this is

equivalent given V −1
t (v−1

t ) is treated non-parametrically.
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Denoting the estimates of the residuals as ε̂jt, we next consider the "second stage" of OP/LP-style

approaches. For clarity we present this under the assumptions that the production function is Cobb-

Douglas and that ωjt follows the AR(1) process ωjt = ρωjt + ξjt over time, though the results can be

generalized. Given this, we can write the production function as

q̃jt ≡ qjt − ε̂jt = θ0 + θffjt + θvvjt + ωjt (5)

with the single unobservable ωjt3.

Second stage estimation then proceeds under the assumption that the innovation in the productivity

shock process satisfies

E
[
ξjt | Ijt−1

]
= 0 (6)

where Ijt−1 is firm j’s information set at time t−1. Various different timing and information set assumptions

have been made in the literature, but a typical one is that fjt ∈ Ijt−1, but that vjt /∈ Ijt−1 (though vjt ∈ Ijt).

This corresponds to the assumption that firms’do not observe the innovation ξjt until time t, plus a standard

interpretation of variable and fixed inputs - e.g. that variable inputs can be chosen up to the time of

production (t), while fixed inputs are predetermined, i.e. need to be chosen prior to production time (e.g.

at t− 1).

Using (5), the moment condition (6) can be rewritten in terms of observables as4

E [(q̃jt − θ0 − θffjt − θvvjt)− ρ (q̃jt−1 − θ0 − θffjt−1 − θvvjt−1) | Ijt−1] = 0 (7)

Using moment conditions like these to estimate the production parameters (and ρ) is the basis of the second

stage of most OP/LP-style approaches, though as discussed below, there are some cases where these moment

conditions have been shown to not identify the parameters (GNR).

3Pakes and Olley (1995) and Hahn, Liao, and Ridder (2018) discuss how the fact that ε̂jt is estimated in a prior stage affects
inference, an issue we abstract away from here.

4While to conserve notation we use a single subscript t to describe markets that are different either geographically or temporally,
when t and t − 1 appear in the same equation they should be taken to indicate the same geographic market in sequential time
periods.
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2.2 Dynamic Panel Approach

As alluded to above, the dynamic panel (DP) approach to estimating production functions (BB) utilizes

similar moment conditions, though since these approaches do not utilize a first stage to estimate the εjt, for

this model they instead would use the moment condition

E
[
ξjt + εjt − ρεjt−1 | Ijt−1

]
(8)

= E [(qjt − θ0 − θffjt − θvvjt)− ρ (qjt−1 − θ0 − θffjt−1 − θvvjt−1) | Ijt−1] = 0 (9)

where again, the exact composition of Ijt−1 depends on the specific timing and information set assumptions

one makes. As discussed in, e.g. ACF, Shenoy (2021), DLS, Ackerberg (2023), and Doraszelski and Jauman-

dreu (2023), an important advantage of the DP approach is that by avoiding the OP/LP first stage, it does

not require the scalar unobservable and strict monotonicity assumptions of that first stage. Doraszelski and

Jaumandreu (2023) advocate using the DP approach under imperfect competition for exactly this reason.

On the other hand, unlike OP/LP-style approaches, standard DP approaches do not generalize to more

flexible 1st order productivity shock processes.5

2.3 Technology Control Approach

Another approach that avoids the OP/LP first stage inversion (also at the cost of additional assumptions)

is mentioned in ACF and De Loecker and Scott (2022). It relies on the assumption that the production

function is Leontief in a second variable input Mjt and of the form

Qjt = min {Q(Vjt, Fjt; θ)Ωjt, G(Mjt)}Ξjt (10)

Mjt for exanple, could be a material input that is utilized proportionally to output. In this case, assuming

there are no unutilized inputs (i.e. the firm sets Q(Vjt, Fjt; θ)Ωjt = G(Mjt)), one can non-parametrically

regress qjt onMjt (ormjt = ln(Mjt)) to obtain estimates of the measurement errors, ε̂jt. With these in hand,

one can directly form the moments (7). We denote this last approach a technology control (TC) approach as

5As detailed in the aforementined papers, the tradeoff between OP and DP approaches can loosely be described as 1) DP
approaches do not require the scalar unobservable and strict monotonicity assumptions necessary to identify ε̂jt in the OP first
stage, versus, 2) DP approaches require stronger assumptions on first order productivity shock process, i.e. while OP style approaches
can straightforwardly be generalized to ωjt = g(ωjt)+ ξjt, it is harder to generalize DP approaches from a simple AR(1) ωjt process
(though with additional differencing DP approaches can add an additional fixed effect αi to the product function).
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it is based primarily on an additional assumption (Leontief) regarding production technology. In relation

to OP/LP-style approaches, the tradeoff is that by making this additional Leontief assumption on Mjt,

the TC approach, like the DP approach, does not require the scalar unobservable and strict monotonicity

assumptions required to invert (3).6

2.4 Discussion

Given the above setup, we can layout how this paper proceeds regarding assessing the impact of imperfect

competition on these three different estimation approaches - OP/LP, DP, and TC. The paper is divided

into two parts. The first part corresponds to the first stage inversion of the variable input demand function

Vjt = Vt(ωjt, Fjt). Being mindful of the scalar unobservable assumption necessary for this inversion, we

consider the extent to which this can be applied (or extended) to allow imperfect competition. As described

above, this is only relevant for OP/LP-style approaches (since the DP and TC approaches do not require

the inversion).

In contrast, the second part of the paper concerns how imperfect competition affects the second stage

moment conditions, e.g. E
[
ξjt | Ijt−1

]
= 0 or E

[
ξjt + εjt − ρεjt−1 | Ijt−1

]
, and is relevant for all three

approaches. In short we show how imperfect competition and strategic interactions can be helpful in

identifying production function parameters using these moments. In some cases it enables one to avoid the

non-identification result of GNR. We then study different aspects of various versions of the competitive

instruments we advocate, including their effi ciency properties, and illustrate some of their characteristics

with Monte-Carlo experiments.

3 First Stage Inversion with Imperfect Competition

3.1 Canonical OP/LP Proxy Variable

It has previously been recognized (e.g. OP, LP, ABBP, DLW, and ACF) that the basic factor demand

function described in the prior section

Vjt = Vt(ωjt, Fjt) (11)

6The TC approach might also be particularly sensitive to measurement error in M (though of course all the discussed estimators
are likely inconsistent in this context, see, e.g. Collard-Wexler and De Loecker (2022)). Of course, if one has the choice of multiple
material inputs, they can choose the one they think least prone to measurement error.
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is not consistent with all forms of imperfect competition. This equation characterizes firms’optimal choice

of the variable input, and in general, with imperfect competition, firm j’s optimal choice of Vjt will not only

depend on their own ωjt and Fjt, but also productivity shocks and fixed input levels of other firms in market

j.

However, as noted by the aforementioned work, equation (11) can hold to the extent that competition is

symmetric enough (up to observables). As one example, suppose that firms j in market t are monopolistic

competitors, e.g. who each produce and sell in their own geographic submarkets with identical downward

sloping demand curves (and face identical input prices). Since there is no strategic interaction between

firms in market t, and since each firm in market t is facing the same input and output market conditions

(note that these conditions can vary across markets t since V is indexed by t), equation (11) will hold.

The assumption of symmetry across these monopolistic competitors can be relaxed to the extent that any

asymmetries are observed. For example, suppose that in market t, all firms j face the same demand curve

up to some vector Zjt that is observed by the econometrician. This can be accommodated by simply

adding Zjt into the function, i.e.

Vjt = Vt(ωjt, Fjt, Zjt) (12)

Since Zjt is assumed observed, the scalar unobservable assumption still holds. By the same logic, Zjt can

also be used to capture any differences in input markets faced by firms j in market t, again to the extent to

which they are observed (e.g. each firm faces a different price of the variable input Vjt and these different

prices are observed). Under these assumptions, any two firms at t who have the same ωjt and Fjt and face

the same output and input market conditions (measured by Zjt) will optimally choose the same Vjt.

This monopolistic competition environment highlights the importance of a key contribution of OP re-

garding the power of their semiparametric approach. Specifically, the fact that OP/LP treat Vt non-

parametrically means that the production function coeffi cients can be estimated without fully specifying the

form of the demand curves faced by the monopolistic competitors, nor estimating those demand curves. It

only requires that these demand curves be the same for all j (at a given t) up to observables Zjt. It is

a distinct advantage to be able to estimate some structural parameters (in this case production function

parameters) without needing to commit to a parametric model of other aspects of the environment.7

Equation (11) (or (12)) can also hold in models with actual strategic interactions between firms in a

market t, as long as there is suffi cient symmetry. Suppose that all the firms in market t compete in a

7Similarly, when an investment control variable is used (as in the original OP), the semiparametric approach allows one to
estimate production function parameters without needing to fully specify the dynamic investment problem of firms.
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homogeneous good Cournot game, choosing Vjt (or equivalently Qjt) conditional on fixed levels of (ωjt, Fjt)

for all j. Note that since the firms in market t may have different (ωjt, Fjt), this is a Cournot game where

firms have heterogeneous variable cost curves (the cost curve for j is determined by the production function

evaluated at (ωjt, Fjt)). Because firms are symmetric up to (ωjt, Fjt) in this model, equation (11) will

generally hold8. The key here is that in the standard OP/LP approach, Vt is typically indexed by market t.

Therefore what (11) requires is that in a given market t, any two firms j and j′ with the same ωjt and Fjt

optimally choose the same level of the variable input. In this case this is true because firms are symmetric

on the demand side of a homogeneous good Cournot model. Hence the set of competitors faced by j (which

includes j′) is identical to the set of competitors faced by j′ (which includes j). In other words, in this

model the t subscript on Vt(.) is suffi cient to capture the effect of strategic interactions on factor demand.

This was first pointed out by OP.9 The same logic can hold for simple differentiated product Bertrand-Nash

models that are suffi ciently symmetric, e.g. consider (12) where Zjt contains all the product characteristics

of firm j’s product.

There is, however, a conceptual problem with the above approach of indexing the function Vt(.) by t

to implicitly allowing for models with strategic interaction like Cournot and Nash-Bertrand. Recall that

OP/LP-style approaches treat the function Vt(.) (i.e. V −1
t (.)) non-parametrically in order to avoid specifying

other parts of the model (e.g. the demand curve, dynamic optimization). Hence, when one is indexing V

by market t, econometric consistency requires the number of observations (firms) in each market t to go

to infinity. But a large number of firms in a given market is not typically what one has in mind when

thinking about Cournot and differentiated product Nash-Bertrand models of imperfect competition. More

practically, for markets we typically think of as being imperfectly competitive - perhaps with less than

10-20 firms in each market - it is going to be very hard to credibly estimate a separate Vt(ωjt, Fjt) function

non-parametrically for each market t.

As pointed out by DLS, instead of estimating a separate Vt(ωjt, Fjt) for each market t, an alternative is

to remove the t index but put enough arguments into V (.) such that it holds across markets (again, across

both time and space). In particular, they consider a function of the form

Vjt = V (ωjt, Fjt,ω−jt,F−jt, Zt) (13)

where ω−jt and F−jt are vectors of the productivity shocks for all the competitors to firm j in market t

8Under certain regularity conditions, e.g. that reaction functions have unique maximizers.
9See pages 1273 and 1277.
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(boldface indicates vectors/matrices of these variables for all firms k 6= j). Assuming any differences in

demand and supply conditions across markets t are captured by observables Zt, this will generally hold in

homogenous good Cournot equilibria across markets10. Intuitively, (13) could be hypothetically derived by

solving out the system of FOCs for Vjt in the Cournot game. It will depend on all primitives including the

demand curve. But as usual, with the OP/LP-style approach to production function estimation, one does

not need to solve out the system of equations since (the inverse of) V is treated non-parametrically in the

first stage11.

Similarly, in a differentiated product Nash-Bertrand game, one can consider the function

Vjt = V (ωjt, Fjt, Xjt,ω−jt,F−jt,X−jt, Zt) (14)

where Xjt contains observed product characteristics for firm j’s product (andX−jt contains product charac-

teristics of all j’s competitors). If all other determinants of demand are symmetric across firms and markets

t (e.g. logit errors), then (14) will generally hold in Nash-Bertrand equilibria across markets t. Again,

this equation could hypothetically be derived from the system of first order conditions, but the OP/LP

semi-parametric approach allows one to avoid doing this.

On the other hand, using (13) or (14) is likely to be challenging in practice, and perhaps as a result, we

are not aware of a paper that actually applies this approach. This is due to at least two reasons. First,

there are J (the number of firms in market t) unobservables in (13) (or (14)) - hence one would need to

consider a J dimensional inversion:

ω1t = V −1(V1t, Fjt,V −1t,F−1t, Zt)

.

.

ωJt = V −1(VJt, Fjt,V −Jt,F−Jt, Zt)

i.e. invert firm j’s productivity shock as a function of not only firm j’s choice of variable input, but also all

other firms’choices of variable input (V−j) (and conditional on their respective fixed inputs (F−j)). Second,

and perhaps more importantly, even if this multivariate inversion exists, the number of arguments of the

10Again under regularity conditions, e.g. either that the primitives are such that equilibrium is always unique, or that if there
are multiple equilibria, the same equilibria is played across all markets t.
11This is particularly beneficial in this case because general Cournot games with heterogeneous, non-constant marginal cost curves

typically do not have analytic solutions.
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non-parametric function V −1 will tend to be large (at least twice the number of firms per market), and thus

this may be hard to operationalize in practice when there are more than a few firms in each market.

3.2 Discussion and Our Suffi cient Statistic Approach

In sum, we have argued that while existing OP/LP-style approaches can in theory accomodate (at least

some forms of) imperfect competition in two ways - 1) by indexing the function Vt by t, or 2) by including

the entire "state vector" of market participants in V - both may have problems in practice. Our goal in the

first half of this paper is to develop approaches that avoid these problems. In particular, we look for reduced

dimension analogues of (13) (or (14), i.e. models of imperfect competition, e.g. Cournot, differentiated

product Nash-Bertrand, where we can derive functions of the form:

Vjt = V (ωjt, Fjt, Zjt, Zt) (or Vjt = V (ωjt, Fjt, Xjt, Zjt, Zt)) (15)

i.e. where 1) the V ’s are not indexed by t, i.e. they can be treated non-parametrically using data across

all markets, and 2) Zjt is of reduced dimension, i.e. does not have dimension proportional to the number of

competitors. In other words, the function does not need to contain vectors of all other firms’productivities

and fixed factors (ω−jt and F−jt, plus characteristics X−jt in differentiated product Bertrand).

In the next three subsections, we derive such functions in three sets of models. In particular, we

show that in homogenous good quantity setting models and Nash-Bertrand Logit/Nested Logit models, the

total output of firm j’s competitors, Q−jt =
∑

k 6=j Qkt, is a suffi cient statistic to describe firm j’s input

demand.12 In other words, in equilibrium, if firm j’s competitors are producing Q−jt, it doesn’t matter how

many competitors firm j is facing, or the distribution of productivities of those competitors - that firm must

always be choosing the same Vjt. This means we can express

Vjt = V (ωjt, Fjt, Xjt, Q−jt, Zt), (16)

across markets and reduce the dimension of the non-parametric object being modeled.13 We note that

12This is somewhat reminiscent of suffi cient statistics as used in the theoretical games literature (see, e.g. Nocke and Schutz
(2018) and cites therein), but for quite different purposes - in our case the goal is to obtain a suffi cient statistic for an inversion
equation that holds in equilibria across different markets in a dataset.
13For simplicity of notation we assume that Q−jt is the only element of Zjt. However what follows trivially extends to allowing

other elements of Z to vary across j (as long as they are observed). In other words, instead of Vjt = V (ωjt, Fjt, Xjt, Q−jt, Zt) we
could have Vjt = V (ωjt, Fjt, Xjt, Q−jt, Zjt). This allows, for example, different firms j in a given market t to face different input
prices (again, as long as they are observed by the econometrician).
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Doraszelski and Jaumandreu (2023, DJ) have independently derived results related to some of our suffi cient

statistic results.14

3.3 Suffi cient statistic in a Homogeneous Good Quantity Setting Model

We first show our suffi cient statistic result in a homogenous goods Cournot model, and then generalize to

more general (homogenous good) quantity setting models. Suppose inverse demand in each market t is

given by

P (Qt, Zt) ,

where Qt is the total quantity produced and Zt captures demand shifters across markets. Note that

because our goal is to use the same V () across markets t, Zt will need to be observed. Otherwise the scalar

unobservable assumption crucial to the OP/LP-style approaches would be violated. However, we do not

need to fully specify the inverse demand function P (). This is because P () enters the econometric model

through its implied input demand function V (), which is treated non-parametrically.

Supposing each firm j’s production function is given by

Qjt = Q(Vjt, Fjt; θ) exp(ωjt), (17)

whereQ is strictly increasing in its arguments, we can think about a Cournot game conditional on (ωjt, Fjt,ω−jt,F−jt).15

In other words, consider a set of firms with fixed values of fixed inputs and productivity shocks choosing

levels of a single variable input Vjt in a Nash Equilibrium. While traditional Cournot games are posed

with quantity Qjt as the choice variable, under mild conditions the production function (17) is a one-to-one

mapping between Vjt and Qjt, so considering Vjt as the choice variable is equivalent.

Given (ωjt, Fjt,ω−jt,F−jt, Zt) and choices V −j,t of its competitors, firm j’s variable profit function is

Πj = P

Q(Vjt, Fjt; θ) exp(ωjt) +
∑
k 6=j

Q(Vkt, Fkt; θ) exp(ωkt), Zt

Q(Vjt, Fjt; θ) exp(ωjt)− PV (Zt)Vjt

14See their Section 6. DJ also derive expressions for the bias resulting from the econometrician omitting a relevant argument of
V (e.g. Zjt or Zt) - i.e. violating the scalar unobservable assumption - we assume throughout the paper that this is not the case.
15Note the absence of the econometrician measurement errors εjt in the production function. This is fine for the purposes of

the theoretical derivations in this and the next two subsections. When we return to empirical application, we reintroduce the
measurement errors, and show how they are quite important.
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where we also allow the price of the competitively purchased input to depend on observed market specfic

variables in Zt.16 Defining the scalar valued

Q−j(V−jt, ω−jt, F−jt) =
∑
k 6=j

Q(Vkt, Fkt; θ) exp(ωjt).

the Nash F.O.C. for firm j equates marginal revenue to marginal cost, i.e.

P (Q(Vjt, .) +Q−j(V−j,t, .), Zt) + P ′ (Q(Vjt, .) +Q−j(V−j,t, .), Zt)Q(Vjt, .) =
PV (Zt)
∂Q(Vjt,.)
∂Vjt

(18)

where for compactness we defineQ(Vjt, .) = Q(Vjt, Fjt; θ) exp(ωjt) . Firm j’s optimal choice of Vjt conditional

on (V−jt, ωjt, Fjt,ω−jt,F−jt, Zt) satisfies this F.O.C. We make the following high level assumption

Assumption 1 The primitives of the model P (), Q (), and PV () are such that for all (V−jt, ωjt, Fjt,ω−jt,F−jt, Zt)

there is a unique 0 < Vjt <∞ that solves (18)

This assumption reflects relatively standard conditions, e.g. quasiconcavity of the profit function, that

ensure a well-defined reaction function (rather than correspondence). Given this, we can show the following

Theorem holds regarding the equilibria of this Cournot game across different markets:

Theorem 1 Under Assumption (1), consider any two markets t and t′ - the first with environmental vari-

ables (ωjt, Fjt, ω−jt, F−jt, Zt) and the second with environmental variables (ωjt′ , Fjt′ , ω−jt′ , F−jt′ , Zt′). Sup-

pose that ωjt = ωjt′ , Fjt = Fjt′ , and Zt = Zt′, but that (ω−jt, F−jt) and (ω−jt′ , F−jt′) are not equal in the

two markets (the vectors ω−j and F−j may even have a different number of elements, i.e. firm j may

have a different number of competitors in each market). Consider an equilibrium in each of these mar-

kets, and suppose that, in these respective equilibria, the variable inputs chosen by firms other than j, i.e.

V−jt and V−jt′, generate equilibrium total quantities produced by firms other than j that are equal (i.e.

Q−j(V−jt, ω−jt, F−jt) = Q−j(V−jt′ , ω−jt′ , F−jt′)). Then it must be the case that in these two respective

equilibria, Vjt = Vjt′

Proof. Consider the FOC (1) at the two respective equilibria. By supposition, ωjt = ωjt′ , Fjt = Fjt′ , and

Zt = Zt′ . (ω−jt, F−jt) is not equal to (ω−jt′ , F−jt′), but these variables only enter the FOCs through the

16Again, PV (Zt) need not be specified since it will enter the production function through the non-parametric V −1, and can be
generalized to depend on observed Zjt’s that are firm specific.
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scalar valued function Q−j (·), and by supposition Q−j(V−jt, ω−jt, F−jt) = Q−j(V−jt′ , ω−jt′ , F−jt′). Hence,

Vjt 6= Vjt′ contradicts Assumption (1) that there is a unique Vjt for any (V−jt, ωjt, Fjt, ω−jt, F−jt, Zt).

Loosely speaking, Theorem (1) says that from firm j’s perspective, the structure of its competition −j

only "matters" through the total quantity produced by its competitors, i.e. Q−j . In other words, firm j will

do the same thing regardless of whether it facing just a few, effi cient, competitors vs. many, more ineffi cient,

competitors - as long as in equilibrium the total production of those respective sets of competitors is the

same.

Most importantly for our purposes, Theorem (1) implies that if we look across different markets t with

the same Zt, firms operating in those markets with the same ωjt, Fjt - and whose competitors are producing

total quantity Q−jt =
∑

k 6=j Qkt - must in equilibrium be choosing the same level of Vjt. In other words,

there is a function V such that in equilibria across these markets t, the following relationship holds:

Vjt = V (ωjt, Fjt, Q−jt, Zt), (19)

where the scalar Q−jt is a suffi cient statistic for describing the equilibrium relationship between j’s com-

petitors actions and j’s action. Note that it is not quite appropriate to describe this as an input demand

function - because Q−jt is an equilibrium object. However, (19) is an relationship that holds in equilibrium

across markets t, and thus we will be able to treat it non-parametrically in the first stage of an OP/LP-style

approach. And relative to (13), it is of reduced dimension and thus more manageable empirically.

Lastly, note that while the above results were derived for the Cournot-Nash equilibria of a homogenous

product quantity-setting game, they generalize to a more general homogenous product quantity setting game

with a "conduct parameter" Θ. In such games, the first order condition is

P (Q(Vjt, .) +Q−j(V−jt, .), Zt)+Θ(Q(Vjt, .), Q−j(V−jt, .), Zt)P
′ (Q(Vjt, .) +Q−j(V−jt, .), Zt)Q(Vjt, .) =

PV (Zt)
∂Q(Vjt,.)
∂Vjt

(20)

so the arguments above go through. Note that this allows the conduct parameter to depend onQ(Vjt, .), Q−j(V−jt, .),

and Zt, and that the market level observables Zt can contain the number of firms in the market Nt. As

well known (see, e.g. Bresnahan (1982), Berry and Haile (2014), Backus, Conlon, and Sinkinson (2021), and

Duarte, Magnolfi, Solvesten, and Sullivan (2024)), this indexes a set of models including both Cournot Nash

and Perfect Collusion, and as long as Assumption (1) holds, the relationship (19) continues to hold across
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markets in equilibrium.17 Note that in this case, not only does the semiparametric aspect of OP/LP-style ap-

proaches allow one to estimate a production function without fully specifying the demand function P (Qt, Zt),

but also without specifying (or estimating) the conduct parameter function Θ(Q(Vjt, .), Q−j(V−j,t, .), Zt).

(19) holds regardless of this function, as long as the relevant variables are observed.

3.4 Suffi cient statistic in the Logit Nash-Bertrand Model

The above result is probably not that surprising given we know in the homogeneous good Cournot model

firms’reaction functions only depend on their competitors actions through the scalar Q−jt. But we now

show that Q−jt can also serve as a suffi cient statistic in simple Nash Bertrand games with logit based product

differentiation. Consider the following consumer level "logit" utility function

Uijt = f (Xjt, Pjt, Zt) + εijt

Ui0t = εi0t

where Pjt is the price charged by firm j in market t, and Xjt is a vector of characteristics of good j in

market t. εijt and εi0t are standard logit errors, and Zt again includes observed market level variables that

may affect demand. With a continuum of consumers i we obtain the standard logit market share formula

for firm j

Sjt =
ef(Xjt,Pjt,Zt)

1 +
∑

k∈t e
f(Xkt,Pkt,Zt)

and if market size is given by M(Zt), the quantity demanded for firm j is:

Qjt (Pjt,P−jt, Xjt,X−jt, Zt) = M(Zt)
ef(Xjt,Pjt,Zt)

1 +
∑

k∈t e
f(Xkt,Pkt,Zt)

(21)

Note that this assumes markets are identical up to the observables (Xt,P t, Zt) (Xt and P t contain charac-

teristics and prices of all products in market t) in this model. So, for example, there cannot be unobserved

product characteristics. It is also a pure logit model, i.e. there are no random coeffi cients. On the other

hand, because we do not need to fully specify the function f (again, this is because of the semi-parametric

approach of the OP/LP first stage), residual demand in this model can be a very flexible function of Pjt.

17Lastly, note that while we describe this as a homogenous product quantity setting game, the fact that we allow Zt to enter
the inverse demand curve actually allows products to potentially be heterogeneous across markets (though not across firms within
a market) to the extent that this is can be measured by Zt. One could potentially allow the production function to depend on
elements of Zt as well.
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As in the Cournot model, we consider a production function of the form

Qjt = Q(Vjt, Fjt; θ) exp(ωjt) (22)

that is strictly increasing in its arguments.18 With these primitives we consider equilibria of the following

Nash-Bertrand game. Conditional on Fjt, ωjt, Xjt, and Zt for all firms j in market t, we assume that firms

simultaneously choose prices Pjt. Given any vector of prices, quantities are given by (21) ∀j, and each firm

j must then purchase enough of the variable input Vjt to produce that quantity. This level is given by the

inverse of the production function

Vjt = Q−1(Qjt, ωjt, Fjt; θ) (23)

which exists assuming the production function is strictly increasing in Vjt.

Given (ωjt, Fjt, Xjt,ω−jt,F−jt,X−jt, Zt) and choices P−jt of its competitors, firm j’s (variable) profit

function is

Πjt = PjtQjt (Pjt,P−jt, Xjt,X−jt, Zt)− PV (Zt)Q
−1(Qjt (Pjt,P−jt, Xjt,X−jt, Zt) , ωjt, Fjt; θ) (24)

= PjtM(Zt)
ef(Xjt,Pjt,Zt)

1 +
∑

k∈t e
f(Xkt,Pkt,Zt)

− PV (Zt)Q
−1(M(Zt)

ef(Xjt,Pjt,Zt)

1 +
∑

k∈t e
f(Xkt,Pkt,Zt)

, ωjt, Fjt)

= PjtM(Zt)
ef(Xjt,Pjt,Zt)

1 + ef(Xjt,Pjt,Zt) + Φ−jt
− PV (Zt)Q

−1(M(Zt)
ef(Xjt,Pjt,Zt)

1 + ef(Xjt,Pjt,Zt) + Φ−jt
, ωjt, Fjt)

where

Φ−jt =
∑
k∈t/j

ef(Xkt,Pkt,Zt)

This illustrates that firm j’s (variable) profit function only depends on (ω−jt,F−jt,X−jt) through the scalar

Φ−jt, which can be interpreted as a measure of the "strength" of competition firm j is facing in equilibrium.

For example, Φ−jt could be large because firm j is facing a few competitors with high Xkt and low Pkt, or

it could be large because firm j is facing many competitors (though with "worse" Xkt’s and Pkt’s).

Given this structure of the first order condition we can show that Φ−jt can serve as a suffi cient statistic

in this Bertrand model, . Again we start with a high level assumption ensuring that the primitives (e.g.

f () , Q (), and PV ()) are such that there is a unique maximum of this profit maximization problem:

18Note that Fjt can include Xjt, which implicitly allows the production function to depend on observed product characteristics
(see, e.g. Hahn (2023)).
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Assumption 2 The primitives of the model f (), Q (), and PV () are such that for all

(P−jt, ωjt, Fjt, Xjt, ω−jt, F−jt, X−jt, Zt) there is a unique 0 < Pjt <∞ that maximizes (24)

Then the following Theorem holds in equilibria of this Bertrand-Nash game across markets:

Theorem 2 Under Assumption (2), consider any two markets t and t′ - the first with environmental vari-

ables (ωjt, Fjt, Xjt,ω−jt,F−jt,X−jt, Zt) and the second with environmental variables

(ωjt′ , Fjt′ , Xjt′ ,ω−jt′ ,F−jt′ ,X−jt′ , Zt′). Suppose that ωjt = ωjt′ , Fjt = Fjt′ , Xjt = Xjt′ , and Zt = Zt′,

but that (ω−jt,F−jt,X−jt) and (ω−jt′ ,F−jt′ ,X−jt′) are not equal in the two markets (again, firm j may

have a different number of competitors in each market so these vectors are of different dimension). Consider

an equilibrium in each of these markets, and suppose that, in these respective equilibria, the prices chosen

by firms other than j, i.e. P−j,t and P−j,t′, are such that Φ−jt = Φ−jt′. Then it must be the case that in

these two respective equilibria, Pjt = Pjt′ , Qjt = Qjt′ , and Vjt = Vjt′.

Proof. Consider the profit function at the two respective equilibria. By supposition, ωjt = ωjt′ , Fjt =

Fjt′ , Xjt = Xjt′ , and Zt = Zt′ . (ω−jt,F−jt,X−jt) is not equal to (ω−jt′ ,F−jt′ ,X−jt′), but these variables

only enter profits through the scalar valued function Φ, and by supposition Φ−jt = Φ−jt′ . Hence, Pjt 6= Pjt′

would contradict Assumption (2). Since Pjt = Pjt′ , it must additionally be the case that Qjt = Qjt′ (since

in the logit model residual demand is strictly decreasing in price), and therefore that Vjt = Vjt′ given the

production function is assumed strictly increasing in V .

Again loosely speaking, Theorem (2) shows that from firm j’s perspective, the structure of its competition

−j only "matters" through the scalar suffi cient statistic Φ−jt. It also implies that across different markets

t with the same Zt, firms operating in those markets with the same ωjt, Fjt, Xjt - and whose competitors

(ω−jt,F−jt,X−jt) and P−jt are such that in equilibrium Φ−jt is the same - must 1) in equilibrium be

choosing the same Pjt, and therefore 2) also using the same amount of the variable input Vjt. In other

words, there is a function V () such that in equilibria across these markets, the following relationship holds:

Vjt = V (ωjt, Fjt, Xjt,Φ−jt, Zt) (25)

i.e. the scalar Φ−jt is a suffi cient statistic for describing the equilibrium relationship between firm j’s choice

of variable input and its competitors’actions. The Theorem also implies that there is a function P such

that the following relationship holds

Pjt = P (ωjt, Fjt, Xjt,Φ−jt, Zt) (26)
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Since Pjt is the strategic variable that is directly chosen in this price-setting game, (26) can be interpreted

as a suffi cient statistic representation of a reaction function - i.e. firm j’s optimal price as a function of

its own characteristics, market characteristics, and the scalar Φ−jt summarizing the impact of other firms

prices (and X’s) on j’s profits. This reaction function will be useful momentarily.

While Φ−jt is a natural suffi cient statistic in the logit model for the level of competition faced by firm

j, (25) is unfortunately not that useful from the perspective of OP/LP-style approaches since they rely on

a scalar unobservable assumption. This is a problem for (25) since Φ−jt will typically not be observable,

since 1) it depends on the unknown function f (), and 2) it depends on prices P−jt, which are typically not

be observed in a canonical production function dataset on inputs and outputs. Hence, we next consider

conditions under which Q−jt can serve as an alternative suffi cient statistic - that is, where there is an

alternative function V () such that

Vjt = V (ωjt, Fjt, Xjt, Q−jt, Zt) (27)

To show this, first note that if y = f(a, b) and c = g(a, b), then if g is strictly monotonic in b there exists

a function f such that y = f(a, c) (≡ f(a, g−1 (a, c))). In other words, if y is a function of a and b, and

there is a monotonic relationship between b and c (for any a), then y can also be expressed as a function of

a and c. In our situation, the standard logit formulas imply

Q−jt = M(Zt)

∑
k∈t/j e

f(Xkt,Pkt,Zt)

1 +
∑

k∈t e
f(Xkt,Pkt,Zt)

= M(Zt)
Φ−jt

1 + e
f(Xjt,Pjt,Zt)

+ Φ−jt

Moreover, based on the implication of Theorem (2), we know that in equilibrium, across markets j, the

following relationship holds

Q−jt = M(Zt)
Φ−jt

1 + ef(Xjt,P (ωjt,Fjt,Xjt,Φ−jt,Zt),Zt) + Φ−jt
(28)

where P (ωjt, Fjt, Xjt,Φ−jt, Zt) is the suffi cient statistic reaction function (26). (28) implies that in equilib-

rium, Q−jt can be expressed as a function of (ωjt, Fjt, Xjt, Zt) and Φ−jt. Hence, the following assumption
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Assumption 3 For all (ωjt, Fjt, Xjt, Zt) and Φ−jt

∂

(
Φ−jt

1+e
f(Xjt,P (ωjt,Fjt,Xjt,Φ−jt,Zt),Zt)+Φ−jt

)
∂Φ−jt

> 0

suffi ces for Vjt = V (ωjt, Fjt, Xjt, Q−jt, Zt) to hold, i.e. allowing us to replace Φ−jt with Q−jt as our

scalar suffi cient statistic to capture the relationship between j’s competition and j’s choice of variable input.

Assumption (3) is a relatively high level assumption. Whether it holds will depend on the primitives,

i.e. the utility function f(Xjt, Pjt, Zt), the production function Q(Vjt, Fjt), and the input price function

PV (Zt). Ideally one would construct more primitive conditions under which this would hold, but this is

complicated by the fact that our goal is to estimate production functions without fully specifying demand

(it depends on the unspecified f ()), and moreover, even for a specific f (), note that reaction functions do

not generally have a closed form in this model.

However, examining (28) suggests that Assumption (3) is intuitive and may not be all that stringent.

Recall that Φ−jt =
∑

k∈t/j e
f(Xkt,Pkt,Zt) is a scalar index summarizing the utility provided by firms other

than j. Note that if P (ωjt, Fjt, Xjt,Φ−jt, Zt) hypothetically did not depend on Φ−jt, then Assumption (3)

would certainly hold - i.e. if the "utility" provided by firms other than j increases (i.e. Φ−jt increases),

then holding Pj constant, Q−jt must increase. Of course, in a Nash-Bertrand logit model, prices tend to be

strategic complements. So when Φ−jt increases, we would expect P (ωjt, Fjt, Xjt,Φ−jt, Zt) to decrease, and

this could potentially change the sign of the derivative. Essentially, what Assumption (3) requires is that

this reaction function response is not too large. If the −j "utility" index increases (e.g. due to lower prices

or better X for firms other than j) - which will naturally increase Q−jt - the downward price response of

j cannot be large enough to reverse that Q−jt increase. This is the assumption required for our suffi cient

statistic result.

3.5 Suffi cient statistic in the Nested Logit Nash-Bertrand Model

Lastly, we derive a suffi cient statistic result for the Nested Logit Nash-Bertrand Model. We do this in the

context of a single level nested logit model, in which we obtain a two-vector suffi cient statistic, but it is

generalizeable to more levels (in which case the suffi cient statistic is equal to the number of levels plus one).
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The utility functions are just a nested logit version of our logit model, i.e.

Uijt = f (Xjt, Pjt, Zt) + ς igjt + (1− σ (Zt))εijt

Ui0t = ς i0t + (1− σ (Zt))εi0t

where nests are indexed by g ∈ Gt and gjt represents the nest that firm j is in in market t. We assume

the outside alternative is in its own group g = 0, and the nesting parameter σ (Zt) can vary across markets

depending on observables. As above, f (Xjt, Pjt, Zt) is unspecified and thus this model can capture fairly

general shapes of demand.

Define

Dgt =
∑
k∈Jgt

ef(Xkt,Pkt,Zt)/(1−σ(Zt)),

Φg(−j)t = Dgjt − ef(Xjt,Pjt,Zt)/(1−σ(Zt)), and

ΦG(−gj)t =
∑

(g 6=gjt)∈Gt

D
(1−σ(Zt))
gt

where Jgt represents the set of products in nest g in market t. Φg(−j)t is a scalar measure of the attractiveness

of the other products in j’s nest, and ΦG(−gj)t is a scalar measure of the attractiveness of all the products

outside of j’s nest. In this model, residual demand for firm j in nest gj is

Qjt (Pjt, P−jt, Xjt, X−jt, Zt)

= M(Zt)
ef(Xjt,Pjt,Zt)/(1−σ(Zt))

D
σ(Zt)
gjt (1 +

∑
g∈Gt

D
(1−σ(Zt))
gt )

= M(Zt)
ef(Xjt,Pjt,Zt)/(1−σ(Zt))(

ef(Xjt,Pjt,Zt)/(1−σ) + Φg(−j)t
)σ(Zt)

(
1 +

(
ef(Xjt,Pjt,Zt)/(1−σ(Zt)) + Φg(−j)t

)1−σ(Zt)
+ ΦG(−gj)t

)
Thus, analagously to the logit model, under

Assumption 4 The primitives of the model f (), Q (), PV (), and σ () are such that for all

(P−jt, ωjt, Fjt, Xjt, ω−jt, F−jt, X−jt, Zt) there is a unique 0 < Pjt <∞ that maximizes profits.

we have the following Theorem:
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Theorem 3 Under Assumption (4), consider any two markets t and t′ - the first with environmental vari-

ables (ωjt, Fjt, Xjt,ω−jt,F−jt,X−jt, Zt) and the second with environmental variables

(ωjt′ , Fjt′ , Xjt′ ,ω−jt′ ,F−jt′ ,X−jt′ , Zt′). Suppose that ωjt = ωjt′ , Fjt = Fjt′ , Xjt = Xjt′ , and Zt = Zt′,

but that (ω−jt,F−jt,X−jt) and (ω−jt′ ,F−jt′ ,X−jt′) are not equal in the two markets (again, firm j may

have a different number of competitors in each market so these vectors are of different dimension). Consider

an equilibrium in each of these markets, and suppose that, in these respective equilibria, the prices chosen by

firms other than j, i.e. P−j,t and P−j,t′, are such that Φg(−j)t = Φg(−j)t′ and ΦG(−gj)t = ΦG(−gj)t′ . Then

it must be the case that in these two respective equilibria, Pjt = Pjt′ , Qjt = Qjt′ , and Vjt = Vjt′.

Proof. Considering the profit function at the two respective equilibria, proof is analagous to proof of (2)

The Theorem implies that the following relationships hold across all markets

Pjt = P (Xjt, ωjt, Fjt,Φg(−j)t,ΦG(−gj)t, Zt), and (29)

Vjt = V (Xjt, ωjt, Fjt,Φg(−j)t,ΦG(−gj)t, Zt)

i.e. we now have two scalars, Φg(−j)t and ΦG(−gj)t that are suffi cient statistics for Pjt and Vjt. Again,

this is not suffi cient for an OP/LP-style inversion since Φg(−j)t and ΦG(−gj)t are not observed, so we need

additional assumptions to obtain a usable function to invert. Standard nested logit formulas also imply

Qg(−j)t (Pjt, P−jt, Xjt, X−jt, Zt)

= M(Zt)
Φg(−j)t(

ef(Xjt,Pjt,Zt)/(1−σ) + Φg(−j)t
)σ (

1 +
(
ef(Xjt,Pjt,Zt)/(1−σ) + Φg(−j)t

)1−σ
+ ΦG(−gj)t

)
and

QG(−gj)t (Pjt, P−jt, Xjt, X−jt, Zt) = M(Zt)

∑
(g 6=gjt)∈Gt

D
(1−σ)
gt

1 +
∑
g∈Gt

D
(1−σ)
gt

= M(Zt)
ΦG(−gj)t

1 +
(
ef(Xjt,Pjt,Zt)/(1−σ) + Φg(−j)t

)1−σ
+ ΦG(−gj)t
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and combining these with (29) implies that

Qg(−j)t = M(Zt)
Φg(−j)t

(
e
f
(
Xjt,P (Xjt,ωjt,Fjt,Φg(−j)t,ΦG(−gj)t,Zt),Zt

)
/(1−σ)

+ Φg(−j)t

)σ−1

·
(

1 +

(
e
f
(
Xjt,P (Xjt,ωjt,Fjt,Φg(−j)t,ΦG(−gj)t,Zt),Zt

)
/(1−σ)

+ Φg(−j)t

)1−σ
+ ΦG(−gj)t

)


(30)

and

QG(−gj)t = M(Zt)
ΦG(−gj)t

1 +

(
e
f
(
Xjt,P (Xjt,ωjt,Fjt,Φg(−j)t,ΦG(−gj)t,Zt),Zt

)
/(1−σ)

+ Φg(−j)t

)1−σ
+ ΦG(−gj)t

(31)

hold across equilibria.

Given primitives (and the implied equilibrium P () function), (30) and (31) define a mapping from

<2 → <2

MNL :
(
Φg(−j)t,ΦG(−gj)t

)
→
(
Qg(−j)t, QG(−gj)t

)
conditional on (Xjt, ωjt, Fjt, Zt). If the primitives are such that MNL is invertible, then , then the following

holds across equilibria

Vjt = V (Xjt, ωjt, Fjt, Qg(−j)t, QG(−gj)t, Zt)

which we can use as the basis for a OP/LP-style first stage inversion. As in the logit model, a reason why

the mapping would not be invertible would be "extreme" reactions, i.e. if in a market where, in equilibrium,

attractiveness of competitors is higher (either Φg(−j)t or ΦG(−gj)t), j’s price negative response is strong

enough to lower Qg(−j)t or QG(−gj)t.

3.6 OP/LP Style Inversion with Suffi cient Statistics

In the above three sets of models, we have derived functions that capture the effects of competitors through

limited dimension summary statistics. However, there is an additional issue that must be addressed in

order to invert and utilize these functions in an OP/LP-style first stage. A presumption of this literature

is that measured output is contaminated by measurement error εjt. If this is the case for firm j, then

it is presumably also the case for firm j’s competitors. Thus, the suffi cient statistic Q−jt (or Qg(−j)t and

QG(−gj)t) will also be measured with error.

To address this issue, we now explicitly distinguish between true output Q∗jt (and Q
∗
−jt) and measured
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output Qjt (and Q−jt). We do this in the context of the Quantity Setting and Nash-Bertrand Logit models

to conserve notation, but it generalizes to the Nested Logit model. Recalling the (log) production function

qjt = q(vjt, fjt; θ) + ωjt + εjt

including measurement error εjt, the relation between measured and true (log) output is qjt = q∗jt + εjt (or

q∗jt = qjt − εjt). Therefore

Q∗−jt =
∑
k 6=j

Q∗kt =
∑
k 6=j

exp(q∗kt) =
∑
k 6=j

exp(qkt − εkt)

and we have19

Vjt = V (ωjt, Fjt,
∑
k 6=j

exp(qkt − εkt), Zt) (32)

or analagously with logged inputs as

vjt = v(ωjt, fjt,
∑
k 6=j

exp(qkt − εkt), zt) (33)

As well known, OP/LP-style approaches require the assumption that the function to be inverted is strictly

monotonic in the productivity shock ωjt20. We also need to make this strict monotonicity assumption on

(33) to utilize it in estimation. This is a substantive assumption. While LP, for example, find relatively

simple conditions under which this is the case in a perfectly competitive environment, this situation is

different in imperfectly competitive environments. In particular, whether (33) holds depends on the residual

demand curves generated by the underlying primitives. It may not hold in some cases - e.g. if the increased

production generated by an increased ωjt induces a firm to reduce vjt so as to mitigate price decreases from

moving down the demand curve. Biondi (2022) discusses more primitive conditions on demand/residual

demand functions such that this strict monotonicity holds.21

Under this strict monotonicity assumption one can invert (33) and substitute into the production function

19In the logit case we subsume product characteristics Xjt into Fjt to conserve notation. This implicitly allows the production
function to depend on Xjt, though if one does not want this to be the case, one can simply impose the restriction that the production
function q () does not depend the xjt component of fjt.
20There is some scope to allow weak monotonicity, see, e.g. LP.
21One advantage of the DP and TC approaches is that they do not require such an assumption since there is no first stage

inversion necessary.
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to get

qjt = q(vjt, fjt; θ) + v−1(vjt, fjt,
∑
k 6=j

exp(qkt − εkt).zt) + εjt

and since q(vjt, fjt; θ) cannot generally be separately identified from the non-parametrically treated v−1 in

this first stage equation, we combine the two functions together (abusing notation by redefining v−1 () =

q () + v−1 ()) as

qjt = v−1(vjt, fjt,
∑
k 6=j

exp(qkt − εkt), zt) + εjt (34)

Again, the issue here is that since the true quantities
∑

k 6=j exp(qkt − εkt) are not fully observed, straight-

forward OP/LP-style non-parametric estimation of this equation is not possible.

However, we can leverage the structure in which the additional unobservables εkt enter (34). In partic-

ular, consider the set of (34) across all firms in market t

q1t = v−1(v1t, f1t,
∑
k 6=1

exp(qkt − εkt), zt) + ε1t (35)

.

qJt = v−1(vJt, fJt,
∑
k 6=J

exp(qkt − εkt), zt) + εJt

Conditional on observables (qjt, vjt, fjt) for all j and zt, this is a system of J equations in J unobservables

ε1t, ..., εJt. To make progress here under the classical measurement error assumption that the εjt are mean

independent of everything but the qjt’s, we seek assumptions under which (35) can be inverted for ε1t, ..., εJt

conditional on observables. To do this, consider "reduced form" mappings associated with the above

Quantity Setting and Logit Nash Bertrand games, respectively


v1t

.

vJt

 = FC




f1t

.

fJt

 ,


ω1t

.

ωJt

 , zt


and 

p1t

.

pJt

 = FL




f1t

.

fJt

 ,


x1t

.

xJt

 ,


ω1t

.

ωJt

 , zt


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FC and FL map each game’s predetermined variables (fjt’s, ωjt’s, zt, plus xjt’s in logit) into equilibrium

choices of variable inputs or prices.

Assumption 5 The primitives of the model P (), Q (), and PV () (or f (), Q (), and PV ()) are such that

the mapping FC (or FL) is invertible in (ω1t, ...., ωJt)

This assumption implies that conditional on fixed inputs, characteristics, and zt, knowing all firms’

observed actions (either variable inputs v’s or prices p’s) is suffi cient to infer the vector of their productivity

shocks. This is essentially a multifirm version of the usual single equation strict monotonicity requirement

used in OP/LP-style approaches. While again this is a non-trivial assumption for similar reasons as discussed

above, there is precedent for related assumptions (see e.g. Petropoulous (2000), ABBP, and Dhyne, Petrin,

Smeets, and Warsynski (2022)). The assumption doesn’t strictly rule out multiple equilibria, but it is hard

to imagine it holding with multiple equilibria unless all markets have same equilibrium selection mechanism.

Again there is precedent for such an assumption in the dynamic game literature (e.g. Bajari, Benkard, and

Levin (2007)).

Under Assumption (5) we have the following

Theorem 4 Under Assumption (5), the system of equations defined in (35), i.e.

q1t = v−1(v1t, f1t,
∑
k 6=1

exp(qkt − εkt), zt) + ε1t (36)

.

qJt = v−1(vJt, fJt,
∑
k 6=J

exp(qkt − εkt), zt) + εJt

can be inverted for ε1t, ..., εJt conditional on observables qt, vt, and ft.

Proof. See Appendix

Given this result, one can potentially non-parametrically estimate these first stage equations by, e.g. 1)

specifying v−1 () as a polynomial or sieve, and 2) searching over the parameters τ of that polynomial or

sieve such that the inverted ε1t, ..., εJt satisfy the following moment condition

E



ε1t (q1t, .., qJt, v1t, .., vJt, f1t, .., fJt, zt; τ)

.

εJt (q1t, .., qJt, v1t, .., vJt, f1t, .., fJt, zt; τ)

 | v1t, .., vJt, f1t, .., fJt, zt

 = 0 (37)
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where εjt (q1t, .., qJt, v1t, .., vJt, f1t, .., fJt, zt; τ) represents the implied measurement error inverted from (36)

given observed data and a candidate value of the parameters τ .22 This moment condition holds given the

assumption that εjt is classical measurement error.23

The natural next question is what aspects of the model the set of moments (37) identifies. Given the

limited dimension of v−1 () relative to the number of conditioning variables in (37) (plus the fact that the

same v−1 enters all J equations), we suspect that under appropriate regularity conditions, v−1 () is identified.

However, recall from Section 2 that the goal of the first stage of OP/LP-style approaches is only to identify

the measurement errors. Hence, for our purposes we do not need to show that v−1 () is identified - as long

as the measurement errors ε1t, ..., εJt can be identified. This can be shown straightforwardly since we can

rewrite (36) as

q1t − ε1t = v−1(v1t, f1t,
∑
k 6=1

exp(qkt − εkt), zt) (38)

.

qJt − εJt = v−1(vJt, fJt,
∑
k 6=J

exp(qkt − εkt), zt)

and, given Assumption (5), Theorem (4), and the structure of how qjt and εjt enter, (38) must also be

invertible in q1t − ε1t, ..., qJt − εJt. Hence, there exists a reduced form

q1t = H(v1t, f1t,v−1t,f−1t, zt) + ε1t (39)

.

qJt = H(vJt, fJt,v−Jt,f−Jt, zt) + εJt

22As this non-linear inversion may be non-trivial to implement in practice, we briefly mention a potential alternative that can
potentially eliminate the εkt’s inside the v−1 () function on the right hand side of (36). For this we need the researcher to also have
access to firm-level revenue data, Rjt, that, unlike Qjt, is not contaminated by measurement error (e.g. suppose that mismeasured
prices are the reason that Qjt has measurement error). Then in the quantity setting model, under appropriate conditions on demand
curves and equilibria (e.g. that all equilibria are on elastic parts of demand curves), there is a one to one mapping between Q’s and
R’s, and the Q−jt term inside inside v−1 can be replaced by R−jt . With no measurement error inside v−1, estimation can proceed,
e.g. with OLS using a polynomial approximation to v−1 ()).
23To clarify given the fact that this is a system of equations, note that when we say classical measurement error we mean we are

assuming that the measurement error in qjt is not only mean independent of vjt and fjt, but also of v−jt and f−jt. Note that we
do not assume that the measurement error is uncorrelated across j.
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Given the classical measurement assumption that the errors are mean independent of all the arguments

of H, this is a standard non-parametric problem and we have

Theorem 5 Under Assumption (5), with suffi cient variation in (v1t, .., vJt, f1t, .., fJt, zt) H () is non-parametrically

identified and the measurement errors ε1t, ..., εJt are identified.

Proof. See Matzkin (1994, 2013)

The assumption of "suffi cient variation" is not precise and less than ideal, but not surprising given

the goal of estimating the production function without having to fully specific other components of firms’

decision problems. For example, variation in f1t, .., fJt will likely depend on the exact nature of firms

dynamic investment decisions of, e.g. capital, other fixed factors, and product characteristics - we have left

these components of the model unspecified. Variation in v1t, .., vJt will depend on the entire distribution

of productivity shocks ω1t, .., ωJt as well as the exact nature of demand P () in Cournot (or f () in Logit) -

again our intent is not require specification of these objects.

4 Second Stage Identification and Estimation

The prior section shows that we can obtain a low-dimensional OP/LP-style first stage inversion in a set of

models with imperfect competition and strategic interactions, without fully specifying demand and in some

cases the nature of competition (e.g. Cournot vs. collusion). This allows us to recover estimates ε̂jt’s. We

now move to the second stage of these procedures, which use moments of the general form E
[
ξjt | Ijt−1

]
= 0

(recall ξjt is the period t innovation in the productivity shock ωjt) to identify the structural parameters of

the production function and productivity shock process.

As discussed in Section 2, the OP/LP-style first stage described in the prior section is just one of at

least three different ways that one can get to this point. Alternatively, one could use either the TC or DP

approach. Each of these relies on an additional restriction - in TC an additional variable input that enters

the production function in Leontief fashion, a in DP a linear productivity shock process - but on the other

hand, neither requires the OP/LP-style first stage inversion and associated assumptions. So, for example,

the TC or DP approaches might be useful if either 1) is unwilling to assume that the model of imperfect

competition is, as per Section 3, homogeneous good, logit, or nested logit such that a low dimension suffi cient

statistic exists24, or 2) believes there are other unobservables that make the scalar unobservable assumption

24There might be scope for extension to more general models. For example, in a random coeffi cients model, one could consider
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required for the OP/LP-style first stage untenable.

Our main point in this section is to show how in all three cases, the nature of imperfectly competitive

markets can actually help with respect to some of the identification issues that have been discussed in

the production function literature. This is because we can leverage what we term oligopoly instruments

based on the fact that fixed inputs and productivity shocks of competitors in a given market t determine

an individual producer’s variable input choice through strategic interactions. In short, the existence of

oligopoly interactions means there are additional elements in Ijt−1 that can aid with identification. In the

next subsections, we 1) show how oligopoly instruments can resolve some existing identification problems,

2) consider properties of optimal oligopoly instruments, and 3) consider use of oligopoly instruments when

it is hard to define which firms compete with one another.

4.1 Oligopoly Instruments to Resolve Identification Problems

For simplicity, we illustrate with the two approaches (OP/LP-style and TC) where ε̂jt has already been

identified. As illustrated in Section 2, this means that given observables (and ε̂jt) we can infer ωjt’s given

parameters θ of the production function, i.e.

ωjt (θ) = (qjt − ε̂jt)− q(vjt, fjt; θ)

and given parameters ρ of the productivity process ωjt = g(ωjt−1, ρ)+ ξjt,
25 we can additionally infer ξjt’s,

i.e.

ξjt (θ) = ωjt (θ)− g(ωjt−1 (θ) , ρ)

This allows us to easily construct an empirical analogue of the moment condition E
[
ξjt | Ijt−1

]
= 0. In

contrast, the DP approach (since ε̂jt’s have not been estimated previously) requires one to utilize slightly

different moment conditions that also include the unobservables εjt (see (8)), but the logic of the rest of this

section still applies. To conserve notation, we redefine qjt = qjt − ε̂jt for the rest of this section, i.e. qjt

approximating the (ω−jt,F−jt,X−jt) elements of (14) with moments of these distibutions (e.g. the means/variances/covariances
of these variables across competitors) to reduce dimensionality. However, one would need to assure the approximation error
disappears asymptotically for consistency, and this would still not allow unobserved product characteristics as common in the
demand literature (under the presumption of this paper that we dont have the data to estimate demand and "observe" these
unobserved characteristics).
25We could extend our results to allow the "endogenous" productivity shock process of Doraszelski and Jaumandreu (2013), i.e.

ωjt = g(ωjt−1, rit, ρ)+ ξjt, for some observed rit (e.g. R&D expenditures).

29



represents the originally measured q purged of the estimated measurement error ε̂jt.26

The typical timing and information set assumptions of the model imply the following conditional moment

restriction

E
[
ξjt(θ) | Ijt−1

]
= E [ωjt(θ)− g (ωjt−1(θ); ρ) | Ijt−1] = 0 at θ = θ0 (40)

at the true parameter values, which in turn implies the unconditional moment restriction

E [(ωjt(θ)− gt (ωjt−1(θ); ρ))⊗ Ijt−1] = 0 at θ = θ0 (41)

If, as typical, fjt is assumed chosen at t − 1, vjt is assumed chosen at t, and ωjt assumed observed at

t, then there are many elements of Ijt−1. Ijt−1 includes fjt, vjt−1, qjt−1, and ωjt−1, and all lags of these

variables (as well as all measurable functions of all these variables). An important contribution of this

paper is to note that in the context of oligopolistic competition models like those considered here, Ijt−1

also can contain these variables for competing firms, e.g. f−jt, v−jt−1, q−jt−1, and ω−jt−1 and lags of these

variables. We will momentarily argue that this has important benefits for estimation based on (41), but

before doing this we first discuss three relevant preliminary points.

First, note that for convenience in the below we will assume that competing firms’f−jt, v−jt−1, q−jt−1,

and ω−jt−1 are in fact in Ijt−1. However, with additional notation this could easily be relaxed to the

case where firm j only observe some information about its competitors variables. It is important to note

that doing this in the context of an OP/LP-style first stage inversion would require extending the models

of Section 2 to ones of imperfect information. And clearly if firm j observes no information about its

competitors variables, the oligopoly instruments we consider will not be useful. Following the suggestions

in Ackerberg (2023), one could potentially test different timing and information set assumptions, e.g. the

additional assumption that ω−jt is in Ijt−1, but we do not investigate this here.

Second, note that while one can obtain effi ciency by enforcing (41) using the entire Ijt−1 (to the extent

it is observed by the econometrician) and weighting the moment conditions appropriately, this is often not

done in practice. This is because with so many elements of Ijt−1 constructing optimal weights tends to

generate small sample biases, i.e. the "many instruments" problem described in, e.g. Bound, Jaeger, and

26This highlights that a third way to avoid an OP/LP-style inversion is to simply start with a model with no measurement error,
i.e. assume εit ≡ 0. If one is willing to make this additional assumption, then one can directly move to these second stage moment
conditions without a first stage inversion.
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Baker (1996). Instead, researchers will often use an unconditional moment condition of the form

E [(ωjt(θ)− gt (ωjt−1(θ); ρ))⊗m(Ijt−1)] = 0 (42)

where m is of reduced dimension. For example, papers based on OP, LP, and ACF with Cobb-Douglas

production functions will often use just fjt, vjt−1, and qjt−1 (or ωjt−1 defined as a function of the parameters)

as instruments, resulting in an exactly identified model and no need for a weight matrix.

Third, there has been much recent discussion regarding conditions under which the moments (42) (or

(41)) identify the production function parameters. In particular, in the case of perfect competition, GNR

derive an important result that if there is no across-firm heterogeneity in prices of variable (and assumed

static) inputs vjt or demand, then these moments do not identify a non-parametric production function

qjt = qt(vjt, fjt) + ωjt. Note that this result is not dependent on the choice of m (), i.e. including further

lags of fjt, vjt−1, qjt−1, and ωjt−1 does not help. The intuition is that in such a model, optimal vjt is a

function of only fjt and ωjt. This functional dependence issue means that in this model, vjt−1 (nor further

lags) is not useful as an instrument to identify the production function.

There are a several existing ways of avoiding the GNR non-identification result. DLW, for example, argue

that observing additional, firm-specific factors that determine firms’variable input choice vjt is suffi cient

for identification (assuming ξjt is mean independent of these observables). These could include observed

input or output market shifters, or vjt−1 if firms’choices of variable input have dynamic implications. The

appendix of LP (parametrically) and GNR (non-parametrically) respectively, add restrictions from first

order conditions when firms are in perfectly competitive environments to generate identification.27 ACF

suggests that identification can be obtained if there are serially correlated firm-specific shocks to prices of

vjt, even if they are unobserved to the econometrician - however, this approach does not generally work

in the context of an OP/LP-style inversion of vjt (because it violates the scalar unobservable assumption).

Flynn, Gandhi, and Traina (2021) (also see DLS) use the strategy of assuming constant returns to scale -

which implies there is no need to estimate a coeffi cient on vjt.

The main point of this section of the paper is that oligopoly instruments provide an additional way to

avoid the GNR non-identification result.. In particular, as discussed above, in an oligopoly setting vjt is

not only a function of fjt and ωjt, but also generally of f−jt and ω−jt. This can alleviate the functional

dependence issue described by GNR. And while ω−jt is not in Ijt−1, f−jt is, and so is ω−jt−1, which

27More recent papers further developing these methods include Navarro and Rivers (2018) and Pan (2022).
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is generally correlated with ω−jt (unless the ω process is not serially correlated). Hence, in oligopolistic

settings, f−jt and ω−jt−1 can be useful "instruments" for identifying the production function parameters.

Note the intuition behind this idea. Since the variable input vjt is endogenous (i.e. correlated with ξjt =

ωjt−gt (ωjt−1)), identifying its effect on output requires some source of exogenous variation. We are simply

observing that in an oligopoly situation natural instruments for vjt are competitors’f−jt and ω−jt−1. Both

are orthogonal to ξjt based on the timing and information set assumptions of the model, so they are valid

instruments. As for the relevance condition, f−jt directly impacts vjt through the oligopolistic structure of

the model, and while vjt directly depends on ω−jt (rather than ω−jt−1), ω−jt−1 is generally correlated with

ω−jt, making it also a potentially relevant instrument. This can be interpreted as a supply side application

of BLP "competitive" instruments for demand estimation, i.e. where aspects of competitors (in that case

typically competitor product characteristics) are used to instrument for endogenous price.

4.2 Approximations to Optimal Instruments

Given that these competitive instruments can help one avoid the production function non-identification

result of GNR, we now study the choice of m(Ijt−1) in (42). As noted above, given the size of Ijt−1,

small-sample biases are a significant concern with the "brute force" method of using all functions of all of

the observed elements of Ijt−1 as instruments (or a large number of functions of those elements). These

biases can come from estimating a large weight matrix for these moments in order to weight them effi ciently.

An alternative is to construct "optimal" instruments associated with the conditional moment restriction, i.e.

following Chamberlain (1987). This has the advantage of potentially reducing the number of instruments by

enforcing economic restrictions implied by the production function (and possibly the nature of competition).

In our oligopolistic situation, fully characterizing the optimal instruments is challenging. As detailed

below, it requires computing expectations of period t decisions conditional on Ijt−1, so it depends on

structural objects such as the demand curve, the precise contents of the information set Ijt−1, and the entire

distributions of unobservable terms - objects that have thus far not been specified. We take an alternative

approach where we consider additional economic assumptions that either 1) simplify computation of the

optimal instruments, or 2) reduce the dimension of the m(Ijt−1) that needs to be considered for optimality.

These additional assumptions include things like a Cobb-Douglas assumption, AR(1) productivity, and

linear demand. It is important to note that these additional assumptions are not required for consistency

of the estimates, i.e. even if these additional assumptions are incorrect, the parameter estimates are still
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consistent (assuming identification conditions hold). The tradeoff is instead one between not quite achieving

full effi ciency (to the extent the assumptions are incorrect) versus reducing small sample biases (because the

assumptions allow us to reduce the dimension of m(Ijt−1) based on theory). This type of approach - i.e.

imposing additional assumptions to simplify and/or approximate optimal instruments - has also been taken

in the context of discrete choice demand estimation, e.g. Berry, Levinsohn, and Pakes (1995), Reynaert and

Verboven (2015) and Gandhi and Houde (2021).

Also similar to the literature on optimal instruments for demand models, our simplifying assumptions

have economic intuition. First, to clarify notation, denote the level of fixed inputs and productivity for a

single competitor of firm j in market t as fkt and ωkt (this contrasts with f−jt and ω−jt, which represent

vectors of these objects for all competitors of firm j in market t). Our first result formalizes the idea that

since in some cases fkt and ωkt enter firm k’s production function in the same way, j’s optimal choice of

variable input will only depend on fkt and ωkt−1 through a scalar summary statistic. In other words, we

develop assumptions under which we can reduce the dimensionality of the instrument set coming from each

of j’s individual competitors k. Our second result reduces the dimensionality of the instrument set across j’s

competitors. Specifically, we construct assumptions under which the fixed inputs and productivity shocks

af all j’s competitors, f−jt and ω−jt affect the optimal instrument through only a scalar. Loosely speaking,

the intuition here is related to the homogenous good quantity setting result that competitors matter for j’s

FOC only through the sum of their quantities. This also means that the argument is similar to that in

Section 2 - however, additional assumptions are needed.

4.3 Within Firm

Here we focus on reducing the dimensionality of the instruments by constructing assumptions under which,

for a specific competitor k, the instruments fkt and ωkt−1 can be combined into a single instrument. Specif-

ically, we show that under these assumptions, instead of using fkt and ωkt−1 as individual instruments

(for firm j’s moment condition), we can alternatively use the linear combination θffkt+ ρωkt−1, without

sacrificing effi ciency. Again, this alleviates having to use the data to individually weight separate moment

conditions corresponding to fkt and ωkt−1 (and the potential small sample biases associated with doing

that). There is some clear economic intuition here - in many competitive models, the effect of firm B’s cost

technology on firm A is only through firm B’s marginal cost curve. So it is possible that multiple aspects

of firm B’s technology affect firm A through a scalar. Essentially this section posits specific assumptions
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under which this is the case.

We do this under the assumption of Cournot competition with a Cobb Douglas production function

and an AR(1) Markov process. We continue to assume only a single variable input and assume a single

competitor k and two periods of data to illustrate - we discuss generalizations momentarily. Under these

conditions, with 0 indexing the first period of data and 1 indexing the second, the conditional moment

condition is

E [(qj1 − θ0 − θvvj1 − θffj1)− ρ (qj0 − θ0 − θvvj0 − θffj0) | Ij0] (43)

= E [qj1 − ρqj0)− θ0 (1− ρ)− θv (vj1 − ρvj0)− θf (fj1 − ρfj0) | Ij0] (44)

As shown by Chamberlain (1987), optimal instrumentsm(Ijt−1) for the corresponding unconditional moment

(as in (42)) are constructed by taking derivatives of the conditional moment condition with respect to the

parameters. For example, for the parameter θf , this derivative is

E [− (fj1 − ρfj0) | Ij0)] = − (fj1 − ρfj0)

i.e., since fj0, fj1 ∈ Ij0 by the timing and information set assumptions, the optimal instrument corresponding

to θf is simply fj1 − ρfj0. For the parameter ρ, the derivative is

E [− (qj0 − θ0 − θvvj0 − θffj0) | Ij0] = − (qj0 − θ0 − θvvj0 − θffj0)

i.e., again, because qj0, vj0, fj0 ∈ Ij0, the corresponding optimal instrument is (qj0 − θ0 − θvvj0 − θffj0), i.e.

the "constructed" value of ωj0 given a set of parameters.

On the other hand, because v is endogenous, the optimal instrument for the parameter θv1 is not so

simple. Chamberlain’s formula gives

E [− (vj1 − ρvj0) | Ij0] = −E [vj1| Ij0] + ρvj0 (45)

but since vj1 /∈ Ij0, this does not simplify. Moreover, as noted above, the conditional expectation E [vj1| Ij0]

is complicated - depending on many parts of the model that we have not specified, e.g. the demand curve

and the full distribution of ω.

That said, under the above assumptions, E [vj1| Ij0] has simpler structure. Given the results in Sections
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2 and 3, we can write the equilibrium choice of vj1 as

vj1 = v(ωj1, fj1, ωk1, fk1, z1), (46)

where again z1 represent market level variables affecting demand or costs (e.g. demand or input price

shifters). The elements of ωk1 and fk1 enter the system of first order conditions only through the firms’

respective production functions, which under the Cobb Douglas and AR(1) assumptions can be written as

Qk(vk1, ωk1, fk1) = exp (θ0 + θffk1 + θvvk1 + ωk1 + εk1)

= exp (θ0 + θffk1 + θvvk1 + ρωk0 + ξk1 + εk1)

This means that we can alternatively write (46) as

vj1 = v(ωj1, fj1, θffk1 + ρωk0, ξk1, z1), (47)

where the vectors of competing firms fixed inputs and prior productivity shocks, fk1 and ωk0 (both in Ij0)

enter only through their sum θffk1 + ρωk0. However, this does not neccesarily imply that E [vj1| Ij0] only

depends on this sum. For example, we have not specified what the firm knows about z1 at t = 0. It is

possible that at that point in time the firm might know the entirety of z1 (i.e. z1 ∈ Ij0); it might know

nothing about z1 apart from its distribution; or, it might "know" part of z1 (e.g. it observes partially

informative signals about z1, or it knows some elements with certainty, but not other elements). Similarly,

we have assumed ωj1 and ξk1 are not in Ij0 but we have not specified their full distribution. It is possible

that E [vj1| Ij0] depends on the values of fk1 and ωk0 individually through their containing information on

the distributions of z1, ωj1 and ξ−j1. For example, if z1 is not in Ij0, and the distribution of z1 given Ij0 for

some reason depends on the individual elements of fk1 and ωk0 (rather than just the sum θffk1 +ρωk0), then

E [vj1| Ij0] will depend on the values of the individual elements. The same holds for ωj1 and ξ−j1 (note

that while the model does make assumptions on the means of these variables, their higher order moments

could potenially depend on the values of fk1 and/or ωk0 individually).

Hence, we need an additional assumption to rule out this "indirect" effect, specifically
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Assumption 6 The distribution of p(ωj1, ξk1, z1 | Ij0) is such that

p(ωj1, ξ−j1, z1 | Ij0\ (fk1, ωk0) = Ψ1, fk1 = Ψ2, ωk0 = Ψ3)

= p(ωj1, ξ−j1, z1 | Ij0\ (fk1, ωk0) = Ψ1, θffk1 + ρωk0 = θfΨ2 + ρΨ3)

This assumption rules out fk1 and ωk0 affecting the joint distribution of ωj1, ξk1, and z1 other than

through the sum θffk1 + ρωk0. Now we have

Theorem 6 In the above model, under Assumption (6), the optimal instruments m∗ (Ij0) depend on fk1

and ωk0 only through the sum θffk1 + ρωk0.

Proof. As detailed above, in this model, under Assumption (6), E [vj1| Ij0] depends on fk1 and ωk0 only

through the sum θffk1 + ρωk0

The simple intuition behind this Theorem suggests it can be generalized in a number of directions, e.g. t >

2, J > 2, a more general Markov structure gt () on the evolution of the productivity shock, or a more general

log production function that is addively separable in fjt, i.e. q(vjt, fjt; θ) + ωjt = qv(vjt; θ) + q(fjt; θ) + ωjt

(clearly if f interacts with v independently of ω, it will not hold). It also generalizes to the logit and nested

logit models, but only for elements of fk1 that are not also product characteristics entering the demand

side of the model. Regardless, note that regardless of the technological structure on q () and gt (), these

generalizations will always require an additional assumption analagous to Assumption (6).28

Lastly, note that Theorem (6) does not imply that θffk1 + ρωk0 itself is an optimal instrument. In

general, the optimal instrument will be some function of this sum, and this function will depend on aspects

of the model that have been left unspecified, e.g. the shape of demand. Hence, to the extent one wants to

fully leverage optimal instruments, one would want to follow, e.g., Berry, Levinsohn, and Pakes (1995) and

use a polynomial in θffk1 +ρωk0 as instruments. This can also result in a proliferation of moment conditions,

but less so that if one did not make use of these theoretical restrictrictions and used polynomials in fk1 and

ωk0 individually. We examine some of these issues in our Monte-Carlo experiments.

4.4 Across Firms

Next we ask the question whether instruments can be aggregated across competitors. In other words,

suppose that j faces two competitors, k and l. Under the assumptions in the prior section, we know that

28Note that if one were willing to make the additional assumption that innovations in the productivity process are mean inde-
pendent across firms, then one could use θffk1 + ωk1 instead of θffk1 + ρωk0.
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the optimal instruments depend only on the two scalars θffk1 + ρωk0 and θffl1 + ρωl0, but we ask whether

there are additional assumptions such that these can be combined into some scalar instrument

m(θffk1 + ρωk0, θffl1 + ρωl0; θ, ρ)

that does not depend on any unknown parameters (e.g. aspects of unspecified demand). It turns out we can,

but this requires considerably more assumptions than in the prior section, even with homogeneous goods.

The intuition is that while, e.g. in a Cournot model, firm j only cares about the sum of quantities of its

competitors, these quantities are determined in equilibrium, so the aggregation of the factors determining

these quantities (e.g. θffk1 + ρωk0 and θffl1 + ρωl0) is non trivial. We again emphasize that the additional

assumptions are only necessary for the effi ciency property to hold, i.e. their violation does not affect

consistency.

We maintain Assumption (6) (expanded to multiple competitors), and additionally assume

Assumption 7 Production technology is Cobb-Douglas with constant returns to scale in the variable input,

i.e.

qjt = θ0 + vjt + θffjt + ωjt

Assumption 8 Linear aggregate demand

Pt = α− βQt

Assumption 9 Given the predetermined variables (fjt’s, ωjt’s, and zt) firms simultaneously choose vjt

to maximize profits under a non-common knowledge belief structure in which each firm j believes that each

other firm k believes that all other firms have f =fkt and ω =ωkt.

Assumptions (7) and (8) are self explanatory. Assumption (9) is a behavioral assumption that is more

unusual. It can be summarized by "everybody thinks everybody (else) thinks everybody is like them"

(ETETEILT) - i.e. each firm knows that there is heterogeneity in fjt and ωjt across j, and knows the values

of that heterogeneity for all other firms, but believes that all other firms k play more naively and assume

that everybody is like themselves (i.e. like k). In other words, firm j believes that all other firms k believe

they are playing a homogeneous firm Cournot game where everybody has f =fkt and ω =ωkt. This is
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somewhat reminiscent of level-k rationality (e.g. Nagel (1995)) in that players believe other players are not

as sophisticated as them, but distinct as the beliefs are different.29

Assumption (9) is helpful in our situation because it simplifies how the heterogeneity enters the first order

conditions. We know that firm j only cares about the total quantity of other firms,
∑

k 6=j Q(Vkt, Fkt; θ) exp(ωjt).

With ETETEILT, firm j believes each element in this sum is the solution to a homogeneous firm Cournot

game with costs based on fkt and ωkt. Thus, each element of the sum only depends on fkt and ωkt. This

is much simpler than Cournot games with heterogeneous firms, which typically do not have closed form

solutions, and with the additional assumptions of CRS in the variable input and linear demand, we obtain

Theorem 7 Under Assumptions (6), (7), (8), and (9), firm j’s optimal variable input choice vjt =

v(ωjt, fjt,ω−jt,f−jt, zt) depends on the vectors ω−jt and f−jt only through their dimension J − 1 and

the scalar ∑
k 6=j

1

exp(θ0 + θffkt + ωkt)

Proof. See Appendix

Since the scalar summary statistic in Theorem (7) does not depend on parameters other than those of the

structural objects being estimated, it can serve as the basis of an optimal instrument calculation similar to the

prior section. To make things most straightforward, suppose that one is willing to strengthen the assumption

E
[
ξjt | Ijt−1

]
= 0 to E

[
ξjt | Ijt−1,ω−jt

]
= 0 - this is essentially making the additional assumption that the

ξjt are mean independent across firms. Based on Theorem (7), this means that the optimal instrument for

E [vjt| Ijt−1,ω−jt] will depend on f−jt and ω−jt only through the scalar
∑

k 6=j
1

exp(θ0+θffkt+ωkt)
.30 This is a

potentially large dimensionality reduction, especially if J is large and there are multiple fixed inputs. Again,

one would include a polynomial in this scalar instrument to fully leverage its optimality. If one is not willing

to make the additional assumption that E
[
ξjt | ω−jt

]
= 0, an alternative is to use

∑
k 6=j

1
exp(θ0+θffkt+ρωkt−1) ,

but since the innovation component of ωkt (i.e. ξkt) is in the denominator, this is only an approximation as

the variance of the innovation term goes to zero.

While the above is one strategy to limit the proliferation of instruments across firms, there are others. For

example, instead of a basis of polynomials in fjt, ωjt−1,f−jt,ω−jt−1, and zt one could limit dimensionality

29Like level-k rationality, ETEETEILT can be iterated, e.g. "everybody thinks everybody (else) thinks everybody (else) thinks
everybody is like them"
30And if J varies across markets, the number of competitors J − 1. However, an observation from the proof of Theorem (7) is

that if one adds the additional assumption that the inverse demand intercept α scales in J + 1 (i.e. that α
J+1 is constant, consistent

with more firms entering stronger markets), then one no longer needs to add J − 1 if J varies across markets. In this case the
optimal instrument will depend on f−jt and ω−jt only through

1
J+1

∑
k 6=j

1
exp(θ0+θffkt+ωkt)

.

38



(and enforce exchangeability in −j) by using polynomials in fjt, ωjt−1,M(f−jt,ω−jt−1), J, and zt, whereM

includes moments of its arguments, e.g. mean(f−jt), var(f−jt), cov(f−jt,ω−jt−1), and higher order moments

(under the assumptions of the prior section, one could instead use M(θff−jt + ρω−jt−1)), describing the

nature of j’s competition. Of course, if one uses more than first moments, this approach will require more

instruments than if one calculates instruments based on the assumptions described above.

4.5 Unobserved Competitors

Using the oligopoly instruments as described in the previous subsections requires observing all the competi-

tors of firm j. In some datasets, this may not be available. For example, a dataset may include only a

sample of firms so that the researcher does not observe all (or any) competitors of j. Or, a dataset may

include all firms, but the researcher is not sure exactly who competes with who - e.g. if firms differ based on

geographic location, are all firms within 10 miles competitors, or are all firms within 100 miles competitors?

An interesting question is whether the idea behind oligopoly instruments can still be helpful here. We

consider this under the polar opposite case than above, i.e. we know the firms in our dataset have competi-

tors, but instead of observing all of the competitors we do not observe any of these competitors.31 There

are two immediate implications of this. First, since firms do have competitors but they are unobserved,

OP/LP-style first stages violate the scalar unobservable assumption w.r.t. v () and cannot be utilized. How-

ever, one can still proceed with the TC or DP approaches, which do not require this scalar unobservable

assumption. Second, without observing anything about the competitors of each j, one obviously cannot

construct any of the instruments described above for use in the second stage.

On the other hand, even if the econometrician does not observe the competitive factors in Ijt−1 required to

explicitly form the oligopoly instruments, it is possible that there are other elements of Ijt−1 that are observed

to the econometrician and correlated with the oligopoly instruments that can generate identification. In

particular, we focus on the lagged value of j’s variable input, i.e. vjt−1. By the timing and information

assumptions of the model, vjt−1 ∈ Ijt−1. Moreover, in the oligopoly models above, vjt−1 is chosen in

equilibrium as a function of the (now unobserved) f−jt−1 and ω−jt−1. Lastly, if fixed factors f are subject

to dynamic accumulation and there is any persistence in ω, then f−jt−1 and ω−jt−1 will be correlated with

f−jt and ω−jt. Hence, vjt−1 may be correlated with the oligoply instruments and its use as an instrument

may provide identification. We verify this in a simple example in our Monte-Carlo experiments below.

31One could use a combination of the techniques in intermediate cases.
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Using vjt−1 as an informative instrument is not a new idea. It has been used as an instrument many

times in OP/LP-style, TC, and DP approaches. But it has been subject to criticism, (appropriately so)

because of the GNR result that it is an uninformative instrument in a perfectly competitive model (with no

across firm input price variation), and hence in that case should not identify the production function. Our

argument here is that oligopoly situations provide an additional rationale for vjt−1 to be a useful instrument

for estimating production functions. Of course, it is not the ideal oligopoly instrument - as per the previous

discussion, f−jt and ω−jt−1 (or ω−jt) would be. vjt−1 as an instrument only leverages this variation in

competition indirectly - for example it only depends on f−jt−1 (not f−jt) - and its strength will depend on,

e.g. the persistence in f−jt−1 and ω−jt−1.32 This is something else that we evaluate in our Monte-Carlo

experiments.

5 Monte Carlo Experiments

Our Monte-Carlo experiments examine the use of oligopoly instruments. To keep things as simple as

possible, we do this in a two period Cournot duopoly model with one fixed input, and additionally make

the assumption that the econometrician observes ωj0. We take a TC approach, which means that we can

eliminate εjt from the model without needing an OP/LP-style inversion (which is important because we

want to consider the possibility that competitors are not observed). The setup then becomes very simple as

the second stage estimating equation is

qj1 = θ0 + θffj1 + θvvj1 + ρωj0 + ξj1

with the moment condition

E
[
ξjt|Ijt−1

]
= E [qj1 − θ0 − θffj1 − θvvj1 − ρωj0|Ij0] = 0 at θ = θ0

While treating ωj0 as observed is unrealistic (normally it is a function of parameters and lagged variables),

it is helpful because it 1) avoids complications because the GNR non-identification result doesn’t necessarily

apply when production function parameters are restricted (e.g. constant) over time, and 2) it means that

32In some situations it might make sense to use both instruments. For example, suppose one can speculate on each j’s set of
competitors, but is not sure that these sets are exactly correct. Then the instruments f−jt and ω−jt−1 (which are potentially
mismeasured) and the instrument vjt−1 (which is inherently ineffi cient because it depends on f−jt−1 instead of f−jt) will typically
contain distinct information and thus be useful together.
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the second stage is linear in the parameters and can be estimated in closed form by 2SLS (alleviating the

need to ensure correct numeric optimization for many Monte-Carlo replications).

Wanting our simulated datasets to be somewhat representative of real world data, we use the DGP of

Collard-Wexler and De Loecker (2023), which is calibrated to existing datasets, to generate the predeter-

mined data for each duopoly market (fj0, fj1, ωj0, ωj1, fk0, fk1, ωk0, ωk1) . But since their setup assumes

perfect competition, we deviate when generating variable inputs and quantities. In each market and time

period we calculate the equilbrium of a Cournot game to calculate variable inputs (vj0, vj1, vk0, vk1) and

the implied quantities (qj0, qj1, qk0, qk1). The demand curve for the Cournot game has constant elasticity

-3 and is calibrated to replicate (on average) the quantities in Collard-Wexler and De Loecker. We also

briefly consider a monopoly version of this dataset where (fj0, fj1, ωj0, ωj1) is generated in the same way,

and (vj0, vj1) and (qj0, qj1) are set using the monopoly FOC under the same demand curve.

This model can be estimated by 2SLS, i.e. regressing qj1 on fj1, vj1, and ωj0, using as instruments fj1,

ωj0 (since they are in Ij0) plus some version of the competitive instruments from Section 4. Our goal is

to assess the precision of estimates provided by the various competitive instruments. A first observation is

that in the monopoly dataset, there is no identification. Of course, there are no competitors, so no fk or ωk

to use as instruments, but one can attempt to use vj0 as an instrument. But because there is no variation

in the level of competition, this DGP falls within the GNR non-identification framework, i.e. vj0 is not a

useful instrument and the production function is not identified.

Moving to the duopoly situation, we want to compare use of the "true" competitive instruments, i.e. fk1

and ωk0 (or θffk1 + ρωk0), to using what can be thought of as an imperfect version of these instruments,

i.e. vj0. As described in Section 4.5, this can be thought of as a comparison of a situation where the

researcher observes competitors (and hence can use fk1 and ωk0) versus a situation where the researcher

does not observe competitors (or is hesitant to identify who is and who is not a competitor), and hence

is uses vj0 as a substitute to those competitive instruments. Based on our prior results, we expect the

production function to be identified in either case - the more interesting question is the relative precision of

the estimates in the two situations. By comparing these, we can assess the value (in terms of lower variance

estimates) of an empirical researcher knowing the set of competitors of a firm versus not knowing them.

The production function coeffi cients are in fact identified in either case with our Monte-Carlo datasets (we

do 10000 replications, each dataset containing 10000 observations with θf = 0.4, θv = 0.6, ρ = 0.7). Since

the coeffi cients are very precisely estimated and there are no evidence small sample biases (not unexpected

since each firm only has one competitor), we only report the standard deviations of the estimated coeffi cient
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θ̂v across the replications. These are more interesting as they shed direct light on our question regarding

precision. The following table reports these standard deviations for various types of instruments

Instrument z Just z Cubic in z z, z · fj1, z· ωj0 Full 2nd order Full 3rd order

θffk1 + ρωk0 0.0158 0.0147 0.0139 0.0124 0.0123

vj0 0.0139 0.0138 0.0138 0.0137 0.0135

θffk1 + ωk1 0.0132 0.0120 0.0117 0.0103 0.0103

The first row uses the true competitive instrument θffk1 + ρωk0, i.e. assuming it is observed33. The

second row uses the imperfect instrument vj0, i.e. it can be done if competitors are not observed. The last

row uses θffk1 + ωk1 as the instrument - this is valid under the additional assumption that innovations in

ω are uncorrelated across firms in a given market (and like row 1 requires competitors to be observed).

The first column of the table naively uses either θffk1+ρωk0, vj0, or θffk1+ωk1 (in the 3 rows respectively)

as single instruments in just identified 2SLS procedures. Perhaps surprisingly, using vj0 as an instrument

generates more precise estimates (std. dev. 0.0139) than does using the true competitive instrument

θffk1 + ρωk0 (std. dev. 0.0158). This is because, as mentioned in Section 4, these instruments likely do

not enter in linear form, e.g. in 2SLS the endogenous variable vj1 might be better predicted by a non-linear

function of θffk1 + ρωk0 or vj0. We examine this in the next 4 columns, which increasingly add additional

higher order polynomials of the original oligopoly instruments (as well as interactions with the "exogenous"

covariates fj1 and ωj0) as additional instruments in the 2SLS estimation procedure. As can be seen in the

last column, once one gets to a full set of third order instruments (including interactions with the covariates),

the true competitive instruments do show their superiority. That said, the difference is not that large - the

standard deviation of the coeffi cient only decreases from 0.0135 to 0.0123 when one uses the true competitive

instruments rather than simply vj0 - suggesting that in some cases there may not be much precision gain

from actually observing the identity of competitors. Interestingly, there is substantially more increase in

precision in the last row when one makes the addtional assumption that innovations in in ω are uncorrelated

across firms in a given market (and hence can use θffk1 + ωk1 as an instrument instead of θffk1 + ρωk0)

33For this table we simply used the true parameters θf and ρ to construct the instrument θffk1 + ρωk0, but the results are
essentially the same if either 1) we just use fk1 and ωk0 as 2 distinct instruments (i.e. which uses weights of standard overidentified
2SLS), or 2) do a two step procedure where we first do 1), and then construct instruments for the second step using the first step
estimates, i.e. θ̂ffk1 + ρ̂ωk0. This might be different if these were more than duopolies and there was more scope for small sample
biases due to many instruments.
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Returning to the first column of standard deviations in the table, we find it interesting that the lagged

labor instrument is actually superior in terms of precision to θffk1 + ρωk0 when naive linear first stage

specifications are used. This points to a subtle potential advantage of the lagged labor instrument. What

is going on here is that, at least in our experiments, a linear vj0 is apparently a "better" functional form as an

instrument (i.e. more predictive) than is a linear θffk1 + ρωk0. This makes sense since in our monte-carlo,

the functional form through which θffk0 +ωk0 affects vk0 is exactly the same as the functional form through

which θffk1 + ωk1 affects vk1, and hence a simple linear vk0 is almost by default a "reasonable" functional

form for predicting vk1. This is not necessarily true when using a linear θffk1 + ρωk0 as an instrument.

Of course, in real world markets, more things may be changing over time than in our Monte-Carlo setup,

but to the extent primitives may not be changing much over time, this result may also hold more generally.

Of course, in practice one can use higher order terms (with the caveat of potential overidentification and

small sample biases), and one may also want to consider using both θffk1 + ρωk0 and vj0 as instruments

in the case where competitors are observed. While the latter would add no additional information in our

Monte-Carlo experiments (since in our DGP, vj0 is only an imperfect version of the optimal instruments,

e.g. because it depends on fk0 rather than fk1), in practice it might contain additional information - e.g.

the previous literature has noted that vj0 can also be an informative instrument for vj1 if there is serial

correlation in unobserved firm-specific input prices (though this generally is only consistent with DP and

TC approaches), or if there are dynamic implications of firms’choices of v.

6 Extensions

6.1 Multiple Variable Inputs

We have restricted attention so far to production functions with only a single variable input vjt (though

there can be additional variable inputs that enter in Leontief fashion, e.g. in as in the TC approach).

We now discuss implications of having multiple variable inputs (that are substitutable, i.e. not Leontief).

Regarding the OP/LP-style inversion results discussed in Section 3, the quantity setting and Bertrand-

Nash games are more complicated (since now firms are simultaneously choosing levels of multiple variable

inputs). This would significantly complicate the notation, but intuition suggests that the suffi cient statistic

results regarding competition should still hold, and that given suffi cient smoothness/substitution between
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the variable inputs, that any of variable inputs could be used for the first stage inversion.34

Here we focus more on the implications of multiple variable inputs on the use of oligopoly instruments

in Section 4, as the implications are more severe. Consider a Cournot model, for example. If firm j’s first

order condition depends on competitors only through the scalar Q−jt, then it is hard to see how exogenous

oligopoly instruments could move around multiple variable inputs independently. In fact, we can show

Theorem 8 Consider the Cournot model of Section 3.3 and assume a two period duopoly and a production

function with no fixed input, i.e. qj1 = qv (vj1) + ωj1 = qv (vj1) + g(ωj0) + ξj1. This model is not non-

parametrically identified if dim(vj1) ≥ 2.

Proof. Consider a best case scenario where ωj0 and ωk0 are observed by the econometrician. These two

scalars are the only exogenous variables in the model, yet there is a single dimensional function g(·) plus

at least a 2 dimensional (dim(vj1)) function function to be identified. Hence the model fails a basic rank

condition for non-parametric identification.

While this Theorem obviously uses a very stylized model to keep things simple, we believe the non-

identification result could be extended quite generally. The basic point is that standard models of compe-

tition restrict firm interactions on the demand side (i.e. only through quantities or prices), so it is hard to

think about models where changes in the amount of competition a firm faces will generate usable variation

in that firm’s mix of variable inputs.

We think this is an important limitation of oligopoly instruments to recognize, but also want to emphasize

that oligopoly instruments can be combined with other sources of identification to identify such models with

multiple variable inputs. Again, with the DP and TC approaches, vjt−1 can be an informative instrument

for vjt if there are unobserved, firm-specific, serially correlated input price shocks. Hence, use of both vjt−1

and oligopoly instruments could generate identification of coeffi cients on multidimensional vjt.

Another possibility is to combine oligopoly instruments with a first order condition approach (e.g. like

GNR). In a Cobb-Douglas production function, profit maximization implies that ratios of coeffi cients on two

variable (and static) inputs equal the ratio of expenditures on those two inputs. Enforcing this condition

using measured expenditures, the muitiple variable input coeffi cients can be written as a function of just

a single unknown parameter, and hence a single oligopoly instrument should provide suffi cient exogenous

variation for identification. The intuition here is that imposition of the FOCs identifies how individual

variable inputs contribute to a variable input "bundle", and the oligoply instruments provide exogenous

34This also gives the potential for testing, as in Raval (2023).
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variation to identify the effect of increasing or decreasing that bundle. Interestingly, unlike GNR, this FOC

approach does not require the assumption of perfect competition in output markets, since it only relies on

FOCs to obtain ratios of variable input coeffi cients, and in obtaining this ratio, demand elasticities cancel

out.35

6.2 Revenue Production Functions

Next we consider an important issue in the literature, the question of how output is measured. The above

analysis assumes that the econometrician observes (up to measurement error) quantities across firms that

are comparable - e.g. in the quantity setting game this means that a unit of qjt is the same across firms; in

Nash-Bertrand Logit or Nested Logit it requires that, up to logit and nested logit errors, a unit of qjt is the

same for two firms with the same product characteristics xjt. It is straightforward to see the problems if

this is not the case - for example, suppose we have a Cournot model of bread slice production where one firm

produces loaves of bread with 10 slices, and another firm produces loaves of bread with 20 slices (equally

sized). If firms report qjt in terms of loaves, then units are not comparable across the two firms. and, e.g.

the first firm may erroneously appear much more productive than the second just because it puts less slices

in each loaf.

In a case like this, it may be preferable to use revenue of firms Rjt (or log revenue rjt) as a measure

of output. We now present an extension of the Cournot model of Section 3 that applies to this case. It

also can be used in cases where only revenues (and not qjt’s) are observed, along with market level price

deflators. We call this model the "Quality Equivalent Cournot" (QEC) model, because it is essentially a

Cournot model, but where firms produce units of different quality/quantities.

Inverse demand is again given by Pt = P (Qt, Zt) in the QEC model, but Qt is now measured in

standardized units, i.e.

Qt =
∑
j

κjtQjt

where the κjt are scaling factors that measure the relative quality/quantity of each firm j’s product. This

implies that from a consumer perspective, 1
κjt
units of firm j’s product is equivalent to 1

κkt
units of firm k’s

product. Pt is now interpreted as the price of a standardized unit in market t.

Importantly, we allow that the κjt’s are unobserved to the econometrician. This essentially means that

measured Qjt’s are uninformative - a firm could have a high Qjt but actually be producing very little in a

35It does require firms to be price takers in input markets, which is relaxed below.
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substantive sense if κjt is very small. On the other hand, observed revenues of each firm, i.e.

Rjt = PtκjtQjt

are informative, e.g. if Rjt = 2Rkt for firms j and k in the same market t, then firm j is producing twice the

amount of "quality adjusted" units as firm k. While the κjt’s need not be observed, we do assume that the

econometrician observes a market-level price deflator P t that measures the relative price of a standardized

unit in different markets t. Since demand is Cournot (after taking into account the κjts), this deflator is

the answer to a very simple question, i.e. "How much does a dollar purchase of the product in market t vs

market s?". Then we can construct deflated revenues

Q̃jt =
Rjt

P t

and these are now comparable across markets, i.e. if Rjt
P t

= 2Rks
P s

for firms j and k in markets t and s

(respectively), then firm j is producing twice the amount of quality adjusted units as firm k.

Given this setup, assuming Fjt, ωjt, and κjt that are known to all firms, consider a Cournot-Nash

Equilbrium in firms’choices of variable inputs Vjt. This is exactly equivalent to the model in Section 3

replacing quantity Qjt with deflated revenues Q̃jt, and all the prior results concerning Cournot models hold.

Importantly, note that if this is the model, data on deflated revenues is preferrable to data on quantities.

Again, there is no need to observe κjt, and κ−jt’s, and these can be correlated with unobservables. In fact,

there is no real compelling reason to even try to observe κjt’s, Qjt’s, or firm specific prices given their own

definition of a unit of output (i.e. non-standardized units) because deflated revenues are the "true" measure

of what firms in this model are producing.

6.3 Imperfectly Competitive Input Markets

Our extensions of the OP/LP-style approach in Section 3 make use of the function

Vjt = V (ωjt, Fjt, Xjt, Q−jt, Zt) (48)

or more generally

Vjt = V (ωjt, Fjt, Xjt, Q−jt, Zjt) (49)
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While these are flexible w.r.t. some different models of competitive interactions in output markets, they do

place restrictions on the nature of variable input markets36. For example, they are consistent with perfectly

competitive variable input markets in which all firms in a given market t face the same variable input price,

or where each firm j faces a different competitive variable input price. Of course, the market-specific price

(or the firm-specific prices), would need to be observed and included in Zt (or Zjt) respectively.37 (48) or

(49) are also consistent with "monopolistically competitive" input markets, where each firm j faces its own

upward sloping supply curve of V , as long as any potential differences in those supply curves across markets

or firms is observed and included in Zt or Zjt.

However (48) and (49) are generally not consistent with variable input markets in which firms in the

same market t interact, e.g. where one firm’s choice of variable input quantity affects the price of the variable

input for other firms in market t. We next sketch out how input market interactions can be incorporated in

a similar way to how we treated output markets. Consider a simple Cournot-like (homogeneous) variable

input market in which all firms j in market t participate. Assume the following inverse supply curve for

the variable input

P Vt = PV (Vt, Zt) (50)

where Vt =
∑

j Vjt is the total amount of the variable input demanded by all firms in market t. In other

words, the price all firms pay per unit of the variable input in market t, i.e. P Vt , depends on the total

variable input purchased by all firms in t. Presumably ∂PV
∂V > 0. Defining j’s competitors’total variable

input usage as the scalar V−jt =
∑

k 6=j Vkt, it is straightforward to show that in the models of Section 3, the

following equation holds in equilibrium across j and t

Vjt = V (ωjt, Fjt, Xjt, Q−jt, V−jt, Zt) (51)

and can be used for an OP/LP-style first stage inversion. In other words, to accommodate this type of

strategic interaction in the variable input market, one simply needs to additionally condition on another

scalar, the variable input use of j’s competitors. (51) holds because under these assumptions, any two firms

facing the same V−jt and Zt must also face the same residual input supply curve.38

36There is increased recent interest in the nature of input markets, see e.g. Rubens (2023).
37If these variable input prices are not observed, one typically needs to assume they are the same across markets t, in which case

they are implicitly part of V (though one might alternatively make the assumption that they are the same only within groups of
markets indexed by m, and estimate a separate Vm for each of these groups of markets (e.g. z group contains all geographic markets
in a given year)). .
38Presumably these results could also be extended to some cases where the definition of input markets does not necessarily

47



While interesting in its own right, the above discussion also provides a potential resolution to the multiple

variable input issue decribed in Section 6.1. Suppose there are two variable inputs, V 1 and V 2, each in which

firms compete within market, e.g. facing two separate market supply curves similar to (50). Also suppose

that these variable inputs interact differentially with F and ω in the production function (ruling out simple

Cobb-Douglas). If this is the case, then through the interaction in input markets, variation in competitors’

F’s and ω’s can potentially differentially affect firm j’s choices of the two variable inputs. For example,

suppose that the production function is such that F relatively increases the marginal product of V 1 (vs V 2),

and ω relatively increases the marginal product of V 2 (vs V 1). Then a firm facing competitors with relatively

high F’s will in equilibrium face relatively higher prices of V 1 and choose relatively less of this variable input,

while a firm facing competitors with relatively high ω’s will in equilibrium face relatively higher prices of

V 2 and choose relatively less of that variable input.39 In other words, competitive instruments now have

the ability to relatively move the two variable inputs and identify coeffi cients on both of them, avoiding the

non-identification result in 6.1. Note that this argument is relevant for not only OP/LP-style approaches,

but also for the use of competitive instruments in the TC and DP approaches. And, as usual, these latter

two approaches do not require assumptions on the nature of competition in the variable input markets such

that an equation like (51) can be derived.

7 Conclusion

We have described how the presence of imperfect competition and potential strategic interactions introduces

distinct challenges when estimating production functions. We started by highlighting that some existing

approaches to production function estimation cannot completely abstract away from the presence of im-

perfect competition in the product market. We then extended these existing approaches to accommodate

additional oligopoly models commonly used in empirical work by using a suffi cient statistic approach, and

showed that the presence of such strategic interactions has important benefits in that they introduces addi-

tional exogenous variation that can help identify production functions. We also considered how to optimally

leverage this exogenous variation, both with and without direct data on firms’competitors, and in Monte-

Carlo experiments 1) verified that the existence of strategic interactions can identify production functions

that would not otherwise be identified, and 2) assessed the extent to which what applied researchers ob-

correspond to the definition of output markets.
39If there are multiple fixed inputs in F , the same argument could be be made if V 1 and V 2 differentially interact with the

elements of F .
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serve about competition can affect the precision of estimates based on this variation. As usual, it would be

interesting to investigate how the approaches here extend and combine with other recent developments.40

40For example, the models in this paper for the most part assume Hicksian neutral technological change, so it would be interesting
to assess them w.r.t. the recent literature on non-Hicksian neutral technological change, e.g. Doraszelski and Jaumandreu (2018),
Raval (2019), Zhang (2019), Kasahara, Schrimpf, and Suzuki (2020), Demirer (2020), Raval (2020), Oberfield and Raval (2021),
Balat, Brambilla, and Sasaki (2022), Pan (2022), Ackerberg, Hahn, and Pan (2023).
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8 Appendix

8.1 Proof of Theorem 4

By construction the system of equations hold for the true ε1t, ..., εJt at the true (observed) vectors qt, vt,

and ft To prove that the the true ε1t, ..., εJt are the only solution, suppose there is a second solution

ε̃1t, ..., ε̃Jt (where at least one ε̃jt 6= εjt) . This means that qjt = v−1(vjt, fjt,
∑

k 6=j exp(qkt− ε̃kt), zt)+ ε̃jt for

all j. Switching back to the originally defined v−1 (i.e. before subtracting q(vjt, fjt; θ)), this is equivalent

to

qjt = q(vjt, fjt; θ) + v−1(vjt, fjt,
∑
k 6=j

exp(qkt − ε̃kt).zt) + ε̃jt ∀j

This then implies that in addition to the true actual quantities q∗jt = qjt − εjt, there are alternative "true"

(not mismeasured) quantities q̃∗jt = qjt − ε̃jt such that

q̃∗jt = q(vjt, fjt; θ) + v−1(vjt, fjt,
∑
k 6=j

exp(q̃∗jt).zt) ∀j

and where q̃∗jt 6= q∗jt for at least one j. Define ω̃jt = v−1(vjt, fjt,
∑

k 6=j exp(q̃∗jt).zt) for all j - note that

at least one ω̃jt 6= ωjt (since otherwise q̃∗jt = q∗jt ∀j and ε̃jt = εjt ∀j). By definition of v−1, a firm with

(fjt, ω̃jt), facing competitors producing a total quantity of
∑

k 6=j exp(q̃∗jt), must optimal choose vjt (this

relies on the assumptions of the prior section that there is a reaction function (vs reaction correspondence)

in the appropriate game). Since this is true for all j, this means that given the vectors of observed fixed

inputs ft and "alternative" productivity shocks ω̃t, the vector of observed variable input choices vt constitue

an equilibrium. This contradicts Assumption (5) that there is a unique vector ωt that is consistent with

the observed vector of variable inputs vt.

8.2 Proof of Theorem 7

With CD production and constant returns to scale in the variable input, the production function for firm k

is

Qkt = Vkt exp(θ0 + θffkt + ωkt)
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Therefore, marginal cost is

MCkt =
PV (Zt)

exp(θ0 + θffkt + ωkt)

Under ETETEILT, firm j believes that firm k will maximize profits assuming a symmetric Cournot-Nash

equilibrium where everyone else has marginal cost MCkt. With linear aggregate inverse demand Pt =

α− βQt, this means firm j believes firm k’s thinks its revenues are

Rkt = (α− β (Qkt +Q−kt))Qkt

and marginal revenue is

MRkt = (α− β (Qkt +Q−kt))− βQkt

= α− 2βQkt − βQ−kt

Equating to marginal cost gives the FOC

α− 2βQkt − βQ−kt = MCkt

and solving for the symmetric equilibria

α− (J + 1)βQkt = MCkt

or

Qkt =
α−MCkt
(J + 1)β

(52)

Since firm j believes that each opposing firm k will produce according to (52), firm j’s percieved FOC is

α− 2βQjt − βQ−jt = MCjt

or

α− 2βQjt − β
∑
k 6=j

(
α−MCkt
(J + 1)β

)
= MCjt
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Solving out for firm j’s optimal Qjt gives

Qjt =
α− β

∑
k 6=j

(
α−MCkt
(J+1)β

)
−MCjt

2β

=
α−

∑
k 6=j

(
α−MCkt

(J+1)

)
−MCjt

2β

=
α− J−1

J+1α−
1

J+1

∑
k 6=jMCkt −MCjt

2β

=
2 α
J+1 −

1
J+1

∑
k 6=jMCkt −MCjt

2β

=
2 α

(J−1)+2 − PV (Zt)
1

(J−1)+2

∑
k 6=j

1
exp(θ0+θffkt+ωkt)

−MCjt

2β

which depends on ω−jt and f−jt only through their dimension J − 1 and the scalar
∑

k 6=j
1

exp(θ0+θffkt+ωkt)
.

As noted in a footnote in the main text, if instead of being constant across markets, one assumes the inverse

demand intercept α scales in J + 1 across markets, i.e. α = (J + 1) α̃ (which would be consistent with more

firms entering stronger markets), then the last line of the above reduces to

Qjt =
2α̃− PV (Zt)

1
(J−1)+2

∑
k 6=j

1
exp(θ0+θffkt+ωkt)

−MCjt

2β

which depends on ω−jt and f−jt only through the scalar
1

J+1

∑
k 6=j

1
exp(θ0+θffkt+ωkt)

(i.e. regardless of the

number of competitors).
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