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1 Introduction

Song et al. (2010) estimate that nearly half of all clinical trials of medical treatments that
are currently in use have been left unpublished. Furthermore, trials with positive outcomes
are twice as likely to be published (Song et al., 2010, Goldacre, 2013). This suggests a
strong publication bias for tests of drugs, even those drugs that are accepted by regulators.
There has been a growing public concern over the effects of this bias (Chalmers, 2006). In
response some pharmaceutical companies have publicly committed to registering all their
trials in advance and to publish all the results (Kmietowicz, 2013).

The aim of this paper is to show that increasing transparency in this way can have a
detrimental effect on public welfare, if the optimal strategic response of the pharmaceutical
companies to the enforced transparency is taken into account. In my model, if suppressing
bad evidence is possible, drugs will be accepted more often, but the average quality of
accepted drugs will not decrease compared to the case when all evidence must be provided.
On the other hand, the amount of testing needed to persuade a regulator is higher, when
suppressing bad evidence is possible. When the benefit of a higher rate of acceptance
outweighs the cost of more testing, the possibility of suppression increases welfare. I show
that this happens when the expected quality of a drug is already close to the exogenously
required level before testing starts.
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I construct a stylized model of the interaction between a sender (pharmaceutical com-
pany) that tries to persuade a receiver (regulator) to accept (a new drug). The sender
always wants to be accepted, the receiver only wants to accept a sufficiently high quality
(drug). Ex ante, the expected quality of the drug is such that the receiver does not want to
accept. The sender tries to persuade the receiver by conducting repeated trials that may
yield either a success or a failure. I compare the situation of no suppression, where the
sender has to report the results of all trials he conducts, to the situation of suppression,
where he can cherry pick the results, but he cannot fabricate results. Three aspects char-
acterize the interaction. First, the sender has an informational advantage compared to the
the receiver, even at the start of testing. I.e., he is informed of the quality before testing.
Second, conducting trials is costly. Third, trials are conducted sequentially, i.e. the sender
can observe the result of a trial before deciding to conduct the next one. These three fac-
tors introduce a signalling aspect in the communication. Evidence is not just informative
about quality because higher quality yields more successes, but also because the sender is
more inclined to conduct a costly trial when the probability of a success is higher. I decom-
pose the total learning effect of reported trial outcomes for the receiver into a statistical
effect and a strategic effect to distinguish these effects. Then I compare suppression to no
suppression when the cost of running a test is small but positive.

In the case of suppression, reported evidence is only informative to the receiver because
of the strategic effect, because any report can be generated by a sender with a dug of any
quality in principle. However, for sender with a low quality, the expected cost of generating
a report that is required for acceptance is too high. Therefore lower quality drugs will not
be tested in equilibrium. A report is only informative because the expected total cost of
testing to obtain it was too high for a sender with a low quality. I show that in the sender
preferred equilibrium, the average quality of a drug that is tested and accepted is such that
the receiver is approximately indifferent between accepting and rejecting. The total cost of
testing is used to separate the qualities. For this reason, if the cost of running a single test
decreases, the total cost of testing and the probability of acceptance do not change. The
receiver will require a higher number of successes, in order to leave the expected total cost
of testing unchanged and hence achieve the same separation. When the ex ante expectation
of the receiver of the quality is far from the level that she needs to accept, the receiver
will set a high requirement on the number of successes. This will lead the sender to begin
testing only for higher qualities, but it will also increase the expected total cost of testing
when he does test. Conversely, when the receiver is already close to accepting ex ante, the
requirements she sets will be lower, leading the sender to be accepted more often and at a
lower expected total cost of testing.

In the case of no suppression, reports also have a statistical effect, because different
qualities can only generate a given report with different likelihoods. The receiver learns
from a report because when evidence cannot be suppressed, more successes mean a higher
quality is more likely. I focus on the case when the cost of running a single test is small. I
show that then good quality drugs are accepted almost surely, while even very bad quality
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drugs are accepted with positive probability. Because the cost of testing is low, the sender
can afford to run many tests. If he does, the receiver will be able to learn the quality exactly
from the report, because the information in the report becomes very precise. Therefore, if
the quality is high enough, the sender will be accepted almost surely. On the other hand, if
the quality is not high enough, the sender can only appear to be of high enough quality by
looking better than he really is in the early testing. This occurs with a positive probability
that is strictly less than one. When the unit cost of testing becomes small, so does the
total cost of testing. In the sender preferred equilibrium, the sender stops testing when
the receiver is approximately indifferent between accepting and rejecting. Because it is
not possible to run fractions of a test, the receiver typically strictly prefers accepting, in
contradistinction to the case where suppression is possible. I argue that this is a second
order effect.

The probability of a drug being accepted is higher when suppression possible than when
it is not. The reason for this is that when suppression is possible, the lowest quality drugs
do not test and are never accepted. In contrast, when suppression is not possible, even
the lowest quality drugs are sometimes accepted. Since the expected quality of accepted
drugs is not lower under suppression (even strictly higher, but approximately the same),
the probability of acceptance is lower. On the other hand, when suppression is possible,
the expected total cost of testing is higher.

Because the receiver is approximately indifferent between accepting and rejecting in
either case, the relevant comparison for welfare is the sender pay-off. When suppression is
possible, he faces a higher cost of testing, but also a higher probability of acceptance. Which
of these effects dominates depends on the ex ante expectation of quality of the receiver.
When this expectation is such that the receiver is ex ante close to accepting a drug, when
suppression is possible, she will require little evidence in order to accept and the expected
total cost of testing will be small. In that case, the higher probability of acceptance is the
dominating effect and allowing suppression yields higher welfare. On the other hand, when
the receiver is ex ante far from accepting, when suppression is possible, she will require a
lot of evidence in order to accept and the total cost of testing will be high. In that the
case the cost of testing is the dominant effect and not allowing suppression yields higher
welfare.

The rest of this paper is organised as follows. In section 2, I describe the related
literature. In section 3, I describe the model. In section 4, I consider the Bayesian Persuasion
game specified to my environment as a useful benchmark. In section 5, I discuss the case
of suppression. In section 6, I discuss the case of no suppression. In section 7, I carry out
the comparison between the two cases. Finally, in section 8, I conclude.

2 Related literature

There are three strands in the literature that are related to my work. First there is the
disclosure literature, building on Milgrom (1981), where the evidence is given exogenously
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and the effect of the possibility of suppression is studied. Second, in the Bayesian Persuasion
model of Kamenica and Gentzkow (2011) testing is endogenous. There is a strand of the
literature that builds on this model by imposing more structure on the testing process.
Third, there is a literature that deals directly with the possibility of suppression with
endogenous testing.

Of course, the cornerstone of the game theoretic communication literature is the beau-
tiful paper on cheap talk by Crawford and Sobel (1982). There an informed sender can
costlessly choose messages from an arbitrary message space. They show that if the ideal
action of the sender and the receiver moves in the same direction with the state, then it
is possible for the sender to communicate some of his information about this state. In my
model, the preferences of the sender are state independent, i.e. he wants to be accepted
even if the quality of the drug is low. Therefore, there would be no communication via
cheap talk in my environment.

In my model the disclosure is of endogenously obtained test results. There is a rich
literature on the disclosure of exogenously given information. The starting point of this
literature is Milgrom (1981). He allows the sender state any set of types, as long as his
actual type is contained in it. He shows that the receiver will learn the type exactly, a result
known as unravelling. Crucial for the result is that revealing a higher type yields a higher
pay-off, which is not true in my environment, sine the receiver can only accept or reject. In
Dziuda (2011) exogenous evidence on two alternatives is known to the sender and relevant
for the choice of the receiver. The sender also has a preference for one of the alternatives
or is unbiased, this preference is private information. She shows that unravelling does not
hold, since the receiver does not know how much evidence exists. Furthermore, she shows
that even a biased type may reveal evidence that goes against his preference. Closely
related to my work in both application and set-up is the paper by DiTillio, Ottaviani and
Sørensen (2018). They treat the reporting strategy of the sender as given and compare
the informativeness of a report when the sender reports the correct sample average to the
informativeness of a report where the sender is known to report only the highest values of
a sample.

A canonical model is Bayesian Persuasion by Kamenica and Gentzkow (2011). They
consider a sender that tries to persuade a receiver by committing to an experiment without
having private information. The class of experiments they allow is general in the sense that
any distribution over signals conditional on type is allowed. Experiments are costless. In
two follow-up papers, they allow costly experiments (Kamenica and Gentzkow, 2014) and
suppression (Kamenica and Gentzkow (2017). There is a substantial literature that builds
on the canonical model by imposing more structure on the set experiments. Gill and Sgroi
(2012) consider a sender who tries to persuade a sequence of receivers by running a public
test. The sender can choose the toughness of the test and generally prefers a tougher test
that, although less likely to be passed, is more convincing when it is passed. Li and Li (2013)
consider competing politicians who can choose the informativeness of their campaign and
can choose to focus on their own quality (positive campaign) or the quality of the opponent
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(negative campaign). Perez-Richet (2014) investigates an abstract environment where the
sender chooses the experiment from a restricted set after becoming informed, so that the
choice of the experiment itself signals about this information. Experiments are costless. He
shows that several natural refinements select the sender-preferred equilibrium.

Most closely related to my work are models in which testing is endogenous and where
suppression is compared to no suppression. Felgenhauer and Loerke (2017) analyze a model
in which the sender can run tests sequentially and at a cost. Each individual test is com-
pletely flexible, but when the sender reveals a test result, he also reveals the underlying
experiment. They show that the sender runs only one experiment and that the receiver is
always better off under observable testing, i.e. when suppression is not possible. Brocas and
Carillo (2007) discuss a model of persuasion that is very similar in the testing structure to
mine. Tests are binary and sequential, they allow for the possibility that testing is costly.
However, they do not allow the possibility of suppression. Furthermore, the sender is not
informed. Henry (2009) has a model in which an uninformed sender can acquire verifiable
evidence at a cost. However, the acquisition is one shot: the sender decides a quantity
of research and then observes a number that is the “net favourableness” of the research
outcomes. In the case of suppression, the quantity of research acquired is not revealed. He
shows that the sender is always worse off under suppression and the receiver always better
off. In DeMarzo et al. (2015), the sender is uninformed and tries the maximize the price of
an asset on a competitive market with risk neutral buyers. He can conduct one test of a
set of exogenously given tests. After observing the test, he can disclose the results, which
means giving both the test chosen and the outcome of the test. Each test can also produce
one non-verifiable “null” result, which is the same for every test. The sender can therefore
choose to not disclose information by instead reporting this outcome, even when it did not
obtain, when the buyers would learn neither the test, nor the outcome. They show that in
equilibrium the test is chosen that yields the lowest price conditional on reporting the null
result. The sender gains nothing from the testing, but nonetheless, the equilibrium test is
unique. Herresthal (2017) has a testing structure that is very similar to mine. However,
the sender is uninformed, testing is costless and the number of tests cannot exceed an arbi-
trary value. The sender has state-based preferences and does not necessarily strictly prefer
acceptance to rejection. She shows that when the preferences of the sender and receiver
are misaligned, then the receiver is strictly better of when suppression is possible.

3 Set-up

The game is designed to capture in a very simple way an environment of strategic com-
munication. A sender is privately informed of some parameter of interest. A receiver can
choose to accept or reject the sender. The sender always wants to be accepted, the receiver
only wants to accept if the parameter is high enough. Because of this conflict of interests,
the sender cannot communicate the value of the parameter directly (he would not be be-
lieved). Instead, the sender can generate evidence that is verifiable, in order to convince
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the receiver to accept. I wish to compare the cases where the sender can or cannot suppress
evidence that is generated.

There are two players, a sender and a receiver. The sender is privately informed of
ϑ ∈ R. The receiver holds prior belief that ϑ is distributed according to a cumulative
distribution function F . This distribution contains no atoms. Supp(F ) denotes the support
of the distribution. ϑmin := minSupp(F ), ϑmax := maxSupp(F ).

There are two stages in the game, first a testing stage and then a decision stage. In the
decision stage, the receiver chooses d ∈ {a, r}, where a denotes acceptance and r rejection.
The decision stage pay-off to the sender is:

Π2
Sender(d, ϑ) = W1{d=a}.

W > 0 is the benefit of being accepted. The sender always prefers acceptance to
rejection. The decision stage pay-off to the receiver is:

Π2
Receiver(d, ϑ) = (ϑ− ϑ̄)1{d=a},

with EF [ϑ] < ϑ̄ < 1. The receiver therefore only wants to accept if his expectation of
ϑ is above ϑ̄. Ex ante this is not the case.

In the testing stage, the sender generates evidence and presents a report of this evidence
to the receiver. The aim of the testing and reporting is to increase the expectation of the
receiver of ϑ.

The testing works as follows. The sender can sequentially run tests indexed by i. Each
test is a random variable that is binary in that it yields one of two outcomes, success,
Xi = 1, or failure Xi = 0. The probability of a success depends on ϑ: Pr(Xi = 1|ϑ) =

1−Pr(Xi = 0|ϑ) = p(ϑ). p(.) is a strictly increasing continuous function that is commonly
known. Conditional on ϑ, Xi are independent.

Running a test costs c ≥ 0 to the sender. After observing the result of test Xi, the
receiver can choose to stop or to continue and run test Xi+1, again at cost c. Thus, if he
stops testing after τ tests, the testing stage pay-off to the sender is

Π1
Sender(τ, ϑ) := −cτ

.
The receiver’s pay-off is unaffected by the testing.
Associated with the underlying stochastic process (Xi)i∈N, I define Hn := (Xi)

n
i=1 as

the the history of testing up to time n. Denote the set of all possible testing histories
H :=

⋃
n∈N
{0, 1}n.1

If the sender stops testing after τ tests, having obtained testing history Hτ , he submits
a report R to the receiver. Here I distinguish two cases, “suppression” and “no suppression”.

1A typical element of H is H, or Hn, if I want to explicit about the number of tests in H.
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In the case of “no suppression”, if the sender stops after τ tests, he submits the entire
history Hτ as a report. R = Hτ .

In the case of “suppression”, if the sender stops after τ tests, he can submit any report
R that is a subsequence of Hτ . Intuitively, this means that he can omit any test result,
but he cannot change the order of test results. Formally, (Xi)

n
i=1 ∈ H is a subsequence of

(Yi)
m
i=1 ∈ H if there exists an increasing function k : {1, . . . , n} → {1, . . . ,m} such that

Xi = Yk(i). I write X|Y in that case. 2 Therefore R ∈ {H ∈ H : H|Hτ}.
I say that a report R is feasible with respect to a testing history H ∈ H if it can be

submitted given that testing history. That is, in the case of “no suppression” R is feasible
if and only if R = H, while in the case of “suppression”, it is feasible if and only if R|H.

A strategy for the sender is now a stopping time τ and a reporting rule R. The stopping
specifies when he stops testing, the reporting rule what he reports in that case. Both are
random variables.

Formally, the profile of the sender is ω = (ϑ,X), with ϑ ∈ R and X ∈ {0, 1}N. The set
of all profiles is:

Ω := R× {0, 1}N

I equip Ω with the σ-algebra F := B(R) × P({0, 1}N), where B(.) is the Borel σ-
algebra and P(.) is the power set. I associate with the process (Xi)i∈N the natural filtration
Fn := σ(ϑ,X1, . . . , Xn). Clearly Fn ⊆ Fn+1 ⊆ F .

The stopping time τ of the receiver is now a stopping time with respect to the natural
filtration, i.e. τ : Ω → N with {ω : τ(ω) ≤ n} ∈ Fn. The reporting rule R satisfies
R : Ω → H, with R(ω) = R(ω′) if ϑ(ω) = ϑ(ω′) and Xi(ω) = Xi(ω

′)∀i ≤ τ(ω) .3 In
the case of “suppression”, R(ω) ∈ {H ∈ H : H|Hτ(ω)(ω)}. In the case of “no suppression”,
R(ω) = Hτ(ω)(ω). Notice that τ and R depend on ϑ. Sometimes, if I want to be explicit
about this dependence, I will write τϑ andRϑ. I sometimes refer to the strategy of the sender
as a stopping rule, since the reporting rule is often trivial even in the case of “suppression”.

A pure strategy for the receiver specifies for each report R ∈ H if he accepts or rejects.
Thus, it is a function f : H→ {a, r}. I find it convenient to identify this function with the
set A := f−1(a) = {H ∈ H : f(H) = a}. I will refer to the strategy of the sender as the
acceptance rule.

The equilibrium concept I use is the usual notion of Perfect Bayesian Equilibrium.
Equilibrium is therefore a quadruple {τ,R,A, F ∗(ϑ|H)}, where F ∗(ϑ|H) are the beliefs of
the receiver conditional on any report. In equilibrium, (τ,R) are optimal given A, A is
optimal given (τ,R) and F ∗(ϑ|H) (although optimality with respect to F ∗(ϑ|H) alone is
sufficient), and F ∗(ϑ|H) satisfies Bayes’ rule whenever it applies. Because multiplicity of
equilibria occurs, I focus on the sender-preferred equilibrium.

2There appears to be no completely accepted notation in the mathematical literature for the subsequence
relation. The notation I use can be found in “Structural Additive Theory” by David Grynkiewicz.

3Notice that this implies τ(ω) = τ(ω′)
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Figure 1: A graphic representation of the environment.

3.1 Statistical and Strategic Effect of Reports

Given a strategy (τ,R) of the sender, for any report H ∈ H, Pr(τ,R)(H|ϑ), the probability
of that report being submitted by ϑ, is determined and is independent of F . Then Bayes’
rule becomes

F(τ,R)(ϑ|H) =

ϑ∫
ϑmin

Pr(τ,R)(H|ϑ′)dF (ϑ′)

ϑmax∫
ϑmin

Pr(τ,R)(H|ϑ′)dF (ϑ′)

,
whenever the denominator is not 0.
I introduce a concept that will be useful in understanding why reports are informative

in equilibrium. A report generated under the testing structure of (Xi)i∈N will typically
reveal information for two reasons. For example, if the sender reports that he obtained one
success, this tells the receiver both that he tested at least once and that he obtained at least
one success. The fact that the sender tested at least once is informative, because, knowing
the strategy of the sender, the receiver might be able to rule out certain realisations of
ϑ, i.e. those that do not test at least once in equilibrium. I refer to this as the strategic
effect of the report, because it is derived from considering the strategy of the sender. On
the other hand, the mere fact that there is a success in the test results is by itself also
informative. After all, successes are more likely obtained by higher ϑ. I refer to this as the
statistical effect on the report.

In order to precisely define these concepts, for a given report I define the statistical
expectation conditional on that report as the expectation when the strategy of the sender,
for every ϑ, is to keep testing until they can generate that report. This eliminates any
strategic considerations as outlined above. So, for any report H, define
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τstat(H) := min{n : Hn is such that H is a feasible report}4

and

Rstat(H) := H.

Notice that this stopping time does not depend on ϑ, but it does depend on the report
H. Then define

Estat[ϑ|H] := EF(τstat(H),Rstat(H))
[ϑ|H] =

ϑmax∫
ϑmin

ϑ′Pr(τstat(H),Rstat(H))(H|ϑ′)dF (ϑ′)

ϑmax∫
ϑmin

Pr(τstat(H),Rstat(H))(H|ϑ′)dF (ϑ′)

as the expectation conditional on H, given this stopping time. I want to compare this
expectation to the expectation under the optimal stopping times (in equilibrium), denoted
by

E∗[ϑ|H] := EF(τ∗,R∗) [ϑ|H] =

ϑmax∫
ϑmin

ϑ′Pr(τ∗,R∗)(H|ϑ′)dF (ϑ′)

ϑmax∫
ϑmin

Pr(τ∗,R∗)(H|ϑ′)dF (ϑ′)

,

where (τ∗, R∗) is the equilibrium strategy of the sender.
I define the statistical effect of the report as

γstat(H) =
Estat[ϑ|H]− E[ϑ]

E∗[ϑ|H]− E[ϑ]

and the strategic effect as

γstrat(H) =
E∗[ϑ|H]− Estat[ϑ|H]

E∗[ϑ|H]− E[ϑ]

These measures allow me to say whether for a given report the persuasive effect comes
primarily from strategic or statistical considerations. By construction γstat+γstrat = 1. As
we will see, perhaps unsurprisingly, in the case of suppression, reports will typically have
only strategic effect, while in the case of no suppression, as the cost of testing becomes
negligible, reports converge to having only statistical effect.

4Notice that τ is a Markov time, but not necessarily a stopping time, since it may be that Pr(τstat =
∞) > 0. Indeed, it may be impossible for some ϑ to generate the report. This is however not relevant, since
this is merely a technical definition and the stopping time is clearly not optimal anyway. The definition
of τstat can easily be amended to a stopping time, by allowing the sender to stop testing as soon as it
becomes impossible to generate the report. However, this would complicate (slightly) the definition.
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4 Bayesian Persuasion, a Preliminary Observation

Before proceeding to the main analysis, I consider a useful benchmark, where the sender
faces the costless information design problem, also known in the literature as the Bayesian
Persuasion game (Kamenica and Gentzkow, 2011). In my environment, this means that
game where the sender can, before learning ϑ and without cost, choose a conditional dis-
tribution of signals, from an unrestricted set of signals. The situation is thus different from
my model in both the structure of testing and the fact that the sender is now uninformed.
Otherwise the pay-off of the game is as above, i.e. the sender receives W if he is accepted
and 0 otherwise, while the receiver obtains ϑ− ϑ̄ if he accepts and 0 otherwise.

This is a useful benchmark, because it shows the best the sender can hope to do, from
an ex ante perspective, when he is not constrained by the structure and cost of the testing
that I impose. Since, later on, I will be interested in the sender-preferred equilibrium, which
is always evaluated ex ante, this a relevant perspective.

The sender thus chooses a set S and for each si ∈ S and each ϑ ∈ Supp(F ), he chooses
g(si, ϑ), so that Pr(s = si|ϑ) = g(si, ϑ). The receiver then receives a signal drawn from S

based on this conditional distribution and then chooses whether to accept. I again consider
the Perfect Bayesian Equilibrium. Define

¯
ϑ(ϑ̄) := inf{q : EF [ϑ|ϑ ≥ q] ≥ ϑ̄}. Then the

following is a standard result.

Proposition 0. Bayesian Persuasion
The Bayesian Persuasion Equilibrium is (outcome equivalent to5) a conditional distribu-
tion with 2 signals, s1, s2, such that Pr(s = s1|ϑ >

¯
ϑ) = Pr(s = s2|ϑ <

¯
ϑ) = 1. The

receiver accepts if and only if he receives signal s1.

Figure 2: The outcomes induced in the Bayesian Persuasion game.

For future reference, denote pBP (ϑ) := Pr(s = s1|ϑ) and pBP := Pr(s = s1).

Proof. See Gentzkow and Kamenica (2016), section 5.1.

To see that the probability of acceptance in the Bayesian Persuasion game indeed
provides an upper bound on the unconditional probability of acceptance in any other
communication game with the same pay-off to the receiver, consider any game G that
has the same pay-off structure, i.e. in the final stage the receiver chooses d ∈ {a, r} and
the pay-off to the receiver is as above. Suppose that this game supports an equilibrium in
which PrG(a|ϑ) is such that E[PrG(a|ϑ)] = PrG(a) > pBP . Let Pr(s = s1|ϑ) = PrG(a|ϑ)

5Here outcome equivalence means that the ex ante probability of a different pay-off is 0.
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and Pr(s = s2|ϑ) = PrG(r|ϑ). Since in equilibrium of the game G, whenever the receiver
accepts, he is willing to do so, he is also willing to accept if he only knows he is in a state
in which he accepts in G, but not which state. Therefore, the receiver accepts upon signal
s1. This is a contradiction with the optimality of the Bayesian Persuasion outcome. In
particular, also in the main model the probability of acceptance can never exceed pBP .

5 Suppression

I now consider the game of communication with suppression, i.e. where the sender generates
evidence from the process (Xi)i∈N at a unit cost c each time and can submit any report
R|Hτ , where Hτ is the evidence gathered when the sender stops testing.

Notice that, if c = 0, any type can generate any report at no cost (other than ϑmin

if p(ϑmin) = 0 and ϑmax if p(ϑmax) = 1, but these types occur with zero probability by
assumption). Therefore this case reduces to cheap talk, which in this environment implies
no communication. I therefore assume throughout the section on suppression that c > 0.

As a preliminary observation, note that reports will not have statistical effect when
suppression is possible.

Lemma 1. Reports have no Statistical Effect
For any report H ∈ H, γstat[H] = 0.

Proof. Observe that τstat(H) = min{n : H|Hn}. Clearly, if 0 < p(ϑ) < 1, then Pr(τ <

∞|ϑ) = 1. Therefore Estat[ϑ|H] = E[ϑ|ϑmin < ϑ < ϑmax] = E[ϑ].

5.1 Optimal Testing with Suppression

I first derive a simple result on the optimal stopping time in response to any acceptance rule
A ⊆ H. If, for a given ϑ, the sender decides to test at least once, then he will test until he can
send a report that will lead to acceptance. The intuition for this result is straightforward.
If the sender decides to run a test and obtains a result that is not favourable (with respect
to the acceptance rule, which may in principle require failures as well as successes), then
he can simply suppress this result. The expected value of continuing to test is therefore not
lower than before he obtained the unfavourable result. Formally, the continuation value is
a submartingale. Therefore, if the sender was right in testing to begin with, he should keep
testing until accepted.

Lemma 2. Optimal Stopping
For any A ⊆ H there is a stopping time τ that is an optimal response to A and has the
property Pr(a|τ > 0) = 1.

Proof. Denote by V τ
A (H) the value of stopping time τ given acceptance rule A ⊆ H and

after testing history H ∈ H. Denote by τA the optimal stopping time given A. I write
V ∗A (H) := V τA

A for the value of the optimal stopping time. I suppress the dependence of
the value and stopping time on ϑ in this proof.
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As a preliminary, I define the concatenation of 2 sequences. LetX,Y ∈ H,X = (Xi)
m
i=1,

Y = (Yi)
n
i=1, then

X_Y := (Zi)
n+m
i=1 , Zi :=

{
xi if i ≤ m
yi−m if i > m

.

Next, for any A ⊆ H, H ∈ H, I define the continuation acceptance rule as:

A− {H} := {H ′ ∈ H : H_H ′ ∈ A}

A sender facing A after testing result H faces the same problem as a sender facing
A−{H} before any testing. V τ

A (H) = V τ
A−{H}(H0). This follows from the fact that, because

of the conditional independence of the tests, the probability of any sequence H obtaining
is independent of prior testing, and because ∀H ′ ∈ H, H ′_H ∈ A⇔ H ∈ A− {H ′}.

Suppose A ⊆ A′ ⊆ H. Then, for any H ∈ H, V ∗A (H) ≤ V ∗A′(H). Indeed, V ∗A (H) ≤
V τA
A′ (H) ≤ V ∗A′(H). Here the first inequality follows from the fact that, for a given stopping

time, A′ leads weakly more often to acceptance, while the second inequality follows from
the optimality of τA′ .

Next, consider A ⊆ H. Let A′ = {H ∈ H : ∃A ∈ A s.t. A|H}. A′ induces the same
behaviour in the sender, because he can submit a report that leads to acceptance under
A if and only if he can submit a report that leads to acceptance under A′. Indeed, if
H ′ ∈ A′ and H ′ is feasible, then there exists an H|H ′ such that H ∈ A and H is feasible
by construction. A′ has the property that A ∈ A′ and A|A′ imply A′ ∈ A′. It is therefore
without loss of generality to assume that acceptance rules satisfy this property.

Finally, observe that for any A ⊆ H, H ∈ H, A ⊆ A − {H}. Indeed, let A ∈ A, then
A|H_A and therefore A ∈ A−{H}. Therefore V ∗A (H) = V ∗A−{H}(H0) ≥ V ∗A (H0). Since the
sender will prefer testing to stopping when V ∗A (H) > 0, he will prefer testing to stopping
after any history H, if he preferred it before testing, at H0. Optimality then implies that
the probability of acceptance must be 1.

Lemma 2 implies that for any acceptance rule A, there will be two sets of ϑ, those that
get accepted with probability 1 and those that get rejected with probability 1.

5.2 Sender-preferred Simple Equilibrium with Suppression

Define
1S := (1, . . . , 1)︸ ︷︷ ︸

S

,

a sequence of S successes. In this section I consider equilibria where the acceptance rule is
of the form A = {1S}. In words, acceptance requires only some number of successes. Notice
that this is not a restriction on the strategies of the receiver, but a selection within the class
of equilibria. I call such an acceptance rule and the corresponding equilibrium, if it exists,
simple. These equilibria are indeed simpler than the general class of equilibria, but their
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most important properties carry over to the general case. In the next section, I establish
this connection to the more general case. In this section, my goal is to establish that there
exist simple equilibria. Furthermore, I find the sender-preferred equilibrium within the set
of simple equilibria. I call this equilibrium an sender-preferred simple equilibrium. In the
next section I show that the sender-preferred simple equilibrium approximates the exact
sender-preferred equilibrium.

Lemma 2 implies that there are sets of ϑ, one that tests in equilibrium and is accepted
with probability one and an other that does not test and is never accepted. The require-
ments of a simple equilibrium are easier to meet, the higher is ϑ. Therefore, the two sets
will be intervals, separated by a threshold on ϑ, with every ϑ above the threshold testing
until accepted and every ϑ below the threshold not testing. To each 1S corresponds a
threshold. If the threshold is above the Bayesian Persuasion threshold

¯
ϑ(ϑ̄), the receiver

would be willing to accept and 1S induces an equilibrium. Lower thresholds lead to both a
higher probability of acceptance and a lower cost of testing. Therefore the lowest threshold
that is above

¯
ϑ(ϑ̄) is the sender-preferred simple equilibrium.

For any S ∈ N, define ϑc(S) := p(cS/W )−1.

Proposition 1. Sender-preferred Simple Equilibrium
Let A = {1S}. If ϑc(S) ≥

¯
ϑ(ϑ̄), this constitutes an equilibrium, with Pr(a|ϑ) = 1 if and

only if ϑ ≥ ϑc(S). The sender-preferred simple equilibrium has S such that ϑc(S − 1) <

¯
ϑ(ϑ̄) ≤ ϑc(S). If ϑc(S) =

¯
ϑ(ϑ̄), then Pr(a) = pBP .

Proof. Since any sequence containing S successes permits the report 1S , the task the sender
faces is simply to obtain S successes in total. Denote by Tϑ(S) the expected waiting time
until obtaining S successes. Clearly Tϑ(S) = p(ϑ)Tϑ(S−1)+(1−p(ϑ))Tϑ(S)+1, whence
I conclude Tϑ(S) = S/p(ϑ). If cTϑ(S) ≥W , the sender will test, otherwise not. This leads
to the threshold ϑc(S) = p(cS/W )−1 By lemma 2, he will then test until accepted.

For this to constitute an equilibrium, it must indeed be the case that the receiver is
willing to accept if and only if the report received is 1S . Observe that for any off path
report (any report other than 1S or H0), I am free to specify any belief for the receiver.
This is so, because any report can be generated by any ϑ. I therefore specify the beliefs to
be such that E[ϑ|R] < ϑ̄ for any R 6∈ {1S , H0}. E[ϑ|H0] = E[ϑ|ϑ < ϑc(S)] ≤ E[ϑ] < ϑ̄, so
rejection is ensured there. Finally E[ϑ|1S ] = E[ϑ|ϑ ≥ ϑc(S)]. If and only if ϑc(S) ≥

¯
ϑ(ϑ̄),

this yields E[ϑ|1S ] ≥ ϑ̄.
For sender-preferred simple equilibrium, consider that if 1S induces an equilibrium, then

so does 1S+1. However, 1S is then preferred by the sender, as it has a higher probability
of acceptance and a lower cost of testing. Therefore, the smallest value of S that induces
equilibrium is sender-preferred, yielding the characterization in the proposition.

The sender-preferred simple equilibrium of proposition 1 does not always give Pr(a) =

pBP . This is because of integer problems. If it were possible to report fractions of a success,
it always be possible to find values S ∈ R such that ϑc(S) =

¯
ϑ(ϑ̄). Because it is not possible
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to let S ∈ R/N, I need to consider sender preferred equilibrium in the general class of (non-
simple) equilibria. I do this in the next section, but first I establish an important feature of
the sender-preferred simple equilibrium, namely that its outcomes are independent of c. By
this I mean the following. Fix c and take a simple equilibrium, A = {1S} and Pr(a|ϑ) = 1

if and only if ϑ ≥ ϑc(S). Now take c′ = c/2. Then by taking S′ = 2S, the same threshold
is induced: ϑc(S) = ϑc′(S

′). Furthermore, also the expected cost of testing is the same for
any ϑ, since twice as many successes are required, at half the cost. Thus both the sender
and the receiver get the same pay-off in these two equilibria.

Define TCc(ϑ) := cE[τ |τ > 0, ϑ], the total cost of testing, conditional on positive
testing and TCc := E[TCc(ϑ)].

Lemma 3. The effect of c
Consider c, c′ and suppose S, S′ are such that ϑc(S) = ϑc′(S

′) =: ϑ̂. Then

TCc(ϑ) = TCc′(ϑ) =
p(ϑ̂)

p(ϑ)
W

and

TCc = TCc′ = pBPE[
p(ϑ̂)

p(ϑ)
|ϑ ≥ ϑ̂]

The establishes that in any simple equilibrium, and therefore in particular in the sender-
preferred simple equilibrium, the total cost of testing is determined fully by the threshold
on ϑ it induces and is independent of c.

Proof. Observe that given ϑc(S), p(ϑc(S))W = cS, so that the expected cost of testing for
any ϑ ≥ ϑc(S) is TCc(ϑ) = cS/p(ϑ) = p(ϑc(S))W/p(ϑ) = p(ϑc′(S

′))W/p(ϑ) = TCc′(ϑ).
TCc is then straightforwardly derived.

5.3 Exact Sender-preferred Equilibrium with Suppression

I now consider the sender-preferred equilibrium from the complete class of equilibria. I show
that it behaves very much like the sender-preferred simple equilibrium, in the sense that
whenever ϑc(S) =

¯
ϑ(ϑ̄), the simple and the exact sender-preferred equilibrium coincide.

I show that this happens for infinitely many positive values of c. Furthermore, when the
sender-preferred simple equilibrium differs from the sender-preferred equilibrium, it is still
close in outcomes, in the sense that the difference in outcomes converges to 0, as c→ 0.

Proposition 2. Sender-preferred Equilibrium
The sender-preferred simple equilibrium approximates the exact sender-preferred equilib-
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rium. In the exact sender-preferred equilibrium:

Prc(a) ≤ pBP ,
p(

¯
ϑ(ϑ̄))

p(ϑ)
W ≤ TCc(ϑ),

TCc ≤ pBPE
[p(

¯
ϑ(ϑ̄))

p(ϑ)
|ϑ ≥

¯
ϑ(ϑ̄)

]
W +B(c),

where B(c)→ 0 as c→ 0. For c ∈ {p(
¯
ϑ(ϑ̄))W/n : n ∈ N}, these bounds hold with equality.

For c→ 0, they hold with equality in the limit.

Proof. Pr(a)c ≤ pBP is immediate from proposition 0.
Fix any acceptance rule A ⊆ H. Recall that l(H) is the lenght of a sequence H, i.e.

l(Hn) = n. Define TA
p(ϑ)(H) := E[τA|ϑ,H]−l(H), where τA := min{n : ∃A ∈ A s.t. Hn|A}.

In words, TA
p(ϑ)(H) is the expected testing time until acceptance, after having obtained

test results H.
I establish at the end of the proof, in lemma 4, that pTA

p (H) is non-decreasing in p. Con-
sider now any equilibrium, with acceptance rule A ⊆ H. It must be that there is a ϑ′ ≥

¯
ϑ

that does not test (or is indifferent). Otherwise, by the continuity of TA
p(ϑ)(H0) in ϑ, there

is also ϑ <
¯
ϑ willing to test. This would yield a probability of acceptance greater than pBP ,

which is impossible. Suppose there is any ϑ′′ > ϑ′ s.t. cTA
p(ϑ′′)(H0) < p(

¯
ϑ)W/p(ϑ′′). At the

same time, cTA
p(ϑ′)(H0) ≥W . Then p(ϑ′′)TA

p(ϑ′′)(H0) < p(
¯
ϑ)TA

p(ϑ′)(H0) ≤ p(ϑ′)TA
p(ϑ′)(H0),

contradicting the fact that p(ϑ)TA
p(ϑ)(H0) is non-decreasing in p(.), since p(.) is itself in-

creasing. This establishes the lower bound on TCc(ϑ).
To establish the upper bound on TCc, consider the unique S such that ϑc(S − 1) ≤

¯
ϑ(ϑ̄) ≤ ϑc(S). Since p(ϑ(S)) = cS/W , it follows that p(

¯
ϑ(ϑ̄)) ≤ p(ϑc(S)) ≤ p(

¯
ϑ(ϑ̄))+c/W .

Therefore the ex ante pay-off to the sender in the equilibrium induced by A = {1S} is
bounded below by:

ΠS
S = PrSc (a)W − TCS

c ≥

(pBP − Pr(p(
¯
ϑ(ϑ̄)) ≤ p(ϑ) ≤ p(

¯
ϑ(ϑ̄)) +

c

W
))W

−Pr(p(ϑ) ≥ p(
¯
ϑ(ϑ̄)) +

c

W
)E[

p(
¯
ϑ(ϑ̄)) +

c

W
p(

¯
ϑ(ϑ̄))

|p(ϑ) ≥ p(
¯
ϑ(ϑ̄)) +

c

W
]W

In the sender preferred-equilibrium, we have for the pay-off to the sender:

ΠSP
S = PrSPc (a)W − TCc ≤ pBPW − TCC

From the fact that ΠSP
S ≥ ΠS

S , I then obtain that:
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TCc ≤ Pr(p(ϑ) ≥ p(
¯
ϑ(ϑ̄)) +

c

W
)E[

p(
¯
ϑ(ϑ̄)) +

c

W
p(

¯
ϑ(ϑ̄))

|p(ϑ) ≥ p(
¯
ϑ(ϑ̄)) +

c

W
]W +

Pr(p(
¯
ϑ(ϑ̄)) ≤ p(ϑ) ≤ p(

¯
ϑ(ϑ̄)) +

c

W
)W →

pBPE[
p(

¯
ϑ(ϑ̄))

p(ϑ)
|ϑ ≥

¯
ϑ(ϑ̄)]W as c→ 0

The claim for c ∈ {= p(
¯
ϑ(ϑ̄))W/n : n ∈ N} is immediate from the fact that in that

case ϑc(n) induces those outcomes.
The claim for the limit is immediate.
Finally, I return to the promised technical lemma:

Lemma 4. For any A ⊆ H and any H ∈ H, pTA
p (H) is non-decreasing in p.

Proof. If A = ∅, TA
p (H) is infinite and the statement is trivially true. Assume therefore

that A 6= ∅.
Now observe that TA

p (H_(1)) − TA
p (H_(0)) ≥ −1/p. Indeed, TA

p (H) ≥ TA
p (H_(0))

and TA
p (H_(1)) − TA

p (H) is minimal when at least one more success is required after
obtaining H. Then TA

p (H_(1))−TA
p (H) = −T{(1)}

p = −1/p.
The argument now proceeds by induction. Since the induction over H is non-standard,

I lay out and prove explicitly the logic of the induction. For H, I ∈ H, denote

I −H := min
{J∈H: ∃H′∈H s.t. H′|H and H′_J |I}

l(J).

I − H is the length of the shortest path from H that permits the report I. Observe
that if I|H, I −H = 0.

I write H ≤A H
′ if H ∈ A or ∀A ∈ A, A−H ≤ A−H ′. If H ≤A H

′ and H ′ 6≤A H, I
write H <A H

′. I say H is critical if either H ≤A H
_(0) or H ≤A H

_(1). If H 6∈ A and
H is critical, exactly one of H_(0) <A H or H_(1) <A H holds, since A 6= ∅. For such H,
denote by H+1 ∈ {H_(0), H_(1)} such that H+1 <A H.

The induction now works as follows. Denote by Q(H) any property of H.

Lemma 5. If

1. If H ∈ A, then Q(H) holds.

2. If Q(H_(0)) and Q(H_(1)) hold, then Q(H) holds.

3. If H is critical and Q(H+1) holds, then Q(H) holds.

Then P (H) holds ∀H ∈ H.

Proof. Suppose ∃H ∈ H such that ¬Q(H). Then H 6∈ A. If H is not critical, there exists
a successor history H ′ ∈ {H_(0), H_(1)} such that ¬Q(H ′). Since H is not critical,
H ′ <A H. If H is is critical, then ¬Q(H+1) and H+1 <A H. In this way, I construct a
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sequence of histories Hi with ¬Q(Hi) and Hi < Hi+1 ∀i ∈ N. But this sequence has Hi ∈ A
for i sufficiently large. This is a contradiction and the lemma follows.

I now apply lemma 5 to lemma 4, with P (H) = “TA
p (H) is non-decreasing in p”.

1. Since TA
p (H) = 0 if H ∈ H, this is clear.

2. Assume that pTA
p (H) is non-decreasing in p ∀H s.t. H ′|H and H 6= H ′. Observe

that TA
p (H) = pTA

p (H_(1)) + (1− p)TA
p (H_(0)) + 1. By an application of lemma 5 that

is completely analogous to the current one, it is easy to prove that TA
p (H) is differentiable

in p. Therefore:

d

dp
pTA

p (H) = p
d

dp
(pTA

p (H_(1))) + (1− p) d
dp

(pTA
p (H_(0))) + p(TA

p (H_(1))−TA
p (H_(0))) + 1 ≥

p
d

dp
(pTA

p (H_(1))) + (1− p) d
dp

(pTA
p (H_(0))) ≥ 0.

Here the first inequality follows from the fact that TA
p (H_(1))−TA

p (H_(0)) ≥ −1/p

and the second follows from the (differentiable version of) the induction hypothesis.
3. Assume that H is critical and pTA

p (H+1) is non-decreasing in p. Suppose first
that H+1 = H_(1). Then TA

p (H) = TA
p (H_(0)) and TA

p (H) = pTA
p (H_(1)) + (1 −

p)TA
p (H_(0)) + 1 implies TA

p (H) = TA
p (H_(1)) + 1/p. So pTA

p (H) is non-decreasing
in p. Suppose instead that H+1 = H_(0). Then TA

p (H) = TA
p (H_(1)) and TA

p (H) =

TA
p (H_(0)) + 1/(1 − p). Since p/(1 − p) is strictly increasing for p ∈ [0, 1), once again

pTA
p (H) is non-decreasing in p.
This completes the proof of lemma 4 and hence of proposition 2.

Remark. Notice that the lower bound on the cost of testing is in terms of TCc(ϑ), whereas
the upper bound is in terms if TCc. Unfortunately, no upper bound can be given on TCc(ϑ)

beyond TCc(ϑ) ≤W , which is trivial.
Similarly no lower bound exists on TCc beyond TCc ≥ 0, which is trivial. Indeed,

consider the case where c > W , then the only equilibrium is the pooling equilibrium with
no testing and hence TCc = 0.

The final result in the section is an almost immediate corollary of the above proposition.
However, it is of independent importance, because it will shed light on the comparison
between the cases of “suppression” versus “no suppression”. The intuitive content of it is
the following. Any acceptance rule works because it “kicks out” enough bad types to satisfy
the receiver and is sender-preferred when it “kicks out” as few as possible. When ϑ̄ is close
to E[ϑ], few types need to be kicked out to satisfy the receiver. The cost of testing is
proportional to the highest type being kicked out. So, when ϑ̄ is close to E[ϑ], the cost of
testing also becomes low. Similarly, when ϑ̄ is high, high types need to be kicked out and
the cost of testing becomes high accordingly.

Recall that ϑmin := minSupp(F ) and ϑmax := maxSupp(F ).
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Corollary 1. The Effect of ϑ̄
Consider any sequence (ϑ̄i, ci) s.t. ϑ̄i > E[ϑ] ∀i, ϑ̄i → E[ϑ], ci > 0 ∀i and ci → 0, then, in
the sender-preferred equilibrium, Prc(a)→ 1 and TCc(ϑ)→Wp(ϑmin)/p(ϑ).
Similarly, consider any sequence (ϑ̄i, ci) s.t. ϑ̄i < ϑmax ∀i, ϑ̄i → ϑmax, ci > 0 ∀i and ci → 0,
then, in the sender-preferred equilibrium, Pr(a)c → 0 and TCc(ϑ)→W .

Proof. First, I show that as ϑ̄i → E[ϑ], inf{q : E[ϑ|ϑ ≥ q] ≥ ϑ̄i} =:
¯
ϑi → ϑmin.

Since Pr(ϑ = ϑmin) = 0, then it must be that there exists ε > 0 such that (ϑmin, ϑmin+

ε) ⊆ Supp(F ), while Pr(ϑ = ϑ′) = 0 ∀ϑ′ ∈ (ϑmin, ϑmin + ε). This implies that f is
continuous and strictly increasing on [0,

ε

2
]. Furthermore, f(ϑmin) = E[ϑ]. Now, if f(ϑmin+

ε

2
) < ϑ̄i, let qi = ϑmin +

ε

2
. If instead f(ϑmin +

ε

2
) ≥ ϑ̄i, by the continuity of f and the

intermediate value theorem, there exists a q such that f(q) =
E[ϑ] + ϑ̄i

2
< ϑ̄i. Let qi = q.

For ϑ̄i sufficiently close to E[ϑ], the latter case obtains, so qi → ϑmin as ϑ̄i → E[ϑ]. Since
ϑmin ≤

¯
ϑi ≤ qi, then also

¯
ϑi → ϑmin as ϑ̄i → E[ϑ].

Next, I show that as ϑ̄i → ϑmax, inf{q : E[ϑ|ϑ ≥ q] ≥ ϑ̄i} =:
¯
ϑi → ϑmax.

There exists ε > 0 such that (ϑmax− ε, ϑmax) ⊆ Supp(F ). Then f is strictly increasing
and continuous on [ϑmax −

ε

2
, ϑmax]. Now, if f(ϑmax −

ε

2
) ≥ ϑ̄i, let qi = −∞. If instead

f(ϑmax −
ε

2
) < ϑ̄i, then by the continuity of f and the intermediate value theorem, there

exists a q such that f(ϑmax−
ε

2
) < f(q) = ϑ̄i−

|ϑ̄i − ϑmax|
|ϑmax − f(ϑmax −

ε

2
)|
|ϑ̄i−f(ϑmax−

ε

2
)| < ϑ̄i.

Let qi = q. For ϑ̄i sufficiently close to ϑmax, the second case obtains, so qi → ϑmax as
ϑ̄i → ϑmax. Since qi ≤

¯
ϑi ≤ ϑmax, also

¯
ϑi → ϑmax as ϑ̄i → ϑmax.

The results are now immediate from proposition 2.

Example. Suppose ϑ ∼ U [ϑmin, ϑmax], with 0 ≤ ϑmin < ϑmax ≤ 1 and p(ϑ) = ϑ. Then

¯
ϑ(ϑ̄) = 2ϑ̄− ϑmax and ΠS(ϑ) ≈ (ϑ−

¯
ϑ(ϑ̄))W/ϑ if ϑ ≥

¯
ϑ(ϑ̄) and 0 otherwise. We see that

as ϑ̄ → ϑmax,
¯
ϑ(ϑ̄) → ϑmax and no one is accepted, while if ϑ̄ → E[ϑ],

¯
ϑ(ϑ̄) → ϑmin

and everyone will be accepted. If furthermore ϑmin = 0, the cost of testing vanishes and
ΠS(ϑ)→W . I plot the sender utility in figure 3.

6 No Suppression

I will now consider the game of communication without suppression, i.e. the sender gener-
ates evidence from the process Xn at a cost c each time and submits the report Hτ , where
τ is the stopping time. I will write SH and FH for the number of successes and failures
associated with a history H.

In order to gain some first understanding of this environment, I eliminate the strategic
effect of reports by investigating the case where testing is costless. Then I proceed to show
in the next section how this case bears on the one where testing has a positive cost, but c
is vanishing.
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Figure 3: The sender pay-offs when ϑ ∼ U [0, 1] for various values of ϑ̄.

6.1 Costless testing

I start by considering the case where c = 0. In that case it is clear that it is clear that
the sender, irrespective of ϑ, will keep testing until he is accepted. After all, there is no
cost and a potential gain. Since there will be no on path reports leading to rejection, the
strategic effect of a report disappears.

The main result of this section will be that, when testing is costless and evidence cannot
be suppressed, Pr(a|ϑ) = 1 if ϑ ≥ ϑ̄, while 0 < Pr(a|ϑ) < 1 if ϑ < ϑ̄. The reason for this
is as follows. As testing goes on long enough, eventually, by the law of large numbers, the
test will reveal with probability 1 the true value of ϑ. This will lead to acceptance if and
only if ϑ ≥ ϑ̄. 0 < ϑ < ϑ̄ can only get accepted by getting lucky and looking good in
the early testing. Somewhat more formally, as evidence becomes abundant, meaning l(H)

becomes large, where l(H) denotes the number of tests in H, the conditional expectation
will depend less and less on the ex ante distribution and more and more on the evidence
itself. In particular, as l(H)→∞, typically E[ϑ|H]→ p−1(SH/(SH +FH)). Simply put, if
the receiver sees a large sample with, say, 60% successes, then he will expect that p(ϑ) = .6,
so that ϑ can be deduced through p(.). Now, if testing goes on long enough, eventually the
proportion of successes in the sample will be roughly p(ϑ). Therefore, if ϑ ≥ ϑ̄, eventually
acceptance will occur, while if 0 < ϑ < ϑ̄, acceptance can only occur if the sender “gets
lucky” early in testing. This can happen (since any report generated by any ϑ can also
be generated by another 0 < ϑ < 1 with positive probability), but it cannot happen with
probability 1.
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Recall that Estat[ϑ|H] is defined as the expectation of ϑ conditional on the report H
with respect to the stopping time τstat(H) := inf{n : Hn such that H is a feasible report},
independent of ϑ and R = H. Notice that the stopping time τH = l(H) together with the
reporting rule RH = Hl(H) produces the same expectation E(τH ,RH)[ϑ|H] = Estat[ϑ|H].
What is required to compute the statistical expectation of a report, is simply that any ϑ
keeps testing as long as they can still generate that report (and are unrestricted when they
can no longer obtain the report). Then I find

Estat[ϑ|H] := EF(τstat(H),Rstat(H))
[ϑ|H] =

ϑmax∫
ϑmin

ϑ′p(ϑ′)SH (1− p(ϑ′))FHdF (ϑ′)

ϑmax∫
ϑmin

p(ϑ′)SH (1− p(ϑ′))FHdF (ϑ′)

In comparison, the equilibrium expectation is:

E∗[ϑ|H] := EF ∗ [ϑ|H] =

ϑmax∫
ϑmin

1{Pr(τ≥l(H)|ϑ,H)=1}ϑ
′p(ϑ′)SH (1− p(ϑ′))FHdF (ϑ′)

ϑmax∫
ϑmin

1{Pr(τ≥l(H)|ϑ,H)=1}p(ϑ′)SH (1− p(ϑ′))FHdF (ϑ′)

Here 1{Pr(τ≥l(H)|ϑ,H)=1} is the event that ϑ keeps testing along the path of H. Since
the cost of testing is zero and the expected benefit is always positive, any ϑ will always
keep testing and we have that for any H ∈ H, Estat[ϑ|H] = E∗[ϑ|H].

One philosophical issue arises in the case of costless testing. In equilibrium, for some ϑ
the optimal τ , while a Markov time, will not be a stopping time. Recall that the distinction
is that a stopping time requires also that Pr(τ < ∞) = 1. Clearly, it cannot be that all
ϑ test until accepted and that for all ϑ, Pr(τϑ < ∞) = 1, because it cannot be that all
are accepted in equilibrium. Formally speaking, this is not much of a problem, although
I would need to specify pay-offs in the case of infinite testing (naturally, they are 0).
However, economically speaking, it is not entirely clear what infinite testing would mean.
Rather than finding a direct economic interpretation, I will take a different approach. I
will show below that, in a sense that I will make precise, sender-preferred equilibrium is
continuous in c at c = 0 for the case of “no suppression” (in clear contrast to the case of
“suppression”). For small but positive costs the issue of infinite testing does not arise. The
costless testing equilibrium is then best understood as describing the limit behaviour of
equilibria with a vanishing cost of testing.

Proposition 3. Sender-preferred Equilibrium with Costless Testing
If c = 0, in the sender-preferred equilibrium Pr(a|ϑ) = 1 if ϑ ≥ ϑ̄, while 0 < Pr(a|ϑ) < 1

if ϑ < ϑ̄. The sender-preferred equilibrium is outcome equivalent to one where acceptance
occurs if and only if Estat[ϑ|H] ≥ ϑ̄. For any report H on the equilibrium path, γstat(H) = 1.
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In light of the proposition, I will denote by p0(ϑ) := Pr(a|ϑ) the conditional prob-
ability of acceptance in the costless testing equilibrium, by p0 := Pr(a) the uncondi-
tional probability of acceptance and by A0 the costless equilibrium acceptance rule, i.e.
A0 := {H ∈ H : Estat[ϑ|H] ≥ ϑ̄}. I will write τ0 := min{n : Hn ∈ A0} for the stopping rule
in the costless equilibrium.

I phrase proposition 3 in terms of outcome equivalence. The reason for this is technical.
The acceptance rule A0 contains many reports which are off path. If any of these reports
were cut from the acceptance rule, nothing would change in the outcomes, but formally,
this constitutes a different equilibrium.

Proof. It is clear that no matter what the acceptance rule A is, τ = min{n : Hn ∈ A}.
The only possible exception is ϑ = 0 and there it does not matter what we specify for τ .
From the remarks above it is also clear that Estat[ϑ|H] = E[ϑ|H]. Since there is no cost,
sender utility is maximized when the probability of acceptance is maximized. Clearly this
occurs when A = {H ∈ H : Estat[ϑ|H] ≥ ϑ̄}. 6 It remains to show that the probabilities of
acceptance are as stated. I proceed in two steps. I start with a technical lemma.

Lemma 6. As n → ∞, Estat[ϑ|Hn] → p−1(SH/(SH + FH)) if p−1((SH/(SH + FH)) ∈
Supp(F ), Estat[ϑ|Hn]→ ϑmin if p−1((SH/(SH + FH)) ≤ ϑmin and Estat[ϑ|Hn]→ ϑmax if
p−1((SH/(SH + FH)) ≥ ϑmax.7

Proof. Since the set of discrete distributions on [0, 1] is dense is the set of distributions
on [0, 1], it suffices to show the claim for discrete distributions. Let Supp := {ϑi}i∈N be
the support of the discrete distribution and let pi the corresponding probabilities. Then
E[ϑ|(nS, nF )] =

∑
Supp ϑiPr(ϑ = ϑi|Hn). It suffices to show that all but the required

conditional probabilities go to 0.

Pr(ϑ = ϑi|Hn) =
pip(ϑi)

SH (1− p(ϑi))FH∑
Supp

pjp(ϑj)SH (1− p(ϑj))FH

Writing q := S/(S+F ), so that F = S(1− q)/q, this becomes (letting n→∞ for fixed
q):

pip(ϑi)
n(1− p(ϑi))n

1−q
q∑

Supp

pjp(ϑj)n(1− p(ϑj))n
1−q
q

=
1

1 +
∑

Supp\{ϑi}

pj
pi

(
p(ϑj)(1−p(ϑj))

1−q
q

p(ϑi)(1−p(ϑi))
1−q
q

)n

Let us examine the properties of the function p(1− p)(1−q)/q.
6Notice that it also occurs for, for example, Ã := A/{Hn+1}, where both Hn+1 ∈ A and Hn ∈ A. This

is simply because the report Hn+1 is then off the equilibrium path. Such acceptance rules clearly induce
the same outcomes.

7Notice that these cases are not exhaustive, i.e. there may exist ϑmin < ϑ < ϑmax such that ϑ 6∈ Supp(P).
However, the cases are sufficient for my needs.
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d

dp
p(1− p)

1− q
q = (1− p)

1− q
q − 1− q

q
p(1− p)

1− 2q

q =

(1− p− 1− q
q

p)(1− p)
1− 2q

q =
q − p
q

(1− p)
1− 2q

q

Clearly the derivative is positive if p < q and negative if p > q, so the function
obtains its unique maximum at q = p. Furthermore, if p1 < p2 < q < p3 < p4, then
p1(1 − p1)(1−q)/q < p2(1 − p2)(1−q)/q and p4(1 − p4)(1−q)/q < p3(1 − p3)(1−q)/q. Returning
our attention to the sum

∑
Supp\{ϑi}

pj
pi

(
p(ϑj)(1− p(ϑj))

1−q
q

p(ϑi)(1− p(ϑi))
1−q
q

)n,

it is clear that if p(ϑi) = q, or p(ϑj) < p(ϑi) < q∀j or q < p(ϑi) < p(ϑj)∀j, each element
of the sum converges to 0 and the conditional probability goes to 1. This proves the
lemma.

Finally, I show that Pr(a|ϑ) > 0 if p(ϑ) > 0 and Pr(a|ϑ) = 1 if and only if ϑ ≥ ϑ̄. It is
clear that A is non-empty, so that Pr(a|ϑ) > 0 for any p(ϑ) > 0, since any report H can
be generated with positive probability by any p(ϑ) > 0. However, no report other than H0

can be generated with certainty by any 0 < p(ϑ) < 1. However, it is also clear that for any
finite n and p(ϑ) < 1, the entire path (Hi)i∈{1,...,n} may have Estat[ϑ|Hi] ≤ ϑ̄ with positive
probability. Now observe that if ϑ ≥ ϑ̄, by the strong law of large numbers

Pr( lim
n→∞

Hn ∈ A|ϑ) = Pr( lim
n→∞

SHn
SHn + FHn

≥ p(ϑ̄)) = Pr( lim
n→∞

∑n
i=1Xn

n
≥ p(ϑ̄))

≥ Pr( lim
n→∞

∑n
i=1Xn

n
≥ p(ϑ)) = E[X1|ϑ]) = 1,

while similarly for ϑ < ϑ̄,

Pr( lim
n→∞

Hn ∈ A|ϑ) = Pr( lim
n→∞

SHn
SHn + FHn

≥ p(ϑ̄))

≤ 1− Pr( lim
n→∞

∑n
i=1Xn

n
≤ p(ϑ)) = E[X1|ϑ]) = 0.

Remark. Observe that although A0 = {H ∈ H : Estat[ϑ|H] ≥ ϑ̄}, in the case of no suppres-
sion, in contradistinction to the case of suppression, the receiver isn’t exactly indifferent
between accepting and rejecting for on path reports, even as c vanishes. For example, it
may be that a report with two successes and no failures is not enough make the receiver
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accept, but three failures and no successes is more than enough. This is a kind of integer
problem, as in the case of suppression, but, unlike in the case of suppression, this problem
does not disappear as c vanishes. Therefore the receiver generically strictly prefers accep-
tance to rejection in the case of no suppression. It is an integer problem in the sense that
this result would go away if it were possible to submit obtain half a success. I return to
this point below, when I compare the two cases.

From proposition 3 the following result is now immediate. The probability of acceptance
is lower under suppression than under no suppression. The intuition for the result is the
following. In the Bayesian Persuasion game the lowest types are eliminated until the receiver
is just willing to accept. In the present case even very low types have a positive probability
of acceptance. Thus they dilute the pool of the accepted. Therefore the probability of
acceptance must be lower. This effect is further strengthened by the fact that the receiver
strictly prefers to accept.

Corollary 2. Acceptance under no Suppression
p0 < pBP .

Proof. This is immediate from proposition 0.

Example. Suppose the distribution of ϑ is uniform on [0, 1] and p(ϑ) = ϑ. As in the
general case, it is immediate that the sender will not stop testing until accepted, τ =

min{n : Hn ∈ A}. This allows me to calculate the beliefs of the receiver for any report.
Dropping the subscripts on SH and FH :

E[ϑ|R] =
∫ 1

0

ϑS+1(1− ϑ)F∫ 1
0 ϑ

S(1− ϑ)Fdϑ
dϑ =

β(S + 2, F + 1)

β(S + 1, F + 1)
=

(S + 1)!F !

(S + F + 2)!
S!F !

(S + F + 1)!

=
S + 1

S + F + 2

Here β(x, y) is the standard Beta function. The equilibrium will therefore have

A0 = {H :
S + 1

S + F + 2
≥ ϑ̄}

. I now calculate Pr(a|ϑ).
Since I want to be explicit about the length of history H, I write Hn and Sn and Fn

for the number of successes and failures respectively obtained in the first n tests. I let
Dn := Sn − Fn. Then Hn ∈ A⇔ Dn ≥ (2ϑ̄− 1)n+ 4ϑ̄. Notice that Dn is a random walk
with drift 2ϑ− 1, I therefore normalize the drift away by defining D̃n = Dn− (2ϑ− 1)n, so
that Hn ∈ A⇔ D̃n ≥ 2(ϑ̄− ϑ)n+ 4ϑ̄. It is well known that any random walk crosses any
bound with probability 1 and therefore, a fortiori, Pr(a|ϑ) = Pr(D̃n ≥ 2(ϑ̄− ϑ)n+ 4ϑ̄) =

Pr(τϑ < ∞) = 1 if ϑ ≥ ϑ̄. It remains to compute the corresponding probability Pr(a|ϑ)

for ϑ < ϑ̄. I approximate this probability in the following way.
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Let q > 1 solve f(q) := ϑq2(1−ϑ̄) + (1− ϑ)q−2ϑ̄ = 1. To see that for ϑ < ϑ̄ such a q > 1

exists and is unique, observe that in that case f(1) = 1, f ′(1) < 0, f ′′ > 0, limq→∞ f(q) =

∞. The strict convexity of f shows that there can be at most 2 solutions to f(q) = 1, the
other facts and the intermediate value theorem show that there exist exactly 2 solutions, one
greater than 1. Then, denoting by x∧y := min{x, y}, defineMn := qDn∧τϑ−(2ϑ̄−1)(n∧τϑ)−4ϑ̄.
Observe that Mn is a martingale, indeed:

E[Mn+1|Mn] = E[qD(n+1)∧τϑ−(2ϑ̄−1)((n+1)∧τϑ)−4ϑ̄|qDn∧τϑ−(2ϑ̄−1)(n∧τϑ)−4ϑ̄] =

1τϑ>n(ϑq2(1−ϑ̄) + (1− ϑ)q−2ϑ̄)Mn + 1τϑ≤nMn = Mn

By the law of large numbers, Dn/n→ 2ϑ− 1 a.s. as n→∞, so that Dn− (2ϑ̄− 1)n−
4ϑ̄ → −∞ a.s. as n → ∞ if and only if ϑ < ϑ̄. Furthermore, Dτϑ − (2ϑ̄ − 1)τϑ − 4ϑ̄ ≥ 0.
Hence, by dominated convergence:

q−4ϑ̄ = E[M0] =

lim
n→∞

E[Mn] = Pr(τϑ =∞)E[ lim
n→∞

qDn−(2ϑ̄−1)n−4ϑ̄] + Pr(τϑ <∞)E[qDτϑ−(2ϑ̄−1)τϑ−4ϑ̄] =

Pr(τϑ <∞)E[qDτϑ−(2ϑ̄−1)τϑ−4ϑ̄] ≥ Pr(τϑ <∞)

To obtain a lower bound on Pr(τϑ <∞), observe that the last test before the stopping
time always yields a success, since otherwise one could stop also before the last test. Hence
Dτϑ − 1 − (2ϑ̄ − 1)(τϑ − 1) − 4ϑ̄ = Dτϑ − (2ϑ̄ − 1)τϑ − 2 − 2ϑ̄ < 0. Therefore, defining
Ln := qDn∧τϑ−(2ϑ̄−1)(n∧τϑ)−2−2ϑ̄, by an analogous argument, I find:

q−2−2ϑ̄ = E[L0] = lim
n→∞

E[Ln] < Pr(τϑ <∞)

Hence I find for ϑ < ϑ̄, q−2−2ϑ̄ ≤ Pr(τϑ <∞) = Pr(a|ϑ) ≤ q−4ϑ̄, or z ≤ Pr(a|ϑ) ≤ z′,
where z < 1 solves ϑz

−2(1−ϑ̄)

2ϑ̄+2 +(1−ϑ)z
2ϑ̄

2ϑ̄+2 = 1, and z′ < 1 solves ϑz
−2(1−ϑ̄)

4ϑ̄ +(1−ϑ)z
1
2 = 1.

See figure 4.

6.2 Costly testing

Now assume that c > 0. I make good on my earlier promise by showing that sender-
preferred equilibrium converges to the costless equilibrium when c→ 0. As the unit cost of
testing decreases, any ϑ will keep testing for a longer time before giving up. The probability
of stopping before being accepted converges to 0, but does so at a slower rate than the unit
cost of testing, so that the total cost of testing still converges to 0. Thus the costless testing
equilibrium is the limit of equilibria with vanishing cost of testing in both the conditional
probability of acceptance and the total cost of testing.
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Figure 4: The probability of acceptance for 3 values of ϑ̄ for the example. I plotted both
the upper and lower bound that I computed in the example. Notice that the probability
of acceptance is always strictly positive, but not always high enough to permit proper
calculation by my computer programme.

Recall that p0(ϑ) is the conditional probability of acceptance in the costless equilibrium,
A0 := {H ∈ H : Estat[ϑ|H] ≥ ϑ̄} is the acceptance rule of the costless equilibrium and τ0

is the stopping rule of that equilibrium. For any c > 0, I denote by Prc(a), TCc(ϑ) etc. the
outcomes in the sender-preferred equilibrium for that c.

For a sequence Ai ⊆ H, i ∈ N, I say that Ai → Alim ⊆ H, if for any H ∈ H there
exists an N(H) such that H ∈ Alim ⇔ H ∈ Ai if i > N(H). This is a special case the
standard mathematical notion of convergence in sets that is sufficient for my purposes. For
a sequence of stopping times τi I say that τi → τlim if limi→∞ Pr(τi 6= τlim) = 0.

Proposition 4. Sender-preferred Equilibrium with Vanishing Costs
The sender-preferred equilibrium with costly testing converges to the sender-preferred equi-
librium with costless testing as the cost of testing vanishes. As c → 0, Prc(a|ϑ) → p0(ϑ),
TCc(ϑ) → 0, Ac → A0, τc → τ0 and γc,stat(H) → 1 for any report H on the equilibrium
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path.

Proof. I start by constructing a sequence of equilibria that converges in the sense of the
proposition as c → 0. Let AN = {H ∈ H : Estat[ϑ|H] ≥ ϑ̄ ∧ FH ≤ N}. For any ϑ with
p(ϑ) > 0, for c small enough, it would be optimal to keep testing until they are accepted,
or until they have accumulated N + 1 failures, when acceptance is no longer possible.
Therefore, for c sufficiently small for H with SH > 0, E[ϑ|H]→ Estat[ϑ|H] and acceptance
occurs if and only if Estat[ϑ|H] ≥ ϑ̄. For H with SH = 0, E[ϑ|H] ≤ E[ϑ] < ϑ̄, so rejection
occurs. This establishes that for any N ∈ N, for c small enough, AN induces an equilibrium.

Next I establish the convergence properties of the equilibria induced by AN as N
becomes large (and c small accordingly). It is immediate that the acceptance rule and the
optimal stopping time converge in the sense of the proposition. It is then also clear that
Prc(a|ϑ)→ p0(ϑ). To see that TCc(ϑ)→ 0, consider the stopping rule τ = min{n : Hn ∈
AN ∨ n ≥ 1/

√
c}. Then, as c → 0, Pr(a|ϑ) → p0(ϑ), while cE[τ ] ≤

√
c tends to 0. Since

the optimal stopping time is weakly preferred to τ and leads to the same probability of
acceptance in the limit, it must have a weakly lower expected cost of testing, and hence
TCc(ϑ)→ 0.

I now show that, since a sequence of equilibria exists that converges to the costless
equilibrium, then also the sender-preferred equilibrium must converge. This is done by
showing that for any ε > 0, there exists a c′ such that if c < c′, for any equilibrium and any
ϑ′, Pr(a|ϑ′) ≤ p0(ϑ′)+ ε. Indeed, for any N ∈ N, there exists a c(N) such that, if c < c(N)

and n ≤ N , then Hn ∈ A only if Estat[ϑ|Hn] ≥ ϑ̄. On the other hand, for n > N , as N
becomes large, by the law of large numbers, Pr(|SHn/(SHn +FHn)− p(ϑ′)| > δ)→ 0 and,
by lemma 6, if SHn/(SHn + FHn)→ p(ϑ′), then E[ϑ|Hn] = ϑ′. Thus, if ϑ′ < ϑ̄, this would
lead to rejection and Pr(a|Hn, ϑ

′, n > N)→ 0. Since Pr(a|ϑ′) = Pr(a|τ ≤ N) +Pr(a|τ >
N) ≤ p0(ϑ′) + (1 − p0(ϑ′))Pr(a|Hn, ϑ

′, n > N), the result obtains for ϑ′ < ϑ̄. Since for
ϑ′ ≥ ϑ̄, p0(ϑ′) = 1, I am done.

Since in any equilibrium, for c small enough, the cost of testing is non-negative and
the probability of acceptance is bounded by p0(ϑ), and, since the sequence of equilibria
I constructed obtains these bounds as c → 0, also the sender-preferred equilibrium must
obtain these bounds.

7 Comparison with Vanishing Cost

I compare the cases of suppression and no suppression when the cost of testing is vanishing.
I start by comparing the sender pay-off, which I argue to be the main factor of interest. I
show that the sender prefers suppression if ϑ̄ is close to E[ϑ] and p(ϑmin) is small, but that
he prefers no suppression when ϑ̄ is close to ϑmax. Then I show that the receiver always
prefers the case of no suppression, but that this arises from what I consider to be an artifact
of the model. In principle the pay-off of the sender and the receiver do not admit a direct
comparison. However, by comparing their pay-off to the their maximal possible pay-off,
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I am able to illustrate the order of magnitude of the effects. I show that, even though I
consider the preference of the receiver for the case of suppression to be artificial, the effect
is nonetheless not negligible. In the discussion I return to this point.

7.1 Comparison of the Sender Pay-off

I investigate the sender pay-off under suppression and no suppression as c → 0. First ob-
serve that the probability of acceptance in that case is higher under suppression than under
no suppression. By proposition 2, under suppression PrS(a) = pBP , while by corollary 2
PrN (a) := p0 < pBP . This is because the conditional probability of acceptance under
suppression is the same as in the Bayesian Persuasion game. All the worst types are kicked
out, until the receiver is just willing to accept. In contrast, under no suppression, even the
worst types are accepted with a positive probability. Since they dilute the sample of the
accepted, the probability of acceptance must be lower. This effect is further strengthened
by the fact that the expected value of ϑ under no suppression is higher. See figure 5.

Figure 5: The conditional probability of acceptance under the two regimes.

On the other hand, the total cost of testing under suppression is always higher than
under no suppression. Indeed, in the case of suppression it is strictly positive, even as c→ 0,
while it becomes zero under no suppression. Which regime is preferred by the sender is
determined by which of these forces dominates.

To understand which force dominates, consider three groups of ϑ. First, ϑ <
¯
ϑ strictly

prefer no suppression, because they have a positive probability of acceptance and no cost of
testing. Second, ϑ ≥ ϑ̄ strictly prefer no suppression, because they have a 0 cost of testing
there and the probability of being accepted is 1 in either case. Finally, for

¯
ϑ ≤ ϑ < ϑ̄,

the situation is ambiguous. On the one hand, in the case of suppression they have to
pay a positive cost of testing, whereas in the case of no suppression the cost goes to 0.
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On the other hand, the probability of acceptance in the case of suppression is 1, while
it is strictly less than that in the case of no suppression. What allows me to make a
comparison is to observe the effect of changing ϑ̄ on these three groups. By corollary 1,
as ϑ̄ → E[ϑ],

¯
ϑ → ϑmin, so the group ϑ <

¯
ϑ becomes small. Meanwhile, by the same

corollary, TC(ϑ) → p(ϑmin)/p(ϑ), which is small if p(ϑmin) is small. That means that

¯
ϑ ≤ ϑ < ϑ̄ will strictly prefer suppression, while ϑ ≥ ϑ̄ will become close to indifferent.
Thus, as ϑ̄ → E[ϑ] and p(ϑmin) is close to zero, suppression will be preferred. On the
other hand, as ϑ̄→ ϑmax, in the case of suppression the cost of testing goes to W for any
ϑ < ϑmax, so then no suppression becomes preferred for all ϑ.

Proposition 5. Let c → 0. There exists a ϑ′ < ϑmax such that if ϑ̄ > ϑ′, no suppression
is preferred.
If p(ϑmin) = 0, there exists a ϑ′′ > E[ϑ] such that if ϑ̄ < ϑ′′, suppression is preferred.

Proof. Denote by Πs
S(ϑ) the pay-off to the sender conditional on ϑ under suppression and

similarly Πn
S(ϑ) the pay-off under no suppression. In the limit c→ 0, we have

Πs
S(ϑ)−Πn

S(ϑ) =


0− p0(ϑ) if ϑ <

¯
ϑ(ϑ̄);

(1− p(
¯
ϑ(ϑ̄))

p(ϑ)
)W − p0(ϑ)W if

¯
ϑ(ϑ̄) ≤ ϑ < ϑ̄

(1− p(
¯
ϑ(ϑ̄))

p(ϑ)
)W −W if ϑ ≥ ϑ̄

By corollary 1, as ϑ̄ → ϑmax, all three terms become negative. As ϑ̄ → E[ϑ],
¯
ϑ(ϑ̄) →

ϑmin. If furthermore p(ϑmin) = 0, then both the first and last term vanish, while the middle
term becomes strictly positive.

Example. Consider again ϑ uniformly distributed on [0, 1] and p(ϑ) = ϑ. The work is
already done in the previous examples, so I simply plot the results together. See figures 6
and 7.

Example. Notice that proposition 5 requires that p(ϑmin) = 0. This is an indispensable
requirement. In figures 8 and 9 I plot the sender pay-off under the two regimes for ϑ
uniformly distributed and first p(ϑ) = ϑ, so that p(ϑmin) = 0, and second p(ϑ) = (ϑ+1)/2,
so that p(ϑmin) = 1/2 > 0. In the second case, the sender prefers no suppression for any
ϑ̄.

7.2 Comparison of the Receiver Pay-off

Under suppression, when c → 0, the receiver is exactly indifferent between accepting and
rejecting when he accepts. On the other hand, under no suppression, he typically strictly
prefers acceptance, as discussed in the remark after proposition 3. The reason is that under
no suppression, there are many reports that are on path, some of which contain only few
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Figure 6: The pay-offs in both cases when ϑ̄ is close to E[ϑ]

Figure 7: The pay-offs in both cases when ϑ̄ is close to ϑmax

tests. Recall that A0 = {R ∈ H : Estat[ϑ|R] ≥ ϑ̄}. To illustrate the issue, take ϑ uniformly
distributed on [0, 1] and let p(ϑ) = ϑ. Then in the costless testing equilibrium under no
suppression, the expectation of ϑ after 1 success is Estat[ϑ|(1)] = 2/3. If ϑ̄ < 2/3, this
means the sender will stop testing after 1 success and 0 failures and the receiver will have
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Figure 8: Proposition 5 applies and for small ϑ̄, the sender prefers suppression.

Figure 9: Proposition 5 does not apply and indeed no suppression is preferred for all ϑ̄.

a pay-off from accepting of ΠReceiver = 2/3− ϑ̄ > 0.
The effect has an artificial flavour, because the sender would prefer to make the receiver

indifferent, but cannot do so because the number of tests is discrete. If it were possible to
submit less than a full test result, the sender would like to do so. However, the example
does illustrate that the effect is non-negligible, as the probability of obtaining a success on
the first test is 1/2. In this section I will take the integer problem as given and analyze
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its magnitude. In the discussion I describe an extension of the model that addresses the
integer problem.

In order to make a meaningful statement about the magnitude of the receiver pay-
off, I would like to compare it to the sender pay-off. However, the two are not directly
comparable. I tackle this issue in the following way. The sender pay-off is always expressed
as a fraction of W , the maximal utility the sender can hope to achieve - it is his ex ante
pay-off if he is always accepted. I will similarly describe the pay-off of the receiver as a
fraction of the maximal pay-off he could obtain, i.e. if only the ϑ ≥ ϑ̄ are accepted. This
maximal pay-off is

∫ ϑmax
ϑ̄ (ϑ − ϑ̄)dF (ϑ). Observe that this maximal pay-off depends on ϑ̄,

in contrast to the maximal sender pay-off.
In figures 10 and 11 I plot the receiver pay-off as a fraction of his maximal pay-off

and the difference between the sender pay-off under suppression and no suppression, as a
function of ϑ̄. I take ϑ uniform on [0, 1] and p(ϑ) = ϑ in figure 10 and p(ϑ) = ϑ/2 in figure
11. We see that the sender prefers suppression for small ϑ̄, but the effect is always smaller
than the preference of the receiver for no suppression. In other words, while the preference
of the receiver for no suppression may be due to an artificial aspect of the model, the effect
is not negligible. This finding has been robust to any specification of p(.) that I tried.

Figure 10: The pay-off of the receiver exhibits irregularities that are typical of an integer
problem, dropping to zero when the value of ϑ̄ coincides with the on-path elements of A0.

8 Discussion

In the main model of the paper, I showed that the sender prefers suppression if ϑ̄ is close to
E[ϑ] and p(ϑmin) is small, while he prefers no suppression when ϑ̄ is close to ϑmax. I also
showed that the receiver always prefers no suppression, but that this came about because of
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Figure 11: Notice that it appears in this graph that the sender prefers suppression for high
ϑ̄. This is is because the approximation I use underestimates the probability of acceptance
under no suppression and becomes inaccurate for high ϑ̄.

integer problems. When suppression is not possible, a report submitted for acceptance may
contain only few tests. When the sample is small, there are only few values the conditional
expectation can take, of which potentially none make the receiver indifferent. Therefore he
must strictly prefer acceptance.

It seems artificial that the receiver would prefer acceptance because the only test the
receiver could run was too informative, in the sense that the expectation conditional on
one more success overshoots the required level. It would seem easy for the sender to be less
informative. If this is also less costly for him, he would want to be less informative and the
receiver preference would vanish.

I suggest the following model to capture this idea. The informativeness of a test is
determined by the relative likelihoods of success of the different types. Let everything be
as in the main model and in particular fix p(.). Now, before running a test i, the receiver
can choose to decrease its informativeness by a fraction α. This comes about through
a transformation on p(.) that leaves the ex ante probability of success unaffected, but
decreases the likelihood ratio between different ϑ. Formally, the sender chooses αi ∈ [0, 1]

at the start of each test i and the probability of success is pαi(ϑ) = αip(ϑ)+(1−αi)p(E[ϑ]).
This is a form of a truth-or-noise technology. The cost of running a test with α is cf(α)

where f(0) > 0, f ′ > 0 and f(1) = 1. In other words, a less informative test is less
costly, but never free. A testing history is now a sequence of pairs (αi, Xi)

n
i=1, containing

the informativeness of each test and the outcome. Again, under no suppression the entire
sequence is reported, under suppression any subsequence can be reported.

In the case of suppression, it is clear that as c → 0, the sender-preferred equilibrium
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will be the same as in the main model with p(.). The reason is that the probability of
acceptance will then be maximal, while the expected total cost of testing is determined
by p(

¯
ϑ(ϑ̄)/p(ϑ), which is minimal when α = 1 or the informativeness is maximal. The

intuition is that the more informative the test is, the less costly it is for the ϑ to separate
themselves.

In the case of no suppression, things are less clear. It may be intuitive to suppose
that again the most informative test will be chosen. However, now this will also affect the
probability of being accepted. Indeed consider figure 8. It shows p0 for p(ϑ) = ϑ and α =

1/16 and for α = 15/16. It thus compares the probability of acceptance when an informative
test is chosen throughout to when a relatively uninformative test is chosen throughout. For
low values of ϑ̄, the probability of acceptance is higher with the uninformative test. This
suggests that the optimal choice of informativeness is not necessarily the highest level.

In a way, this is to be expected. If the sender in this extended game were to simply
replicate his strategy from the main model, only to deviate to a less informative test when
one more success would “push him over the top”, this would not affect his probability of
acceptance very much, while significantly reducing the pay-off of the receiver. It stands
to reason that he can appropriate the surplus of the receiver in a more efficient way. In
other words, while it may be artificial that some surplus accrues to the receiver because of
the integer problem, the surplus that accrues is not itself artificial and it is natural that
transferring it to the sender would require altering his behaviour.

Returning to the comparison between suppression and no suppression, this discussion
does suggest that a version of proposition 5 survives. Indeed, no matter the choice of in-
formativeness, p0 < pBP . Furthermore, in this extension it seems likely that the receiver
would be indifferent between accepting and rejecting, at least for an appropriate choice of
f(α), the cost of informativeness. Thus this extension can serve as a justification for focus-
ing on the sender-pay-off. In the main model the integer problem makes it impossible for
the sender to appropriate all the surplus. Therefore a comparison of only his pay-off across
the two regimes misses an important welfare aspect. When we “solve” the integer problem
as in this extension, the sender can appropriate all the surplus and thus an assessment of
his pay-off alone is a real welfare comparison.

A final observation. If we allow the sender to pick p(.) freely, possibly with some cost
associated to the functional form chosen, he would simply pick p(ϑ) = 1ϑ≥

¯
ϑ(ϑ̄). Then the

distinction between suppression and no suppression, and indeed the distinction between
my model and the Bayesian Persuasion game, would vanish.
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