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Abstract

The presence of imperfect competition introduces distinct challenges when estimating production func-
tions. We start by highlighting that some existing approaches to production function estimation cannot
completely abstract away from the presence of imperfect competition in the product market. We then
extend these existing approaches to accommodate some additional oligopoly models commonly used in em-
pirical work by using a sufficient statistic approach, and show that the presence of such strategic interactions
has important benefits in that they introduces additional exogenous variation that can help identify pro-
duction functions. We study how to optimally leverage this exogenous variation, both with and without
direct data on a firm’s competitors, and use Monte-Carlo experiments to 1) verify that the existence of
strategic interactions can identify production functions that would not otherwise be identified, and 2) assess
the extent to which what applied researchers observe about competition affects the precision of estimates

based on this variation.
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1 Imperfect competition: challenges and benefits

The estimation of production functions is an important step in a host of economic analyses ranging from
identifying drivers of productivity growth to the study of market power. There exists a variety of approaches,
e.g. the "proxy variable" literature originating with Olley and Pakes (1996, OP) and Levinsohn and Petrin
(2003, LP) which we refer to throughout as "OP/LP-style approaches", and the dynamic panel approach
of Blundell and Bond (2000, BB). While in principle these approaches only require fully specifying the
technological relationship between output and inputs, they do put restrictions, some more explicitly than
others, on the underlying operating environment of producers. This paper studies these restrictions in the
context of imperfect competition and potential strategic interactions in the product market. While much
of the literature has been carried out without explicitly taking a stand on the underlying market structure
in the product market, we highlight that these approaches to production function estimation cannot (or
should not) completely abstract away from the presence of imperfect competitionﬂ

After providing a brief summary of the key aspects of these papers, we summarize the extent to which
existing applications of these techniques, in particular those based on OP /LP-style approaches, are consistent
with imperfect competition. We then show how they can be extended to feasibly allow more general models
of imperfect competition by deriving sufficient statistic results that can be used to control for the presence
of strategic interactions among producers. The models covered include homogeneous good quantity setting
competition (e.g. Cournot) and Bertrand-Nash price setting under a (nested) logit model of demand -
these are models of oligopoly commonly used in applied work. We show that in these cases, OP/LP-style
approaches can use a modified "first stage" inversion equation based on a low dimensional sufficient statistic.
A fundamental contribution of the OP/LP based literature is that their semiparametric approaches allow
production functions to be estimated without fully specifying other aspects of firms maximization problems.
Our extensions to imperfect competition for this set of models inherit this propery, i.e. we are able to
estimate production functions without fully specifying models of demand, input choice, and in some cases
the nature of competition. We then argue that if one wants to consider more general models of strategic
interactions, one can alternatively make additional technological restrictions, e.g. a restricted linear process
for productivity as in the BB dynamic panel (DP) approach, or an approach discussed in Ackerberg, Caves,
and Frazer (2015, ACF) and De Loecker and Scott (2022) based on a Leontief assumption that we call a

!'We note that other approaches may be able to though reliance on additional assumptions. In particular, as detailed by De
Loecker and Syverson (2021), the factor share approach only requires observing cost shares, but imposes assumptions of constant
returns to scale and that all inputs in production are variable factors.



technology control (TC) approach.

While the above illustrates how imperfect competition is non-trivial for the first stage of OP/LP-style
approaches, it on the other hand can provide additional exogenous variation that can help in the second stage
of these approaches (as well as the TC and DP approaches), More specifically, it introduces a new set of
valid instruments - the productivity shocks and fixed factors of a firm’s competitors - that shift the residual
demand curve facing a firm and thus can generate exogenous variation in that firms’ use of variable inputs.
This can be thought of as a supply side analogue to the common use of competitive instruments in demand
estimation, e.g. Bresnahan (1987) and Berry, Levinsohn, and Pakes (1995). We show how the existence of
these "oligopoly instruments" can in fact break the important non-identification result of Gandhi, Navarro,
and Rivers (2020, GNR), and, applying Chamberlain (1985), show that there are interesting considerations
in considering optimal use of these instruments. Moreover, we show that lagged variable inputs can be valid
instruments in the case of strategic interactions among producers, similarly breaking the non-identification
result of GNR under perfect competition. We also note an important implication of this, i.e. that utilizing
imperfect competition as an source of exogenous variation does not necessarily require defining markets or
even observing firms’ sets of competitors. These issues are relevant not only for OP/LP-style approaches,
but also the TC and DP approaches.

We conclude with a Monte-Carlo study and some extensions of our results. The Monte-Carlo study
verifies that oligopoly instruments can identify production functions (that would otherwise not be identified
as per GNR), and assesses the precision of estimates obtained through different competitive instruments,
in particularly comparing the case where competitors are observed versus when they are not observed.
In the extensions, we assess a key limitation of competitive instruments in that they cannot generally
provide independent exogenous variation for multiple variable inputs, assess the applicability of our results
to situations in which only firm revenues (and not physical quantities) can be reliably observed, and consider
the possibility of imperfect competition also being present in input markets.

Lastly, we want to emphasize that our focus is on situations where one’s primary goal is to estimate
production functions and one does not have the exogenous price variation to additionally estimate a demand
system. In other words, we envision a "standard" production dataset primarily composed of data on inputs
and outputs. If one additionally has the exogenous price variation and other needed data to sufficient
fully specify and estimate a demand system, more could likely relax some of the substantial assumptions we
make here, e.g. regarding unobserved demand shocks or product characteristics and models of demand and

competition. While recent years have seen an increase in the availability of datasets that have the variation



necessary to estimate both production and demand, they still unfortunately constitute a small minority.

2 Setup

Consider a firm j producing output (Q;:) in a market/period ¢ (which we use to index both different
geographic markets and the same geographic market across time) using observed variable and fixed inputs
Vj¢ (e.g. labor) and Fjj; (e.g. capital), with an unobserved (to the econometrician) productivity shock wj;.

We consider a production function of the form
Qjr = Q(Vjt, Fji; 0) exp(wji) exp(€jt) (1)
or in logs (represented by lower case and used interchangeably through the paper as per convenient)
qjt = q(vjt, fit; 0) + wjt + €t (2)

where €j; is classical measurement error in gj; that is mean independent of all other variables in the model
(though possibly correlated over time). fj; can represent a vector of multiple fixed inputs, though for now
we assume that the variable input vj;; is scalar. Important issues regarding multivariate vj; are discussed
at the end of the paper.

There are two aspects of OP/LP-style and dynamic panel approaches that we review here because they
are particularly relevant for extending the approaches to imperfect competition in product markets (one can
consult the surveys of Ackerberg, Berry, Benkard, and Pakes (2007, ABBP) and De Loecker and Syverson
(2021, DLS) for more extensive discussion). First is the semi-parametric "first stage" inversion that is a
crucial step for OP/LP-style approaches, but not dynamic panel approaches. Second are "second stage"
moment conditions based on timing and information set assumptions used by OP/LP-style approaches - as
discussed in ACF and elsewhere these are very similar to the moment conditions used in the dynamic panel
approach of BB. We now discuss each of these aspects in turn, as well as a technology control approach that

also relies on the second stage moment conditions.



2.1 OP/LP-Style First and Second Stages

While we describe them generically as OP/LP-style approaches, we actually restrict attention to LP’s
proposed use of Vj; (or equivalently, vj;) as the "first stage" control variable (the original OP approach
instead uses investment). This restriction is crucial because the sufficient statistic results here do not apply
when investment is used as the control variable (fortunately a large proportion of the literature does in
fact use Vj; as the control, i.e. where our results apply). This highlights one of the advantages pointed
out by LP regarding using Vj; as the control variable - optimal choice of Vj; can often be characterized by
considering a relatively simple static first order condition, while investment is inherently dynamic and more
complicated.

More specifically, LP derive conditions under which firms’ optimal choice of variable input Vj; can be

written as

Vit = Vi(wjt, Fjt) (3)

where V; is strictly monotonic in the scalar unobservable w;;. One example of these conditions is the
standard assumption of price taking in factor markets, and perfectly competitive output markets, though
as we discuss below, LP also consider more general conditions. The importance of the scalar unobservable
(plus strict monontonicity) assumption is that it implies that any two firms in the same market ¢ with the
same observed Vj; and Fj; must have the same wj;. Note that since V' is indexed by ¢, is consistent with
firms facing different output or input prices in different markets, and these do not need to be observed by
the econometrician.
Given conditions under which holds, the first stage proceeds by inverting for wj; and substituting
into (2)), i.e.
qit = q(vjt, fi:0) + Vi (Vie, Fe) + €0 (4)

Since this equation only has the single econometric unobservable €;; that by assumption is mean independent
of Vj; and Fj; (and their logged versions vj; and fj;), there are no endogeneity problems in . However,
OP/LP-style approaches treat the inverse function Vfl non-parametrically, and hence q(vj, fj¢;60) is not
identified from solely this equation. But one can non-parametrically regress ¢j; on v;; and f;; and this first
stage, while not identifying g(v;¢, fji; 0), does produce estimates of the sum q(vj¢, fj¢;6) + Vt_l(Vjt, Fjt) and
the residuals eth|

2More commonly the non-parametric component of is written in log form g;: = q(vjs, f1;0) + ﬂgl(vjt, fjt) + €j¢, but this is
equivalent given V,~! (v;!) is treated non-parametrically.



Denoting the estimates of the residuals as €j;, we next consider the "second stage" of OP/LP-style
approaches. For clarity we present this under the assumptions that the production function is Cobb-
Douglas and that wj; follows the AR(1) process wji = pwji + §j;, over time, though the results can be

generalized. Given this, we can write the production function as
(7]-,5 = gjt —€jt =0y + effjt + vijt + wjt (5)

with the single unobservable wjﬂ
Second stage estimation then proceeds under the assumption that the innovation in the productivity

shock process satisfies

E & | Ij1] =0 (6)

where [;;_1 is firm j’s information set at time t—1. Various different timing and information set assumptions
have been made in the literature, but a typical one is that fj; € Ij;—1, but that vj; ¢ Ij;—1 (though v € Ij).
This corresponds to the assumption that firms’ do not observe the innovation &, until time ¢, plus a standard
interpretation of variable and fixed inputs - e.g. that variable inputs can be chosen up to the time of
production (t), while fixed inputs are predetermined, i.e. need to be chosen prior to production time (e.g.
at t —1).

Using , the moment condition @ can be rewritten in terms of observables asﬁ

E[(gjt — 00 — 01 fjt — Ovvjt) — p(qjt—1 — b0 — Of fit—1 — Opvje—1) | Ljz—1] =0 (7)

Using moment conditions like these to estimate the production parameters (and p) is the basis of the second
stage of most OP /LP-style approaches, though as discussed below, there are some cases where these moment

conditions have been shown to not identify the parameters (GNR).

3Pakes and Olley (1995) and Hahn, Liao, and Ridder (2018) discuss how the fact that €j; is estimated in a prior stage affects
inference, an issue we abstract away from here.

4While to conserve notation we use a single subscript ¢ to describe markets that are different either geographically or temporally,
when t and ¢ — 1 appear in the same equation they should be taken to indicate the same geographic market in sequential time
periods.



2.2 Dynamic Panel Approach

As alluded to above, the dynamic panel (DP) approach to estimating production functions (BB) utilizes
similar moment conditions, though since these approaches do not utilize a first stage to estimate the €, for

this model they instead would use the moment condition

E [fjt + €t — peji—1 | Ljt—1] (8)

= El(gjt—00—0¢fjt — Owvjr) — p(qje—1 — 00 — O¢ fji—1 — Owvji—1) | Ijz—1] =0 9)

where again, the exact composition of Ij;_1 depends on the specific timing and information set assumptions
one makes. As discussed in, e.g. ACF, Shenoy (2021), DLS, Ackerberg (2023), and Doraszelski and Jauman-
dreu (2023), an important advantage of the DP approach is that by avoiding the OP /LP first stage, it does
not require the scalar unobservable and strict monotonicity assumptions of that first stage. Doraszelski and
Jaumandreu (2023) advocate using the DP approach under imperfect competition for exactly this reason.
On the other hand, unlike OP/LP-style approaches, standard DP approaches do not generalize to more
flexible 1st order productivity shock processesE]

2.3 Technology Control Approach

Another approach that avoids the OP/LP first stage inversion (also at the cost of additional assumptions)
is mentioned in ACF and De Loecker and Scott (2022). It relies on the assumption that the production

function is Leontief in a second variable input Mj; and of the form
Qjt = min{Q(Vje, Fjt; )i, G(Mjt) } Zje (10)

M;; for exanple, could be a material input that is utilized proportionally to output. In this case, assuming
there are no unutilized inputs (i.e. the firm sets Q(Vj:, Fjt;0)Q2j: = G(M;t)), one can non-parametrically
regress ¢j¢ on Mj; (or mj; = In(Mj;)) to obtain estimates of the measurement errors, €;;. With these in hand,

one can directly form the moments . We denote this last approach a technology control (TC) approach as

’As detailed in the aforementined papers, the tradeoff between OP and DP approaches can loosely be described as 1) DP
approaches do not require the scalar unobservable and strict monotonicity assumptions necessary to identify €;; in the OP first
stage, versus, 2) DP approaches require stronger assumptions on first order productivity shock process, i.e. while OP style approaches
can straightforwardly be generalized to w;; = g(wjz) +§& 4, it is harder to generalize DP approaches from a simple AR(1) wj; process
(though with additional differencing DP approaches can add an additional fixed effect «; to the product function).



it is based primarily on an additional assumption (Leontief) regarding production technology. In relation
to OP/LP-style approaches, the tradeoff is that by making this additional Leontief assumption on M,
the TC approach, like the DP approach, does not require the scalar unobservable and strict monotonicity

assumptions required to invert E]

2.4 Discussion

Given the above setup, we can layout how this paper proceeds regarding assessing the impact of imperfect
competition on these three different estimation approaches - OP/LP, DP, and TC. The paper is divided
into two parts. The first part corresponds to the first stage inversion of the variable input demand function
Vit = Vi(wjt, Fj¢). Being mindful of the scalar unobservable assumption necessary for this inversion, we
consider the extent to which this can be applied (or extended) to allow imperfect competition. As described
above, this is only relevant for OP/LP-style approaches (since the DP and TC approaches do not require
the inversion).

In contrast, the second part of the paper concerns how imperfect competition affects the second stage
moment conditions, e.g. F [ﬁjt | ]jt_l] =0or E [ﬁjt +€jt — peji—1 | Ijt—l], and is relevant for all three
approaches. In short we show how imperfect competition and strategic interactions can be helpful in
identifying production function parameters using these moments. In some cases it enables one to avoid the
non-identification result of GNR. We then study different aspects of various versions of the competitive
instruments we advocate, including their efficiency properties, and illustrate some of their characteristics

with Monte-Carlo experiments.

3 First Stage Inversion with Imperfect Competition

3.1 Canonical OP/LP Proxy Variable

It has previously been recognized (e.g. OP, LP, ABBP, DLW, and ACF) that the basic factor demand
function described in the prior section

Vit = Vi(wjt, Fit) (11)

6The TC approach might also be particularly sensitive to measurement error in M (though of course all the discussed estimators
are likely inconsistent in this context, see, e.g. Collard-Wexler and De Loecker (2022)). Of course, if one has the choice of multiple
material inputs, they can choose the one they think least prone to measurement error.



is not consistent with all forms of imperfect competition. This equation characterizes firms’ optimal choice
of the variable input, and in general, with imperfect competition, firm j’s optimal choice of V}; will not only
depend on their own wj; and Fj;, but also productivity shocks and fixed input levels of other firms in market
j.

However, as noted by the aforementioned work, equation can hold to the extent that competition is
symmetric enough (up to observables). As one example, suppose that firms j in market ¢ are monopolistic
competitors, e.g. who each produce and sell in their own geographic submarkets with identical downward
sloping demand curves (and face identical input prices). Since there is no strategic interaction between
firms in market ¢, and since each firm in market ¢ is facing the same input and output market conditions
(note that these conditions can vary across markets ¢ since V' is indexed by t), equation will hold.
The assumption of symmetry across these monopolistic competitors can be relaxed to the extent that any
asymmetries are observed. For example, suppose that in market ¢, all firms j face the same demand curve
up to some vector Z;; that is observed by the econometrician. ~ This can be accommodated by simply
adding Zj; into the function, i.e.

Vit = Vi(wje, Fjt, Zjt) (12)

Since Zj; is assumed observed, the scalar unobservable assumption still holds. By the same logic, Zj; can
also be used to capture any differences in input markets faced by firms j in market ¢, again to the extent to
which they are observed (e.g. each firm faces a different price of the variable input Vj; and these different
prices are observed). Under these assumptions, any two firms at ¢ who have the same w;; and F}j; and face
the same output and input market conditions (measured by Z;;) will optimally choose the same Vj;.

This monopolistic competition environment highlights the importance of a key contribution of OP re-
garding the power of their semiparametric approach. Specifically, the fact that OP/LP treat V; non-
parametrically means that the production function coefficients can be estimated without fully specifying the
form of the demand curves faced by the monopolistic competitors, nor estimating those demand curves. It
only requires that these demand curves be the same for all j (at a given t) up to observables Zj. It is
a distinct advantage to be able to estimate some structural parameters (in this case production function
parameters) without needing to commit to a parametric model of other aspects of the environmentm

Equation (L1} (or ) can also hold in models with actual strategic interactions between firms in a

market ¢, as long as there is sufficient symmetry. Suppose that all the firms in market ¢ compete in a

"Similarly, when an investment control variable is used (as in the original OP), the semiparametric approach allows one to
estimate production function parameters without needing to fully specify the dynamic investment problem of firms.



homogeneous good Cournot game, choosing Vj; (or equivalently @;;) conditional on fixed levels of (wj¢, Fjjt)
for all j. Note that since the firms in market ¢t may have different (wj¢, Fj), this is a Cournot game where
firms have heterogeneous variable cost curves (the cost curve for j is determined by the production function
evaluated at (wjs, Fj;)). Because firms are symmetric up to (wj:, Fj) in this model, equation will
generally holdﬂ The key here is that in the standard OP/LP approach, V; is typically indexed by market ¢.
Therefore what requires is that in a given market ¢, any two firms j and j’ with the same w;; and Fj;
optimally choose the same level of the variable input. In this case this is true because firms are symmetric
on the demand side of a homogeneous good Cournot model. Hence the set of competitors faced by j (which
includes j') is identical to the set of competitors faced by j’ (which includes j). In other words, in this
model the ¢ subscript on V;(.) is sufficient to capture the effect of strategic interactions on factor demand.
This was first pointed out by OPH The same logic can hold for simple differentiated product Bertrand-Nash
models that are sufficiently symmetric, e.g. consider (12)) where Zj; contains all the product characteristics
of firm j’s product.

There is, however, a conceptual problem with the above approach of indexing the function Vi(.) by ¢
to implicitly allowing for models with strategic interaction like Cournot and Nash-Bertrand. Recall that
OP /LP-style approaches treat the function V;(.) (i.e. V;"!(.)) non-parametrically in order to avoid specifying
other parts of the model (e.g. the demand curve, dynamic optimization). Hence, when one is indexing V
by market ¢, econometric consistency requires the number of observations (firms) in each market t to go
to infinity. But a large number of firms in a given market is not typically what one has in mind when
thinking about Cournot and differentiated product Nash-Bertrand models of imperfect competition. More
practically, for markets we typically think of as being imperfectly competitive - perhaps with less than
10-20 firms in each market - it is going to be very hard to credibly estimate a separate V;(wj¢, Fj;) function
non-parametrically for each market .

As pointed out by DLS, instead of estimating a separate V;(wj¢, Fj¢) for each market ¢, an alternative is
to remove the ¢ index but put enough arguments into V'(.) such that it holds across markets (again, across

both time and space). In particular, they consider a function of the form
Vjt = V(th, Fjuw—ju F—jta Zt) (13)

where w_j; and F_j; are vectors of the productivity shocks for all the competitors to firm j in market ¢

8Under certain regularity conditions, e.g. that reaction functions have unique maximizers.
9See pages 1273 and 1277.

10



(boldface indicates vectors/matrices of these variables for all firms k& # j). Assuming any differences in
demand and supply conditions across markets ¢ are captured by observables Z;, this will generally hold in
homogenous good Cournot equilibria across markets{ﬂ Intuitively, could be hypothetically derived by
solving out the system of FOCs for Vj; in the Cournot game. It will depend on all primitives including the
demand curve. But as usual, with the OP/LP-style approach to production function estimation, one does
not need to solve out the system of equations since (the inverse of) V' is treated non-parametrically in the

first stagd'l]

Similarly, in a differentiated product Nash-Bertrand game, one can consider the function
Vit = Vwjt, Fjt, Xje,w—je, F_ji, X _jy, Zy) (14)

where X; contains observed product characteristics for firm j’s product (and X _j; contains product charac-
teristics of all j’s competitors). If all other determinants of demand are symmetric across firms and markets
t (e.g. logit errors), then (14)) will generally hold in Nash-Bertrand equilibria across markets ¢. Again,
this equation could hypothetically be derived from the system of first order conditions, but the OP/LP
semi-parametric approach allows one to avoid doing this.

On the other hand, using or is likely to be challenging in practice, and perhaps as a result, we
are not aware of a paper that actually applies this approach. This is due to at least two reasons. First,
there are J (the number of firms in market ¢) unobservables in (or (14)) - hence one would need to

consider a J dimensional inversion:

Wi = V_l(‘/]_t, th, V—]_t’ F71t7 Zt)

wit =V IV, Fit, V_ji, F_ 1, Z4)

i.e. invert firm j’s productivity shock as a function of not only firm j’s choice of variable input, but also all
other firms’ choices of variable input (V_;) (and conditional on their respective fixed inputs (F_;)). Second,

and perhaps more importantly, even if this multivariate inversion exists, the number of arguments of the

10 Again under regularity conditions, e.g. either that the primitives are such that equilibrium is always unique, or that if there
are multiple equilibria, the same equilibria is played across all markets ¢.

!1This is particularly beneficial in this case because general Cournot games with heterogeneous, non-constant marginal cost curves
typically do not have analytic solutions.

11



non-parametric function V=1 will tend to be large (at least twice the number of firms per market), and thus

this may be hard to operationalize in practice when there are more than a few firms in each market.

3.2 Discussion and Our Sufficient Statistic Approach

In sum, we have argued that while existing OP/LP-style approaches can in theory accomodate (at least
some forms of) imperfect competition in two ways - 1) by indexing the function V; by ¢, or 2) by including
the entire "state vector" of market participants in V' - both may have problems in practice. Our goal in the
first half of this paper is to develop approaches that avoid these problems. In particular, we look for reduced
dimension analogues of (or , i.e. models of imperfect competition, e.g. Cournot, differentiated

product Nash-Bertrand, where we can derive functions of the form:
Vit = V(wjt, Fji, Zji, Zt) (or Vi = V(wjt, Fje, Xji, Zji, Zt)) (15)

i.e. where 1) the V’s are not indexed by ¢, i.e. they can be treated non-parametrically using data across
all markets, and 2) Zj; is of reduced dimension, i.e. does not have dimension proportional to the number of
competitors. In other words, the function does not need to contain vectors of all other firms’ productivities
and fixed factors (w_j; and F_j;, plus characteristics X _j; in differentiated product Bertrand).

In the next three subsections, we derive such functions in three sets of models. In particular, we
show that in homogenous good quantity setting models and Nash-Bertrand Logit/Nested Logit models, the
total output of firm j’s competitors, Q_;; = Zk# Qut, 18 a sufficient statistic to describe firm j’s input
demandE In other words, in equilibrium, if firm j’s competitors are producing ¢ _;;, it doesn’t matter how
many competitors firm j is facing, or the distribution of productivities of those competitors - that firm must

always be choosing the same V;. This means we can express
Vit = V(wjt, Fjt, Xjt, Q—jt, Zt), (16)

across markets and reduce the dimension of the non-parametric object being modeledE We note that

12This is somewhat reminiscent of sufficient statistics as used in the theoretical games literature (see, e.g. Nocke and Schutz
(2018) and cites therein), but for quite different purposes - in our case the goal is to obtain a sufficient statistic for an inversion

equation that holds in equilibria across different markets in a dataset.

13For simplicity of notation we assume that Q_;; is the only element of Z;;. However what follows trivially extends to allowing
other elements of Z to vary across j (as long as they are observed). In other words, instead of Vi = V(wjs, Fjt, Xji, Q—ji, Z¢) we
could have Vj; = V(wj¢, Fji, Xji, Q—jt, Zj¢). This allows, for example, different firms j in a given market ¢ to face different input

prices (again, as long as they are observed by the econometrician).

12



Doraszelski and Jaumandreu (2023, DJ) have independently derived results related to some of our sufficient

statistic results//4]

3.3 Saufficient statistic in a Homogeneous Good Quantity Setting Model

We first show our sufficient statistic result in a homogenous goods Cournot model, and then generalize to
more general (homogenous good) quantity setting models. Suppose inverse demand in each market ¢ is
given by

P(Qt, Zt),

where ;¢ is the total quantity produced and Z; captures demand shifters across markets. Note that
because our goal is to use the same V () across markets ¢, Z; will need to be observed. Otherwise the scalar
unobservable assumption crucial to the OP/LP-style approaches would be violated. However, we do not
need to fully specify the inverse demand function P (). This is because P () enters the econometric model
through its implied input demand function V' (), which is treated non-parametrically.

Supposing each firm j’s production function is given by

Qjt = Q(Vjs, Fj;0) exp(wji), (17)

where () is strictly increasing in its arguments, we can think about a Cournot game conditional on (wj, Fji, w—jt, F_jt)

In other words, consider a set of firms with fized values of fixed inputs and productivity shocks choosing
levels of a single variable input Vj; in a Nash Equilibrium. While traditional Cournot games are posed
with quantity @);; as the choice variable, under mild conditions the production function is a one-to-one
mapping between Vj; and @¢, so considering Vj; as the choice variable is equivalent.

Given (wji, Fjt,w—jt, F_jt, Z;) and choices V_;; of its competitors, firm j’s variable profit function is

T = P | Q(Vji, Fji; 0) exp(wje) + > Q(Vie, Fius 0) explwin), Zi | Q(Vie, Fijis 0) explwje) — Pv(Zi) Vi
ey

14Gee their Section 6. DJ also derive expressions for the bias resulting from the econometrician omitting a relevant argument of
V (e.g. Zj or Z;) - i.e. violating the scalar unobservable assumption - we assume throughout the paper that this is not the case.

5Note the absence of the econometrician measurement errors €;; in the production function. This is fine for the purposes of
the theoretical derivations in this and the next two subsections. When we return to empirical application, we reintroduce the
measurement errors, and show how they are quite important.

13



where we also allow the price of the competitively purchased input to depend on observed market specfic

variables in Ztm Defining the scalar valued

Q—;i(V_jr,w_ji, F_j) = Z Q(Vit, Fre; 0) exp(wjz).
k#j

the Nash F.O.C. for firm j equates marginal revenue to marginal cost, i.e.

P(Q(Vjt, )+ Q—;(V_jt,.), Ze) + P (Q(Vje, ) + Q—;(V_js, ), Zt) Q(Vje, ) = % (18)

Vi,

where for compactness we define Q(Vjt,.) = Q(Vj¢, Fjt; 0) exp(wj¢) . Firm j’s optimal choice of Vj; conditional

on (V_ji,wjt, Fje, w—ji, F_ji, Zy) satisfies this F.O.C. We make the following high level assumption

Assumption 1 The primitives of the model P (), Q (), and Py () are such that for all (V_j;, wji, Fje, w—ji, F _ji, Zy)
there is a unique 0 < Vj; < oo that solves @)

This assumption reflects relatively standard conditions, e.g. quasiconcavity of the profit function, that
ensure a well-defined reaction function (rather than correspondence). Given this, we can show the following

Theorem holds regarding the equilibria of this Cournot game across different markets:

Theorem 1 Under Assumption , consider any two markets t and t' - the first with environmental vari-
ables (wjt, Fjt,w—ji, F_ji, Zi) and the second with environmental variables (wjy, Fjy,w_jr, F_jp, Zyr).  Sup-
pose that wjy = wjp, Fjy = Fjp, and Z; = Zy, but that (w_j, F_j;) and (w_jy, F_j») are not equal in the
two markets (the vectors w_; and F_; may even have a different number of elements, i.e. firm j may
have a different number of competitors in each market). Consider an equilibrium in each of these mar-
kets, and suppose that, in these respective equilibria, the variable inputs chosen by firms other than j, i.e.
V_ji and V_jp, generate equilibrium total quantities produced by firms other than j that are equal (i.e.
Q- ;i(V_ji,w_ji, Fj1) = Q—j(V_ju,w_ju,F_jp)).  Then it must be the case that in these two respective

equilibria, Vi = Vi

Proof. Consider the FOC (1)) at the two respective equilibria. By supposition, w;; = wjy, Fj; = Fjp, and

Zy = Zp. (w—ji, F_jt) is not equal to (w_jp, F_j»), but these variables only enter the FOCs through the

16 Again, Py(Z;) need not be specified since it will enter the production function through the non-parametric V~1, and can be
generalized to depend on observed Zj;’s that are firm specific.
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scalar valued function @Q_; (-), and by supposition Q_;(V_j1,w_ji, F_j¢) = Q—;(V_jp,w_jy, F_jp»). Hence,
Vit # Vju contradicts Assumption that there is a unique Vj; for any (V_jz, wji, Fje, w—ji, F_ji, Z¢). ™

Loosely speaking, Theorem says that from firm j’s perspective, the structure of its competition —j
only "matters" through the total quantity produced by its competitors, i.e. @Q_;. In other words, firm j will
do the same thing regardless of whether it facing just a few, efficient, competitors vs. many, more inefficient,
competitors - as long as in equilibrium the total production of those respective sets of competitors is the
same.

Most importantly for our purposes, Theorem implies that if we look across different markets ¢ with
the same Z;, firms operating in those markets with the same wj;, Fj; - and whose competitors are producing
total quantity Q_;; = Zk;ﬁj Qpt - must in equilibrium be choosing the same level of Vj;. In other words,

there is a function V such that in equilibria across these markets ¢, the following relationship holds:
Vit = V(wjt, Fjt, Q—jt, Zt), (19)

where the scalar Q_j; is a sufficient statistic for describing the equilibrium relationship between j’s com-
petitors actions and j’s action. Note that it is not quite appropriate to describe this as an input demand
function - because ()_j; is an equilibrium object. However, is an relationship that holds in equilibrium
across markets ¢, and thus we will be able to treat it non-parametrically in the first stage of an OP /LP-style
approach. And relative to , it is of reduced dimension and thus more manageable empirically.

Lastly, note that while the above results were derived for the Cournot-Nash equilibria of a homogenous
product quantity-setting game, they generalize to a more general homogenous product quantity setting game

with a "conduct parameter" ©@. In such games, the first order condition is

Py (Z)

P(Q(Vjt, ) + Q—(V_jt, ), Z)+O(Q(Vjt, ), Qi (V_jt, ), Ze) P (Q(Vjt, ) + Q—i(V_jt, ), Zt) Q(Vjt, ) = Vi)

Vi
(20)

so the arguments above go through. Note that this allows the conduct parameter to depend on Q(Vjy,.), Q—;(V_jt, .),

and Z;, and that the market level observables Z; can contain the number of firms in the market N;. As

well known (see, e.g. Bresnahan (1982), Berry and Haile (2014), Backus, Conlon, and Sinkinson (2021), and

Duarte, Magnolfi, Solvesten, and Sullivan (2024)), this indexes a set of models including both Cournot Nash

and Perfect Collusion, and as long as Assumption holds, the relationship continues to hold across
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markets in equilibriumm Note that in this case, not only does the semiparametric aspect of OP /LP-style ap-
proaches allow one to estimate a production function without fully specifying the demand function P (Q¢, Z;),
but also without specifying (or estimating) the conduct parameter function ©(Q(Vj:,.), Q—;i(V_j4,.), Zt).

holds regardless of this function, as long as the relevant variables are observed.

3.4 Sufficient statistic in the Logit Nash-Bertrand Model

The above result is probably not that surprising given we know in the homogeneous good Cournot model
firms’ reaction functions only depend on their competitors actions through the scalar Q_;;. But we now
show that ()_;; can also serve as a sufficient statistic in simple Nash Bertrand games with logit based product

differentiation. Consider the following consumer level "logit" utility function

Uije = (X, Pjt, Zi) + €ije

Uit = ciot

where Pj; is the price charged by firm j in market ¢, and Xj; is a vector of characteristics of good j in
market ¢. €;j; and g;0; are standard logit errors, and Z; again includes observed market level variables that
may affect demand. With a continuum of consumers ¢ we obtain the standard logit market share formula

for firm j
ef (Xjt,Pje,Z¢)

- 14+ Zket ef (Xkt, Prt,Zt)

Sit
and if market size is given by M (Z;), the quantity demanded for firm j is:

ef (Xjt,Pje,2t)

1+ Zket ef (Xkt,Prt,Z¢)

Qjt (Pjt, P—jt, Xjt, X _jt, Zy) = M(Zy) (21)

Note that this assumes markets are identical up to the observables (X, P, Z;) (X, and P; contain charac-
teristics and prices of all products in market ) in this model. So, for example, there cannot be unobserved
product characteristics. It is also a pure logit model, i.e. there are no random coefficients. On the other
hand, because we do not need to fully specify the function f (again, this is because of the semi-parametric

approach of the OP/LP first stage), residual demand in this model can be a very flexible function of Pj;.

17Lastly, note that while we describe this as a homogenous product quantity setting game, the fact that we allow Z; to enter
the inverse demand curve actually allows products to potentially be heterogeneous across markets (though not across firms within
a market) to the extent that this is can be measured by Z;. One could potentially allow the production function to depend on
elements of Z; as well.
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As in the Cournot model, we consider a production function of the form
Qjt = Q(Vjt, Fij; 0) exp(w;r) (22)

that is strictly increasing in its arguments@ With these primitives we consider equilibria of the following
Nash-Bertrand game. Conditional on Fj;, wjt, X, and Z; for all firms j in market ¢, we assume that firms
simultaneously choose prices Pj;. Given any vector of prices, quantities are given by Vj, and each firm
j must then purchase enough of the variable input Vj; to produce that quantity. This level is given by the

inverse of the production function

Vit = QH(Qjt, wjt, Fj1; 0) (23)
which exists assuming the production function is strictly increasing in Vj;.

Given (wji, Fji, Xji,w—ji, F_ji, X _jt, Z;) and choices P_j; of its competitors, firm j’s (variable) profit

function is

Hjt = Pthjt (-Pjtap—jt)ijX—jty Zt) - Py (Zt) Qil(th (Pjt,P—jt,Xqu—jn Zt) ,wjt,th;g) (24)
ef (Xjt,Pje,2t) ef (Xijt,Pje,2t)

_ . _ -1 ) )

B P]tM(Zt) 14 Zket ef Xk, Pre, Zt) Py (2) Q" (M(Z) 1+ Zket ef ( Xkt Prt:Zt)’ Wit F]t)
ef(thijMZt) _1 ef(th:ijZt)

- Pth(Zt)1+ef(th,Pjtgzt) —l—(b,jt _PV (Zt)Q (M(Zt)1+ef(th,Pjt7Zt) +(p,jt’wjt’Fj )

where

d_j = Z ef Xt Pre,Zt)
ket/j

This illustrates that firm j’s (variable) profit function only depends on (w_j;, F_j;, X _j;) through the scalar
®_;, which can be interpreted as a measure of the "strength" of competition firm j is facing in equilibrium.
For example, ®_;; could be large because firm j is facing a few competitors with high X, and low Py, or
it could be large because firm j is facing many competitors (though with "worse" Xy;’s and Py;’s).

Given this structure of the first order condition we can show that ®_;; can serve as a sufficient statistic

in this Bertrand model, . Again we start with a high level assumption ensuring that the primitives (e.g.

f0,Q(), and Py ()) are such that there is a unique maximum of this profit maximization problem:

18 Note that Fj; can include X, which implicitly allows the production function to depend on observed product characteristics
(see, e.g. Hahn (2023)).
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Assumption 2 The primitives of the model f(), Q(), and Py () are such that for all

(P_jt,wjt, Fj, Xji,w—jt, F_ji, X_jt, Zy) there is a unique 0 < Pj; < oo that mazimizes
Then the following Theorem holds in equilibria of this Bertrand-Nash game across markets:

Theorem 2 Under Assumption (@), consider any two markets t and t' - the first with environmental vari-
ables (wjt, Fit, Xje,w—_ji, F_j1, X _jt, Zy) and the second with environmental variables
(wipr, Fjor, Xy w_ju, F_jp, X _jp, Zyp).  Suppose that wj = wjy, Fjy = Fjp, X5 = Xju, and Z; = Zy,
but that (w_ji, F_ji, X _jt) and (w_jp, F_jy, X _jp) are not equal in the two markets (again, firm j may
have a different number of competitors in each market so these vectors are of different dimension). Consider
an equilibrium in each of these markets, and suppose that, in these respective equilibria, the prices chosen

by firms other than j, i.e. P_j; and P_;y, are such that ®_j; = ®_j». Then it must be the case that in

these two respective equilibria, Pjy = Py, Qjt = Qjp, and Vi = V.

Proof. Consider the profit function at the two respective equilibria. By supposition, wj; = wjy, Fj =
Fjp, Xjs = Xjp, and Zy = Zy. (w_ji, F_ji, X _j;) is not equal to (w_j», F_jpy, X _jp), but these variables
only enter profits through the scalar valued function ®, and by supposition ®_;; = ®_;;». Hence, Pj; # Pjy
would contradict Assumption . Since Pj; = Pjy, it must additionally be the case that Qj; = Qjy (since
in the logit model residual demand is strictly decreasing in price), and therefore that Vj; = Vjy given the
production function is assumed strictly increasing in V. m

Again loosely speaking, Theorem shows that from firm j’s perspective, the structure of its competition
—J only "matters" through the scalar sufficient statistic ®_j;;. It also implies that across different markets
t with the same Z;, firms operating in those markets with the same wj;, Fj;, Xj; - and whose competitors
(w—jt, F_j;, X _j;) and P_j; are such that in equilibrium ®_j; is the same - must 1) in equilibrium be
choosing the same Pj;, and therefore 2) also using the same amount of the variable input Vj;. In other

words, there is a function V' () such that in equilibria across these markets, the following relationship holds:
Vit = V(wjt, Fjt, Xjt, ®—jt, Zi) (25)

i.e. the scalar ®_j; is a sufficient statistic for describing the equilibrium relationship between firm j’s choice
of variable input and its competitors’ actions. The Theorem also implies that there is a function P such

that the following relationship holds

Pjt = P(thathijh(I)—jtv Zt) (26)
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Since Pj; is the strategic variable that is directly chosen in this price-setting game, can be interpreted
as a sufficient statistic representation of a reaction function - i.e. firm j’s optimal price as a function of
its own characteristics, market characteristics, and the scalar ®_;; summarizing the impact of other firms
prices (and X's) on j’s profits. This reaction function will be useful momentarily.

While ®_; is a natural sufficient statistic in the logit model for the level of competition faced by firm
7, is unfortunately not that useful from the perspective of OP/LP-style approaches since they rely on
a scalar unobservable assumption. This is a problem for since ®_;; will typically not be observable,
since 1) it depends on the unknown function f (), and 2) it depends on prices P_j;, which are typically not
be observed in a canonical production function dataset on inputs and outputs. Hence, we next consider
conditions under which @_j;; can serve as an alternative sufficient statistic - that is, where there is an

alternative function V () such that
Vit = V(wjt, Fjt, Xjt, Q—ji, Zt) (27)

To show this, first note that if y = f(a,b) and ¢ = g(a,b), then if g is strictly monotonic in b there exists
a function f such that y = f(a,c) (= f(a,g7!(a,c))). In other words, if y is a function of a and b, and
there is a monotonic relationship between b and ¢ (for any a), then y can also be expressed as a function of

a and c. In our situation, the standard logit formulas imply

Zket/j ef (Xut,Pre,2t)
1+ Zket ef Xkt Py, Z¢)
D_jy

f(thantaZt)

Q-jt = M(Z)

= M(Z)

1+e +d_j;

Moreover, based on the implication of Theorem , we know that in equilibrium, across markets j, the

following relationship holds

D_jy
1+ ef (Xje,P(wje, Fje, X e, 2 jt,2t),2t) + (D—jt

Q-jr = M(Z) (28)

where P(wj, Fjt, Xjt, ®_ji, Z;) is the sufficient statistic reaction function . implies that in equilib-

rium, Q_j; can be expressed as a function of (wjs, Fji, Xji, Z;) and ®_j. Hence, the following assumption
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Assumption 3 For all (wji, Fjt, Xjt, Z¢) and ®_j;

9 e
H_ef(th,P(w]’tfFjijt’q)—jt’Zt)’Zt)+<I>_]-t
>0
9%,

suffices for Vi = V(wji, Fjt, Xjt, Q—jt, Z¢) to hold, i.e. allowing us to replace ®_j; with Q_j;; as our
scalar sufficient statistic to capture the relationship between j’s competition and j’s choice of variable input.

Assumption is a relatively high level assumption. Whether it holds will depend on the primitives,
i.e. the utility function f(Xj:, Pjt, Z;), the production function Q(Vj:, Fjt), and the input price function
Py (Z;). Ideally one would construct more primitive conditions under which this would hold, but this is
complicated by the fact that our goal is to estimate production functions without fully specifying demand
(it depends on the unspecified f ()), and moreover, even for a specific f (), note that reaction functions do
not generally have a closed form in this model.

However, examining suggests that Assumption is intuitive and may not be all that stringent.
Recall that ®_j; = >, ., /i ef (Xkt:PetsZt) ig a scalar index summarizing the utility provided by firms other
than j. Note that if P(wjs, Fj, Xji, @i, Z¢) hypothetically did not depend on ®_j;, then Assumption
would certainly hold - i.e. if the "utility" provided by firms other than j increases (i.e. ®_j; increases),
then holding P; constant, ()_;; must increase. Of course, in a Nash-Bertrand logit model, prices tend to be
strategic complements. So when ®_j; increases, we would expect P(wj¢, Fji, Xji, ®_j1, Z;) to decrease, and
this could potentially change the sign of the derivative. FEssentially, what Assumption requires is that
this reaction function response is not too large. If the —j "utility" index increases (e.g. due to lower prices
or better X for firms other than j) - which will naturally increase _j; - the downward price response of
J cannot be large enough to reverse that ()_;; increase. This is the assumption required for our sufficient

statistic result.

3.5 Sufficient statistic in the Nested Logit Nash-Bertrand Model

Lastly, we derive a sufficient statistic result for the Nested Logit Nash-Bertrand Model. We do this in the
context of a single level nested logit model, in which we obtain a two-vector sufficient statistic, but it is

generalizeable to more levels (in which case the sufficient statistic is equal to the number of levels plus one).
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The utility functions are just a nested logit version of our logit model, i.e.

Uijv = (X, Py, Zy) + Sig;t T (I =0 (Z))eij

Uit = Siot + (1 — 0 (Zi))eiot

where nests are indexed by g € G; and gj; represents the nest that firm j is in in market t. We assume
the outside alternative is in its own group g = 0, and the nesting parameter o (Z;) can vary across markets
depending on observables. As above, f (X, Pji, Z;) is unspecified and thus this model can capture fairly

general shapes of demand.

Define
Dy = Z ef(kaPkat)/(lfﬂ(Zt))’
keJgt
¢g(f‘])t Dg‘t _ ef(thPtht)/(l_o—(Zt)) and
' )
(I)G(—gj)t _ Z Déi—a(zt))

(97#95t)€Gt

where Jg; represents the set of products in nest g in market ¢. ®,_;; is a scalar measure of the attractiveness

of the other products in j’s nest, and Pg(—g,)t Is a scalar measure of the attractiveness of all the products

outside of j’s nest. In this model, residual demand for firm j in nest g; is

th (Pjt7 Pfjtanthjt, Zt)
F(XjePr Z0) [ (1-0(Z0))
— M(Z)

) o (Z, 1—0(Zy
ng(t )(1 +deGt Dét ( )))

ef(th’Pjt’Zi)/(lfa(Zt))

= M) ez o7 F(X0: 30,20/ (10 (20)) 1=o(Z)
(e KiePieZ0/(1=0) + By j),) (1+(e seFie 20/ 0=0(Z0) + By () +¢’G<fgj>t>

Thus, analagously to the logit model, under

Assumption 4 The primitives of the model f(), Q(), Py (), and o() are such that for all

(P_jt,wjt, Fje, Xje,w—ji, F_ji, X_jt, Zy) there is a unique 0 < Pj; < oo that mazximizes profits.

we have the following Theorem:
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Theorem 3 Under Assumption , consider any two markets t and t' - the first with environmental vari-
ables (wjt, Fj, Xjr,w_ji, F_j1, X _jy, Zy) and the second with environmental variables
(wjpr, Fip, Xjor,w_jpr, F_jpr, X _jyr, Zy).  Suppose that wjs = wjp, Fjr = Fjp, Xje = Xju, and Zy = Zy,
but that (w—_ji, F_j;, X _j;) and (w_jp, F_ju, X _j») are not equal in the two markets (again, firm j may
have a different number of competitors in each market so these vectors are of different dimension). Consider
an equilibrium in each of these markets, and suppose that, in these respective equilibria, the prices chosen by
firms other than j, i.e. P_j: and P_j;u, are such that @4, = ®y_j)p and Qg = Pa(—gyr - Then

it must be the case that in these two respective equilibria, Pjy = Pjy, Qjt = Qjy, and Vi = Viy.

Proof. Considering the profit function at the two respective equilibria, proof is analagous to proof of [

The Theorem implies that the following relationships hold across all markets

Py = P(Xj,wje, Fje, ®g—jyt, Pa(—gye: Ze),  and (29)

Vie = V(Xji,wjt, Fjt, Pgiye, Pa—gye» Zt)

L.e. we now have two scalars, ®4_;y; and Pg(—g,)t that are sufficient statistics for Pj; and Vj;. Again,
this is not sufficient for an OP/LP-style inversion since ®,(_;); and G (_g;)t are not observed, so we need

additional assumptions to obtain a usable function to invert. Standard nested logit formulas also imply

Qq(—jyt (Pits P—jts Xjt, X—ji, Zt)

[0 s
= M(Z) X;4,Pje,Z¢)/ (1 4 g(X-J);- Z:)/(1 l-o
(e/Xse-Pie 20/ (A=) + Dy (_j,) (1+ (e/Xse-Pie 20/ (=0) + Dy (_j,) +‘1’G<—g_7~>t)

and

R T
Qc(—gyyt (Pits Poju, Xji, X_ju, Zy) = M(Z,) =280 (z_g)
1+deGtht

PG(—gt

= M(Z) [
14 (ef(XjnPjt,Zz)/(l—U) + (I)g(—j)t) + Pg(—g,)t

22



and combining these with implies that

Py
Qu(—y = M(Z1) o (30)
(ef(th,,P(Xjuwijn,‘bg(j)u‘bc(g])t7Zt)7Zt)/(1—U) + (I)g(j)t>

l—0o
) (1 + (ef(th7P(th7wjt7th7(I)g(j)t7(l)G(yj)tyzt)7Zt>/(1_0') + (Dg(—j)t> + (I)G(—gj)t>

and
Pa(—g))t

Qa(—gt = M(Z1)
1+ (ef(th7P(X.ft7w.ft7E7t7<I>g(j)tv(I)G(yj)thf)>Zt)/(1_a)

- (31)
+ q’g(j)t) + (g,
hold across equilibria.
Given primitives (and the implied equilibrium P () function), and define a mapping from
N2, B2
My (Rg-i Pa-gt) = Qo Qo)1)

conditional on (Xj¢, wjt, Fj¢, Z¢). If the primitives are such that My, is invertible, then , then the following

holds across equilibria

V}t = V(tha Wit, th7 Qg(fj)tv QG(fgj)ty Zt)

which we can use as the basis for a OP/LP-style first stage inversion. As in the logit model, a reason why
the mapping would not be invertible would be "extreme" reactions, i.e. if in a market where, in equilibrium,

attractiveness of competitors is higher (either ®,_;), or ég(,gj)t), J’s price negative response is strong

enough to lower Qy(_j); or Qg(—g,)t-

3.6 OP/LP Style Inversion with Sufficient Statistics

In the above three sets of models, we have derived functions that capture the effects of competitors through
limited dimension summary statistics. However, there is an additional issue that must be addressed in
order to invert and utilize these functions in an OP/LP-style first stage. A presumption of this literature
is that measured output is contaminated by measurement error €j;. If this is the case for firm j, then
it is presumably also the case for firm j’s competitors. Thus, the sufficient statistic @ _j; (or Qg—;y; and
Qa(—g;)¢) Will also be measured with error.

To address this issue, we now explicitly distinguish between true output Q;-t (and Q* jt) and measured
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output @ (and Q_j;). We do this in the context of the Quantity Setting and Nash-Bertrand Logit models

to conserve notation, but it generalizes to the Nested Logit model. Recalling the (log) production function
qjt = q(vjt, fit; 0) + wjt + €t

including measurement error €j;, the relation between measured and true (log) output is gj; = q;.‘t +€j¢ (or

aj = it — €j¢). Therefore

QL = ZQZt = ZGXP(QZt) = ZGXP(% — €kt)

ki Py K]

and we havd™]

Vie = V(wjt, e, ZGXP(th — €xt), Zt) (32)
oy

or analagously with logged inputs as

vjt = v(wjt, fit, Z exp(qrt — €kt ), 2t) (33)
k#j

As well known, OP /LP-style approaches require the assumption that the function to be inverted is strictly
monotonic in the productivity shock wjﬂ We also need to make this strict monotonicity assumption on
to utilize it in estimation. This is a substantive assumption. While LP, for example, find relatively
simple conditions under which this is the case in a perfectly competitive environment, this situation is
different in imperfectly competitive environments. In particular, whether holds depends on the residual
demand curves generated by the underlying primitives. It may not hold in some cases - e.g. if the increased
production generated by an increased wj; induces a firm to reduce v;; so as to mitigate price decreases from
moving down the demand curve. Biondi (2022) discusses more primitive conditions on demand /residual

demand functions such that this strict monotonicity holds[]

Under this strict monotonicity assumption one can invert (33|) and substitute into the production function

9Tn the logit case we subsume product characteristics X j¢ into I to conserve notation. This implicitly allows the production
function to depend on X, though if one does not want this to be the case, one can simply impose the restriction that the production
function ¢ () does not depend the z;; component of fj;.

20There is some scope to allow weak monotonicity, see, e.g. LP.

210One advantage of the DP and TC approaches is that they do not require such an assumption since there is no first stage
inversion necessary.
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to get

it = q(je, fj1;0) + v~ (050, i, > exp(qr — €t)-21) + €51
oy

and since q(vj¢, fj¢; ) cannot generally be separately identified from the non-parametrically treated v~!in
this first stage equation, we combine the two functions together (abusing notation by redefining v=1 () =
q()+v7()) as

qjt = U_l(vjta fjt: ZGXP(% - fkt)7 Z’t) + €5t (34)
k#j

Again, the issue here is that since the true quantities Zk# exp(qrt — €xt) are not fully observed, straight-
forward OP/LP-style non-parametric estimation of this equation is not possible.
However, we can leverage the structure in which the additional unobservables €;; enter . In partic-

ular, consider the set of across all firms in market ¢

Qi = U_l(Ult, fit, ZQXP(% — €rt), 2t) + €n (35)
kA1

an = v (v, fae, Z exp(qre — €rt), 2¢) + €t
ktJ
Conditional on observables (gj¢, vj¢, fj¢) for all j and z;, this is a system of J equations in J unobservables
€1¢, ..., €j¢- 1o make progress here under the classical measurement error assumption that the €;; are mean
independent of everything but the gj;’s, we seek assumptions under which can be inverted for €y, ..., €51
conditional on observables. To do this, consider "reduced form" mappings associated with the above

Quantity Setting and Logit Nash Bertrand games, respectively

U1t Jie Wit
= I¢ s y 2t
Ut fot Wt
and
D1t Jat Tt w1t
=Fp ) ) y Rt
bt Jat Tt wJt
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F¢ and Fj, map each game’s predetermined variables (fj’s, wj;’s, ¢, plus xj;’s in logit) into equilibrium

choices of variable inputs or prices.

Assumption 5 The primitives of the model P (), Q (), and Py () (or (), Q (), and Py ()) are such that

the mapping Fo (or Fr) is invertible in (wig, ..., w )

This assumption implies that conditional on fixed inputs, characteristics, and z;, knowing all firms’
observed actions (either variable inputs v’s or prices p’s) is sufficient to infer the vector of their productivity
shocks. This is essentially a multifirm version of the usual single equation strict monotonicity requirement
used in OP /LP-style approaches. While again this is a non-trivial assumption for similar reasons as discussed
above, there is precedent for related assumptions (see e.g. Petropoulous (2000), ABBP, and Dhyne, Petrin,
Smeets, and Warsynski (2022)). The assumption doesn’t strictly rule out multiple equilibria, but it is hard
to imagine it holding with multiple equilibria unless all markets have same equilibrium selection mechanism.
Again there is precedent for such an assumption in the dynamic game literature (e.g. Bajari, Benkard, and
Levin (2007)).

Under Assumption ([5)) we have the following
Theorem 4 Under Assumption (@, the system of equations defined in (35)), i.e.

qui = Uﬁl(Ulta fies ZQXP(% — €xt), 2t) + €1t (36)
k£1

qr = U_l(UJta fts Z exp(qr — €xt), 2t) + €t
kAT

can be inverted for ey, ..., e5: conditional on observables gz, v, and f:.

Proof. See Appendix m
Given this result, one can potentially non-parametrically estimate these first stage equations by, e.g. 1)
specifying v=! () as a polynomial or sieve, and 2) searching over the parameters 7 of that polynomial or

sieve such that the inverted €y, ..., € ;; satisfy the following moment condition

€1t ((]115, c 4 gty Uiy -+, Uty f1t7 cey .th7 2t 7-)

E . | vlta"7UJt7f1t7"7th7Zt =0 <37)

€Jt ((ht, ey @It Uity -, Uty Jity ooy Fres 24 7')
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where €;¢ (qit, -5 QJt, Vit, -, Ugt, fit, -, f7e, 2 T) represents the implied measurement error inverted from
given observed data and a candidate value of the parameters 7’.@ This moment condition holds given the

assumption that €;; is classical measurement error@

The natural next question is what aspects of the model the set of moments (37)) identifies. Given the
limited dimension of v~! () relative to the number of conditioning variables in (plus the fact that the
same v~ ! enters all J equations), we suspect that under appropriate regularity conditions, v~! () is identified.
However, recall from Section 2 that the goal of the first stage of OP/LP-style approaches is only to identify
the measurement errors. Hence, for our purposes we do not need to show that v~! () is identified - as long

as the measurement errors €y, ..., €5 can be identified. This can be shown straightforwardly since we can

rewrite as

qit — €1z = U_l(Um fits Z eXP(th - Ekt)a Zt) (38)
k#1

qjt — €t = Uﬁl(UJn fot, ZeXP(th - th), Zt)
k£J

and, given Assumption , Theorem , and the structure of how ¢;; and €;; enter, must also be

invertible in qi; — €14, ..., ¢+ — €j¢+. Hence, there exists a reduced form

qe = H(vi, fie, 016, F 145 2) + €1t (39)

qit = H(”Jtaf]tavabfthazt)+€Jt

22 As this non-linear inversion may be non-trivial to implement in practice, we briefly mention a potential alternative that can
potentially eliminate the e;;’s inside the v=! () function on the right hand side of . For this we need the researcher to also have
access to firm-level revenue data, R;;, that, unlike @¢, is not contaminated by measurement error (e.g. suppose that mismeasured
prices are the reason that );; has measurement error). Then in the quantity setting model, under appropriate conditions on demand
curves and equilibria (e.g. that all equilibria are on elastic parts of demand curves), there is a one to one mapping between @’s and
R’s, and the ()_;; term inside inside v~! can be replaced by R_j;; . With no measurement error inside v~!, estimation can proceed,

e.g. with OLS using a polynomial approximation to v=! ()).

23To clarify given the fact that this is a system of equations, note that when we say classical measurement error we mean we are
assuming that the measurement error in g;; is not only mean independent of v;; and fj, but also of v_j;; and f_j;;. Note that we

do not assume that the measurement error is uncorrelated across j.
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Given the classical measurement assumption that the errors are mean independent of all the arguments

of H, this is a standard non-parametric problem and we have

Theorem 5 Under Assumption (@, with sufficient variation in (Vig, .., Ve, fit, - foe, 2¢) H () is non-parametrically

identified and the measurement errors €i, ..., € ¢ are identified.

Proof. See Matzkin (1994, 2013) m

The assumption of "sufficient variation" is not precise and less than ideal, but not surprising given
the goal of estimating the production function without having to fully specific other components of firms’
decision problems. For example, variation in fi¢,.., f;+ will likely depend on the exact nature of firms
dynamic investment decisions of, e.g. capital, other fixed factors, and product characteristics - we have left
these components of the model unspecified. Variation in vy¢, .., v ; will depend on the entire distribution
of productivity shocks wiy, ..,w s as well as the exact nature of demand P () in Cournot (or f () in Logit) -

again our intent is not require specification of these objects.

4 Second Stage Identification and Estimation

The prior section shows that we can obtain a low-dimensional OP /LP-style first stage inversion in a set of
models with imperfect competition and strategic interactions, without fully specifying demand and in some
cases the nature of competition (e.g. Cournot vs. collusion). This allows us to recover estimates €;;’s. We
now move to the second stage of these procedures, which use moments of the general form E [{ jt | Ijt_l] =0
(recall & jt 1s the period ¢ innovation in the productivity shock wj¢) to identify the structural parameters of
the production function and productivity shock process.

As discussed in Section 2, the OP/LP-style first stage described in the prior section is just one of at
least three different ways that one can get to this point. Alternatively, one could use either the TC or DP
approach. Each of these relies on an additional restriction - in TC an additional variable input that enters
the production function in Leontief fashion, a in DP a linear productivity shock process - but on the other
hand, neither requires the OP/LP-style first stage inversion and associated assumptions. So, for example,
the TC or DP approaches might be useful if either 1) is unwilling to assume that the model of imperfect
competition is, as per Section 3, homogeneous good, logit, or nested logit such that a low dimension sufficient

statistic existﬂ or 2) believes there are other unobservables that make the scalar unobservable assumption

24There might be scope for extension to more general models. For example, in a random coefficients model, one could consider
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required for the OP /LP-style first stage untenable.

Our main point in this section is to show how in all three cases, the nature of imperfectly competitive
markets can actually help with respect to some of the identification issues that have been discussed in
the production function literature. This is because we can leverage what we term oligopoly instruments
based on the fact that fixed inputs and productivity shocks of competitors in a given market ¢ determine
an individual producer’s variable input choice through strategic interactions. In short, the existence of
oligopoly interactions means there are additional elements in Zj;_; that can aid with identification. In the
next subsections, we 1) show how oligopoly instruments can resolve some existing identification problems,
2) consider properties of optimal oligopoly instruments, and 3) consider use of oligopoly instruments when

it is hard to define which firms compete with one another.

4.1 Oligopoly Instruments to Resolve Identification Problems

For simplicity, we illustrate with the two approaches (OP/LP-style and TC) where €j; has already been
identified. As illustrated in Section 2, this means that given observables (and €j;) we can infer wj;’s given

parameters 6 of the production function, i.e.
wjt (0) = (gje =€) — a(vje, fj6:0)

and given parameters p of the productivity process wj; = g(wji—1,p)+ & jt we can additionally infer {;;’s,
i.e.

&5t (0) = wjt (0) — g(wje—1 (0) , p)

This allows us to easily construct an empirical analogue of the moment condition E [{ jt | Ijt—ﬂ =0. In
contrast, the DP approach (since €j;’s have not been estimated previously) requires one to utilize slightly
different moment conditions that also include the unobservables €j; (see (8])), but the logic of the rest of this

section still applies. To conserve notation, we redefine gj; = g — €j; for the rest of this section, i.e. ¢

approximating the (w_j;, F_j;, X _j;) elements of with moments of these distibutions (e.g. the means/variances/covariances
of these variables across competitors) to reduce dimensionality. However, one would need to assure the approximation error
disappears asymptotically for consistency, and this would still not allow unobserved product characteristics as common in the
demand literature (under the presumption of this paper that we dont have the data to estimate demand and "observe" these
unobserved characteristics).

25We could extend our results to allow the "endogenous" productivity shock process of Doraszelski and Jaumandreu (2013), i.e.
wjit = g(wWjt—1,Tit, p)+ § 1, for some observed r;; (e.g. R&D expenditures).
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represents the originally measured ¢ purged of the estimated measurement error /e\jtﬁ
The typical timing and information set assumptions of the model imply the following conditional moment

restriction

B [£1(0) | Zji—1] = Ewj(0) — g (wje-1(0);p) | Zjs—1] =0 at 0 =6 (40)

at the true parameter values, which in turn implies the unconditional moment restriction

E{(wji(0) — gt (wje-1(0); p)) ® Tjs—1] =0 at 6 = g (41)

If, as typical, fj; is assumed chosen at ¢ — 1, vj; is assumed chosen at ¢, and wj; assumed observed at
t, then there are many elements of Zj;_1. Z;;—1 includes fj;, vji—1, ¢jt—1, and wj;—1, and all lags of these
variables (as well as all measurable functions of all these variables). An important contribution of this
paper is to note that in the context of oligopolistic competition models like those considered here, Z;;_1
also can contain these variables for competing firms, e.g. f_j;, v—jt—1, ¢_j;_1, and w_j;;—1 and lags of these
variables. We will momentarily argue that this has important benefits for estimation based on , but
before doing this we first discuss three relevant preliminary points.

First, note that for convenience in the below we will assume that competing firms’ f_j;, v—ji—1, ¢_j;_1,
and w_j;—1 are in fact in Zj;_1. However, with additional notation this could easily be relaxed to the
case where firm j only observe some information about its competitors variables. It is important to note
that doing this in the context of an OP/LP-style first stage inversion would require extending the models
of Section 2 to ones of imperfect information. And clearly if firm j observes mo information about its
competitors variables, the oligopoly instruments we consider will not be useful. Following the suggestions
in Ackerberg (2023), one could potentially test different timing and information set assumptions, e.g. the
additional assumption that w_j; is in Zj;_1, but we do not investigate this here.

Second, note that while one can obtain efficiency by enforcing using the entire Zj;_; (to the extent
it is observed by the econometrician) and weighting the moment conditions appropriately, this is often not
done in practice. This is because with so many elements of Z;;_1 constructing optimal weights tends to

generate small sample biases, i.e. the "many instruments" problem described in, e.g. Bound, Jaeger, and

26This highlights that a third way to avoid an OP /LP-style inversion is to simply start with a model with no measurement error,
i.e. assume €;; = 0. If one is willing to make this additional assumption, then one can directly move to these second stage moment
conditions without a first stage inversion.
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Baker (1996). Instead, researchers will often use an unconditional moment condition of the form
B [(w;t(6) — gt (@5i-1(0); p) © m(Zji—1)] = 0 (42)

where m is of reduced dimension. For example, papers based on OP, LP, and ACF with Cobb-Douglas
production functions will often use just fj¢, vji—1, and gjz—1 (or w;;—1 defined as a function of the parameters)
as instruments, resulting in an exactly identified model and no need for a weight matrix.

Third, there has been much recent discussion regarding conditions under which the moments (or

) identify the production function parameters. In particular, in the case of perfect competition, GNR
derive an important result that if there is no across-firm heterogeneity in prices of variable (and assumed
static) inputs vj; or demand, then these moments do not identify a non-parametric production function
¢jt = qt(vjt, fjr) + wjr. Note that this result is not dependent on the choice of m (), i.e. including further
lags of fjt, vjt—1, gji—1, and wj;—1 does not help. The intuition is that in such a model, optimal v;; is a
function of only f;; and wj;. This functional dependence issue means that in this model, vj;—1 (nor further
lags) is not useful as an instrument to identify the production function.

There are a several existing ways of avoiding the GNR non-identification result. DLW, for example, argue
that observing additional, firm-specific factors that determine firms’ variable input choice vj; is sufficient
for identification (assuming ¢, is mean independent of these observables). These could include observed
input or output market shifters, or v;;—1 if firms’ choices of variable input have dynamic implications. The
appendix of LP (parametrically) and GNR (non-parametrically) respectively, add restrictions from first
order conditions when firms are in perfectly competitive environments to generate identiﬁcationm ACF
suggests that identification can be obtained if there are serially correlated firm-specific shocks to prices of
vjt, even if they are unobserved to the econometrician - however, this approach does not generally work
in the context of an OP/LP-style inversion of vj; (because it violates the scalar unobservable assumption).
Flynn, Gandhi, and Traina (2021) (also see DLS) use the strategy of assuming constant returns to scale -
which implies there is no need to estimate a coefficient on vj;.

The main point of this section of the paper is that oligopoly instruments provide an additional way to
avoid the GNR non-identification result.. In particular, as discussed above, in an oligopoly setting vj; is
not only a function of f;; and wj¢, but also generally of f_;; and w_j;. This can alleviate the functional

dependence issue described by GNR. And while w_j; is not in Zj—1, f_j; is, and so is w_j;—1, which

2TMore recent papers further developing these methods include Navarro and Rivers (2018) and Pan (2022).
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is generally correlated with w_j; (unless the w process is not serially correlated). Hence, in oligopolistic
settings, f_;; and w_j;—1 can be useful "instruments" for identifying the production function parameters.
Note the intuition behind this idea. Since the variable input v;; is endogenous (i.e. correlated with & jt =
wjt — g¢ (wje—1)), identifying its effect on output requires some source of exogenous variation. We are simply
observing that in an oligopoly situation natural instruments for v;; are competitors’ f _;; and w_j;—1. Both
are orthogonal to {;; based on the timing and information set assumptions of the model, so they are valid
instruments. As for the relevance condition, f_j; directly impacts v;; through the oligopolistic structure of
the model, and while vj; directly depends on w_; (rather than w_jt_l), w_jt—1 is generally correlated with
w_jt, making it also a potentially relevant instrument. This can be interpreted as a supply side application
of BLP "competitive" instruments for demand estimation, i.e. where aspects of competitors (in that case

typically competitor product characteristics) are used to instrument for endogenous price.

4.2 Approximations to Optimal Instruments

Given that these competitive instruments can help one avoid the production function non-identification
result of GNR, we now study the choice of m(Z;;—1) in . As noted above, given the size of Zj;_1,
small-sample biases are a significant concern with the "brute force" method of using all functions of all of
the observed elements of Z;;_1 as instruments (or a large number of functions of those elements). These
biases can come from estimating a large weight matrix for these moments in order to weight them efficiently.
An alternative is to construct "optimal" instruments associated with the conditional moment restriction, i.e.
following Chamberlain (1987). This has the advantage of potentially reducing the number of instruments by
enforcing economic restrictions implied by the production function (and possibly the nature of competition).

In our oligopolistic situation, fully characterizing the optimal instruments is challenging. As detailed
below, it requires computing expectations of period ¢ decisions conditional on Zj;_1, so it depends on
structural objects such as the demand curve, the precise contents of the information set Zj;_1, and the entire
distributions of unobservable terms - objects that have thus far not been specified. We take an alternative
approach where we consider additional economic assumptions that either 1) simplify computation of the
optimal instruments, or 2) reduce the dimension of the m(Z;;_;) that needs to be considered for optimality.
These additional assumptions include things like a Cobb-Douglas assumption, AR(1) productivity, and
linear demand. It is important to note that these additional assumptions are not required for consistency

of the estimates, i.e. even if these additional assumptions are incorrect, the parameter estimates are still
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consistent (assuming identification conditions hold). The tradeoff is instead one between not quite achieving
full efficiency (to the extent the assumptions are incorrect) versus reducing small sample biases (because the
assumptions allow us to reduce the dimension of m(Z;;—1) based on theory). This type of approach - i.e.
imposing additional assumptions to simplify and/or approximate optimal instruments - has also been taken
in the context of discrete choice demand estimation, e.g. Berry, Levinsohn, and Pakes (1995), Reynaert and
Verboven (2015) and Gandhi and Houde (2021).

Also similar to the literature on optimal instruments for demand models, our simplifying assumptions
have economic intuition. First, to clarify notation, denote the level of fixed inputs and productivity for a
single competitor of firm j in market ¢ as fi; and wy; (this contrasts with J _j+ and w_j;, which represent
vectors of these objects for all competitors of firm j in market ¢). Our first result formalizes the idea that
since in some cases fr; and wy; enter firm k’s production function in the same way, j’s optimal choice of
variable input will only depend on fi; and wg;_1 through a scalar summary statistic. In other words, we
develop assumptions under which we can reduce the dimensionality of the instrument set coming from each
of j’s individual competitors k. Our second result reduces the dimensionality of the instrument set across j’s
competitors. Specifically, we construct assumptions under which the fixed inputs and productivity shocks
af all j’s competitors, f_j; and w_j; affect the optimal instrument through only a scalar. Loosely speaking,
the intuition here is related to the homogenous good quantity setting result that competitors matter for j’s
FOC only through the sum of their quantities. This also means that the argument is similar to that in

Section 2 - however, additional assumptions are needed.

4.3 Within Firm

Here we focus on reducing the dimensionality of the instruments by constructing assumptions under which,
for a specific competitor k, the instruments fi; and wys_1 can be combined into a single instrument. Specif-
ically, we show that under these assumptions, instead of using fi; and wy;_1 as individual instruments
(for firm j’s moment condition), we can alternatively use the linear combination 6 ffrt+ pwii—1, without
sacrificing efficiency. Again, this alleviates having to use the data to individually weight separate moment
conditions corresponding to fx; and wgs—1 (and the potential small sample biases associated with doing
that). There is some clear economic intuition here - in many competitive models, the effect of firm B’s cost
technology on firm A is only through firm B’s marginal cost curve. So it is possible that multiple aspects

of firm B’s technology affect firm A through a scalar. Essentially this section posits specific assumptions
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under which this is the case.

We do this under the assumption of Cournot competition with a Cobb Douglas production function
and an AR(1) Markov process. We continue to assume only a single variable input and assume a single
competitor k and two periods of data to illustrate - we discuss generalizations momentarily. Under these
conditions, with 0 indexing the first period of data and 1 indexing the second, the conditional moment

condition is

E[(gj1 — 00 — 0uvj1 — 05 fj1) — p(gjo — 0o — Ouvjo — 07 fio) | Zjol (43)

= Elgj — pgjo) — 0o (1 — p) — 0, (vj1 — pvjo) — ¢ (fi1 — pfjo) | Zjo] (44)

As shown by Chamberlain (1987), optimal instruments m(Z;;—1) for the corresponding unconditional moment
(as in (42)) are constructed by taking derivatives of the conditional moment condition with respect to the

parameters. For example, for the parameter 0y, this derivative is

E[—(fin — pfio) | Zjo)] = — (fir — pfjo)

i.e., since fjo, fj1 € Zjo by the timing and information set assumptions, the optimal instrument corresponding

to 0 is simply fj1 — pfjo. For the parameter p, the derivative is

E [~ (gjo — 00 — Ouvjo — 07 fjo) | Zjo] = — (gjo — 0o — Ouvjo — O fjo)

i.e., again, because gjo,vjo, fjo € Zjo, the corresponding optimal instrument is (gjo — 0o — 0yvj0 — 01 fjo0), i-e.
the "constructed" value of w;o given a set of parameters.
On the other hand, because v is endogenous, the optimal instrument for the parameter 6,1 is not so

simple. Chamberlain’s formula gives

E [ (vj1 — pvjo) | Zjo] = =B [vj1]| Zjo] + pvjo (45)

but since vj1 ¢ Zjo, this does not simplify. Moreover, as noted above, the conditional expectation E [v;1] Zjo]
is complicated - depending on many parts of the model that we have not specified, e.g. the demand curve
and the full distribution of w.

That said, under the above assumptions, E [vj1] Zjo] has simpler structure. Given the results in Sections

34



2 and 3, we can write the equilibrium choice of vj; as

vj1 = v(wj1, fi1, Wk, frt, 21), (46)

where again z; represent market level variables affecting demand or costs (e.g. demand or input price
shifters). The elements of wy; and fx; enter the system of first order conditions only through the firms’

respective production functions, which under the Cobb Douglas and AR(1) assumptions can be written as

Qr(vrt,wr1, fr1) = exp (0o + 0f fr1 + 0pvr1 + Wit + €x1)

= exp (0o + 0y fr1 + Opvr1 + pwro + &1 + €r1)

This means that we can alternatively write (46[) as

vj1 = v(wj1, fi1, 07 fr1 + pwro, §1s 21), (47)

where the vectors of competing firms fixed inputs and prior productivity shocks, fi1 and wyo (both in Zjg)
enter only through their sum 6 fi1 4+ pwio. However, this does not neccesarily imply that E [v;1| Z;o] only
depends on this sum. For example, we have not specified what the firm knows about z; at t = 0. It is
possible that at that point in time the firm might know the entirety of z; (i.e. z1 € Zjo); it might know
nothing about z; apart from its distribution; or, it might "know" part of z; (e.g. it observes partially
informative signals about z1, or it knows some elements with certainty, but not other elements). Similarly,
we have assumed wj1 and §;; are not in Z;o but we have not specified their full distribution. It is possible
that E[vj1| Zjo] depends on the values of f;; and wyo individually through their containing information on
the distributions of z1, wj; and §_j;. For example, if 21 is not in Zjo, and the distribution of 21 given Zjq for
some reason depends on the individual elements of fi; and wyo (rather than just the sum 6 fi1 + pwio), then
E[vj1] Zjo] will depend on the values of the individual elements. The same holds for wj; and §_;; (note
that while the model does make assumptions on the means of these variables, their higher order moments
could potenially depend on the values of fi; and/or wggindividually).

Hence, we need an additional assumption to rule out this "indirect" effect, specifically
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Assumption 6 The distribution of p(wj1, &1, 21 | Zjo) is such that

p(wjt, €1, 21 | Zjo\ (fer, wro) = V1, fr1 = Va2, wpo = ¥3)
= p(wj1,€_j1,21 | Zjo\ (fre1,wro) = W1, Offr1 + pwro = 05 V2 + p¥s)

This assumption rules out fi; and wyo affecting the joint distribution of wji, {1, and 21 other than

through the sum 0y fi1 + pwro. Now we have

Theorem 6 In the above model, under Assumption (@, the optimal instruments m* (Zjo) depend on fi1

and wro only through the sum 0 fi1 + pwio.

Proof. As detailed above, in this model, under Assumption @, E [vj1| Zjo] depends on fi; and wyo only
through the sum 6y fi1 + pwio =

The simple intuition behind this Theorem suggests it can be generalized in a number of directions, e.g. ¢ >
2, J > 2, a more general Markov structure g; () on the evolution of the productivity shock, or a more general
log production function that is addively separable in fj, i.e. q(vjt, fj1;0) + wjr = qu(vje; 0) + a(fje;0) + wje
(clearly if f interacts with v independently of w, it will not hold). It also generalizes to the logit and nested
logit models, but only for elements of fi; that are not also product characteristics entering the demand
side of the model. Regardless, note that regardless of the technological structure on ¢ () and g; (), these
generalizations will always require an additional assumption analagous to Assumption @@

Lastly, note that Theorem @ does not imply that 0 fi1 + pwyo itself is an optimal instrument. In
general, the optimal instrument will be some function of this sum, and this function will depend on aspects
of the model that have been left unspecified, e.g. the shape of demand. Hence, to the extent one wants to
fully leverage optimal instruments, one would want to follow, e.g., Berry, Levinsohn, and Pakes (1995) and
use a polynomial in 0 fi1 + pwio as instruments. This can also result in a proliferation of moment conditions,
but less so that if one did not make use of these theoretical restrictrictions and used polynomials in fr; and

wio individually. We examine some of these issues in our Monte-Carlo experiments.

4.4 Across Firms

Next we ask the question whether instruments can be aggregated across competitors. In other words,

suppose that j faces two competitors, k and [. Under the assumptions in the prior section, we know that

28Note that if one were willing to make the additional assumption that innovations in the productivity process are mean inde-
pendent across firms, then one could use 0y fi1 + wg1 instead of 05 fr1 + pwro.
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the optimal instruments depend only on the two scalars 0y fr1 + pwio and 8¢ fi1 + pwig, but we ask whether

there are additional assumptions such that these can be combined into some scalar instrument

m(0r fr1 + pwro, 0 f11 + pwio: 0, p)

that does not depend on any unknown parameters (e.g. aspects of unspecified demand). It turns out we can,
but this requires considerably more assumptions than in the prior section, even with homogeneous goods.
The intuition is that while, e.g. in a Cournot model, firm j only cares about the sum of quantities of its
competitors, these quantities are determined in equilibrium, so the aggregation of the factors determining
these quantities (e.g. ¢ fr1 + pwro and ¢ fi1 + pwip) is non trivial. We again emphasize that the additional
assumptions are only necessary for the efficiency property to hold, i.e. their violation does not affect
consistency.

We maintain Assumption @ (expanded to multiple competitors), and additionally assume

Assumption 7 Production technology is Cobb-Douglas with constant returns to scale in the variable input,
i.e.

gjt = 0o +vjt + 0y fjt + wji

Assumption 8 Linear aggregate demand

P =oa— BQ;

Assumption 9 Given the predetermined variables (fj’s, wj,’s, and z;) firms simultaneously choose vj;
to maximize profits under a non-common knowledge belief structure in which each firm j believes that each

other firm k believes that all other firms have f =fr; and w =wpy;.

Assumptions and are self explanatory. Assumption @D is a behavioral assumption that is more
unusual. It can be summarized by "everybody thinks everybody (else) thinks everybody is like them"
(ETETEILT) - i.e. each firm knows that there is heterogeneity in f;; and w;; across j, and knows the values
of that heterogeneity for all other firms, but believes that all other firms k play more naively and assume
that everybody is like themselves (i.e. like k). In other words, firm j believes that all other firms k believe

they are playing a homogeneous firm Cournot game where everybody has f =fr; and w =wy;. This is
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somewhat reminiscent of level-k rationality (e.g. Nagel (1995)) in that players believe other players are not
as sophisticated as them, but distinct as the beliefs are different@

Assumption @ is helpful in our situation because it simplifies how the heterogeneity enters the first order
conditions. We know that firm j only cares about the total quantity of other firms, £ Q(Vit, Fiet; 0) exp(wije).
With ETETEILT, firm j believes each element in this sum is the solution to a homogeneous firm Cournot
game with costs based on fj; and wy;. Thus, each element of the sum only depends on fi; and wg;. This
is much simpler than Cournot games with heterogeneous firms, which typically do not have closed form

solutions, and with the additional assumptions of CRS in the variable input and linear demand, we obtain

Theorem 7 Under Assumptions (@, (@), (@, and @, firm j’s optimal variable input choice vj; =
v(wjt,fjt,w_jt,f_jt,zt) depends on the vectors w_j; and f_j, only through their dimension J — 1 and

the scalar

1
%; exp(fo + 05 fre + wie)

Proof. See Appendix m

Since the scalar summary statistic in Theorem does not depend on parameters other than those of the
structural objects being estimated, it can serve as the basis of an optimal instrument calculation similar to the
prior section. To make things most straightforward, suppose that one is willing to strengthen the assumption
E [fjt | th,l] =0toE [gjt | Zji—1, w,jt] = 0 - this is essentially making the additional assumption that the

§;i are mean independent across firms. Based on Theorem (7), this means that the optimal instrument for

E [vj¢| Zj—1,w—j¢] will depend on f_j: and w_j; only through the scalar Zk# exp(90+9;fm+wkt) This is a
potentially large dimensionality reduction, especially if J is large and there are multiple fixed inputs. Again,

one would include a polynomial in this scalar instrument to fully leverage its optimality. If one is not willing

oy . 1 . . 1
to make the additional assumption that & [fjt | w_jt] = 0, an alternative is to use Zk# D@0 F0; FriTporil)’
but since the innovation component of wy; (i.e. &) is in the denominator, this is only an approximation as
the variance of the innovation term goes to zero.

While the above is one strategy to limit the proliferation of instruments across firms, there are others. For

example, instead of a basis of polynomials in fjt,wji—1, f _j;, w—jt—1, and z; one could limit dimensionality

2Like level-k rationality, ETEETEILT can be iterated, e.g. "everybody thinks everybody (else) thinks everybody (else) thinks
everybody is like them"

30 And if J varies across markets, the number of competitors J — 1. However, an observation from the proof of Theorem is
that if one adds the additional assumption that the inverse demand intercept « scales in J 41 (i.e. that JL—H is constant, consistent
with more firms entering stronger markets), then one no longer needs to add J — 1 if J varies across markets. In this case the

optimal instrument will depend on f_;, and w_j; only through %H Zk# m.
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(and enforce exchangeability in —j) by using polynomials in fj;, wji—1, M (f _j;, w—ji—1), J, and z;, where M
includes moments of its arguments, e.g. mean(f _;;), var(f _;;), cov(f _;;, w—jt—1), and higher order moments
(under the assumptions of the prior section, one could instead use M(0sf _;; + pw—jt—1)), describing the
nature of j’s competition. Of course, if one uses more than first moments, this approach will require more

instruments than if one calculates instruments based on the assumptions described above.

4.5 Unobserved Competitors

Using the oligopoly instruments as described in the previous subsections requires observing all the competi-
tors of firm j. In some datasets, this may not be available. For example, a dataset may include only a
sample of firms so that the researcher does not observe all (or any) competitors of j. Or, a dataset may
include all firms, but the researcher is not sure exactly who competes with who - e.g. if firms differ based on
geographic location, are all firms within 10 miles competitors, or are all firms within 100 miles competitors?

An interesting question is whether the idea behind oligopoly instruments can still be helpful here. We
consider this under the polar opposite case than above, i.e. we know the firms in our dataset have competi-
tors, but instead of observing all of the competitors we do not observe any of these competitors@ There
are two immediate implications of this. First, since firms do have competitors but they are unobserved,
OP/LP-style first stages violate the scalar unobservable assumption w.r.t. v () and cannot be utilized. How-
ever, one can still proceed with the TC or DP approaches, which do not require this scalar unobservable
assumption. Second, without observing anything about the competitors of each j, one obviously cannot
construct any of the instruments described above for use in the second stage.

On the other hand, even if the econometrician does not observe the competitive factors in Z;;_1 required to
explicitly form the oligopoly instruments, it is possible that there are other elements of Z;_; that are observed
to the econometrician and correlated with the oligopoly instruments that can generate identification. In
particular, we focus on the lagged value of j’s variable input, i.e. vj;—1. By the timing and information
assumptions of the model, vj;—1 € Zj;—1. Moreover, in the oligopoly models above, vj;_1 is chosen in
equilibrium as a function of the (now unobserved) f_;;_; and w_j—1. Lastly, if fixed factors f are subject
to dynamic accumulation and there is any persistence in w, then f_;;_; and w_j;—1 will be correlated with
JF_ji and w_j;. Hence, vjt—1 may be correlated with the oligoply instruments and its use as an instrument

may provide identification. We verify this in a simple example in our Monte-Carlo experiments below.

310ne could use a combination of the techniques in intermediate cases.
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Using vj;—1 as an informative instrument is not a new idea. It has been used as an instrument many
times in OP/LP-style, TC, and DP approaches. But it has been subject to criticism, (appropriately so)
because of the GNR result that it is an uninformative instrument in a perfectly competitive model (with no
across firm input price variation), and hence in that case should not identify the production function. Our
argument here is that oligopoly situations provide an additional rationale for v;;_1 to be a useful instrument
for estimating production functions. Of course, it is not the ideal oligopoly instrument - as per the previous
discussion, f_j; and w_j—1 (or w_j;) would be. wvj;—1 as an instrument only leverages this variation in
competition indirectly - for example it only depends on f_j;_4 (not f _jt) - and its strength will depend on,
e.g. the persistence in f_j;;_; and w—jt—l@ This is something else that we evaluate in our Monte-Carlo

experiments.

5 Monte Carlo Experiments

Our Monte-Carlo experiments examine the use of oligopoly instruments. To keep things as simple as
possible, we do this in a two period Cournot duopoly model with one fixed input, and additionally make
the assumption that the econometrician observes wjo. We take a TC approach, which means that we can
eliminate €j; from the model without needing an OP/LP-style inversion (which is important because we
want to consider the possibility that competitors are not observed). The setup then becomes very simple as

the second stage estimating equation is
g1 = 6o + 07 fj1 + Ouvj1 + pwjo + €y
with the moment condition
E [&illji-1] = Elgjr — 00 — 05 fj1 — Opvj1 — pwjollio] =0  at 6 =6

While treating wjo as observed is unrealistic (normally it is a function of parameters and lagged variables),
it is helpful because it 1) avoids complications because the GNR non-identification result doesn’t necessarily

apply when production function parameters are restricted (e.g. constant) over time, and 2) it means that

32In some situations it might make sense to use both instruments. For example, suppose one can speculate on each j’s set of
competitors, but is not sure that these sets are exactly correct. Then the instruments f_,; and w_j;—1 (which are potentially
mismeasured) and the instrument vj;—1 (which is inherently inefficient because it depends on f _ jt—1 instead of f _ jt) will typically
contain distinct information and thus be useful together.
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the second stage is linear in the parameters and can be estimated in closed form by 2SLS (alleviating the
need to ensure correct numeric optimization for many Monte-Carlo replications).

Wanting our simulated datasets to be somewhat representative of real world data, we use the DGP of
Collard-Wexler and De Loecker (2023), which is calibrated to existing datasets, to generate the predeter-
mined data for each duopoly market (fjo, fj1,w;jo,wj1, fro, fe1, wWrko,wk1) - But since their setup assumes
perfect competition, we deviate when generating variable inputs and quantities. In each market and time
period we calculate the equilbrium of a Cournot game to calculate variable inputs (vjo,vj1, ko, vk1) and
the implied quantities (gjo, ¢j1, k0, qr1). The demand curve for the Cournot game has constant elasticity
-3 and is calibrated to replicate (on average) the quantities in Collard-Wexler and De Loecker. We also
briefly consider a monopoly version of this dataset where (fjo, fj1,w;jo,wj1) is generated in the same way,
and (vjo,vj1) and (gjo, ;1) are set using the monopoly FOC under the same demand curve.

This model can be estimated by 2SLS, i.e. regressing g;1 on fj1, v;1, and wjo, using as instruments fj1,
wjp (since they are in Ijg) plus some version of the competitive instruments from Section 4. Our goal is
to assess the precision of estimates provided by the various competitive instruments. A first observation is
that in the monopoly dataset, there is no identification. Of course, there are no competitors, so no fj or wy
to use as instruments, but one can attempt to use vjp as an instrument. But because there is no variation
in the level of competition, this DGP falls within the GNR non-identification framework, i.e. v is not a
useful instrument and the production function is not identified.

Moving to the duopoly situation, we want to compare use of the "true" competitive instruments, i.e. fi1
and wyo (or 5 fr1 + pwio), to using what can be thought of as an imperfect version of these instruments,
i.e. vjo. As described in Section 4.5, this can be thought of as a comparison of a situation where the
researcher observes competitors (and hence can use fx; and wyg) versus a situation where the researcher
does not observe competitors (or is hesitant to identify who is and who is not a competitor), and hence
is uses ;o as a substitute to those competitive instruments. Based on our prior results, we expect the
production function to be identified in either case - the more interesting question is the relative precision of
the estimates in the two situations. By comparing these, we can assess the value (in terms of lower variance
estimates) of an empirical researcher knowing the set of competitors of a firm versus not knowing them.

The production function coefficients are in fact identified in either case with our Monte-Carlo datasets (we
do 10000 replications, each dataset containing 10000 observations with §; = 0.4, 8, = 0.6, p = 0.7). Since
the coefficients are very precisely estimated and there are no evidence small sample biases (not unexpected

since each firm only has one competitor), we only report the standard deviations of the estimated coefficient
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gv across the replications. These are more interesting as they shed direct light on our question regarding

precision. The following table reports these standard deviations for various types of instruments

Instrument 2 Just 2 | Cubicin 2 | 2, 2 - fj17 Z- Wjo Full 2nd order | Full 3rd order
(9fflc1 + pwio | 0.0158 0.0147 0.0139 0.0124 0.0123
V50 0.0139 0.0138 0.0138 0.0137 0.0135
9ffk1 + Wi 0.0132 0.0120 0.0117 0.0103 0.0103

The first row uses the true competitive instrument 6 fr; + pwyo, i.e. assuming it is observedﬁ The
second row uses the imperfect instrument v;o, i.e. it can be done if competitors are not observed. The last
row uses 0y fr1 + w1 as the instrument - this is valid under the additional assumption that innovations in
w are uncorrelated across firms in a given market (and like row 1 requires competitors to be observed).

The first column of the table naively uses either 0 ¢ fi1 +pwko, vjo, or 0 ¢ fr1+wk1 (in the 3 rows respectively)
as single instruments in just identified 2SLS procedures. Perhaps surprisingly, using vjp as an instrument
generates more precise estimates (std. dev. 0.0139) than does using the true competitive instrument
Offr1 + pwro (std. dev. 0.0158). This is because, as mentioned in Section 4, these instruments likely do
not enter in linear form, e.g. in 2SLS the endogenous variable v;; might be better predicted by a non-linear
function of ¢ fx1 + pwio or vjo. We examine this in the next 4 columns, which increasingly add additional
higher order polynomials of the original oligopoly instruments (as well as interactions with the "exogenous"
covariates fj1 and wjp) as additional instruments in the 2SLS estimation procedure. As can be seen in the
last column, once one gets to a full set of third order instruments (including interactions with the covariates),
the true competitive instruments do show their superiority. That said, the difference is not that large - the
standard deviation of the coefficient only decreases from 0.0135 to 0.0123 when one uses the true competitive
instruments rather than simply v;o - suggesting that in some cases there may not be much precision gain
from actually observing the identity of competitors. Interestingly, there is substantially more increase in
precision in the last row when one makes the addtional assumption that innovations in in w are uncorrelated

across firms in a given market (and hence can use 0y fi1 4+ wy1 as an instrument instead of 67 fr1 + pwio)

33For this table we simply used the true parameters 0y and p to construct the instrument 0y fr1 + pwro, but the results are
essentially the same if either 1) we just use fr1 and wgg as 2 distinct instruments (i.e. which uses weights of standard overidentified
2SLS), or 2) do a two step procedure where we first do 1), and then construct instruments for the second step using the first step
estimates, i.e. §f fr1 + pwiro. This might be different if these were more than duopolies and there was more scope for small sample

biases due to many instruments.
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Returning to the first column of standard deviations in the table, we find it interesting that the lagged
labor instrument is actually superior in terms of precision to 8¢ fr1 + pwro when naive linear first stage
specifications are used. This points to a subtle potential advantage of the lagged labor instrument. What
is going on here is that, at least in our experiments, a linear vjq is apparently a "better" functional form as an
instrument (i.e. more predictive) than is a linear 6¢ fy1 + pwro. This makes sense since in our monte-carlo,
the functional form through which 0y fio +wgo affects vig is exactly the same as the functional form through
which 0y fr1 + wp1 affects vg1, and hence a simple linear vy is almost by default a "reasonable" functional
form for predicting vi;. This is not necessarily true when using a linear ¢ fy1 + pwyro as an instrument.
Of course, in real world markets, more things may be changing over time than in our Monte-Carlo setup,
but to the extent primitives may not be changing much over time, this result may also hold more generally.
Of course, in practice one can use higher order terms (with the caveat of potential overidentification and
small sample biases), and one may also want to consider using both 6 fi1 + pwro and vjo as instruments
in the case where competitors are observed. While the latter would add no additional information in our
Monte-Carlo experiments (since in our DGP, vjo is only an imperfect version of the optimal instruments,
e.g. because it depends on fro rather than fi1), in practice it might contain additional information - e.g.
the previous literature has noted that v;o can also be an informative instrument for v;; if there is serial
correlation in unobserved firm-specific input prices (though this generally is only consistent with DP and

TC approaches), or if there are dynamic implications of firms’ choices of v.

6 Extensions

6.1 Multiple Variable Inputs

We have restricted attention so far to production functions with only a single variable input vj; (though
there can be additional variable inputs that enter in Leontief fashion, e.g. in as in the TC approach).
We now discuss implications of having multiple variable inputs (that are substitutable, i.e. not Leontief).
Regarding the OP/LP-style inversion results discussed in Section 3, the quantity setting and Bertrand-
Nash games are more complicated (since now firms are simultaneously choosing levels of multiple variable
inputs). This would significantly complicate the notation, but intuition suggests that the sufficient statistic

results regarding competition should still hold, and that given sufficient smoothness/substitution between

43



the variable inputs, that any of variable inputs could be used for the first stage inversion@

Here we focus more on the implications of multiple variable inputs on the use of oligopoly instruments
in Section 4, as the implications are more severe. Consider a Cournot model, for example. If firm j’s first
order condition depends on competitors only through the scalar @)_;¢, then it is hard to see how exogenous

oligopoly instruments could move around multiple variable inputs independently. In fact, we can show

Theorem 8 Consider the Cournot model of Section 3.8 and assume a two period duopoly and a production
function with no fized input, i.e. qj1 = q (vj1)+ wj1 = qu (vj1) + glwjo) + &1 This model is not non-

parametrically identified if dim(vji) > 2.

Proof. Consider a best case scenario where w;o and wyo are observed by the econometrician. These two
scalars are the only exogenous variables in the model, yet there is a single dimensional function g(-) plus
at least a 2 dimensional (dim(v;1)) function function to be identified. Hence the model fails a basic rank
condition for non-parametric identification. m

While this Theorem obviously uses a very stylized model to keep things simple, we believe the non-
identification result could be extended quite generally. The basic point is that standard models of compe-
tition restrict firm interactions on the demand side (i.e. only through quantities or prices), so it is hard to
think about models where changes in the amount of competition a firm faces will generate usable variation
in that firm’s mix of variable inputs.

We think this is an important limitation of oligopoly instruments to recognize, but also want to emphasize
that oligopoly instruments can be combined with other sources of identification to identify such models with
multiple variable inputs. Again, with the DP and TC approaches, vj;—1 can be an informative instrument
for vj; if there are unobserved, firm-specific, serially correlated input price shocks. Hence, use of both v;;_1
and oligopoly instruments could generate identification of coefficients on multidimensional v;;.

Another possibility is to combine oligopoly instruments with a first order condition approach (e.g. like
GNR). In a Cobb-Douglas production function, profit maximization implies that ratios of coefficients on two
variable (and static) inputs equal the ratio of expenditures on those two inputs. Enforcing this condition
using measured expenditures, the muitiple variable input coefficients can be written as a function of just
a single unknown parameter, and hence a single oligopoly instrument should provide sufficient exogenous
variation for identification. The intuition here is that imposition of the FOCs identifies how individual

variable inputs contribute to a variable input "bundle", and the oligoply instruments provide exogenous

34This also gives the potential for testing, as in Raval (2023).
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variation to identify the effect of increasing or decreasing that bundle. Interestingly, unlike GNR, this FOC
approach does not require the assumption of perfect competition in output markets, since it only relies on

FOCs to obtain ratios of variable input coefficients, and in obtaining this ratio, demand elasticities cancel

outFE]

6.2 Revenue Production Functions

Next we consider an important issue in the literature, the question of how output is measured. The above
analysis assumes that the econometrician observes (up to measurement error) quantities across firms that
are comparable - e.g. in the quantity setting game this means that a unit of ¢;; is the same across firms; in
Nash-Bertrand Logit or Nested Logit it requires that, up to logit and nested logit errors, a unit of g;; is the
same for two firms with the same product characteristics xj;. It is straightforward to see the problems if
this is not the case - for example, suppose we have a Cournot model of bread slice production where one firm
produces loaves of bread with 10 slices, and another firm produces loaves of bread with 20 slices (equally
sized). If firms report g;; in terms of loaves, then units are not comparable across the two firms. and, e.g.
the first firm may erroneously appear much more productive than the second just because it puts less slices
in each loaf.

In a case like this, it may be preferable to use revenue of firms Rj; (or log revenue rj) as a measure
of output. We now present an extension of the Cournot model of Section 3 that applies to this case. It
also can be used in cases where only revenues (and not ¢j;;’s) are observed, along with market level price
deflators. We call this model the "Quality Equivalent Cournot" (QEC) model, because it is essentially a
Cournot model, but where firms produce units of different quality /quantities.

Inverse demand is again given by P, = P (Q¢, Z;) in the QEC model, but @Q; is now measured in

standardized units, i.e.

Qi =) rjQje
J

where the kj; are scaling factors that measure the relative quality/quantity of each firm j’s product. This
implies that from a consumer perspective, ’%]t units of firm j’s product is equivalent to %kt units of firm k’s
product. P; is now interpreted as the price of a standardized unit in market ¢.

Importantly, we allow that the x;;’s are unobserved to the econometrician. This essentially means that

measured ();¢’s are uninformative - a firm could have a high @);; but actually be producing very little in a

35Tt does require firms to be price takers in input markets, which is relaxed below.
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substantive sense if x;; is very small.  On the other hand, observed revenues of each firm, i.e.
Rjt = Ptﬂthjt

are informative, e.g. if R;; = 2Ry, for firms j and k in the same market ¢, then firm j is producing twice the
amount of "quality adjusted" units as firm k. While the j;’s need not be observed, we do assume that the
econometrician observes a market-level price deflator P; that measures the relative price of a standardized
unit in different markets ¢. Since demand is Cournot (after taking into account the js), this deflator is
the answer to a very simple question, i.e. "How much does a dollar purchase of the product in market ¢ vs
market s?". Then we can construct deflated revenues
Q=3

and these are now comparable across markets, i.e. if %j: = 2%’“: for firms j and k£ in markets ¢t and s
(respectively), then firm j is producing twice the amount of quality adjusted units as firm k.

Given this setup, assuming Fj;, wj;, and kj; that are known to all firms, consider a Cournot-Nash
Equilbrium in firms’ choices of variable inputs Vj;. This is exactly equivalent to the model in Section 3
replacing quantity @)j; with deflated revenues @jt, and all the prior results concerning Cournot models hold.
Importantly, note that if this is the model, data on deflated revenues is preferrable to data on quantities.
Again, there is no need to observe kj;, and k_j;;’s, and these can be correlated with unobservables. In fact,
there is no real compelling reason to even try to observe K;;’s, (;;’s, or firm specific prices given their own
definition of a unit of output (i.e. non-standardized units) because deflated revenues are the "true" measure

of what firms in this model are producing.

6.3 Imperfectly Competitive Input Markets

Our extensions of the OP/LP-style approach in Section 3 make use of the function
Vit = V(wjt, Fjt, Xjt, Q—jis Zt) (48)

or more generally

Vit = V(wjt, Fjt, Xjt, Q—jis Zjt) (49)
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While these are flexible w.r.t. some different models of competitive interactions in output markets, they do
place restrictions on the nature of variable input marketﬂ For example, they are consistent with perfectly
competitive variable input markets in which all firms in a given market ¢ face the same variable input price,
or where each firm j faces a different competitive variable input price. Of course, the market-specific price
(or the firm-specific prices), would need to be observed and included in Z; (or Zj;) respectivelym or
are also consistent with "monopolistically competitive" input markets, where each firm j faces its own
upward sloping supply curve of V', as long as any potential differences in those supply curves across markets
or firms is observed and included in Z; or Zj;.

However (48|) and are generally not consistent with variable input markets in which firms in the
same market ¢ interact, e.g. where one firm’s choice of variable input quantity affects the price of the variable
input for other firms in market ¢. We next sketch out how input market interactions can be incorporated in
a similar way to how we treated output markets. Consider a simple Cournot-like (homogeneous) variable
input market in which all firms j in market ¢ participate. Assume the following inverse supply curve for
the variable input

P/ =Py (Vi, Z;) (50)

where V; = j Vit is the total amount of the variable input demanded by all firms in market ¢. In other
words, the price all firms pay per unit of the variable input in market ¢, i.e. P, depends on the total
variable input purchased by all firms in ¢. Presumably %L‘}/ > 0. Defining j’s competitors’ total variable
input usage as the scalar V_j; = >, oy Vi, it is straightforward to show that in the models of Section 3, the

following equation holds in equilibrium across j and ¢
Vit = V(wjt, Fjt, Xjt, Q—jt, V_jt, Zt) (51)

and can be used for an OP/LP-style first stage inversion. In other words, to accommodate this type of
strategic interaction in the variable input market, one simply needs to additionally condition on another
scalar, the variable input use of j’s competitors. holds because under these assumptions, any two firms

facing the same V_j;; and Z; must also face the same residual input supply curveﬂ

30There is increased recent interest in the nature of input markets, see e.g. Rubens (2023).

3TIf these variable input prices are not observed, one typically needs to assume they are the same across markets ¢, in which case
they are implicitly part of V' (though one might alternatively make the assumption that they are the same only within groups of
markets indexed by m, and estimate a separate V,,, for each of these groups of markets (e.g. z group contains all geographic markets
in a given year)). .

38 Presumably these results could also be extended to some cases where the definition of input markets does not necessarily
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While interesting in its own right, the above discussion also provides a potential resolution to the multiple
variable input issue decribed in Section 6.1. Suppose there are two variable inputs, V! and V2, each in which
firms compete within market, e.g. facing two separate market supply curves similar to . Also suppose
that these variable inputs interact differentially with F' and w in the production function (ruling out simple
Cobb-Douglas). If this is the case, then through the interaction in input markets, variation in competitors’
F’s and w’s can potentially differentially affect firm j’s choices of the two variable inputs. For example,
suppose that the production function is such that F relatively increases the marginal product of V1 (vs V2),
and w relatively increases the marginal product of V2 (vs V). Then a firm facing competitors with relatively
high F’s will in equilibrium face relatively higher prices of V! and choose relatively less of this variable input,
while a firm facing competitors with relatively high w’s will in equilibrium face relatively higher prices of
V2 and choose relatively less of that variable inputﬂ In other words, competitive instruments now have
the ability to relatively move the two variable inputs and identify coefficients on both of them, avoiding the
non-identification result in 6.1. Note that this argument is relevant for not only OP/LP-style approaches,
but also for the use of competitive instruments in the TC and DP approaches. And, as usual, these latter

two approaches do not require assumptions on the nature of competition in the variable input markets such

that an equation like can be derived.

7 Conclusion

We have described how the presence of imperfect competition and potential strategic interactions introduces
distinct challenges when estimating production functions. We started by highlighting that some existing
approaches to production function estimation cannot completely abstract away from the presence of im-
perfect competition in the product market. We then extended these existing approaches to accommodate
additional oligopoly models commonly used in empirical work by using a sufficient statistic approach, and
showed that the presence of such strategic interactions has important benefits in that they introduces addi-
tional exogenous variation that can help identify production functions. We also considered how to optimally
leverage this exogenous variation, both with and without direct data on firms’ competitors, and in Monte-
Carlo experiments 1) verified that the existence of strategic interactions can identify production functions

that would not otherwise be identified, and 2) assessed the extent to which what applied researchers ob-

correspond to the definition of output markets.
39If there are multiple fixed inputs in F, the same argument could be be made if V! and V? differentially interact with the
elements of F'.
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serve about competition can affect the precision of estimates based on this variation. As usual, it would be

interesting to investigate how the approaches here extend and combine with other recent developmentsm

40For example, the models in this paper for the most part assume Hicksian neutral technological change, so it would be interesting
to assess them w.r.t. the recent literature on non-Hicksian neutral technological change, e.g. Doraszelski and Jaumandreu (2018),
Raval (2019), Zhang (2019), Kasahara, Schrimpf, and Suzuki (2020), Demirer (2020), Raval (2020), Oberfield and Raval (2021),
Balat, Brambilla, and Sasaki (2022), Pan (2022), Ackerberg, Hahn, and Pan (2023).
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8 Appendix

8.1 Proof of Theorem 4

By construction the system of equations hold for the true €y, ..., e at the true (observed) vectors gy, vy,
and f; To prove that the the true ey, ..., ey are the only solution, suppose there is a second solution
€1ty -y €t (where at least one €j; # €j;) . This means that g;: = v (vj1, fir, Zk# exp(qrt — €kt), 2¢) + €5t for
all j. Switching back to the originally defined v~! (i.e. before subtracting q(v;i, fjz;0)), this is equivalent

to

gjt = q(vje, f56:0) + v~ (e, fie, > exp(aee — Ee)-2) + ¢ Vi
k#j

This then implies that in addition to the true actual quantities ¢}, = ;i — €1, there are alternative "true"

not mismeasured) quantities g%, = ¢;; — €+ such that
gt J J

T = q(vjt, fit:0) + v (vje, fies Zexp(&jt).zt) Vj
k#j
and where g, # ¢j, for at least one j. Define wj; = v_l(vjt,fjt,zk# exp(qjy)-2t) for all j - note that
at least one Wj; # wj; (since otherwise O = ¢ V7 and € = €4 Vj). By definition of v~!, a firm with
(fjt,wjt), facing competitors producing a total quantity of ), £ exp(?f;t), must optimal choose vj; (this
relies on the assumptions of the prior section that there is a reaction function (vs reaction correspondence)
in the appropriate game). Since this is true for all j, this means that given the vectors of observed fixed
inputs f; and "alternative" productivity shocks w;, the vector of observed variable input choices v; constitue
an equilibrium. This contradicts Assumption that there is a unique vector w; that is consistent with

the observed vector of variable inputs v;.

8.2 Proof of Theorem 7

With CD production and constant returns to scale in the variable input, the production function for firm &
is

Qrt = Vieexp(0o + O fre + wie)

95



Therefore, marginal cost is
Py (Zt)

MCy =
M exp(80 + 0 frt + wie)

Under ETETEILT, firm j believes that firm k£ will maximize profits assuming a symmetric Cournot-Nash
equilibrium where everyone else has marginal cost MCy;. With linear aggregate inverse demand P, =

a — 8Q)y, this means firm j believes firm k’s thinks its revenues are

Ry = (a0 — B (Qrt + Q—1t)) Qe

and marginal revenue is

MRy = (a—B(Qri+ Q) — BQre
= a—20Qk — BQ_k

Equating to marginal cost gives the FOC

a—2BQu — Q- = MCjy

and solving for the symmetric equilibria

a—(J+1)BQk = MCjy

or
o — Mth
_ 52
Qkt J+1)3 (52)
Since firm j believes that each opposing firm k& will produce according to , firm j’s percieved FOC is
a—2pQj — BQ—jt = MCjy
or

26



Solving out for firm j’s optimal Q;; gives

BZk;ﬁj (QJTSM) MCjy

Qje = 25
MC
- Zk;ﬁg (a J+1)kt> — MCj;
= 25
_ a—%a—%ﬂzk#MC’kt—MCﬁ
26
2957~ 7 gy MO — MGy
28
1 1 .
_ 2(J 1)+2 — Pv(Z) (J-1)+2 Zk?fj exp(Oo+0y fretwre) MG

2

. ] . . . . . 1
which depends on w_j; and f _j; only through their dimension J —1 and the scalar Dk £ b 00F0; FraToon)”
As noted in a footnote in the main text, if instead of being constant across markets, one assumes the inverse
demand intercept « scales in J + 1 across markets, i.e. a = (J + 1) a (which would be consistent with more

firms entering stronger markets), then the last line of the above reduces to

~ 1 1
a— Pv(Z) T-D)+2 2kt exp(Bo+0; frotwre) MCj
23

Qjt =

which depends on w_j; and f_;; only through the scalar %4-1 >k £j o

1 .
0070, Fri o) (i.e. regardless of the

number of competitors).
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