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Abstract

We study a vote buying setup where a committee votes on a proposal
important to the vote buyer. We characterize the cheapest combination of
bribes that guarantees the passing of the proposal under different voting
environments. We find that the optimal strategy consists in publicly
offering small bribes to a large majority of members. Each member
accepts this offer because he anticipates the proposal to pass regardless
of his vote. We discuss the committee design that maximizes cost of
capture: demanding majority requirements combined with diversity
among members make the committee more expensive. On the other
hand, larger committees, transparent voting rules and sequential voting
lower the cost.
JEL Classification: D71, D72

When Robert Kennedy was appointed Attorney General in 1961, he waded
into a campaign against organized crime. One of the main targets of this
campaign was Jimmy Hoffa, a famous trade union leader entangled in several
illegal activities. Kennedy got personally involved in Hoffa’s case and even
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gathered a "Get Hoffa" squad of prosecutors and investigators. In spite of those
efforts, Hoffa managed to avoid conviction for several years. Before a trial in
1962, Kennedy was absolutely sure that Hoffa would be convicted. When a
reporter asked what he would do if Hoffa was acquitted, he answered "I’ll jump
off the Capitol". However, Hoffa managed to prove him wrong one more time
and left the tribunal a free man. During the press conference after the trial,
Hoffa’s lawyer boldly declared "I’m going to send Bobby Kennedy a parachute"
(Schlesinger 1978).

What was Hoffa’s secret to avoid conviction? He eventually went to jail for
the very conduct that facilitated his prior acquittals: jury tampering. During
this final trial, Ed Partin – a former associate of Hoffa who testified against him
– revealed how Hoffa corrupted a jury in a previous case. Partin’s testimony
highlights several striking patterns of Hoffa’s strategy1. Firstly, Hoffa was
trying to approach as many jurors as possible. Partin was just one of the
middlemen used by Hoffa and he was asked to get in touch with several jurors.
Secondly, the bribes proposed were not as big as one would expect. The amount
at stake during the trial was at least several millions, but one juror considered
the promise that Hoffa would support his promotion as sufficient payment for
his vote. Finally, and perhaps most surprisingly, Hoffa did not seem to care
much about the secrecy of his offers. He even kept making offers after one of
the jurors reported that he had attempted to bribe him! If those elements are
somewhat surprising, the following example unveils a mechanism that explains
why Hoffa’s strategy turned out to be so successful.

A Motivating Example

Consider a committee of three members voting simultaneously on a proposal
with a simple majority rule. Committee members dislike the proposal and
get a disutility vi ∼ U [0, 1] if the proposal is accepted. Payoffs are drawn
independently and privately.

A vote buyer (feminine pronoun) is interested in making the proposal pass
1The case was brought to the Supreme Court; see Hoffa v United States (1966).
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by publicly committing to paying a bribe b to a given number of members if they
vote in favor. She knows the theoretical distribution of members’ disutilities
but does not observe the realization of types. Moreover, assume that the
proposal is very important to the vote buyer so that she wants to guarantee
that it will pass with certainty. Subject to this condition, the cost spent on
bribes is minimized.

We compare two possible strategies for the vote buyer. First, suppose she
tries to bribe the minimal winning coalition, i.e. she offers a bribe to 2 members.
Then each member is certain to be pivotal if the proposal is passed. Thus,
as long as b < 1, there exists an equilibrium where players vote against the
proposal if vi is large enough. So to guarantee certain approval she should offer
a bribe of 1, which yields a total cost of 2.

Now suppose the vote buyer proposes a bribe b to all three members. We
will show that as long as b > 8

27
there is no equilibrium where bribed members

vote against the proposal with positive probability; in other words, we will
show that buying a third player is cheaper for the vote buyer. To do so, note
that for each member, voting in favor of the proposal guarantees payment of
the bribe. But if the member is pivotal (i.e. if exactly one other player votes
for the proposal), it also leads to the adoption of the proposal. Denoting the
pivotal probability by π, player i votes for the proposal if b > vi × π.

The equilibrium of the voting stage takes a cutoff form: players vote
against the proposal if their disutility is larger than a threshold. For the time
being, focus on symmetric strategies and call the common cutoff v∗. Then
π(v∗) = 2v∗(1− v∗) and an interior equilibrium satisfies

b = v∗π(v∗).

In Figure 1, we plot the right hand side of this equation as a function of
v∗. We see that for small bribes like b1, there exist two equilibria with interior
cutoffs v∗1 and v∗2. Moreover, there is a third equilibrium where all players
accept the bribe: committee members are not pivotal and have no incentive to
deviate. Throughout the paper, we assume that the vote buyer expects bribed
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committee members to collude and play their favorite equilibrium in the voting
subgame: e.g. faced with b1 they would play v∗1 as this lower cutoff implies a
lower probability of passing the proposal.

Figure 1: The Structure of Equilibrium in the Voting Subgame

When b is larger than the maximum of vπ(v), the third equilibrium – where
the proposal is necessarily accepted – is the only equilibrium of the voting
subgame. Here, this maximum is 8

27
. Thus, it is sufficient to pay 8

9
to guarantee

there is no equilibrium where members vote against the proposal. Intuitively,
bribing a supermajority reduces players’ pivotal probability, which induces
them to accept smaller bribes in exchange for their vote.

Going back to Hoffa’s bribing strategy, our simple example helps us to
understand why it was so successful. From Partin’s testimony, it appears that
Hoffa was actually trying to convince jurors that he had already bought the
committee. In the simple example, the optimal bribing scheme satisfies the
three properties of Hoffa’s strategy: the vote buyer bribes a supermajority,
offers are visible and bribes are relatively small with respect to what is at stake.

Our setup primarily applies to any voting body that could be influenced
by a vote buyer. It includes juries as in the above example or committees of
experts (like FDA committees). It also has implications for legislatures. In
particular, it can explain why lobbying is so successful. Our model provides
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an explanation for the so-called Tullock paradox, first introduced in Buchanan
et al. (1980): lobbying expenses are typically very small compared to the
benefits associated with lobbying activities. Pivotal considerations in collective
decision making can explain this paradox: given that legislatures generally
involve a large number of legislators, each of them might be willing to sell his
vote at a small cost.

Another example is that of party discipline: our mechanism suggests that
whips can impose party cohesion at a low cost when legislators do not expect
to be pivotal. Our model has specific implications for the majority party:
we predict that party discipline will be easy to impose if legislators expect
a large margin of victory. This would be the case if the majority is large,
if the members of the majority are expected to stick to the party line or if
the opposition does not vote cohesively against the option supported by the
majority party.

The mechanism we highlight can also explain why ruling parties are reelected
with large majorities in non-democratic countries. Relying on a short majority
would be expensive because each individual (or faction) can be decisive and
thus the price of each vote would be large. Conversely, if citizens believe that
the ruling party will be reelected with a large majority, they perceive themselves
as having no chance of changing the outcome of the election and hence are
willing to accept small benefits in exchange for their votes2.

In the remainder of the paper, we stick to the vote buying terminology.
However, our model is much more general and our results have implications for
all the applications we have discussed.

The aim of this paper is to determine how the vote buyer’s strategy and
the resulting cost for her depend on the design of the committee. Crucially, all
of our derivations assume that the committee is able to collude in the sense
that members can coordinate on their preferred equilibrium. This assumption
is in the spirit of Genicot and Ray (2006): it side-steps trivial cases where
costless capture occurs because committee members play an equilibrium that

2A related argument can be found in Angeletos et al. (2007) or in Edmond (2013),
where citizens play a coordination game to overthrow a regime.
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favors the interest of the vote buyer. In our example, for instance, there exists
an equilibrium where all members vote for the proposal without being bribed
because no one is pivotal. Assuming that members collude seems to be natural
in this setup.

First of all, we show that when committee members vote simultaneously and
the vote buyer can contract on individual voting decisions, the optimal strategy
consists in publicly bribing a supermajority. Moreover, the vote buyer should
propose the same amount to all bribed committee members. At first glance, a
possible strategy for the vote buyer could be to target specific members of the
committee in order to break down their cooperation. Nevertheless, we show
that this type of discrimination is not profitable.

Furthermore, a more demanding majority requirement unambiguously in-
creases the cost of corruption: due to pivotal considerations, it is easier for
committee members to coordinate on an equilibrium where some of them
turn down the bribe when a supermajority is required to pass the proposal.
Another key finding of our model is that large committees are not necessarily
more expensive to capture. Increasing the number of members decreases the
probability that a given vote is decisive and thus members accept lower bribes
in exchange for their vote.

We also study the impact of the distribution of committee members’ pref-
erences. The vote buyer prefers to bribe larger supermajorities when voters’
preferences are dispersed as this dispersion makes the pivotal channel easier to
manipulate. Although we find that in general the effect of dispersion on cost
is ambiguous, we show that combined with demanding majority requirements
it increases the cost. This finding is of direct interest for the design of the
committee: in order to make corruption as costly as possible, members with
heterogenous backgrounds and different sensibilities should sit in the committee,
as it increases the uncertainty of their assessment. Furthermore, this diverse
recruitment should be combined with a supermajority requirement to pass the
proposal.

Regarding the voting process, we find that moving to a sequential voting
setup leaves our key results unchanged: the vote buyer still bribes a large super-
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majority and the comparative statics with respect to the cost are qualitatively
similar. Institutions where members vote sequentially, such as the US Senate,
are thus not necessarily more robust to outside influences.

However, other forms of contracts could lead to different predictions. For
instance, if the vote buyer can only condition the payments of bribes on the
outcome of the vote, the pivotal channel is severed. Nevertheless, if vote
shares are disclosed and can be contracted on, we provide an example that
highlights a novel mechanism through which the vote buyer can exploit pivotal
considerations. Perhaps surprisingly, public deliberations might foster an
outsider’s attempts to corrupt the committee: more information on the voting
process allows the vote buyer to design a more efficient bribing scheme as
payments can be conditioned on a wider range of outcomes. This analysis
suggests that a committee designer might want to keep the details of the vote
secret.

Finally, we focus for most of our analysis on vote buyers with large valuations
for the proposal so that they want to guarantee that the proposal passes. We
provide a lower bound on the valuation for our analysis to apply at the end
of the paper. We also briefly discuss the case of vote buyers with smaller
valuations.

Our contribution relates first and foremost to the literature on vote buying in
committees. Following Groseclose and Snyder (1996), a strand of the literature
on vote buying has focused on two vote buyers moving sequentially. These
papers include Banks (2000), Dekel et al. (2008), Morgan and Várdy (2011) and
Iaryczower and Oliveros (2015). A key motivation of this literature is to explain
why we observe supermajorities, as documented empirically in Mattila and
Lane (2001) or experimentally in Fehrler and Schneider (2017). This literature
shows that the first mover should bribe a large coalition in order to increase the
cost for the follower to overbid her. In our model, we propose an independent
explanation for the existence of supermajorities. As competition is hence not
the focus of our paper, the discussion of it is relegated to Appendix D.

However, all of these papers disregard the potential for strategic interactions
between voters. Exceptions are Henry (2008) and Felgenhauer and Grüner
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(2008) who analyze how a vote buyer can manipulate the process of information
aggregation, documented for instance in Feddersen and Pesendorfer (1996,
1997, 1998). In those papers, each member of the committee receives a signal
about the quality of a common value proposal. In equilibrium, the vector of
bribes determines the number of voters who vote informatively and shapes the
inference drawn on others’ signals when voters condition on being pivotal. In
turn, those inferences affect the amount that voters are willing to accept in
exchange for their vote. In our paper, strategies interact through the pivotal
probability.

A different strand of the literature examines strategic interactions between
voters in the absence of a vote buyer. These papers include Riboni (2013) as
well as Casella et al. (2012), the latter of which provides an ex-ante competitive
equilibrium concept in a model of intra-committee vote trading.

Closest to our analysis are Dal Bo (2007) and Genicot and Ray (2006) who
propose models where an outsider manipulates agents’ coordination to exploit
them. In Dal Bo (2007), a vote buyer can condition the payment of bribes on
the pivotal event: she proposes to pay an infinitesimal amount if voters are
not pivotal and a large enough bribe if members turn out to be decisive. This
allows the vote buyer to capture the committee at no cost.

The model of Genicot and Ray (2006), as ours, rules out contracts contingent
on the simultaneous decisions of other players. Agents can be contracted by a
principal or choose an outside option, the value of which depends positively on
the number of non-contracted agents3. Key in their analysis is the fact that
the principal approaches members sequentially and offers them a life-time wage
if they accept the contract. Moreover, the authors assume that agents collude
by ruling out equilibria in which a subset of agents could at some date improve
payoffs by jointly deviating to a different profile of mutual best responses.
However, their model allows the principal to break down agents’ coordination

3Although Genicot and Ray (2006) mention the case of bribing a committee as an
example, both the setup of Dal Bo (2007) as well as our setup differ because committee
members value the outcome of the vote regardless of their acceptance decision. In their
model, this would translate into agents deriving utility from the outside option even when
contracted by the principal.
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nevertheless, namely by exploiting the timing of the game: agents anticipate
that the others will eventually succumb to the principal, thus lowering the
value of the outside option in the future, and therefore accept contracts with
wages smaller than the current value of the outside option.

The mechanism we discuss in our paper crucially differs from these models:
unlike Dal Bo (2007), we follow Genicot and Ray (2006) in explicitly ruling
out multilateral contracts as well as coordination failures; but unlike Genicot
and Ray (2006), we follow Dal Bo (2007) in requiring a committee to vote
simultaneously and thereby preventing the vote buyer from inducing a coor-
dination breakdown by cleverly timing her offers. Dal Bo briefly examines a
model without multilateral contracts, but as we highlight in the discussion of
our model below, his assumptions lead him to starkly different results. He
concludes that the best the vote buyer can do is to bribe the minimal winning
coalition and give each member the disutility he would get if the proposal
passes. We reach a very different conclusion: the optimal strategy for the vote
buyer consists in bribing a supermajority, which drastically reduces the cost
spent on bribes.

Finally, the bribes offered in our model differ from the solution described in
Genicot and Ray (2006). There, the principal proposes contracts with varying
values to exploit the timing of the game: earlier agents generally receive high
wages, which allows capture of the remaining agents at a very cheap cost. Here,
we reach the opposite conclusion: the vote buyer offers the same bribes to
all members because it maximizes the uncertainty in the number of successes,
thereby rendering players less likely to be pivotal.

In the next section, we present the main model and we characterize the
optimal bribing scheme as well as the resulting cost for the vote buyer. In
Section 2, we analyze the problem of the vote buyer when voting is sequential
and study what the vote buyer should do when she can only contract on the
outcome of the vote or on the vote share. Finally, we discuss the case of a vote
buyer with limited interest for the proposal.
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1 Main Model

We consider a committee of n members voting on a proposal favorable to
the vote buyer. The proposal is accepted if at least m members vote for it.
Committee member i privately draws the disutility vi

iid∼ U [0, 1] he obtains if
the proposal is accepted. We use the uniform distribution assumption as a
benchmark: a general version of our results can be found in Appendix B and
in the second part of this section we derive comparative statics with respect
to the shape of the distribution. Prior to the voting stage, a vote buyer in
favor of the proposal chooses a vector of bribes (b1, ..., bn). Bribes are either
public, i.e. each committee member observes the full bribe vector, or private,
in which case each member is only informed about his own bribe. We assume
that individual voting decisions are public and that the vote buyer is able to
commit4 to pay the bribe bi if member i votes for the proposal. We explore
other types of contracts in section 2.2. If we denote by W the vote buyer’s
valuation of the proposal, she chooses (b1, ..., bn) to maximize:

UVB = W × P(proposal passed | (b1, ..., bn))

−
n∑
i=1

bi1(Player i votes in favor).

Naturally, the voting subgame has multiple equilibria and the probability
of passing depends on the equilibrium we consider. As we are interested in
collusion-proof vote buying, we assume that the vote buyer expects bribed
committee members to coordinate on their preferred equilibrium5 in the voting
subgame. This is generally be the equilibrium where the proposal is accepted
with the smallest probability.

At first glance, the solution to the vote buyers’ optimization problem seems
to require knowledge of the probability of passing for any bribing scheme

4Modeling the commitment mechanism is beyond the scope of our paper. As in Rueda
(2015), we could imagine that the committee and the vote buyer repeatedly interact.

5In the main section this is equivalent to saying all committee members coordinate on
their preferred equilibrium. It is also equivalent to assuming that the vote buyer expects
the worst (for her) equilibrium to be played, e.g. because she is ambiguity averse.
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(b1, ..., bn). However, the vote buyer ensures certain passing if W > W for some
W . For most of the analysis, we assume that this condition is satisfied so that
the vote buyer seeks to guarantee the approval of the proposal for the smallest
possible cost. We discuss this assumption in Section 2.3.

To recap the timing of the game, the vote buyer moves first and proposes a
bribing scheme (b1, ..., bn). She can make public offers or privately approach
members. In a second stage, committee members learn the bribing scheme (or
simply their own bribe if the vote buyer has made private offers), privately
observe their type and simultaneously choose whether to vote in favor or against
the proposal. Finally, the proposal is implemented if at least m members have
voted for it and the vote buyer pays bi to the bribed members who have
supported the proposal.

1.1 Results

We solve the game backward and first consider the voting stage. We focus on
players to whom the vote buyer proposes a positive bribe; unbribed players
vote against the proposal in any equilibrium where their vote could change the
result. Given a bribing scheme (b1, ..., bn), if a player is not pivotal the payoff
difference between voting in favor and voting against is simply the value of the
bribe offered to him. If his vote is pivotal, however, he also has to account for
the fact that a vote in favor is causing the proposal to pass. Thus, denoting
by πi the pivotal probability of committee member i, he accepts the bribe and
vote for the proposal if

bi ≥ πivi.

Our first lemma describes the outcome of the game if the vote buyer uses
private offers.

Lemma 1. If the vote buyer privately communicates the bribes, she must
promise a payment of 1 to all bribed members and spend a total cost of m to
guarantee the acceptance of the proposal.
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When offers are secret, the vote buyer cannot induce more than m players
to vote for the proposal with certainty. If she did, she could secretly deviate
and only offer bribes to exactly m players. This would be sufficient to pass the
proposal. Anticipating this deviation, committee members need to be offered a
bribe of 1 in order to support the proposal with certainty.

We now consider cases where the vote buyer bribes players publicly. At this
stage we make two additional assumptions strictly to simplify the exposition
(they are relaxed below). Firstly, we suppose that all positive bribes offered
by the vote buyer are equal to the same value b. Calling k the number of
positive bribes, a bribing scheme is now defined by (k, b). Secondly, we restrict
our attention to type-symmetric equilibria: given a bribing scheme (k, b), all
members who receive the same bribe and have the same type must choose the
same strategy.

Under these assumptions, the equilibrium of the voting stage is as follows:

Lemma 2. If k ≥ m, in any type-symmetric equilibrium either

1. all bribed members vote in favor of the proposal, or

2. bribed members vote for the proposal if and only if their type is smaller
than a cutoff v∗ that satisfies

π(v∗)v∗ = b, (1)

where

π(v) =

(
k − 1

m− 1

)
vm−1(1− v)k−m. (2)

If k = m, the strategy profile described in Lemma 2.1 is the unique
equilibrium only for b ≥ 1. As in the case of private offers, the vote buyer must
pay a total cost of m if she chooses to bribe a minimal winning coalition.

In Dal Bo’s model, this is the best the vote buyer can do, but we show
below that there exist cheaper strategies in our setup. This difference emerges
because according to Dal Bo’s solution concept, the vote buyer ‘can induce or
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implement a decision “Yes” by the committee if and only if, given [her] offers,
there are at least M members for whom voting “Yes” is a dominant strategy’
(Dal Bo, 2007, p.794). In the exact setup of Dal Bo, our solution concept
(voter-preferred equilibrium) and Dal Bo’s would lead to the same conclusion.
However, the two concepts diverge once we introduce uncertainty. In particular,
in our setup Dal Bo’s concept still requires the vote buyer to bribe the minimal
winning coalition and pay to each member the maximal disutility he would get
if the proposal passes. We now show that this disadvantages the vote buyer in
our setup because there exists a cheaper bribing scheme such that the proposal
is accepted with certainty even in the least-preferred equilibrium of the vote
buyer.

When k > m, the voting subgame is illustrated in Figure 1. The equilibrium
where all bribed members vote for the proposal always exists. Members know
that they are not pivotal and thus accept the bribe. In such a case, the
proposal is accepted for sure. In the type of equilibrium described in Lemma
2.2, bribed members vote for the proposal if and only if vi ≤ v∗. When b is
low enough, there are generically two equilibria of that type: π(v∗) is a single
peaked function equal to 0 for v∗ = 0 and v∗ = 1. By the intermediate value
theorem, the equation π(v∗)v∗ = b admits two solutions if b is small enough,
one if b = max

v
(vπ(v)) and none otherwise. If we let v∗∗ := arg maxv vπ(v),

the smallest bribe6 such that the proposal is accepted for sure in any type-
symmetric equilibrium is b∗k = v∗∗π(v∗∗) + ε. For the introductory example and
hence in Figure 1, we have b∗k=3 = 8

27
. We now show that the restriction to

type-symmetry is innocuous:

Lemma 3. When the vote buyer offers b∗k, the proposal is accepted with certainty
in any equilibrium of the voting game.

To establish Lemma 3, we need to show that if the vote buyer offers at least b∗k
to k players, there is no possible coordination on an asymmetric equilibrium. As
any equilibrium strategy must be a cutoff-strategy, an asymmetric equilibrium

6This theoretically introduces open-set problems. These problems can be solved by
assuming some minimum unit of currency ε.
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amounts to committee members choosing different voting cutoffs. We use an
iterated deletion of strictly dominated strategies to show that this cannot be an
equilibrium. We define a function πmax(v) that represents the maximal pivotal
probability of a player given that other cutoffs must lie above v. This can be
interpreted as the maximal expectation that a player can form about his pivotal
probability given that cutoffs below v have already been eliminated. Intuitively,
member i’s pivotal probability is maximized if the others use two extreme
cutoffs and split suitably between them. For instance, before the first iteration,
we can maximize the pivotal probability by making m−1 other (bribed) players
always accept (cutoff at 1) and k−m+ 1 always reject (cutoff at 0). In such a
case, player i is pivotal for sure: πmax(0) = 1. The first iteration eliminates all
cutoffs below b∗k. Once those strategies have been eliminated, players cannot
anticipate being pivotal with certainty: πmax(b∗k) < 1. As a result, the second
iteration removes another set of cutoffs. This reasoning is illustrated in Figure
2: we plot the function

v′(v) =
b∗k

πmax(v)

as well as the 45 degree line. Given that cutoffs below v have already been
removed and that other strategies must lie in the remaining set of cutoffs,
v′(v) represents the lowest cutoff that could still be played. We show that the
function v∗∗π(v∗∗)

πmax(v)
is exactly tangent to the 45 degree line for v = v∗∗ and lies

above elsewhere. As b∗k > v∗∗π(v∗∗), v′(v) is strictly above the 45 degree line,
which implies that no cutoff below 1 is rationalizable.

We now turn to the problem of the vote buyer. When we relax the symmetry
of bribes assumption, an interior7 equilibrium – conceptually similar to the
second type of equilibrium described in Lemma 2 – must satisfy

v∗1π1 = b1,
...

v∗kπk = bk,

7This system of equation characterizes a fully interior equilibrium; the vote buyer
must also guard against equilibria in which a subset of members choose v∗i = 1.
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Figure 2: Iterated deletion of strictly dominated strategies

where (v∗1, . . . , v
∗
k) are the cutoffs played by all players. In equilibrium, the

vote buyer proposes the cheapest combination of bribes such that there is no
solution to the above system:

Proposition 1. The cheapest bribing scheme inducing certain passing of the
proposal is bi = b∗n for all i.

The optimal strategy of the vote buyer is to offer the same bribe b∗n to all
committee members. First of all, we can show that (at least one) solution to the
above system exists if bribes are small enough. As in the case with symmetric
offers, we can increase all bribes up to a point where no solution exists anymore.
We define the breakdown boundary as the set of bribing schemes such that a
solution exists, but increasing any bribe marginally would induce the system to
have no solution. Clearly, a cost-minimizing vote buyer picks a bribing scheme
inducing breakdown arbitrarily close to the cheapest point on the breakdown
boundary.

With homogeneous bribes, we saw in Lemma 3 that breakdown occurs
when the probability v∗π(v∗) that a given player causes the proposal to pass is
maximized. With heterogeneous bribes, pivotal probabilities can differ between
committee members but the fundamental intuition remains unchanged: near
the breakdown boundary, players are on average likely to be decisive. In general,
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one can lower the likelihood of the most likely events by increasing the spread
of a distribution. We can thus lower the pivotal probabilities by moving the
members’ cutoffs v∗i closer together, i.e. by offering them more homogeneous
bribes. For a given number k of positive bribes, it hence turns out that the
cheapest way to achieve breakdown is by offering each member the same bribe
b∗k.

Pushing this reasoning one step further, the vote buyer increases dispersion
by offering bribes to as many players as possible. Indeed, offering k bribes
equal to b∗k and others equal to 0 induces heterogeneity in the bribes and cannot
be optimal by the above argument. Therefore, the optimal strategy is to bribe
the whole committee.

We discuss the robustness of this result to the distributional assumption
below: while the vote buyer typically chooses not to bribe all committee
members if the distribution is less dispersed, supermajorities remain optimal if
we focus on symmetric strategies.

It should also be noted that the optimal coalition would be smaller if
members care about voting decisions per se. Indeed, many papers on vote
buying such as Groseclose and Snyder (1996) or Dekel et al. (2008) assume
that members have only expressive preferences: they derive utility from their
vote but do not take into account their impact on the outcome. This can
be modeled by a fixed reputational or moral cost that each member incurs if
he votes for the proposal. In a parliament for instance, legislators would be
punished by their constituencies if they voted against public interests. In a
setup where corruption is illegal, this cost could also represent the sanction if
players are caught. Let us consider a mixed model where on top of the previous
utility function we add a cost d for players who vote for the proposal8. For
each possible coalition size, it is easy to see that the vote buyer should propose
b∗k + d to each member of the coalition to ensure the proposal’s acceptance.
Thus, the cost of exploiting the pivotal channel is increasing and the size of
the optimal coalition decreasing in the expressive voting cost d.

8This cost differs across players in Groseclose and Snyder (1996). Midjord et al. (2017)
propose a model of reputation where the cost is determined in equilibrium.
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In the next proposition, we consider the impact of the design of the com-
mittee on the cost for the vote buyer:

Proposition 2. The cost for the vote buyer is:
1. decreasing in the number of committee members n,
2. increasing in the majority requirement m,
3. increasing slower than proportionally in committee scale.

We have seen in Proposition 1 that the vote buyer always wants to bribe the
largest possible coalition, but she is constrained by the number of committee
members. Adding members without changing the majority requirement relaxes
the constraint and allows her to exploit the pivotal channel even further, which
decreases the cost.

However, increasing m without changing n raises the cost for the vote buyer.
Intuitively, manipulating pivotal considerations becomes harder with a more
demanding majority requirement. For instance, if we set m = n, the vote buyer
cannot do better than bribing the minimal winning coalition and pays the cost
described in Lemma 2.

Instead of increasing n or m separately, a potential committee designer
could consider multiplying both parameters by the same factor. This would
result in a larger committee with the same ratio m

n
. Even though the cost for

the vote buyer would increase, the last point of Proposition 2 shows that as long
as m < n pivotal considerations mitigate the impact of this strategy because
members expect to be pivotal with a lower probability in a large committee. If
m = n, the cost increases exactly proportionally.

1.2 Other Valuation Distributions

We now relax the uniform assumption and we analyze how the shape of the
distribution affects the size of the optimal coalition and the resulting cost. Our
results are illustrated in an example at the end of this section. We restrict
attention to symmetric bribing strategies:

Assumption 1. All bribed committee members are paid the same bribe.
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We consider a distribution with cumulative density function F (·). We also
require the following technical assumption, which combines a differentiability
requirement with the assumption that F (·) has an increasing generalized failure
rate9:

Assumption 2. F (·) is continuously differentiable and ∂
∂v

(
vF ′(v)
1−F (v)

)
≥ 0.

The distribution of committee members’ valuations for the proposal captures
the uncertainty of their assessment. If we consider a committee where members
have similar backgrounds, the assessment of players’ valuation should be more
accurate. Conversely, there will be more uncertainty in a committee where
members come from different backgrounds and are renewed on a regular basis.
Those elements are captured in the spread of the distribution and we use the
following definition of dispersion as a comparison criteria:

Definition 1. We say that F̃ (·) is more dispersed than F (·) if F̃ ≤∗ F , i.e.
if the ratio of the inverse CDFs, F̃−1(p)

F−1(p)
, is nondecreasing in p.

We exhibit examples of distribution functions that can be ranked in the
dispersion ranking in Figure 3 to illustrate the concept. For our purposes, note
that if F ∼ LogN(µ, σ) and F̃ ∼ LogN(µ̃, σ̃) then F̃ is more dispersed than
F if and only if σ̃ > σ, i.e. independently of the relationship between µ̃ and
µ. For more technical details on this order, we refer the interested reader to
Shaked and Shanthikumar (2007, p.213).

Our analysis for general distributions also requires the following assumption:

Assumption 3. We assume either

(i) F (·) is sufficiently dispersed10 to eliminate asymmetric equilibria, or

(ii) players play only type-symmetric strategies.
9This is a strictly weaker requirement than increasing failure rate; for more details see

Lariviere (2006).
10A sufficient (but not necessary) condition for F (·) to be sufficiently dispersed is for it

to be more dispersed than U [0, 1].
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Figure 3: Dispersion Comparison: F̃ (v) blue, F (v) red and dashed.

For the class of distributions satisfying Assumption 2 and Assumption 3, the
results derived in the main section are qualitatively valid. We refer the interested
reader to Appendix B, which states and proves Lemma 3 and Proposition 2 as
well as a modified Proposition 1 in this environment. Furthermore, it provides
examples where the assumptions are violated. We move on to describe how the
size of the optimal supermajority for the vote buyer depends on the dispersion
of the distribution.

Proposition 3. The vote buyer bribes a larger supermajority when the distri-
bution is more dispersed.

Intuitively, it is easier to manipulate members’ beliefs about the pivotal
probability when the distribution is dispersed. The vote buyer therefore relies
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more on this channel when the dispersion is large, regardless of the fact that it
implies paying a large number of bribes. However, even with little dispersion,
the vote buyer bribes a substantial supermajority if we focus on type-symmetric
strategies. For instance, we can show that if we remove dispersion (i.e the
distribution converges to a single mass point), the vote buyer still bribes
a substantial supermajority equal to roughly 3

2
times the minimal winning

coalition11.
Proposition 3 raises the question of how the vote buyers’ cost responds to an

increase in dispersion. So far, our analysis suggested that it was easier for the
vote buyer to exploit the pivotal channel when dispersion was large. However,
it turns out that the impact of dispersion on the cost is ambiguous. On the one
hand, increasing dispersion makes coordination harder for committee members,
which benefits the vote buyer. On the other hand, it also means that extreme
types are more likely, which could make high cutoffs sustainable.

We now identify a sufficient condition for the ‘extreme values’ channel to
dominate, i.e. for dispersion to have a positive impact on cost. Let α be such
that, for two distributions F (v) and F̃ (v) where the latter is more dispersed,
F̃−1(α)
F−1(α)

= 1. Thus, α is the value of F (v) at the crossing of F (v) and F̃ (v).
Given our definition of dispersion, this crossing needs to be unique.

Proposition 4. Suppose m−1
n−1
≥ α. If F̃ (.) is more dispersed than F (.), then

the cost for the vote buyer is larger under F̃ (.).

Dispersion increases the cost when m−1
n−1
≥ α, which holds when m is large

with respect to n, that is, for demanding majority requirements. In such cases,
all feasible coalitions are too small to fully exploit the pivotal channel. When
dispersion increases, committee members with large disutility for the proposal
are more likely to emerge, which makes high cutoffs easier to sustain. The vote
buyer therefore needs to pay more to impede a possible coordination.

We now provide an example that illustrates the results of this section.

11We do not have strict equality because of integer problems. If we set m = αn for
some α and let n→∞ (so that integer problems disappear), then k∗/n→ 3/2.
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Example 1. Suppose F ∼ LogN(1
2
, 1) and F̃ ∼ LogN(1

2
, 1.2). Then F̃ is more

dispersed than F . Furthermore, both distributions satisfy the requirements of
Assumptions 2 and 3. In particular, Assumption 3(i) applies so that we do not
need to assume type-symmetric strategies. If m = 2 and n = 9, then the vote
buyer targets k = 8 players under F and k̃ = 9 under F̃ . As α = 1

2
, we cannot

conclude that cost is greater under F̃ and indeed at 1.81 the cost under F is
less than the 2.11 the vote buyer would have to pay under F̃ . The conclusion
reverses if we lower n to 3, in which case the cost under F is 4.39 and that
under F̃ is 3.68.

2 Other Environments

We first study sequential voting and then consider alternative payment schemes.
Finally, we discuss the case of a vote buyer with a limited valuation for the
proposal. From now on, we reintroduce the assumption that vi

iid∼ U [0, 1] and
further assume that the vote buyer makes the same offer to all bribed players.
We also focus on type-symmetric strategies.

2.1 Sequential Voting

In the main section, we have assumed that committee members voted simulta-
neously. In many committees (for instance the US Senate), votes take place
sequentially. We thus consider a variation of our model where the vote buyer
still moves first and proposes a bribe b to k members. An ordering of members
is then drawn at random and we assume that all orderings are equally likely.
Finally, voters observe the ordering, announce their vote sequentially and the
proposal is implemented if at least m members vote in favor.

We first consider the voting game. In such a voting process, committee mem-
bers use backward induction to infer their pivotal probability as in Spenkuch
et al. (2018). First of all, it is easy to see that in a subgame perfect Bayesian
equilibrium, non-bribed members vote against the proposal in any subgame
where it can still be rejected. As a result, we can focus on the k members who
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receive a positive bribe. Define Si(x, y) as the subgame where member i is
to play, x votes are still needed to pass the proposal and y (bribed) players
remain to play after i. Table 1 is a useful representation of the game where
each cell represents a subgame. When a player votes for, the subgame located
North-West along the diagonal is reached while if he votes against we move
to the subgame just to the North. In each cell, we write the subgame perfect
Bayesian equilibrium strategy. A ‘+’ indicates that the member to play should
accept the bribe regardless of his type. When a player uses a cutoff rule (i.e.
votes for the proposal if his disutility is smaller than a cutoff), we simply
display the cutoff used.

The first row is easy to fill: it represents the strategy of the last player
to vote as a function of the number of votes in favor still needed to pass the
proposal. Whenever x 6= 1, the last player is not pivotal and accepts the bribe.
When x = 1, the last member to cast a vote supports the proposal if the bribe
is larger than his disutility: b > vi. This implies that from the perspective of
other players, the last member accepts the proposal with probability b if he
happens to be pivotal. Moving one row up, it turns out that the second to last
player to vote accepts if and only if there is only one vote needed to pass the
proposal. To see that, first notice that if x < 1 or x > 2, this player has no
impact on the acceptance decision and always accepts. If x = 2, the player
would get 0 if he votes against and

b− viP
(
proposal accepted | vote in favor at (x, y) = (2, 1)

)
= b− bvi

if he votes for. As vi ≤ 1, this player accepts regardless of his type12. Finally, in
the subgame S(1, 1), the member accepts if vi < b

1−b . Iterating the reasoning, we
show that the subgame perfect equilibrium of the voting game is the following:

Lemma 4. A subgame perfect equilibrium of the sequential game must satisfy
the following conditions:

1. In any subgame Si(x, y) with x 6= 1, the member to play votes in favor.
12Member of type vi = 1 would be indifferent, but this event has zero mass and can be

neglected.
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2. In any subgame Si(1, y), the member to play accepts if vi < min{1, b
1−yb}.

Table 1: Sequential voting.

x = 0 x = 1 x = 2 x = 3 ... x = m− 1 x = m

y = 0 + min{b, 1} + + ... + +
y = 1 + min{ b

1−b , 1} + + ... + +
y = 2 + min{ b

1−2b
, 1} + + ... + +

... ...
y = i + min{ b

1−ib , 1} + + ... + +
... ...
y = k − 2 ... + +
y = k − 1 ... +

Note: Only bribed members are considered. x is the number of votes required to pass the
proposal, y the number of players still to go. Each cell gives the SPNE strategy. We do
not display all the subgames where the proposal is already accepted (i.e. x negative) as all
bribed members accept for sure. Greyed out cells correspond to nonexistent subgames.

We can now consider the problem of the vote buyer. She wants to choose
the combination (b, k) which makes the proposal accepted with certainty for
the minimal possible cost. The game begins at S(m, k − 1); thus, choosing k
amounts to choosing the number of rows in Table 1. Given the equilibrium
structure of the game, the m− 1 first members vote for the proposal until the
subgame S(1, k−m) is reached. Once the game arrives at the first column, the
proposal is rejected with positive probability if for all S(1, y), y ≤ k −m, some
types reject the proposal. For the vote buyer, it is necessary and sufficient to
choose b such that the player to move at S(1, k−m) accepts the proposal with
certainty. This implies that when the vote buyer decides to bribe k players,
she offers a bribe b∗k = 1

k−m+1
.

To find the optimal k, notice that the total cost as a function of k is k
k−m+1

,
which is strictly decreasing in k. As a result, the vote buyer will always buy
the full committee when the vote is sequential.
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Proposition 5. When voting is sequential, the vote buyer bribes all committee
members and offers them b∗n = 1

n−m+1
. The cost for the vote buyer is decreasing

in the number of committee members n, increasing in the majority requirement
m and increasing slower than linearly with committee scale.

We can therefore conclude that the main mechanism of the paper also
applies to sequential voting: the vote buyer bribes a supermajority in order to
make a pivotal event unlikely. By doing so, she makes sure that all members
support the proposal even if the bribes offered are small. Given that the
vote buyer pays b∗n = 1

n−m+1
to n members, the resulting cost is n

n−m+1
. The

comparative statics result from a direct inspection of this function and are
qualitatively similar to the simultaneous voting case.

2.2 Other Visibility Setups

Until now we were assuming that the voting process was public and that the
vote buyer could contract on the individual voting decisions. We now explore
alternative mechanisms where the voting process is not fully transparent. More
precisely, we first consider a committee where only the final decision is public.
Furthermore, we also analyze a setup where the number of votes in favor is
disclosed. In both cases, we assume that the vote buyer can only condition the
payment of bribes on the information that is publicly disclosed after the vote.

2.2.1 Final Decision

Suppose that the only information disclosed after the vote is the decision of
the committee. In such a case, the vote buyer pays the bribes if the proposal
is accepted. We stick to the assumptions made in the main section: bribed
committee members collude on their preferred equilibrium and the vote buyer
wants to induce the proposal to be accepted with certainty. We have the
following proposition:

Proposition 6. When the vote buyer can only condition the bribes on the
outcome of the vote, she offers a bribe of 1 to m players.
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In such a setup, a pivotal voter would induce the proposal to pass and the
bribe to be paid if he votes in favor. As a result, bribed members support the
proposal if b > vi and the vote buyer needs to offer b = 1 to guarantee that all
bribed members vote in favor of the proposal. Knowing this, she cannot do
any better than bribing the minimal winning coalition and ends up paying m.
This result is in line with the third Proposition of Dal Bo (2007) and shows
that the pivotal channel is severed when the vote buyer can only contract on
the outcome of the vote.

2.2.2 Tally

Now let us suppose that the committee discloses the number of votes in favor of
the proposal and that the vote buyer conditions the payment of bribes on this
information. This problem is also considered in Dal Bo (2007). He concludes
that the cheapest way to achieve certain acceptance is to promise a payment
of 1 to m members if the proposal receives m votes, which is also the solution
proposed in Proposition 6 above. This bribing scheme guarantees that voting
for the proposal is a dominant strategy for at least m voters and is therefore
consistent with the solution concept of Dal Bo (2007).

Nevertheless, it turns out that in our setup there exist cheaper ways to
prevent members from colluding on an equilibrium where the proposal could
be rejected. Those strategies also imply bribing a supermajority and we now
present an example that illustrates the mechanism.

Let’s consider a bribing scheme consisting of a number of bribed members
k and a sequence of bribes {b1, b2, ..., bm, ..., bk} where bp is the bribe that the
vote buyer commits to pay to all k bribed members if p players vote in favor.
We assume that payments cannot be negative: bp ≥ 0 for all p.

Considering a given bribed player, we denote by πp the probability that
exactly p − 1 other members vote for the proposal. In such a case, voting
in favor increases the payoff to each bribed member by bp+1 − bp. Interior
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equilibria of the voting game take a cutoff form and must satisfy

v∗ =

k∑
p=1

πp(v∗)(bp − bp−1)

πm(v∗)
.

The vote buyer needs to propose a bribing scheme such that no interior
equilibrium exists. All bribed members vote for the proposal and the vote
buyer pays k × bk. The problem of the buyer is thus to minimize bk such that
there is no solution in [0, 1] to the above equation.

In order to prevent a possible coordination on a strategy profile where all
members reject the proposal, the vote buyer must propose b1 > 0. Moreover,
we must have bk > bk−1, i.e. bribes must increase right at the end: if not,
bribed players would reject the proposal with a positive probability.

We can now study the following example, which shows that in a committee
of 7 players with a majority of 4, the vote buyer can pay strictly less than 4
and still prevent any possible collusion.

Example 2. Suppose m = 4 and n = 7. If the vote buyer proposes the bribing
scheme depicted in Figure 4 to all members of the committee. She pays a total
cost 3.86 < m and in exchange every agent votes in favor of her proposal.

With the bribing scheme depicted in the upper panel of Figure 4, a vote in
favor increases the bribes paid to all members if there are 3, 4 or 6 other votes
in favor. However, in case exactly 5 other players have supported the proposal,
a vote in favor reduces the bribes given.

In the lower panel of Figure 4, we express the expected utility gain from
a vote in favor as a function of the voting cutoff v∗ (and considering that
other players also pick the same cutoff). An equilibrium of the voting game
must satisfy 4U(v∗) = 0. We can see that the bribing scheme proposed
guarantees that this condition never holds, which implies that v∗ = 1 is the
only equilibrium of the voting subgame.

The bribing scheme that we consider exploits the fact that close pivotal
events become salient nearly simultaneously, i.e. whenever an agent places
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Figure 4: Saving money by bribing a supermajority.

a high probability on being at a specific pivotal event she also places a high
probability on being at nearby events. By exploiting these interactions between
the pivotal events, it is possible to decrease the bribe locally and still prevent
any potential coordination by re-increasing it at a higher number of votes in
favor.

The mechanism that we highlight can only be exploited for large enough
committees: it requires lowering and re-increasing the promised bribes with
more than m votes in favor. This is of course not possible for small committees
or when unanimity is required. Moreover, we see that this mechanism also
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requires bribing a supermajority.
To our knowledge, the idea presented in Example 2 is new. It shows that

when members’ preferences are uncertain and when we focus on symmetric
strategies, the cost derived in Dal Bo (2007) can be lowered by offering multiple
thresholds to a supermajority. In his setup, the fact that players have known
valuations for the proposal combined with a potential collusion on asymmetric
equilibrium would make the bribing scheme of our example ineffective13. Other
papers also consider payments conditioned on vote shares14 but they assume
that the bribes are paid if the number of votes in favor is above a unique
threshold. Such a strategy typically induces multiple equilibria: e.g. there
always exists an equilibrium where the proposal is rejected with positive
probability.

2.3 Vote Buyer’s Valuation

In this section, we relax the certain passing assumption and we consider the
general problem of the vote buyer. As in the main setup, payments are
conditioned on individual voting decisions. Recall that the objective function
of the vote buyer is

UVB = W × P(proposal passed | b offered to k members)

−b× (#votes for),

where W is her valuation of the proposal. The vote buyer may now prefer
to induce an interior equilibrium, i.e an equilibrium where bribed members
have cutoffs smaller than 1 and where the proposal is rejected with a positive
probability. As a result, the vote buyer could end up paying positive bribes
even if the proposal is rejected. In spite of this risk, it turns out that she always
offers positive bribes, even when her valuation for the proposal is small:

13Let vi = 1/2 for all players. There exists an equilibrium where 3 players vote for with
certainty and 4 vote against.

14See for instance Morgan and Várdy (2011), Smith and De Mesquita (2012), Gin-
gerich and Medina (2013) and Rueda (2015, 2017).
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Proposition 7. If W > 0, the vote buyer offers strictly positive bribes.

This result is driven by pivotal considerations: when the bribes offered go
to zero, committee members always reject the proposal and are never pivotal.
The marginal impact of the bribes on the voting cutoffs – and thus on the
probability of acceptance – is therefore very large and the vote buyer always
attempts to bribe the committee.

As we discussed above, there exists W such that for W > W the vote buyer
makes sure that the proposal is always accepted. In our next result, we propose
an upper bound for W :

Lemma 5. It is optimal for the vote buyer to guarantee certain acceptance if
W > W where W < m+ 1.

This bound guarantees that for any coalition size, the utility of the vote
buyer plotted in Figure 5 is strictly increasing in v∗. However, while this is
sufficient to ensure the vote buyer wants to guarantee certain acceptance, it is
not necessary. In particular, it does not account for the payoff discontinuity
induced by the equilibrium breakdown. This discontinuity might provide
enough incentives to induce certain approval even when W < m + 1. For
instance, in the setup of our introductory example – n = 3,m = 2 – we have
W ≈ 1.14 < m+ 1 = 3.

Let us now consider cases where the vote buyer wants to induce an interior
equilibrium. With respect to the optimal number of bribes, the effect of an
additional player is now ambiguous and the mechanism is different from the
main model. Suppose that the vote buyer spends a given amount that she
splits between k players. Moreover, suppose that W is small so that bribes
offered and cutoffs are small. What would happen if the vote buyer spent the
same amount but split it between k + 1 players?

Ignoring pivotal probabilities for the moment, the direct effect of this move
is to increase the spread of the distribution of the number of successes. This
benefits the vote buyer: when cutoffs are small, getting at least m votes in favor
is unlikely. By making the number of successes more uncertain, the probability
of obtaining enough votes increases. However, there is now a countervailing
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Figure 5: The General Vote Buyer’s Problem

effect: when we increase uncertainty in the number of successes, we incidentally
increase the probability of unlikely outcomes, including pivotal events. As a
result, players are more reluctant to vote for the proposal and play lower cutoffs.
When W is small, supermajorities are therefore not necessarily optimal. It is
indeed possible to build an example where the vote buyer prefers to bribe m
players than m+ 115.

15For instance, if n = 17 and W = 0.2.
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Conclusion

We have shown that a vote buyer can shape committee members’ assessments
of their pivotal probabilities. As a result, it is generally cheaper to bribe a
supermajority for an outsider who wants to manipulate a vote. We have shown
that this strategy can be used in a large variety of voting setups.

Our paper is of interest for a potential committee designer and we have
derived multiple policy recommendations. First of all, if the results of the
vote need to be published, large majority requirements are suitable to make
the committee more expensive to bribe. However, increasing the size of the
committee is of limited interest. Increasing proportionally n and m leads to a
less than proportional increase in cost and increasing only n can even make the
committee cheaper to bribe. Instead of hiring new members, the committee
designer can diversify the recruitment of committee members: increasing the
dispersion of members’ valuation for the proposal combined with a demanding
majority requirement increases the cost.

With respect to the voting rule, we have seen that sequential voting is of
little interest. A vote buyer could still manipulate the pivotal channel and would
end up facing the same considerations. However, and perhaps surprisingly,
a less transparent voting process can make the committee more robust to
corruption. The vote buyer’s ability to manipulate pivotal considerations relies
on her capacity to monitor (and contract on) individual voting decisions: if she
only observes the outcome of the vote, there always exists an equilibrium in
which the proposal is rejected. However, we show that observing the number
of votes in favor is sufficient to exploit the pivotal channel, especially in large
committees.

Our discussion was framed in terms of committee members voting on a
proposal, but the mechanism we highlight is much more general. To begin
with, it can explain why ruling parties are reelected with large majorities in
non-democratic countries. Relying on a short majority would be expensive
because each individual (or faction) can be decisive and thus the price of each
vote would be large. Conversely, if people believe that the ruling party will be
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reelected with a large majority, they perceive themselves as having no chance
of changing the outcome of the election and hence are willing to accept even
small benefits in exchange for their votes. A related argument can be found
in Angeletos et al. (2007) or in Edmond (2013), which have citizens playing a
coordination game to overthrow a regime.
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Appendix A: Proofs
Lemma 3. When the vote buyer offers b∗k, the proposal is accepted with certainty
in any equilibrium of the voting game.

Proof. Consider at no loss of generality the strategy of (bribed) member 1.
To begin the iterated elimination, note that choosing any cutoff below b∗k is a
dominated strategy for him: even if he expects to be pivotal with probability
one, he should vote in favour if his bribe exceeds her disutility.

In general, if for all other bribed players i the smallest rationalizable cutoff
after iteration t is v∗(t)i , his smallest rationalizable cutoff v

∗(t+1)
1 at iteration

t+ 1 solves

v
∗(t+1)
1 ×

(
max

v∗i ∈[v
∗(t)
i ,1]

π(v∗2, . . . , v
∗
k)

)
= b∗k. (3)

Given symmetry, we have v∗(t)i = v
∗(t)
j for all i, j, n and hence refer simply to

v∗(t). The remainder of the proof shows that if v∗(t) < 1, then v∗(t+1) > v∗(t).

1. The first committee member is pivotal if exactly m−1 of the k−1 bribed
players vote in favor. If S :=

∑k
i=2 Bernoulli(F (v∗i )), then

π(v∗2, . . . , v
∗
k) = P(S = m− 1)

= fk−1(m− 1;v1),

where the last object is the PMF of a Poisson-Binomial random variable
with k− 1 trials and success probability vector given by v1 = (v∗2, . . . , v

∗
k).

For any i,

fk−1(m− 1;v) = F (v∗i )fk−2(m− 2;v1i) + (1− F (v∗i ))fk−2(m− 1;v1i),

whence ∂fk−1

∂F (v∗i )
is independent of F (v∗i ). Thus, there is a solution to the

maximization problem in (3) in which v∗i ∈ {v∗(t), 1} for all i.
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2. In light of this, let πh(v) be the value of the pivotal probability if exactly
h of the k−1 agents choose a cutoff of v∗i = 1 and k−1−h choose a cutoff
of v; then the value of the maximization problem is just maxh πh(v

∗(n)).

3. For any h, we can derive a critical bribe b∗k,h as in the main text that
satisfies vπh(v) < b∗k,h for all v and is defined by

b∗k,h = maxv{v
(
k − h− 1

m− h− 1

)
[F (v)]m−1−h[1− F (v)]k−m︸ ︷︷ ︸

πh(v)

}.

4. We now show that b∗k,h < b∗k for all h ∈ {1, ...,m} (indeed, we have
b∗k,0 = b∗k) by establishing

∂b∗k,h
∂h

= −v
(
k − h− 1

m− h− 1

)
(1− F (v∗∗h ))k−mF (v∗∗h )m−h−1

×
{
Log[F (v∗∗h )] + ψ(0)(k − h)− ψ(0)(m− h)

}
< 0. (4)

If vi ∼ U [0, 1], we have v∗∗h = m−h
k−h and require

log(m− h)− ψ(0)(m− h)− [log(k − h)− ψ(0)(k − h)] ≥ 0.

By Chen (2005), Theorem 1 we have ψ(1)(x) > 1
x

+ 1
2x2

, whence we know
that ∂

∂x
(log(x)− ψ(0)(x)) < 0; but then as k − h > m− h, we are done

for the uniform case.

5. Finally, return to (3) and note that16 for v∗(t)1 < 1,

v
∗(t)
1 ×

(
max

v∗i ∈[v
∗(t)
i ,1]

π(v∗2, . . . , v
∗
k)

)
=(1,2) v

∗(t)
1 max

h
πh(v

∗(t))

≤(3) max
h

b∗k,h

<(4) b∗k,

whereby v∗(t+1)
1 > v

∗(t)
1 .

16The index on equalities/inequalities refers to the relevant step in the proof.
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Proposition 1. The cheapest bribing scheme inducing certain passing of the
proposal is bi = b∗n for all i.

Proof. We proceed in four steps. Firstly, we define the notion of a ‘breakdown-
boundary’ bribe. Secondly, we provide a necessary condition breakdown-
boundary bribes must satisfy. Thirdly, we show this condition allows us
to form some conclusions about the potential cutoff combinations on the
breakdown-boundary. Finally, we use these conclusions to show that from
any breakdown-boundary bribe there is a path to (m/k, . . . ,m/k) such that
moving along this path reduces bribing costs.

1. A breakdown bribe is a bribe vector (b1, . . . , bk) such that there is no
solution to the following system of equations:

v∗1π1 = b1,
...

v∗kπk = bk.

We define the breakdown boundary to be the set

B := {b ∈ Rk | ∀ε ∈ R++ ∃db ∈ Rk : b+ db is a breakdown bribe,

and ||db|| < ε}.

So a bribe lies in the breakdown-boundary if increasing it by an arbitarily
small amount in some direction causes breakdown. Clearly, a cost-
minimizing vote buyer never induces breakdown by choosing a bribe
vector above the breakdown boundary as he can achieve the same outcome
by bribing arbitrarily close to it.

2. By Lemma C.2 below, the breakdown set is open. Thus, if there is some
direction in which an arbitrarily small increase in bribes causes breakdown,
then any arbitrarily small increase in bribes causes breakdown. So any
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cutoff vector (v∗1, . . . , v
∗
k) for which there exists dv = (dv1, . . . , dvk) which

induces db = (db1, . . . , dbk) ≥ 0 (with db 6= 0) cannot possibly support a
breakdown-boundary bribing vector.

3. Assume wlog that v∗1 ≤ v∗2 ≤ · · · ≤ v∗k. If we are on the breakdown-
boundary:

• There must be s and r such that

fk−1(m− 1;vs) ≥ fk−1(m;vs), and

fk−1(m− 1;vr) ≤ fk−1(m;vr).

Say there is no such r. Then setting dvi = v∗i for all i yields

dbi = πiv
∗
i + v∗i

∑
j 6=i

[fk−2(m− 2;vij)− fk−2(m− 1;vij)]v∗j

= mv∗i

{
fk−1(m− 1;vi)− fk−1(m;vi)

}
> 0,

which cannot be. If there is no such s, use dvi = −v∗i . Finally, by
(7) in Samuels (1965) we can choose s = k and r = 1.

• We must have
∑
v∗i ≥ m− 1 + v∗1. Say not; then

∑
i 6=j v

∗
i < m− 1

for all j. So set dk = 1. This implies dbk = πk > 0 and furthermore
for j 6= k,

dbj = v∗j [fk−2(m− 2;vjk)− fk−2(m− 1;vjk)] ≥ 0,

where the inequality follows by Theorem 1 in Samuels (1965).

• We must have
∑
v∗i < m+ v∗k. Say not; then

∑
i 6=j v

∗
i ≥ m for all j.

So fk−1(·;vj) has mean at least m and therefore mode at least m.
But this contradicts the first bullet.

4. If we are on the breakdown-boundary, we can save costs as follows:
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• If
∑
v∗i < m: Set dv1 > 0 and dvj = 0 for j 6= 1. This yields

∑
i

dbi = dv1

[
π1 +

(
n∑
j=1

v∗j
∂πj
∂v1

)]
= mdv1[fk−1(m− 1;v1)− fk−1(m;v1)] ≤ 0.

This expression does not depend on v1: thus while v1 does not
(necessarily) remain the smallest cutoff after an increase, increasing
it continues to save costs. Furthermore, this path eventually hits∑
v∗i = m: as

∑
v∗i ≥ m− 1 + v∗1 we will not run into the constraint

that v∗1 ≤ 1 when increasing v∗1.

• If
∑
v∗i > m: Set dvs < 0 and dvj = 0 for j 6= s. This yields

∑
i

dbi = dvs

[
πs +

(
n∑
j=1

v∗j
∂πj
∂vs

)]
= mdvs[fk−1(m− 1;vs)− fk−1(m;vs)] ≤ 0.

This expression does not depend on v∗k: thus while v∗k does not
(necessarily) remain the largest cutoff after a decrease, decreasing
it continues to save costs. Furthermore, this path eventually hits∑
v∗i = m: as

∑
v∗i ≤ m + vk, we will not run into the constraint

that v∗k ≥ 0 when decreasing it.

• If
∑
v∗i = m: By Theorem 1 in Samuels (1965) we have

fk−1(m− 1;v1) ≤ fk−1(m;v1), and

fk−1(m− 1;vk) ≥ fk−1(m;vk).

Thus we can set dv1 = 1, dvk = −1 and dvj = 0 for j 6∈ {1, k}. This
keeps

∑
v∗i constant, so once we hit this region we do not leave it.
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Furthermore,

∑
i

dbi = dv1

[
π1 − πk +

(
k∑
j=1

v∗j

[
∂πj
∂v1

− ∂πj
∂vk

])]
= mdv1

[(
fk−1(m− 1;v1)− fk−1(m;v1)

)]
−mdv1

[(
fk−1(m− 1;vk)− fk−1(m;vk)

)]
≤ 0.

Note that this time the value of the expression depends on v∗1 and
v∗k; but as we can employ Samuels’ Theorem this is not an issue.

Thus, for any point on the breakdown-boundary we have found a cost-saving
path from this point to v = (m/k, . . . ,m/k), which we know lies on the
breakdown-boundary from the discussion of the symmetric case.

Proposition 2. The cost for the vote buyer is:
1. decreasing in the number of committee members n,
2. increasing in the majority requirement m,
3. increasing slower than proportionally in committee scale.

Proof. We prove each comparative static in turn.

1. Given k and m, pivotal probabilities do not depend on n; thus, the only
way n can affect cost is by being a constraint on how high a k can be
chosen.

2. The cost of bribing a committee with majority requirement m is given by

C(m) = min
k

{
k ×max

v

[
v

(
k − 1

m− 1

)
F (v)m−1(1− F (v))k−m

]}
.

By the envelope theorem dC(m)
dm

= ∂C(m)
∂m

and hence algebra yields

dC(m)

dm
∝ log(F (v∗∗))− log(1− F (v∗∗)) + ψ(0)(k∗ −m+ 1)− ψ(0)(m),
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where k∗ and v∗∗ are the relevant solutions in the nested optimization
problems. As vi ∼ U [0, 1], v∗∗ = m

k
and dC(m)

dm
> 0 if

log(m)− log(k∗ −m) + ψ(0)(k∗ −m+ 1)− ψ0(m) > 0.

By Qi and Guo (2016) we have ψ(0)(m)− log(m) < −1/(2m) and

ψ(0)(k −m+ 1)− log(k −m) >
1

2(k −m)
− 1

12(k −m)2
.

We can solve the resulting inequality to confirm17 that dC(m)
dm

> 0.

3. Say the vote buyer optimally offers b∗ to k∗ members when the committee
has size n and majority rule m; she pays C = k∗×b∗. An upper bound for
her bribing cost if the committee is scaled by factor s is C = k∗ × s× b∗,
where b∗ refers to the new optimal bribe given fixed k∗. It is sufficient to
show that C < sC, i.e. that b∗ < b∗. But b∗ can be seen as the largest
rectangle in the plane (π̄(v), v) where π̄(v) is the pivotal probability in
the new setup:

π̄(v) =

(
s× k − 1

s×m− 1

)
F (v)s×m−1(1− F (v))s×(k−m).

By Lemma C.3, we have ∂π̄(v)
∂s

< 0, so b∗ < b∗.

Proposition 3. The vote buyer bribes a larger supermajority when the distri-
bution is more dispersed.

Proof. The optimal choice of k is the solution to:

min
k

{
kv∗∗

(
k − 1

m− 1

)
F (v∗∗)m−1[1− F (v∗∗)]k−m

}
where we consider v∗∗ as an implicit variable of k. Using the envelope theorem,

17The specified bounds on ψ(0)(·) only allow us to conclude this if k > 3, but tighter
bounds are easily available from the same paper.
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we can write a simplified FOC

1/k + ψ(0)(k)− ψ(0)(k −m+ 1) + Log(1− F (v∗∗)) = 0

where we have multiplied by strictly positive terms to eliminate their inverse.
But now from Lemma C.1 below we know that F̃ (ṽ∗∗) > F (v∗∗). Thus, the
FOC under the more dispersed distribution lies below the FOC under the old
distribution at the (old) optimal k. Given that it can be verified that the cost
function admits at most one local minimum, this is sufficient to conclude that
the (new) optimal k needs to be larger.

Proposition 4. Suppose m−1
n−1
≥ α. If F̃ (.) is more dispersed than F (.), then

the cost for the vote buyer is larger under F̃ (.).

Proof. To begin with, π(v) and π̃(v) exhibit the following properties:

1. The two functions have the same value at their maximum.

2. The maximum of π̃(v) is reached for smaller v than that of π(v).

3. At the right of the max of π̃(v), the two functions cross once at v̄.

4. π(v) lies above π̃(v) for v > v̄.

Now suppose that the optimal bribe when the distribution is F (.) is b∗ =

v∗∗π(v∗∗). To see that the optimal bribe is necessarily larger when the distribu-
tion is F̃ (.), notice that there is (at least) one v′ ≥ v∗∗ such that π̃(v′) = π(v∗∗).
This implies that the optimal bribe when the distribution is F̃ (.) is at least
v′π(v∗∗) ≥ v∗∗π(v∗∗). A similar reasoning implies that all b∗k are larger under
F̃ (.) than under F (.). As a result, the vote buyer has to pay more under
F̃ (.).

Lemma 4. A subgame perfect equilibrium of the sequential game must satisfy
the following conditions:

1. In any subgame Si(x, y) with x 6= 1, the member to play votes in favor.

2. In any subgame Si(1, y), the member to play accepts if vi < min{1, b
1−yb}.
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Proof. Consider Table 1.

• In any subgame where x ≤ 0, the proposal will pass and any bribe must
be accepted.

• In any subgame where x > y+ 1, the proposal cannot pass and any bribe
must be accepted.

• Consider the subgames where x = 1. Let P+(y) be the probability that
the proposal is accepted by the remaining members if he votes against it.
The member to play at subgame S(1, y) faces the following arbitrage:

a = 1 → b− vi
a = 0 → − vi × P+(y)

He thus accepts if vi < min{ b
1−P+(y)

, 1}. If b
1−P+(y)

> 1, P+(y + 1) = 1:
the member playing before knows that the proposal will be accepted for
sure by the next player if he votes against. If P+(y + 1) < 1 we have:

P+(y + 1) =
b

1− P+(y)
+

(
1− b

1− P+(y)

)
P+(y)

= P+(y) + b

We also know that P+(1) = b. As a result, P+(y) = yb. We can therefore
reformulate the tradeoff at subgame S(1, y) and see that the member to
play accepts if v < min{ b

1−yb , 1}.

• It remains to check that in any subgame S(x, y), 1 < x < y, the member
to play prefers to accept. Consider a subgame S(2, y) where P+(y) < 1.
Moreover, suppose that at S(2, y − 1), the player accepts for sure.

a = 1 → b− vi × P+(y)

a = 0 →− vi × P+(y − 1)

Substituting the value for P+, it implies that the member to play at

44



S(2, y) accepts if v < 1, which is true (potentially, type v = 1 could mix
but this event has 0-mass and can be neglected). It remains to check that
the member to play at S(2, y − 1) would accept. Notice that at S(2, 1),
the member to play would get b− viP+(1) = b− vib if he votes for and 0
if he votes against (the proposal would be rejected for sure). As a result,
he votes for if vi < 1, which is also true. Iterating this implies that any
member to play in a subgame S(2, y) votes for the proposal. The same
argument applies to any subgame S(x, y), 1 < x ≤ y+ 1 and the member
to play must accept the proposal.

Proposition 7. If W > 0, the vote buyer offers strictly positive bribes.

Proof. Suppose that the vote buyer offers positive bribes to exactly m players
(bribing the minimal winning coalition is not necessarily the optimal strategy
but the focus is sufficient for the proof). Her expected utility is:

UVB(v) = W × vm − b(v)× E(#votes for|v,m).

For the minimal winning coalition, b(v) = vπ(v) = vm. Furthermore, the
number of votes in favor is distributed binomially with parameters m and v.
Thus, the expected number of successes is mv and we conclude

UVB(v) = vm{W −m× v}.

As a result, for any W > 0, UVB(v) > 0 if v < W
m
.

Lemma 5. It is optimal for the vote buyer to guarantee certain acceptance if
W > W where W < m+ 1.

Proof. We can write the VB objective function as

Π(v, k) := W × P(proposal passed)

−kb∗(v)× P(a bribed member votes in favour)

= W

n∑
x=m

(
k

x

)
vx(1− v)k−x − kv2

(
k − 1

m− 1

)
vm−1(1− v)k−m.
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Taking the first-order conditions wrt v yields local extrema at

vext =
m+ 1 +W ±

√
−4(1 + k)W + (m+ 1 +W )2

2(1 + k)
.

The sign of ∂Π
∂v

does not depend on v if the discriminant is negative. Thus, as
long as

W ∈

[
1 + 2k −m− 2

√
k + k2 −m− km,

1 + 2k −m+ 2
√
k + k2 −m− km

]
,

the vote buyer either does not want to bribe at all or bribes breakdown.
Furthermore, if the lower of the vext exceeds m

k
, again the derivative never

changes sign on the region of interest. This happens if

W > 1 + 2k −m+ 2
√
k + k2 −m− km,

whence we can conclude thatW > 1+2k−m−2
√
k + k2 −m− km is sufficient

for the vote buyer to employ a breakdown strategy conditional on bribing at
all. We have to check this inequality separately for each k to ensure that for no
k does the vote buyer prefer an interior strategy. Thus, the true lower bound
is the maximum of the RHS of the inequality wrt k. It is easy to show that
the RHS is strictly decreasing in k; the lowest admissible k is m.
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Appendix B: Extension to General
Distributions

Assume vi
iid∼ F (·) and impose bi = bj for all i, j as well as Assumptions 2 & 3

stated in the main text. We restate and prove Lemma 3 as well as Propositions
1 and 2 in this environment.

Lemma B.1. When the vote buyer offers b∗k, the proposal is accepted with
certainty in any equilibrium of the voting game.

Proof. To show that (4) also holds for more dispersed distributions, notice
that

∂b∗k,h
∂h

is decreasing in F (v). Moreover, by Lemma C.1, F̃ (ṽ∗∗h ) > F (v∗∗h ) if
F̃ (·) is more dispersed than F (v). It follows that ISDS eliminates all strategies
below v∗∗ if F (v) is more dispersed than the uniform.

Proposition B.1. The cheapest bribing scheme inducing certain passing of
the proposal always involves bribing more than m committee members.

Proof. If we let Ĉ(k) denote the cost of bribing k members and define vmax to
be the maximal value that v can take, we have

Ĉ(m+ 1) < (m+ 1)× vmax × max
v∈[0,vmax]

{m(F (v))m−1(1− F (v))},

we have Ĉ(m)− Ĉ(m+ 1) bounded below by

Z := mvmax − (m+ 1)vmax × max
v∈[0,vmax]

{m× (F (v))m−1(1− F (v))}

= mvmax − (m+ 1)vmax

(
m− 1

m

)m−1

where the last line follows from solving the maximization problem. It is sufficient
to show that Z > 0, which is true for m ≥ 2.

Proposition B.2. The cost for the vote buyer is
1. decreasing in the number of committee members n,
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2. increasing in the majority requirement m,
3. increasing slower than proportionally in committee scale.

Proof. We only used vi ∼ U [0, 1] in the proof of (ii). But from Lemma C.1,
we know that F̃ (ṽ∗∗) > m

k
for any distribution F̃ (·) more dispersed than the

uniform distribution. Thus, the proof of (ii) still applies in this case.

We now provide examples to illustrate how violations of Assumptions 1 and
3 can cause our results to fail.

Example 3. When the distribution of types is not sufficiently dispersed,
committee members can collude on an asymmetric equilibrium when offered
the bribing scheme discussed in the main section. To see that, assume n = 3,
m = 2 and v = 1/2 for all players.

To begin with, focus on symmetric equilibria and suppose the vote buyer
proposes a bribe b to all 3 players. When b > 0, each member should accept
with a positive probability x. In equilibrium, x∗ satisfies

b =
1

2
π(x∗),

where π(x) = 2x(1−x). Proceeding as in the introductory example, no interior
and symmetric equilibrium exists when b > 1/4, and the vote buyer spends a
total amount of 3/4.

However, if the vote buyer proposes this bribing scheme, committee members
can collude on an asymmetric equilibrium where the proposal is rejected. For
instance, one player can accept the bribe while the other two decline it. The
players refusing the offer are pivotal with certainty and have no incentive to
deviate. Such an equilibrium was ruled out in Lemma 3 using Assumption 3,
which requires that valuations are sufficiently dispersed.

Example 4. This example shows that for some distributions the vote buyer
could prefer to propose asymmetric bribes. Assume n = 2, m = 1. Furthermore,
v = 1/4 with probability 3/4 and v = 1 with probability 1/4.

To begin with, suppose the vote buyer proposes the same bribe to both
players. When b > 1/4, there is no equilibrium where the proposal is rejected
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with positive probability. Thus, the vote buyer can ensure passing for a total
cost of 1/2; by contrast, ensuring passing while bribing only a single player
would cost 1.

However, the vote buyer can pay even less if she uses asymmetric bribes.
Suppose that member 1 receives a bribe slightly larger than 1/4 while member
2 receives 1/16. To see that the proposal will be accepted, we apply an iterated
deletion of dominated strategies. Member 1 must accept his bribe if his type is
1/4, thus member 2 is at most pivotal with a probability 1/4. Knowing this,
member 2 must accept a bribe of 1/16 if his type is 1/4. Member 1 should
then also accept the bribe if his type is 1, which guarantees that player 2 is
never pivotal and should also accept the bribe.
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Appendix C: Technical Lemmas

Lemma C.1. Suppose F̃ (·) and F (·) have increasing generalized failure rates.
Suppose further that F̃ (·) is more dispersed than F (·). Then F̃ (ṽ∗∗) > F (v∗∗),
where ṽ∗∗ is the equilibrium cutoff if vi ∼ F̃ (·) and v∗∗ is the equilibrium cutoff
if vi ∼ F (·).

Proof. To find the equation implicitly defining v∗∗, we solve

max
v
v

(
k − 1

m− 1

)
F (v)m−1[1− F (v)]k−m,

which yields the FOC defining v∗∗:

[F (v∗∗)− 1]F (v∗∗)

v∗∗F ′(v∗∗)
= (m− 1)− (k − 1)F (v∗∗). (5)

We can rewrite (5) in terms of x = F (v) to yield

x− 1

F ′(F−1(x))F−1(x)
=
m− 1

x
− (k − 1).

Now notice that the RHS is unambiguously decreasing. The LHS is increasing
by our assumption of increasing generalized failure rates. Furthermore, as
F̃ ≤∗ F , the LHS lies lower at F̃ than at F :

x− 1

F̃ ′(F̃−1(x))F̃−1(x)
<

x− 1

F ′(F−1(x))F−1(x)
⇐⇒ ∂

∂x

(
F−1(x)

F̃−1(x)

)
≥ 0.

But this must mean that x̃ = F̃ (ṽ∗∗) > F (v∗∗) = x.

Lemma C.2. The breakdown set is open.

Proof. Consider the function g : Rk → Rk defined by

gi(v
∗
1, . . . , v

∗
k) = v∗i πi.

As g is continuous, and as continuous images of compact sets are compact,

50



g([0, 1]k) is compact, so closed. But then its complement must be open.

Lemma C.3. If x ∼ Binomial(αn, p), then P(x = αk) is weakly decreasing
for α > 1.

Proof. As P(x = αk) =
(
αn
αk

)
pαk(1− p)α(n−k), we have

∂P(x = αk)

∂α
= −(1− p)α(n−k)pαk

(
αn

αk

)[
(n− k)ψ(0)(α(n− k) + 1)

+(k − n) log(1− p)− k log(p)

+kψ(0)(αk + 1)− nψ(0)(αn+ 1)
]
.

If the term in square brackets is always weakly positive, we are done. But

∂[ · ]
∂p

=
n− k
1− p

− k

p
,

whence there is a unique local minimum of the square bracket term at p∗ = k
n

(SOC confirms this). Now if p → 0 or if p → 1, [ · ] → ∞; thus, to ensure
[ · ] > 0 everywhere it suffices to check the minimum. At p = k

n
we have

[ · ] = (n− k)
{
ψ(0)(α(n− k) + 1)− log(n− k)

}
+k
{
ψ(0)(αk + 1)− log(k)

}
− n

{
ψ(0)(αn+ 1)− log(n)

}
.

If we let f(x) = ψ(0)(αx+ 1)− log(x), it suffices to show that

n

k
≥ f(n− k)− f(k)

f(n− k)− f(n)

As f(·) > 0, f ′(·) < 0, we have f(n−k)−f(k)
f(n−k)−f(n)

≤ 1; thus, we are done.
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Appendix D: Competition
Consider a setup with two competing vote buyers, an attacker A and a defender
D. As in the main text, we assume that A has a large valuation for the proposal
and hence seeks certain passing. D, however, is assumed to have resources
limited by her budget constraint X. In a legislative setting, D can be a whip.
In a court trial, the opposite party can also attempt to interfere with the jury.

Because of the deep pocket assumption, D cannot prevent passing of the
proposal. Hence, we assume her objective is to maximize the overall bribing
cost to A. We denote by {bA1 , ..., bAn} and {bD1 , ..., bDn } the bribes offered by A
and D respectively. Thus, the voting subgame is equivalent to that in the main
text with bi = bAi − bDi .

As in Groseclose and Snyder (1996), vote buyers make offers sequentially,
but we reverse the order and let D move first. The timing of offers is paramount,
as explained for instance in Banks (2000). Suppose without loss of generality
that bD1 ≤ bD2 ≤ ... ≤ bDn . Then we have the following result:

Proposition 8. Let X = n[(n− 1)b∗n−1 − nb∗n]. Then

1. If X > X, there is a unique equilibrium. In this equilibrium, bDi = X
n
and

bAi = X
n

+ b∗k(X) for all i where k(X) is decreasing in X.

2. If X < X, there is an equilibrium for any possible bribe vector {bD1 , ..., bDn }
for which bDn < (n− 1)b∗n−1 − nb∗n. In this equilibrium, bAi = bDi + b∗n for
all i.

Proof. We proceed by backward induction.

1. The cheapest way for A to ensure passing by employing a coalition of
size k is to propose bAi = bDi + b∗k to members i = 1, 2, . . . , k. Proposing
0 < bAi < bDi is never optimal as member i would still vote against the
proposal with certainty. Thus bAi ≥ bDi for all bribed members. But then
the problem reduces to the one in the main text and hence symmetric
‘net’ bribes must be optimal.
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2. If bDn < (n − 1)b∗n−1 − nb∗n, A chooses k = n and hence pay nb∗n + X

no matter how D decides to allocate her budget (as long as she doesn’t
violate the inequality).

3. Otherwise, A chooses k < n and hence bribe a coalition of the k cheapest
members. If bD1 < bDN then D can increase the cost to A by setting
increasing bD1 and decreasing bDN . Hence, bDi = X

n
.

4. Finally, given D’s strategy, A will choose

k∗ ∈ arg max kb∗k +
k

n
X,

and hence ∂k∗

∂X
≤ 0.

Thus, the existence of the second vote buyer decreases the size of the
supermajority bribed by A. Because members now receive payments from the
opposite party, there is now a fixed cost for including an additional member in
the coalition. This fixed cost makes the pivotal channel more expensive to use.

Finally, we analyze how the cost for the attack depends on the resources
available to the defense. According to Proposition 8, the number of players
bribed by the attack is decreasing inX, but the defense needs to split her budget
equally across all members. This implies that when X is large, increasing the
budget of D leads her to increase some bribes that are eventually ignored by
the attack. The marginal impact of X on the cost for the attack is therefore
decreasing:

Corollary 1. The cost for the attack is increasing, concave and piecewise
linear in X.

53


	Main Model
	Results
	Other Valuation Distributions

	Other Environments
	Sequential Voting
	Other Visibility Setups
	Final Decision
	Tally

	Vote Buyer's Valuation

	Appendices
	Appendix Proofs
	Appendix Extension to General Distributions
	Appendix Technical Lemmas
	Appendix Competition

